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1 INTRODUTION

Graph neural networks (GNNs) play a fundamental role in modern computational biology, where they
often form the backbone for both subcellular tasks such as protein structure prediction (Jumper et al.,
2021) as well as cell type annotation (Shao et al., 2021) and modeling of protein protein interactions
(Liu et al., 2019) at the multi-cellular and organism wide levels. An underexplored drawback of
common GNN methods, however, is that they are not inherently multiscale consistent: Two graphs
describing the same object or situation at different resolution scales are assigned vastly different
latent representations. This prevents graph networks from generating data representations that are
consistent across scales. It also complicates the integration of representations at the molecular scale
with those generated at the biological scale. Here we discuss why existing GNNs struggle with
multiscale consistency and show how to overcome this problem by modifying the message passing
paradigm within GNNs.

2 STANDARD GNNS ARE NOT MULTI-SCALE CONSISTENT

To illustrate that standard GNNs are unable to consistently integrate multiple scales, we utilize
the QM7 dataset (Rupp et al., 2012). Here, molecular atomization energies of organic molecules
(containing both hydrogen and heavy atoms) are to be predicted. Each molecule is represented by an
adjacency matrix with entries Aij “ ZiZj |x⃗i ´ x⃗j |

´1 given as Coulomb energies of atoms i, j.

From a physical perspective, describing a molecule at the level of interacting atoms corresponds to
a specific choice of resolution scale, where interactions of individual protons and neutrons inside
individual atoms are discarded. To test the multi-scale consistency of GNNs we additionally also
consider a version of QM7 where we further lower the resolution scale: Here we aggregate each
heavy atomic core together with its surrounding (single-proton) hydrogen atoms into super-nodes.

To showcase the failure of GNNs to consistently incorporate multiple scales, we confront models
during inference with a version of QM7 on a scale different from the one they were trained on. As Ta-
ble 1 details, mean-absolute-errors (MAEs) increase significantly when going from a same-resolution
setting to a cross-resolution setting. None of the considered standard architectures (including multi-
scale methods (SAG-M – PushNet)) consistently handles multiple scales. We can trace this back to
the latent embeddings F and F that are being generated for original- tGu and coarsified graphs tGu:
For models of Table 1 on average 10 À }F ´ F } À 104 (c.f. also Fig. 2): Latent representations of
graphs describing the same object at different resolutions differ significantly.

To understand this behavior, we interpolate between fine and coarse resolution: Original graphs
tGu of QM7 are modified (tGωu) by moving hydrogen atoms towards their corresponding heavy
atom by a factor of ω ě 1 (i.e. distnew “ distequilib.{ω). For ω Ñ 8, they arrive at the respective
heavy atom (tGu). In Fig. 2, we compare the latent distance between the coarse embeddings F
and the embeddings for the intermediate graph Fω. Embeddings Fω do not converge to the coarse
embeddings F . Since the convergence of graph-sequence Gω to the limit graph G is not turned
into a convergence of latent embeddings Fω Û F we conclude: GNNs are not continuous. This
discontinuity explains why GNNs can map similar graphs (describing the same object at different
resolutions) to different latent representations.

(a) (b) (c) (d)

Figure 1: (a) G of QM7 (b) Modified Gω (c) Coarsified G (d) Effective propagation in GCN
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Table 1: Regression using high- and low-resolution QM7

Mean Absolute Error (Ó) on QM7 [kcal/mol]

Training High Resolution Low Resolution

Inference
Low

Resolution
High

Resolution
Low

Resolution
High

Resolution

GCN 125.34˘2.47 63.17˘0.92 67.75˘3.73 380.51˘30.33

GATv2 415.09˘96.5748.41˘19.20 60.01˘3.34 245.03˘90.97

ChebNet 568.47˘37.70 64.63˘1.21 64.90˘4.55339.64˘101.30

SAG 542.16˘27.33 68.43˘1.93104.20˘3.92 506.75˘60.57

BernNet 765.22˘495.2883.76˘21.75 90.52˘37.17594.62˘341.55

SAG-M 285.53˘95.54 66.22˘4.51 73.57˘14.57 307.67˘77.24

UFGNet 620.21˘4.80 13.71˘1.05 24.53˘4.80156.44˘156.44

Lanczos 939.87˘16.35 10.55˘3.22 83.11˘5.27654.61˘529.13

PushNet 2442.59˘303.27 60.94˘1.83 69.25˘3.11 124.08˘3.94

Resolvent 16.54˘3.01 16.53˘3.03 15.79˘0.98 13.80˘1.34

Exponential 16.37˘1.71 16.36˘2.16 16.25˘1.41 16.25˘1.41 Figure 2: Latent distance }Fω ´ F }

To understand this discontinuity, we exemplarily investigate (GCNs) (Kipf & Welling, 2017). There
the layer-wise update acts as X ÞÑ ÂXW , with the feature matrix X P RNˆF (N nodes; latent
dimension F ), the weight matrix W P RFˆF and the renormalized adjacency matrix Â P RNˆN . As
hydrogen atoms move closer to the heavy atoms, the entries Âheavy,heavy in Âij „ Aij{

a

didj tend to
zero (as degrees dheavy tend to infinity). Thus communication between heavy atoms becomes severely
disrupted. Information only propagates along a increasingly disconnected effective graph (Fig.1(d)).

3 GLOBAL LAPLACE PROPAGATION FACILITATES SCALE-CONSISTENCY

To avoid a disconnected effective propagation graph as in Fig. 1 (d) we modify the message passing
paradigm in GCN: To connect the information flows over Gω and G we observe that features in Gω
should equalize faster between nodes connected by large edge weights. When such a large weight
tends to infinity, features between strongly connected nodes are then equalized immediately, so that
entire strongly connected clusters exactly behave as the single nodes in G.

Noting that this is exactly the behavior that heat dissipating over a graph exhibits, we make use of
the the heat diffusion equation dXptq{dt “ ´L ¨Xptq (with Graph Laplacian L and time t) and the
structure Xptq “ e´Lt ¨Xp0q of its solutions, when designing our graph networks:

Definition 3.1. Let ψ̂ be a bounded (generalized) function defined on r0,8q. A Global Laplacian
Propagation Matrix ψ(L) is any matrix arising as ψpLq :“

ş8

0
e´tLψ̂ptqdt.

Thus ψpLq represent a weighted sum of diffusion flows that have progressed to various times.
Specifically, if we choose the Dirac distribution ψ̂δtk ptq :“ δpt´ tkq as the weightinf function ψ̂k,
we obtain exponential matrices ψkpLq “

ş8

0
δpt´ tkqe´tLdt “ e´tkL and ψ̂k :“ p´tqk´1e´λt to

get powers of resolvents ψkpLq “ rpzId` Lq´1sk. The propagation matrix is then used instead of
the adjacency matrix in each layer of the GNN leading to the update rule X ÞÑ

ř

k ψkpLqXWk.

As we prove in Appendix C.3, we indeed have }Fω ´F } Ñ 0 as ω Ñ 8, for such networks based on
global Laplacian propagation matrices. This behaviour can clearly also be observed for the examples
of exponential- and resolvent propagation matrices in Fig. 2. As ω increases, the distance between
latent embeddings tends to zero. Thus these networks are indeed continuous.

In the previous Section 2, we had identified the discontinuity of standard GNNs as the obstruction to
consistently incorporating multiple scales. This explained their sub-par performance in Table 1. Since
networks based on global Laplacian propagation schemes are continuous, we thus expect a consistent
incorporation of scales, as well as a good performance in cross resolution setting. This is exactly what
we observe in Table 1: MAEs of GNNs based on global Laplacian propagation schemes (using either
exponential or resolvent matrices) do not increase when going from a same- to a cross-resolution
setting; MAEs of such methods are lower than those of standard graph learning methods by factors of
order 101 to 102. Hence these methods indeed do consistently incorporate varying scales.
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MEANINGFULNESS STATEMENT

A model generating meaningful representations of life should be able to consistently represent all
aspects of life across all relevant scales, starting from the molecular level all the way up to the
biological level. While graph neural networks have emerged as a popular network architecture
for biological problems at any individual scale, we show that they are not directly suitable to
facilitate connections between respective scales. To remedy this and facilitate progress in eventually
continuously traversing between the molecular and the biological scale, we propose a new propagation
scheme that allows graph neural networks to indeed incorporate multiple scales.
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A COARSE-GRAINING GRAPHS

In this Appendix we illustrate:

}pL` Idq´1 ´ JÒpL` Idq´1JÓ} À 1{λ1p∆highq.

which – as we will see – also implies

}e´tL ´ JÒe´tLJÓ} À 1{wmin
high for any t ą 0. (1)

after noting the linear relation in scaling behaviour λ1pLclusterq „ wmin
high.

This will be used to prove the convergence result of Section 3 in Appendix

For convenience, we restate the definitions leading up to this setting again:
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Definition A.1. Denote by G the set of connected components in Ghigh. We give this set a graph
structure as follows: Let R and P be elements of G (i.e. connected components in Ghigh). We define
the real number

WRP “
ÿ

rPR

ÿ

pPP

Wrp,

with r and p nodes in the original graph G. We define the set of edges E on G as

E “ tpR,P q P G ˆ G :WRP ą 0u

and assign WRP as weight to such edges. Node weights of limit nodes are defined similarly as
aggregated weights of all nodes r (in G) contained in the component R as

µ
R

“
ÿ

rPR

µr.

In order to translate signals between the original graph G and the limit description G, we need
translation operators mapping signals from one graph to the other:
Definition A.2. Denote by 1R the vector that has 1 as entries on nodes r belonging to the connected
(in Ghigh) component R and has entry zero for all nodes not in R. We define the down-projection
operator JÓ component-wise via evaluating at node R in G as

pJÓxqR “ x1R, xy{µ
R
.

The upsampling operator JÒ is defined as

JÒu “
ÿ

R

uR ¨ 1R;

where uR is a scalar value (the component entry of u at R P G) and the sum is taken over all
connected components in Ghigh.

As proved in (Koke, 2024), we then have the following:

(a) (b) (c) (d)

Figure 3: (a) Graph G with Ereg. (blue) & Ehigh (red); (b) Greg.; (c) Ghigh; (d) Greg., exclusive

Theorem A.3. We have
›

›Rzp∆q ´ JÒRzp∆qJÓ
›

› “ O
ˆ

}∆reg.}

λ1p∆highq

˙

holds; with λ1p∆highq denoting the first non-zero eigenvalue of ∆high.

We here restate the proof for convenience. We use the notation ∆ “ L.

Proof. We will split the proof of this result into multiple steps. For z ă 0 Let us denote by

Rzp∆q “ p∆ ´ zIdq´1,

Rzp∆highq “ p∆high ´ zIdq´1

Rzp∆reg.q “ p∆reg. ´ zIdq´1

the resolvents correspodning to ∆, ∆high and ∆reg. respectively.
Our first goal is establishing that we may write

Rzp∆q “ rId`Rzp∆highq∆reg.s
´1

¨Rzp∆highq

5
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This will follow as a consequence of what is called the second resolvent formula Teschl (2014):

"Given self-adjoint operators A,B, we may write

RzpA`Bq ´RzpAq “ ´RzpAqBRzpA`Bq.”

In our case, this translates to

Rzp∆q ´Rzp∆highq “ ´Rzp∆highq∆reg.Rzp∆q

or equivalently
rId`Rzp∆highq∆reg.sRzp∆q “ Rzp∆highq.

Multiplying with rId`Rzp∆highq∆reg.s
´1 from the left then yields

Rzp∆q “ rId`Rzp∆highq∆reg.s
´1

¨Rzp∆highq

as desired.
Hence we need to establish that rId`Rzp∆highq∆reg.s is invertible for z ă 0.

To establish a contradiction, assume it is not invertible. Then there is a signal x such that

rId`Rzp∆highq∆reg.sx “ 0.

Multiplying with p∆high ´ zIdq from the left yields

p∆high ` ∆reg. ´ zIdqx “ 0

which is precisely to say that
p∆ ´ zIdqx “ 0

But since ∆ is a graph Laplacian, it only has non-negative eigenvalues. Hence we have reached our
contradiction and established

Rzp∆q “ rId`Rzp∆highq∆reg.s
´1
Rzp∆highq.

Our next step is to establish that

Rzp∆highq Ñ
P high
0

´z
,

where P high
0 is the spectral projection onto the eigenspace corresponding to the lowest lying eigenvalue

λ0p∆highq “ 0 of ∆high. Indeed, by the spectral theorem for finite dimensional operators (c.f. e.g.
Teschl (2014)), we may write

Rzp∆highq ” p∆high ´ zIdq´1 “
ÿ

λPσp∆highq

1

λ´ z
¨ P high

λ .

Here σp∆highq denotes the spectrum (i.e. the collection of eigenvalues) of ∆high and the
tP high

λ uλPσp∆highq are the corresponding (orthogonal) eigenprojections onto the eigenspaces of the
respective eigenvalues. Thus we find

›

›

›

›

›

Rzp∆highq ´
P high
0

´z

›

›

›

›

›

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

0ăλPσp∆highq

1

λ´ z
¨ P high

λ

›

›

›

›

›

›

;

where the sum on the right hand side now excludes the eigenvalue λ “ 0.

Using orthonormality of the spectral projections, the fact that z ă 0 and monotonicity of 1{p¨ ` |z|q

we find
›

›

›

›

›

Rzp∆highq ´
P high
0

´z

›

›

›

›

›

“
1

λ1p∆highq ` |z|
.

Here λ1p∆highq is the firt non-zero eigenvalue of p∆highq.
Non-zero eigenvalues scale linearly with the weight scale since we have

λpS ¨ ∆q “ S ¨ λp∆q

6
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for any graph Laplacian (in fact any matrix) ∆ with eigenvalue λ. Thus we have
›

›

›

›

›

Rzp∆highq ´
P high
0

´z

›

›

›

›

›

“
1

λ1p∆highq ` |z|
ď

1

λ1p∆highq
ÝÑ 0

as λ1p∆highq Ñ 8.

Our next task is to use this result in order to bound the difference

I :“

›

›

›

›

›

›

«

Id`
P high
0

´z
∆reg.

ff´1
P high
0

´z
´ rId`Rzp∆highq∆reg.s

´1
Rzp∆highq

›

›

›

›

›

›

.

To this end we first note that the relation

rA`B ´ zIds´1 “ rId`RzpAqBs´1RzpAq

provided to us by the second resolvent formula, implies

rId`RzpAqBs´1 “ Id´BrA`B ´ zIds´1.

Thus we have
›

›

›
rId`Rzp∆highq∆reg.s

´1
›

›

›
ď 1 ` }∆reg.} ¨ }Rzp∆q}

ď 1 `
}∆reg.}

|z|
.

With this, we have

›

›

›

›

›

›

«

Id`
P high
0

´z
∆reg.

ff´1

¨
P high
0

´z
´Rzp∆q

›

›

›

›

›

›

“

›

›

›

›

›

›

«

Id`
P high
0

´z
∆reg.

ff´1

¨
P high
0

´z
´ rId`Rzp∆highq∆reg.s

´1
¨Rzp∆highq

›

›

›

›

›

›

ď

›

›

›

›

›

P high
0

´z

›

›

›

›

›

¨

›

›

›

›

›

›

«

Id`
P high
0

´z
∆reg.

ff´1

´ rId`Rzp∆highq∆reg.s
´1

›

›

›

›

›

›

`

›

›

›

›

›

P high
0

´z
´Rzp∆highq

›

›

›

›

›

¨

›

›

›
rId`Rzp∆highq∆reg.s

´1
›

›

›

ď
1

|z|

›

›

›

›

›

›

«

Id`
P high
0

´z
∆reg.

ff´1

´ rId`Rzp∆highq∆reg.s
´1

›

›

›

›

›

›

`

ˆ

1 `
}∆reg.}

|z|

˙

¨
1

λ1p∆highq
.

Hence it remains to bound the left hand summand. For this we use the following fact (c.f. Horn &
Johnson (2012), Section 5.8. "Condition numbers: inverses and linear systems"):

Given square matrices A,B,C with C “ B ´A and }A´1C} ă 1, we have

}A´1 ´B´1} ď
}A´1} ¨ }A´1C}

1 ´ }A´1C}
.

In our case, this yields (together with }P high
0 } “ 1) that

›

›

›

›

”

Id` P high
0 {p´zq ¨ ∆reg.

ı´1

´ rId`Rzp∆highq∆reg.s
´1

›

›

›

›

ď
p1 ` }∆reg.}{|z|q

2
¨ }∆reg.} ¨ }

P high
0

´z ´Rzp∆highq}

1 ´ p1 ` }∆reg.}{|z|q ¨ }∆reg.} ¨ }
P high

0

´z ´Rzp∆highq}
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For Shigh sufficiently large, we have

} ´ P high
0 {z ´Rzp∆highq} ď

1

2 p1 ` }∆reg.}{|z|q

so that we may estimate

›

›

›

›

›

›

«

Id` ∆reg.
P high
0

´z

ff´1

´ rId` ∆reg.Rzp∆highqs
´1

›

›

›

›

›

›

ď2 ¨ p1 ` }∆reg.}q ¨ }
P high
0

´z
´Rzp∆highq}

“2
1 ` }∆reg.}{|z|

λ1p∆highq

Thus we have now established
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

«

Id`
P high
0

´z
∆reg.

ff´1

¨
P high
0

´z
´Rzp∆q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ O
ˆ

}∆reg.}

λ1p∆highq

˙

.

Hence we are done with the proof, as soon as we can establish
”

´zId` P high
0 ∆reg.

ı´1

P high
0 “ JÒRzp∆qJÓ,

with JÒ,∆, JÓ as defined above. To this end, we first note that

JÒ ¨ JÓ “ P high
0 (2)

and
JÓ ¨ JÒ “ IdG. (3)

Indeed,the relation (2) follows from the fact that the eigenspace corresponding to the eignvalue zero
is spanned by the vectors t1RuR, with tRu the connected components of Ghigh. Equation (3) follows
from the fact that

x1R,1Ry “ µ
R
.

With this we have
”

Id` P high
0 ∆reg.

ı´1

P high
0 “

“

Id` JÒJÓ∆reg.
‰´1

JÒJÓ.

To proceed, set
x :“ F Óx

and
X “

”

P high
0 ∆reg. ´ zId

ı´1

P high
0 x.

Then
”

P high
0 ∆reg. ´ zId

ı

X “ P high
0 x

and hence X P RanpP high
0 q. Thus we have

JÒJÓp∆reg. ´ zIdqJÒJÓX “ JÒJÓx.

Multiplying with JÓ from the left yields

JÓp∆reg. ´ zIdqJÒJÓX “ JÓx.

Thus we have
pJÓ∆reg.J

Ò ´ zIdqJÒJÓX “ JÓx.

This – in turn – implies
JÒJÓX “

“

JÓ∆reg.J
Ò ´ zId

‰´1
JÓx.
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Using
P high
0 X “ X ,

we then have
X “ JÒ

“

JÓ∆reg.J
Ò ´ zId

‰´1
JÓx.

We have thus concluded the proof if we can prove that JÓ∆reg.J
Ò is the Laplacian corresponding to

the graph G defined in Definition A.1. But this is a straightforward calculation.

As a corollary, we find

Corollary A.4. We have
Rzp∆qk Ñ JÒRkp∆qJÓ

Proof. This follows directly from the fact that

JÓJÒ “ IdG.

To prove (1), we establish the following theorem:

Theorem A.5. Consider a graph sequence Gn with }pLn ` λIdq´1 ´ J̃npL̃ ` λIdq´1Jn} Ñ 0.
Then we have }ψpLnq ´ J̃nψpL̃qJn} Ñ 0 if ψ is complex differentiable and limrÑ8 ψprq “ 0.

Proof. We make use of the holomorphic functional calculus (c.f. e.g. (Koke & Cremers, 2024)) to
establish

}ψpLq ´ J̃ψpL̃qJ} ď
1

2π

¿

Γ

|ψpzq| ¨ }pL´ zIdq´1 ´ J̃pL̃´ zIdq´1J}d|z|.

Since }pLn`λIdq´1 ´ J̃npL̃`λIdq´1Jn} Ñ 0 implies }pLn´ zIdq´1 ´ J̃npL̃´ zIdq´1Jn} Ñ 0
uniformly (in z) on compact sets (c.f. e.g. Arendt (2001)), we can apply dominated convergence, if
we find an majorizing function that is integrable on Γ. But this is ensured by the decay of ψ.

Choosing the function ψ to be given as ψpzq “ e´tz then establishes (1).

B GLOBAL LAPLACIAN PROPAGATION MATRICES, GENERALIZED
FUNCTIONS, MEASURES AND ALL THAT

In this section we discuss global Laplacian propagation matrices, generalized functions and measures

B.1 COMPLEX MEASURES ON Rě0 AND THEIR THEORY OF INTEGRATION

As reference for this section Tao (2013) might serve.

In mathematics, a measure is a formal generalization of concepts such as length, area and volume.

More specifically, we are here interested in assigning a generalized notion of length (or mass) to
subsets of the real half-line

Rě0 “ r0,8q.

These sets will turn out to be elements of a so called σ-Algebra; i.e. a set Σ of sets for which

• H,Rě0 P Σ

• A,B P σ ñ AXB P Σ

• A,B P Σ ñ AzB P Σ

• A,B P Σ ñ AYB P Σ.

9
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We now take ΣRě0
to be the smallest such set of sets Σ that contains all open intervals.

A complex measure then is a set-function that assigns to each set in ΣRě0
a complex number in a

certain way:

Definition B.1. A complex measure µ on Rě0 is a complex valued function µ : ΣRě0
Ñ C satisfying

µ

˜

ď

n

An

¸

“
ÿ

n

µ pAnq

for any countable (potentially infinite) collection of sets in ΣRě0 which are pairwise disjoint.

Let us provide some examples:

Example B.2. The prototypical example of a measure is the standard Lebesgue measure that assigns
to any interval pa, bq the length µLebppa, bqq “ |a´ b| (a, b P Rě0).

Example B.3. Alternatively, we might consider the Dirac measure µδt0 , which assigns the value
µδt0 ppa, bqq “ 1 to any interval pa, bq containing t0 (i.e. t0 P pa, bq). Otherwise it assigns the value
µδt0 ppa, bqq “ 0 if t0 R pa, bq.

Example B.4. Every integrable function ψ̂ : Rě0 Ñ C defines a complex measure via µψ̂ppa, bqq “
şb

a
ψ̂ptqdt.

Hence we may think of measures as generalizations of functions.

Any given measure on Rě0 defines a unique way of integrating (known as Lebesgue inte-
gration) a function f defined on Rě0. This proceeds by approximating any function f via a weighted
sequence of indicator functions (with A P ΣRě0

a set)

χAptq “

"

1 ; t P A

0 ; t R A
.

as
fptq « fnptq :“

ÿ

k

ankχAk
ptq.

with ak P C. For these functions, one then sets
ż

Rě0

fndµ ”
ÿ

k

ank ¨ µpAkq.

Since we have limnÑ8 fn “ f , one then simply sets
ż

Rě0

fdµ ” lim
nÑ8

ż

Rě0

fndµ.

Example B.5. For the prototypical example of the standard Lebesgue measure, this process simply
yields

ż

Rě0

fptqdµLebptq “

ż 8

0

fptqdt.

Example B.6. For the Dirac measure µδt0 , the above process yields
ż

Rě0

fptqdµδt0 ptq “ fpt0q

Example B.7. For measures arising from integrable functions ψ̂ : Rě0 Ñ C as µψ̂ppa, bqq “
şb

a
ψ̂ptqdt, we find

ż

Rě0

fptqdµψ̂ “

ż 8

0

ψ̂ptqfptqdt.
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B.2 LAPLACE TRANSFORMS

We say a complex valued measure µ is finite if we have
ż

Rě0

d|µ|ptq ă 8.

Here the measure |µ| arises from the original measure µ via

|µ|ppa, bqq ” |µppa, bqq|.

For any such finite measure µ we may define its Laplace transform as

ψµpzq :“

ż

Rě0

e´tzdµptq.

This function fµ is well defined for z in the right hemisphere

CR :“ tz P C : Repzq ě 0u.

of the complex plane C, since there we have

|ψµpzq| “

ˇ

ˇ

ˇ

ˇ

ż

Rě0

e´tzdµptq

ˇ

ˇ

ˇ

ˇ

ď

ż

Rě0

|e´tz|d|µ|ptq

ď

ż

Rě0

d|µ|ptq ă 8.

Example B.8. For the Dirac measure µδt0 , we have

ψµδt0
pzq “ e´t0z.

Example B.9. For any integrable function ψ̂, we have

ψpzq ”

ż

Rě0

e´tzdµψ̂ “

ż 8

0

ψ̂ptqe´tzdt.

More specifically, if the integrable function is given as ψ̂k :“ p´tqk´1e´λt (with Repλq ą 0), then
ψkpzq “ pz ` λq´k:

Example B.10. If ψ̂k :“ p´tqk´1e´λt yields ψkpzq “ pz ` λq´k, then

ψkpzq “ pz ` λq´k.

For k “ 1, this can be seen from
ż 8

0

e´tze´λtdt “ ´
1

z ` λ
e´pz`λq

ˇ

ˇ

ˇ

ˇ

8

0

.

For k ą 1, the claim follows from differentiating the above expression with respect to z Note that the
functions ψkpzq “ pz ` λq´k are also defined if Repzq ď 0, as long as z ‰ ´λ.

Using the function ψk of the examples above, a wide class of functions may be parametrized
Theorem B.11. Let f : Rě0 Ñ 0 be any function with lim

xÑ8
fpxq “ 0. Then for any ϵ ą 0, there is

a function
hpxq “

ÿ

k

θkψkpxq

for which
sup

xPr0,8q

|fpxq ´ hpxq| ă ϵ.

Here the basis functions tψku may either be chosen as ψkpzq “ pz ` λq´k or ψkpxq “ e´pkt0qx for
any t0 ą 0.

Proof. This is a direct consequence of the Weierstrass approximation theorem.
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B.3 GLOBAL LAPLACIAN PROPAGATION MATRICES

A Global Laplacian Propagation matrix is then constructed by applying a function ψ arising as a
Laplace transform to a graph Laplacian L. The resulting filter matrix ψpLq P RNˆN acts on scalar
graph signals x P RN via matrix multiplication; sending x to ψpLq ¨ x:

x ÞÑ ψpLq ¨ x

C PROOFS RELATED TO GENERALIZATION ABILITY

C.1 GENERALIZATION ABILITY OF GLOBAL LAPLACIAN PROPAGATION MATRICES

In this section, we establish the generalization ability of global Laplacian propagation matrices.

Theorem C.1. We have that }ψpLq ´ JÒψpLqJÓ} ď
ş8

0
|ψ̂ptq|ηptqdt holds true.

Proof. We start by proving the first claim. To this end, we note

}ψpLq ´ JÓψpLqJÓ} “

›

›

›

›

ż

Rě0

“

e´tL ´ JÒe´tLJÓ
‰

dµψ̂

›

›

›

›

ď

ż

Rě0

›

›e´tL ´ JÒe´tLJÓ
›

› d|µ|ψ̂

Using the notation for generalized fundtions, we have d|µ|ψ̂ptq “ |ψ̂ptq|dt and hence

}ψpLq ´ JÓψpLqJÓ} “

›

›

›

›

ż

Rě0

“

e´tL ´ JÒe´tLJÓ
‰

dµψ̂

›

›

›

›

ď

ż

Rě0

›

›e´tL ´ JÒe´tLJÓ
›

› |ψ̂ptq|dt.

Thus if ηptq ”
›

›e´tL ´ JÒe´tLJÓ
›

› « 0 on the support of ψ̂, we also have }ψpLq ´ JÒψpLqJÓ} «

0. In this case, propagation as implemented via ψpLq is essentially the same as propagation via
JÓψpLqJÓ.

C.2 GENERALIZATION AND STABILITY WHEN }L´ L̃} ! 1

In this section we prove in addition to results in the main body of the paper also stability and
generalization ability in the setting where for the Laplacians L, L̃ of two graphs G, G̃ defined on
a common node set we have }L ´ L̃} ! 1 (as opposed to the setting where one graph is a coarser
version of another). We denote the collection of weight matrices by W , the collection of biases
by B and the (collection of) utilized global Laplacian propagation matrices used in the update
rule "X ÞÑ

ř

k ψkpLqXWk" as Ψ. We denote the network by ΦW,B,Ψ and write the generated
embeddings for the node feature matrix X as ΦW,B,ΨpXq. With this, we have:

Theorem C.2. Let ΦW ,B,Ψ be a K-layer deep graph convolutional architecture. Assume in each
layer 1 ď ℓ ď K that

ř

i }W ℓ
i } ď W and }Bℓ} ď B. Choose C ě }ΨipLq} (@i P I) and w.l.o.g.

assume CW ą 1. With this, we have with δ “ maxiPIt}ΨipLq ´ ΨiprLq}u that

}ΦW ,B,ΨpL,Xq ´ ΦW ,B,ΨprL,Xq} ď

„

K ¨ CKWK´1 ¨

ˆ

}X} `
1

CW ´ 1
B

˙ȷ

¨ δ.
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Proof. For simplicity in notation, let us denote the hidden representations in the network correspond-
ing to L̃ by Xℓ. With this, we note:

}XK ´ X̃K} ď
ÿ

iPI

}ψipLq ´ ψipL̃q} ¨ }XK´1} ¨ }WK
i } `

ÿ

iPI

}ψipL̃q} ¨ }X̃K´1 ´XK´1} ¨ }WK
i }

ď δW }XK´1} ` CW }X̃K´1 ´XK´1}

ď δW }XK´1} ` CWδ}XK´2} ` pCW q2}X̃K´1 ´XK´1}

ď
δ

C
¨

˜

K
ÿ

ℓ“1

pCW qℓ}XK´ℓ}

¸

“
δ

C
¨

˜

K´1
ÿ

j“0

pCW qK´j}Xj}

¸

Hence we need to bound the quantity }Xj} in terms of C,W,B and X .

We have

}Xj} ď
ÿ

i

}ψipLq} ¨ }Xj´1} ¨ }W j
i | ` }BJ}

ď CW }Xj´1} `B

ď pCW q2}Xj´2} ` CWB `B

ď B

˜

j´1
ÿ

k“0

pCW qk

¸

` pCW qj}X}

“

#

B pCW q
j

´1
CW´1 ` pCW qj}X} ;CW ‰ 1

jB ` }X} ;CW “ 1
.

For the case CW “ 1, we thus find

}XK ´ X̃K} ď
δ

C
¨

˜

K´1
ÿ

j“0

pjB ` }X}q

¸

“
δ

C
¨

ˆ

K}X} `B
KpK ´ 1q

2

˙

.

For the case CW ‰ 1, we find

}XK ´ X̃K} ď
δ

C
¨

˜

K´1
ÿ

j“0

pCW qK´j

„

B
pCW qj ´ 1

CW ´ 1
` pCW qj}X}

ȷ

¸

For CW ą 1, we may further estimate this as

}XK ´ X̃K} ď
δ

C
¨

˜

K´1
ÿ

j“0

pCW qK´j

„

B
pCW qj ´ 1

CW ´ 1
` pCW qj}X}

ȷ

¸

ď δ ¨
KpCW qK

C

„

B

CW ´ 1
` }X}

ȷ

.

This proves the claim.

C.3 PROOF OF CONVERGENCE IN THE SENSE OF SECTION 3

The result in Section 3 is concerned with the graph-level setting; i.e. the setting where entire graphs
are embedded into latent spaces. Before proving this result, we first prove a corresponding result for
the node-level, where individual nodes in a graph are embedded. We will then use this node-level

13
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result (Thoerem C.3 below) to prove the graph-level Convergence result in section 3.

In the node-level setting, we start by considering initial node-features X on G. We then fix
a graph neural network Φ based on global Laplacian propagation schemes and consider two ways of
generating embeddings on the graph G: On the one hand, we may simply generate embeddings with
the network Φ on G. On the other hand, we may also project the node feature matrix X to G via
JÓ, apply ne the network Φ to the matrix JÓX on G and then finally interpolate the generated node
embeddings back to G via JÒ.

The following result bounds the difference between these two respective node embeddings generated
on the same graph.

Theorem C.3. Let ΦW ,B,Ψ be a K-layer deep Global-Laplacian-Propagation-based network. As-
sume

ř

iPI }W ℓ
i } ď W and bound bias matrices in layer ℓ as }Bℓ} ď B. Choose C ě }ΨipLq}

(i P I) and w.l.o.g. assume CW ą 1 (which can always be satisfied by choosing C large
enough). Assume ρpJÒXq “ JÒρpXq and if biases are enabled, assume JÒ1G “ 1G. Set
maxiPIt}ψipLq ´ JÒψipLqJÓ}u “ δ1 and define δ2 “ maxiPIt}ψipL

ÒqrJÓJÒ ´ IdGs}u. With
this, we have that

}ΦW ,B,ΨpL,Xq ´ JÒΦW ,B,ΨpL, JÓXq} ď

„

K ¨ CKWK´1 ¨

ˆ

}X} `
1

CW ´ 1
B

˙ȷ

¨ pδ1 ` δ2q.

It should be noted that the result above is more general than the setting considered in Section 3. In
the setting considered in Section 3 we have JÓJÒ “ IdG (in addition to ρpJÒXq “ JÒρpXq). There
we thus automatically have δ2 “ 0.

Proof. Let us define
X :“ JÓX.

Let us further use the notation ψ
i
:“ ψipLq and ψi :“ ψipLq.

Denote by Xℓ and Xℓ the (hidden) feature matrices generated in layer ℓ for networks based on ψi
and ψ

i
respectively: I.e. we have

Xℓ “ ρ

˜

ÿ

iPI

ψiX
ℓ´1W ℓ

i `Bℓ

¸

and

Xℓ
“ ρ

˜

ÿ

iPI

ψ
i
Xℓ´1W ℓ

i `Bℓ

¸

.

We then have

}ΦW ,B,ΨpL,Xq ´ JÒΦW ,B,ΨpL, JÓXq}

“}XK ´ JÒXK
}

“

›

›

›

›

›

ρ

˜

ÿ

iPI

ψiX
K´1WK

i `BK

¸

´ JÒρ

˜

ÿ

iPI

ψ
i
XK´1WK

i `BL

¸›

›

›

›

›

“

›

›

›

›

›

ρ

˜

ÿ

iPI

ψiX
K´1WK

i `BK

¸

´ ρ

˜

J
ÿ

iPI

ψ
i
XK´1WK

i `BL

¸
›

›

›

›

›

Here we used the assumption that ρ and J commute. In fact since ReLUp¨q maps positive entries
to positive entries and acts pointwise, it commutes with JÒ. We also made use of the assumption
JÒ1G “ 1G when dealing with biases .
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Using the fact that ρp¨q is 1-Lipschitz-continuous, we can establish

}ΦW ,B,ΨpL,Xq ´ JÒΦW ,B,ΨpL, JXq}

ď

›

›

›

›

›

ρ

˜

ÿ

iPI

ψiX
K´1WK

i `BK

¸

´ ρ

˜

JÒ
ÿ

iPI

ψ
i
XK´1WK

i `BL

¸
›

›

›

›

›

ď

›

›

›

›

›

ÿ

iPI

ψiX
K´1WK

i `BK ´ JÒ
ÿ

iPI

ψ
i
XK´1WK

i `BK

›

›

›

›

›

.

Using the assumption that }ψrJÓJÒ ´ IdGs} ď δ2, we have

}ΦW ,B,ΨpL,Xq ´ JÒΦW ,B,ΨpL, JXq}

ď

›

›

›

›

›

ÿ

iPI

ψiX
K´1WK

i ´
ÿ

iPI

pJÒψ
i
JqJÒXK´1WK

i

›

›

›

›

›

`

›

›

›

›

›

ÿ

iPI

JÒψ
i
rIdG ´ JÓJÒsXK´1WK

i

›

›

›

›

›

ď

›

›

›

›

›

ÿ

iPI

ψiX
K´1WK

i ´
ÿ

iPI

pJÒψ
i
JqJÒXK´1WK

i

›

›

›

›

›

` δ2 ¨

›

›

›

›

›

ÿ

iPI

XK´1WK
i

›

›

›

›

›

ď

›

›

›

›

›

ÿ

iPI

ψiX
K´1WK

i ´
ÿ

iPI

pJÒψ
i
JÓqJÒXK´1WK

i

›

›

›

›

›

` δ2 ¨
›

›XK´1
›

› ¨W

From this, we find (assuming }JÒ}, }JÓ} ď 1 for notational simplicity (and which is true in the
setting of Section 3)), that

}ΦW ,B,ΨpL,Xq ´ JÒΦW ,B,ΨpL, JXq}

ď

›

›

›

›

›

ÿ

iPI

ψiX
K´1WK

i ´
ÿ

iPI

pJÒψ
i
JÓqJÒXK´1WK

i

›

›

›

›

›

` δ2 ¨
›

›XK´1
›

› ¨W

ď

›

›

›

›

›

ÿ

iPI

pψi ´ JÒψ
i
JqXK´1WK

i

›

›

›

›

›

`
ÿ

iPI

}JÒψ
i
J} ¨ }JÒXK´1

´XK´1} ¨ }WK
i } ` δ2 ¨

›

›XK´1
›

› ¨W

ď

›

›

›

›

›

ÿ

iPI

pψi ´ JÒψ
i
JqXK´1WK

i

›

›

›

›

›

` CW ¨ }JÒXK´1
´XK´1} ` δ2 ¨

›

›XK´1
›

› ¨W

ď
ÿ

iPI

›

›

›
pψi ´ JÒψ

i
Jq

›

›

›
¨

›

›XK´1
›

› ¨
›

›WK
i

›

› ` CW ¨ }JÒXK´1
´XK´1} ` δ2 ¨

›

›XK´1
›

› ¨W

ďδ1 ¨
›

›XK´1
›

›W ` CW ¨ }JÒXK´1
´XK´1} ` δ2 ¨

›

›XK´1
›

› ¨W

Arguing as in the proof of Appendix C.2 then yields the claim.

Let us move from the node-level to the graph-level. We first specify how graph-level latent embeddings
arise:
Definition C.4. We aggregate embeddings X P RNˆF of individual nodes to graph-embeddings
ΩpXq P RF as ΩpXqj “

řN
i“1 |Xij | ¨ µi. Here tµiui is the set of node-weights.

In a social network, a node weight µi “ 1 might e.g. signify that node i represents a single user. A
weight µj ą 1 would indicate that node j represents a group of users.
Given such an aggregation of node embeddings into latent-embeddings of entire graphs, we may then
relegate graph-level transferability back to node-level transferability:
Theorem C.5. Assuming ΩpXq “ ΩpJÒXq, we have in the setting of Theorem C.3 that
}Ω ˝ ΦW ,B,ΨpL,Xq ´ Ω ˝ ΦW ,B,ΨpL, JÓXq} ď }ΦW ,B,ΨpL,Xq ´ JÒΦW ,B,ΨpL, JÓXq}.
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Proof. We note

}Ω ˝ ΦW ,B,ΨpL,Xq ´ Ω ˝ ΦW ,B,ΨpL, JÓXq}

“}ΩpΦW ,B,ΨpL,Xqq ´ ΩpΦW ,B,ΨpL, JÓXqq}

“}ΩpΦW ,B,ΨpL,Xqq ´ ΩpJÒΦW ,B,ΨpL, JÓXqq}.

To prove the claim from here, we only have to note that the aggregation method Ω as defined in
Definition C.5 above is 1-Lipschitz (as a consequence of the reverse triangle inequality). The proof
for the bidirectional setting proceeds analogously.

This result then proves the continuity result of Section 3. Indeed: In the notation of Section 3, we
have Fω “ ΩpΦW ,B,ΨpLω, Xqq and F “ ΩpΦW ,B,ΨpL, JÓXqq Thus we have

}Fω´F } “ }Ω˝ΦW ,B,ΨpL,Xq´Ω˝ΦW ,B,ΨpL, JÓXq} ď }ΦW ,B,ΨpLω, Xq´JÒΦW ,B,ΨpL, JÓXq}.

By Theorem C.3 and the fact that rIdG ´ JÒJÓs “ 0, we have

}ΦW ,B,ΨpLω, Xq ´ JÒΦW ,B,ΨpL, JÓXq} À max
k

t}ψkpLωq ´ JÒψkpLqJÓ}u,

with "À" as per usual "denoting smaller than, up to a positive multiplicative constant".

Finally Theorem C.1 implies

}ψkpLωq ´ JÒψkpLqJÓ} ď

ż 8

0

|ψ̂kptq|ηptqdt “

ż

Rě0

›

›e´tLω ´ JÒe´tLJÓ
›

› |ψ̂kptq|dt.

Thus upon combining these steps and noting that ηω Ñ 0 by (1), the convergence result of Section 3
is indeed proved.

D ADDITIONAL EXPERIMENTAL CONSIDERATIONS

Collapsing strongly connected clusters: Intuition and exact Definitions

(a) (b)

Figure 4: (a) G (stongly connected)
clusters in red (b) Coarse grained G

From a diffusion perspective, information in a graph equal-
izes faster along edges with large weights. In the limit where
edge-weights within certain sub-graphs tend to infinity, in-
formation within these clusters equalizes immediately and
such sub-graphs thus effectively behave as single nodes. We
might thus consider a coarse grained graph G where these
strongly connected clusters are indeed fused together and
represented only via single nodes. The corresponding node
set G of G is then given by the set of connected components

in Gcluster (c.f. Fig 5). Edges E are given by elements pR,P q P G ˆ G with non-zero accumu-
lated edge weight WRP “

ř

rPR

ř

pPP Wrp. Node weights in G are defined accordingly by
aggregating as µ

R
“

ř

rPR µr. To compare signals on these two graphs, we
define intertwining operators JÓ, JÒ transferring information between G and G:
Let x be a scalar graph signal and let 1R be the vector that has 1 as entry for
nodes r P R and is zero otherwise. Denote by uR the entry of u at node R P G.
Projection JÓ is then defined component-wise by evaluation at node R P G as the
average of x over R: pJÓxqR “ x1R, xy{µ

R
. Going in the opposite direction, Figure 5: Gcluster

interpolation is defined as JÒu “
ř

RPG uR ¨ 1R.

In this setting, we have (c.f. Appendix A) that

}e´tL ´ JÒe´tLJÓ} À 1{wmin
high for any t ą 0.

Here wmin
high " 1 denotes the minimal edge weight inside the strongly connected clusters in G.
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Dataset: The dataset we consider is the QM7 dataset, introduced in Blum & Reymond (2009);
Rupp et al. (2012). This dataset contains descriptions of 7165 organic molecules, each with up to
seven heavy atoms, with all non-hydrogen atoms being considered heavy. A molecule is represented
by its Coulomb matrix CClmb, whose off-diagonal elements

CClmb
ij “

ZiZj
|Ri ´Rj |

correspond to the Coulomb-repulsion between atoms i and j. We discard diagonal entries of Coulomb
matrices; which would encode a polynomial fit of atomic energies to nuclear charge Rupp et al.
(2012).

For each atom in any given molecular graph, the individual Cartesian coordinates Ri and the atomic
charge Zi are (in principle) also accessible individually. To each molecule an atomization energy -
calculated via density functional theory - is associated. The objective is to predict this quantity. The
performance metric is mean absolute error. Numerically, atomization energies are negative numbers
in the range ´600 to ´2200. The associated unit is rkcal/mols.

Details on collapsing procedure as applied to QM7: Again, we make use of the QM7 dataset
Rupp et al. (2012) and its Coulomb matrix description

CClmb
ij “

ZiZj
|Ri ´Rj |

(4)

of molecules. We modify (all) molecular graphs in QM7 by deflecting hydrogen atoms (H) out of
their equilibrium positions towards the respective nearest heavy atom. This is possible since the QM7
dataset also contains the Cartesian coordinates of individual atoms. Edge weights between heavy
atoms then remain the same, while Coulomb repulsions between H-atoms and respective nearest
heavy atom increasingly diverge; as is evident from (4).

Given an original molecular graph G with node weights µi “ Zi, the corresponding limit graph
G corresponds to a coarse grained description, where heavy atoms and surrounding H-atoms are
aggregated into single super-nodes.

Mathematically, G is obtained by removing all nodes corresponding to H-atoms fromG, while adding
the corresponding charges ZH “ 1 to the node-weights of the respective nearest heavy atom. Charges
in (4) are modified similarly to generate the weight matrix W .

On original molecular graphs, atomic charges are provided via one-hot encodings. For the graph of
methane – consisting of one carbon atom with charge ZC “ 6 and four hydrogen atoms of charges
ZH “ 1 – the corresponding node-feature-matrix is e.g. given as

X “

¨

˚

˚

˚

˝

0 0 ¨ ¨ ¨ 0 1 0 ¨ ¨ ¨

1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

˛

‹

‹

‹

‚

with the non-zero entry in the first row being in the 6th column, in order to encode the charge ZC “ 6
for carbon.

The feature vector of an aggregated node represents charges of the heavy atom and its neighbouring
H-atoms jointly.

Node feature matrices are translated as X “ JÓX . Applying JÓ to one-hot encoded atomic charges
yields (normalized) bag-of-word embeddings on G: Individual entries of feature vectors encode how
much of the total charge of the super-node is contributed by individual atom-types. In the example of
methane, the limit graph G consists of a single node with node-weight

µ “ 6 ` 1 ` 1 ` 1 ` 1 “ 10.

The feature matrix
X “ JÓX

is a single row-vector given as

X “

ˆ

4

10
, 0, ¨ ¨ ¨ , 0,

6

10
, 0, ¨ ¨ ¨

˙

.
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Experimental Setup: We randomly select 1500 molecules for testing and train on the remaining
graphs. On QM7 we run experiments for 23 different random random seeds and report mean and
standard deviation. All experiments were performed on a single NVIDIA Quadro RTX 8000 graphics
card.

Additional details on training and models: Typical GNN models are divided into standard
architectures (GCN (Kipf & Welling, 2017), ChebNet (Defferrard et al., 2016), ARMA (Bianchi
et al., 2019), BernNet (He et al., 2021), GATv2 (Brody et al., 2022)) and multi- scale architectures
(PushNet (Busch et al., 2020), UFGNet (Zheng et al., 2021), Lanczos (Liao et al., 2019)). Apart
from UFGNet (already acting as a pooling layer) we also consider self-attention-pooling (Lee et al.,
2019); both acting on the final layer (SAG) and as acting on the output of each indivifual layer, with
resulting layer-wise features concatenated to produce the final embedding (SAG-M). All considered
convolutional layers are incorporated into a two layer deep and fully connected graph convolutional
architecture. In each hidden layer, we set the width (i.e. the hidden feature dimension) to

F1 “ F2 “ 64.

For BernNet, we set the polynomial order to K “ 3 to combat appearing numerical instabilities.
ARMA is set to K “ 2 and T “ 1. ChebNet uses K “ 2. Lnaczos uses 20 Lanczos iterations, as
proposed in the original paper (Liao et al., 2019). UFGNet uses Haar wavelets. For all baselines,
the standard mean-aggregation scheme is employed after the graph-convolutional layers to generate
graph level features. Finally, predictions are generated via an MLP.

For the resolvent based global Laplacian propagation architecture, we set λ “ 1 and and build filters
using the k “ 1 and “ 2 matrices in ΨRes “ tpz ` λq´kukPN.

For thebased global Laplacian propagation architecture, based global Laplacian propagation
architecture, we set t0 “ 1 and and build filters using the k “ 1 and “ 2 matrices in ΨExp “

te´pkt0qzukPN.

As aggregation, we employ the graph level feature aggregation scheme introduced in Definition C.4
with node weights set to atomic charges of individual atoms. Predictions are then generated via a
final MLP with the same specifications as the one used for baselines.
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