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1 INTRODUTION

Graph neural networks (GNN5) play a fundamental role in modern computational biology, where they
often form the backbone for both subcellular tasks such as protein structure prediction (Jumper et al.
2021) as well as cell type annotation (Shao et al.,[2021)) and modeling of protein protein interactions
(Liu et al., [2019) at the multi-cellular and organism wide levels. An underexplored drawback of
common GNN methods, however, is that they are not inherently multiscale consistent: Two graphs
describing the same object or situation at different resolution scales are assigned vastly different
latent representations. This prevents graph networks from generating data representations that are
consistent across scales. It also complicates the integration of representations at the molecular scale
with those generated at the biological scale. Here we discuss why existing GNNs struggle with
multiscale consistency and show how to overcome this problem by modifying the message passing
paradigm within GNNs.

2 STANDARD GNNS ARE NOT MULTI-SCALE CONSISTENT

To illustrate that standard GNNs are unable to consistently integrate multiple scales, we utilize
the QM7 dataset (Rupp et al., 2012)). Here, molecular atomization energies of organic molecules
(containing both hydrogen and heavy atoms) are to be predicted. Each molecule is represented by an
adjacency matrix with entries A;; = Z; Z;|#; — #;|~* given as Coulomb energies of atoms i, j.

From a physical perspective, describing a molecule at the level of interacting atoms corresponds to
a specific choice of resolution scale, where interactions of individual protons and neutrons inside
individual atoms are discarded. To test the multi-scale consistency of GNNs we additionally also
consider a version of QM7 where we further lower the resolution scale: Here we aggregate each
heavy atomic core together with its surrounding (single-proton) hydrogen atoms into super-nodes.

To showcase the failure of GNNs to consistently incorporate multiple scales, we confront models
during inference with a version of QM7 on a scale different from the one they were trained on. As Ta-
ble [T details, mean-absolute-errors (MAEs) increase significantly when going from a same-resolution
setting to a cross-resolution setting. None of the considered standard architectures (including multi-
scale methods (SAG-M - PushNet)) consistently handles multiple scales. We can trace this back to
the latent embeddings F' and F that are being generated for original- {G} and coarsified graphs {G}:
For models of Table[1]on average 10 < | F — F| < 10* (c.f. also Fig. [2): Latent representations of
graphs describing the same object at different resolutions differ significantly.

To understand this behavior, we interpolate between fine and coarse resolution: Original graphs
{G} of QMT are modified ({G,,}) by moving hydrogen atoms towards their corresponding heavy
atom by a factor of w > 1 (i.e. diStpey = diStequilip. /w). For w — oo, they arrive at the respective
heavy atom ({G}). In Fig.[2] we compare the latent distance between the coarse embeddings F’
and the embeddings for the intermediate graph F,,. Embeddings F,, do not converge to the coarse
embeddings F. Since the convergence of graph-sequence G,, to the limit graph G is not turned
into a convergence of latent embeddings F,, - F we conclude: GNNs are not continuous. This
discontinuity explains why GNNs can map similar graphs (describing the same object at different
resolutions) to different latent representations.
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Figure 1: (a) G of QM7 (b) Modified G,, (c) Coarsified G  (d) Effective propagation in GCN
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Table 1: Regression using high- and low-resolution QM7

Mean Absolute Error (|) on QM7 [kcal/mol] o Resaent Creotet

Training High Resolution Low Resolution w — E“:;“:‘ - EE?NZ‘M
Low High Low High 0 — ;

Inference Resolution Resolution Resolution Resolution == .
GCN 125.3442.47 63.17+0.92 67.75+3.73 380.51+30.33
GATv2 415.09496.5748.41+19.20 60.01+3.34 245.03+90.97
ChebNet 568.47+37.70 64.63+1.21 64.90+4.55339.64+101.30
SAG 542.16+27.33 68.43+1.93104.20+3.92 506.75+60.57
BernNet 765.22+495.2883.76+21.75 90.52+37.17594.62+341.55
SAG-M 285.53+495.54 66.22+4.51 73.57+14.57 307.67+77.24 »°
UFGNet 620.21+4.80 13.71+1.05 24.53+4.80156.44+156.44
Lanczos 939.87+16.35 10.55+3.22 83.11+5.27654.61+529.13
PushNet 2442.59+303.27 60.94+1.83 69.25+3.11 124.08+3.94  ; T w = =
Resolvent 16.54+3.01 16.53+3.03 15.79+0.98  13.80+1.34

Exponential 16.37+1.71 16.36+2.16 16.25+1.41  16.25+1.41 Figure 2: Latent distance | F,, — F|

To understand this discontinuity, we exemplarily investigate (GCNs) (Kipf & Welling} 2017)). There
the layer-wise update acts as X — AX W, with the feature matrix X € RV*F (NN nodes; latent
dimension F'), the weight matrix W € RF*¥" and the renormalized adjacency matrix AeRN*N_ Ag
hydrogen atoms move closer to the heavy atoms, the entries Aheavy,heavy in Aij ~ Ayj /A /d;d; tend to
zero (as degrees dheavy tend to infinity). Thus communication between heavy atoms becomes severely
disrupted. Information only propagates along a increasingly disconnected effective graph (Fig[I](d)).

3 GLOBAL LAPLACE PROPAGATION FACILITATES SCALE-CONSISTENCY

To avoid a disconnected effective propagation graph as in Fig. [1|(d) we modify the message passing
paradigm in GCN: To connect the information flows over G,, and G we observe that features in G,
should equalize faster between nodes connected by large edge weights. When such a large weight
tends to infinity, features between strongly connected nodes are then equalized immediately, so that
entire strongly connected clusters exactly behave as the single nodes in G.

Noting that this is exactly the behavior that heat dissipating over a graph exhibits, we make use of
the the heat diffusion equation dX (¢)/dt = —L - X (¢) (with Graph Laplacian L and time ¢) and the
structure X (¢) = e~L* - X(0) of its solutions, when designing our graph networks:

Definition 3.1. Ler 1/; be a bounded (generalized) function defined on [0, ). A Global Laplacian
Propagation Matrix 1)(L) is any matrix arising as (L) := Sow e~ tLa)(t)dt.

Thus ¢(L) represent a weighted sum of diffusion flows that have progressed to various times.
Specifically, if we choose the Dirac distribution ¢s, (t) := d(t — 1) as the weightinf function ¢y,
we obtain exponential matrices 1y, (L) = §o 3(t — t)e *"dt = e~ and ¥y, := (—t)F e M to

get powers of resolvents (L) = [(zId + L)~']*. The propagation matrix is then used instead of
the adjacency matrix in each layer of the GNN leading to the update rule X — >, ¢, (L)X Wj,.

As we prove in Appendix [C.3] we indeed have | F,, — F| — 0 as w — o, for such networks based on
global Laplacian propagation matrices. This behaviour can clearly also be observed for the examples
of exponential- and resolvent propagation matrices in Fig. P} As w increases, the distance between
latent embeddings tends to zero. Thus these networks are indeed continuous.

In the previous Section 2} we had identified the discontinuity of standard GNNs as the obstruction to
consistently incorporating multiple scales. This explained their sub-par performance in Table|[I] Since
networks based on global Laplacian propagation schemes are continuous, we thus expect a consistent
incorporation of scales, as well as a good performance in cross resolution setting. This is exactly what
we observe in Table[T} MAEs of GNNs based on global Laplacian propagation schemes (using either
exponential or resolvent matrices) do not increase when going from a same- to a cross-resolution
setting; MAESs of such methods are lower than those of standard graph learning methods by factors of
order 10' to 102. Hence these methods indeed do consistently incorporate varying scales.
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MEANINGFULNESS STATEMENT

A model generating meaningful representations of life should be able to consistently represent all
aspects of life across all relevant scales, starting from the molecular level all the way up to the
biological level. While graph neural networks have emerged as a popular network architecture
for biological problems at any individual scale, we show that they are not directly suitable to
facilitate connections between respective scales. To remedy this and facilitate progress in eventually
continuously traversing between the molecular and the biological scale, we propose a new propagation
scheme that allows graph neural networks to indeed incorporate multiple scales.
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A COARSE-GRAINING GRAPHS

In this Appendix we illustrate:

(L +Id)™ — JNL+ Id) " TY| < 1/ (Abigh)-
which — as we will see — also implies
le™t — JTe gt < 1/w}‘1‘}f§1 for any ¢ > 0. (D

after noting the linear relation in scaling behaviour A1 (Lejuster) ~ w{l‘}}b,‘l‘l

This will be used to prove the convergence result of Section [3]in Appendix

For convenience, we restate the definitions leading up to this setting again:
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Definition A.1. Denote by G the set of connected components in Gyigh. We give this set a graph
structure as follows: Let R and P be elements of G (i.e. connected components in Gg,). We define

the real number
Weap= > > Wiy,
reR peP

with r and p nodes in the original graph G. We define the set of edges £ on G as
E={(R,P)eGxG:Wpp>0}

and assign W pp as weight to such edges. Node weights of limit nodes are defined similarly as
aggregated weights of all nodes r (in G) contained in the component R as

Ep = Z'“T‘

reR

In order to translate signals between the original graph G and the limit description G, we need
translation operators mapping signals from one graph to the other:

Definition A.2. Denote by 1 g the vector that has 1 as entries on nodes r belonging to the connected
(in Ghign) component R and has entry zero for all nodes not in R. We define the down-projection

operator J* component-wise via evaluating at node R in G as
(J'z)g = (1R, )/
The upsampling operator J' is defined as

JT’LL:Z'LLR-]].R;
R

where ug is a scalar value (the component entry of u at R € G) and the sum is taken over all
connected components in Gpig.

As proved in (Kokel |[2024), we then have the following:

( ) ) : ) D
Yl & [ ) € € ( €
C / ) € )

: \\< (b) \ & . \\\< ©) € \\( © ¢ (d) € ) € g

Figure 3: (a) Graph G with EregA (blue) & ghigh (red); (b) Greg.; (C) Ghigh; (d) Greg., exclusive

Theorem A.3. We have
Areg |
R.(A) — J'R.(A)J =o(”’g-)
H ( ) (7) H )\1(Ahigh)

holds; with A1 (Apign) denoting the first non-zero eigenvalue of Apig.

We here restate the proof for convenience. We use the notation A = L.

Proof. We will split the proof of this result into multiple steps. For z < 0 Let us denote by
R.(A) = (A - zld)_l7
R (Apigh) = (Apign — 21d) ™
R.(Arg) = (Apeg — 21d)7 1

the resolvents correspodning to A, Ay, and A, respectively.
Our first goal is establishing that we may write

RZ(A) = [Id + ]:L)z(Ahigh)Areg.]_1 ! Rz(Ahigh)
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This will follow as a consequence of what is called the second resolvent formula Teschl (2014):
"Given self-adjoint operators A, B, we may write
R.(A+B)—R,(A) =—-R.(A)BR.(A+ B).”

In our case, this translates to
RZ (A) - Rz (Ahigh) = *Rz (Ahigh)Areg.Rz (A)

or equivalently
[Id + Rz(Ahigh)Areg.] RZ(A) = Rz(Ahig/1)~

Multiplying with [Id + R, (Ahigh)Areg,]_l from the left then yields
RZ(A) = [Id + Rz(Ahigh)Areg.]71 . Rz(Ahigh)

as desired.
Hence we need to establish that [Id + R (Apign)Areg | is invertible for z < 0.

To establish a contradiction, assume it is not invertible. Then there is a signal x such that
[Id + R.(Apigh)Areg ] x = 0.
Multiplying with (Anigh — 2Id) from the left yields
(Anigh + Areg. — 2Id)z =0
which is precisely to say that
(A—zId)x =0

But since A is a graph Laplacian, it only has non-negative eigenvalues. Hence we have reached our
contradiction and established

RZ(A) = [Id + Rz(Ahigh)Areg.]_l Rz(Ahigh)~

Our next step is to establish that
high

Rz(Ahigh) - EZ )

where Pg e i the spectral projection onto the eigenspace corresponding to the lowest lying eigenvalue
A0 (Apign) = 0 of Apg,. Indeed, by the spectral theorem for finite dimensional operators (c.f. e.g.
Teschl| (2014)), we may write

1 i
Rz(Ahigh) = (Ahigh - ZId)il = Z )\7 . P;j gh'

A€o (Apigh)

Here U(Ahigh) denotes the spectrum (i.e. the collection of eigenvalues) of Ay, and the

{Pf\'igh} Aeo (A are the corresponding (orthogonal) eigenprojections onto the eigenspaces of the
respective eigenvalues. Thus we find

high
PO

1 igh
—z - Z 'P;lg] )

A—z
0<Aeo (Anigh)

Rz (Ahigh) -

where the sum on the right hand side now excludes the eigenvalue A = 0.

Using orthonormality of the spectral projections, the fact that z < 0 and monotonicity of 1/(- + |z])
we find '
Péngh

—Zz

1
A (Aign) + 2]

Here A1 (Ayign) is the firt non-zero eigenvalue of (Ay,p).
Non-zero eigenvalues scale linearly with the weight scale since we have

A(S - A)=S-\A)

R, (Apign) —
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for any graph Laplacian (in fact any matrix) A with eigenvalue A. Thus we have

Pt 1 1

<
A (Dpign) + 2]~ A1 (Dnign)

Rz (Ahigh) - —0

as Al(Ahigh) — 0.

Our next task is to use this result in order to bound the difference

- [Id + Rz (Ahigh)Areg.]_l Rz(Ahigh) .

. —1 .
Plugh Phlgh
I:= l1d+ 0 A,eg,] 0

To this end we first note that the relation
[A+ B —zId]™" = [Id+ R.(A)B]'R.(A)
provided to us by the second resolvent formula, implies
[Id+ R.(A)B]™' = Id — B[A+ B — zId]™".
Thus we have
U+ R (B1ig) Areg] 7| <1+ A | - [ B2 (A)]

| Aveg |
||

<1+

With this, we have

. —1 .
thgh Phlgh
Id+ —2—A, | - —2— - R.(A)
—Z —Z
high -1 phigh
= Id + %Areg. : EZ - [Id + Rz (Ahigh)Areg.]71 : Rz(Ahigh)
phish high -1 phish
< EZ Id+ %Areg. - [Id + Rz(Ahigh)AregA]il + E - Rz (Ahigh) : H [Id + Rz (Ahigh)Areg.]il H
1 Py 1 |Areg | 1
S— [ Id+ 2—Ape | = [Id+ Ry(Dnion) D e, +(1+ reg‘>. .
|Z| — 8 [ ( hgh) g] |Z| Al(Ahigh)

Hence it remains to bound the left hand summand. For this we use the following fact (c.f. [Horn &
Johnson| (2012}, Section 5.8. "Condition numbers: inverses and linear systems"):

Given square matrices A, B,C with C = B — A and |A~'C| < 1, we have

A7 - |ATIC

Al - B <
” =i

In our case, this yields (together with | PY"| = 1) that

. —1
H 104 B (=2 Dy | = [T+ (D) D] ™

Phigh
(1 + [ Areg /12D - | Areg || - 725 — R (Anign) |
1— (14 [Areg

J12) - Al - 1725 — Re(Drign)|
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For Shign sufficiently large, we have

1
(14 [ Aveg [1/12])

| — P /2 — Ro(Apigh)|| < 5

so that we may estimate

-1

high
lld + Aoy 372 — [Id + Dy R (Diign)] ™

high
B

<2 (14 [Areg ) - |

1+ [ Areg.[/12]
A1 (Ahigh)

Thus we have now established

— R (Apign) |

=2

o plien [Aree|
e —RZ(A)—O(eg'>.

high
Id+ —2— A,
l -z ¢ -z /\1(Ahigh)

Hence we are done with the proof, as soon as we can establish
. -1 .
|—21d+ P A | R = TTRA(8) %,
with J1, A, J* as defined above. To this end, we first note that

JU.Jb = plih 2)

and
JVJ = Idg. A3)

Indeed,the relation (2)) follows from the fact that the eigenspace corresponding to the eignvalue zero
is spanned by the vectors {1 r} g, with { R} the connected components of Gh;g,. Equation (3) follows
from the fact that

(Ir, 1) = pp.
With this we have

: -1 _
|[1d+ Py A | RIS = [1d 4 T1 T Ay ] "1,
To proceed, set
x:=F b
and .
2 = [Py Dy = 21d| R
Then _ ‘
| PU¥" vy, — 21d) 27 = Py
and hence 2 € Ran(P)*"). Thus we have
TN T (Aveg, — 2Id) IV T2 = IV TV,
Multiplying with J* from the left yields
TN (Areg. — 2Id) VT2 = Jha.

Thus we have
(J Areg T — 2Id) TN IV Z = Jha.
This — in turn — implies
TINE = [T A I — 21d] " Tha.
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Using
high
P2 =2,
we then have L
X = J [T Areg JT = 21d] Jta

We have thus concluded the proof if we can prove that .J* Apeg J T is the Laplacian corresponding to
the graph G defined in Definition[A.T] But this is a straightforward calculation. O

As a corollary, we find

Corollary A.4. We have
R.(A)F — JTRMA) T

Proof. This follows directly from the fact that

JHI = Idg.

To prove (), we establish the following theorem:

Theorem A.S. Consider a graph sequence Gy, with | (L, + Md)~' — J (L + MNd)~'J,| — 0.
Then we have (L) — Jo0(L)Jpn | — 0 if ¢ is complex differentiable and lim,_,«, () = 0.

Proof. We make use of the holomorphic functional calculus (c.f. e.g. (Koke & Cremers} 2024)) to
establish

() = Fo(E)I] < 5 Gl I = 2Td) ™ = HL = 21d) )
r

Since || (Ly, + Md)~! — J, (L + M d)~"J, | — 0implies | (L, — zId) ™" — Jo(L — zId)~*J,| — 0
uniformly (in z) on compact sets (c.f. e.g. |Arendt/ (2001)), we can apply dominated convergence, if
we find an majorizing function that is integrable on I'. But this is ensured by the decay of . O

Choosing the function %) to be given as 1)(z) = ¢~'* then establishes .

B GLOBAL LAPLACIAN PROPAGATION MATRICES, GENERALIZED
FUNCTIONS, MEASURES AND ALL THAT

In this section we discuss global Laplacian propagation matrices, generalized functions and measures

B.1 COMPLEX MEASURES ON Ry AND THEIR THEORY OF INTEGRATION

As reference for this section Tao| (2013)) might serve.
In mathematics, a measure is a formal generalization of concepts such as length, area and volume.

More specifically, we are here interested in assigning a generalized notion of length (or mass) to
subsets of the real half-line
R>o = [0, ).

These sets will turn out to be elements of a so called o-Algebra; i.e. a set 2 of sets for which

* JRyo€e X

e ABeo=AnBeX
s ABeXY= A\BeX
e ABeY=AuDBeX.
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We now take Yr_, to be the smallest such set of sets 3 that contains all open intervals.

A complex measure then is a set-function that assigns to each setin Xg_, a complex number in a
certain way:

Definition B.1. A complex measure p on R is a complex valued function p : ¥r., — C satisfying

2 (U An) = ZM(!‘%)
n n
for any countable (potentially infinite) collection of sets in Xr_, which are pairwise disjoint.

Let us provide some examples:

Example B.2. The prototypical example of a measure is the standard Lebesgue measure that assigns
to any interval (a,b) the length py.p((a,b)) = |a — b| (a,b € Rxp).

Example B.3. Alternatively, we might consider the Dirac measure Ks,,» Which assigns the value
pe,, ((a, b)) = 1to any interval (a,b) containing to (i.e. to € (a,b)). Otherwise it assigns the value

tsy, ((a;0)) = 0 ifto ¢ (a,b).

Example B.4. Every integrable function v : R=o — C defines a complex measure via iy ((a,b)) =
b ~

§, ¥(t)dt.

Hence we may think of measures as generalizations of functions.

Any given measure on R, defines a unique way of integrating (known as Lebesgue inte-
gration) a function f defined on R (. This proceeds by approximating any function f via a weighted
sequence of indicator functions (with A € ¥g_, a set)

1 ;teA
XA(t):{o ¢ A

as

FO) ~ fult) == apxa, (t).
k
with a;, € C. For these functions, one then sets
Fadp = ai - p(Ag).
R>o &
Since we have lim,,_, o, f, = f, one then simply sets

J fdp = lim frndu.
R=o n—®w Jp

=0

Example B.S. For the prototypical example of the standard Lebesgue measure, this process simply
vields

f(t)dpres(t) = f: f(t)dt.

Rxo
Example B.6. For the Dirac measure jis, , the above process yields

f@)dps,, (t) = f(to)

R>o

Example B.7. For measures arising from integrable functions ¢ : Rsg — C as 1y ((a,0)) =
SZ O (t)dt, we find

ﬂw%=L¢mmw.

Rxo

10
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B.2 LAPLACE TRANSFORMS

We say a complex valued measure y is finite if we have

| ) <<
R>o

Here the measure |u| arises from the original measure p via

|ul((a, b)) = |p((a; b))].

For any such finite measure ;+ we may define its Laplace transform as

Yu(z) = J}R e du(t).

This function f,, is well defined for z in the right hemisphere
Cr:={z € C:Re(z) = 0}.

of the complex plane C, since there we have

Wu(z)\ =

J etzdp,(t)’

Rxo

<[ teame
=0

< j d|p|(t) < co.
R>o
Example B.8. For the Dirac measure Hsyyr WE have
’lpﬂéto (z) = e %,

Example B.9. For any integrable function z/; we have

Y(z) = J}R eftzd,ud; = L P(t)e dt.

More specifically, if the integrable function is given as 1y, := (—t)* e~ (with Re(\) > 0), then
Yr(z) = (z + A7k
Example B.10. If ¢, := (—t)*"Te™ yields 1y (z) = (z + \) ¥, then
Yr(z) = (z+ A"
For k = 1, this can be seen from
o0 1 0
‘[ e e Mt = ——— (V]
0 Z+ A 0
For k > 1, the claim follows from differentiating the above expression with respect to z Note that the
functions 1y (2) = (2 + \) 7% are also defined if Re(z) < 0, as long as z # —\.
Using the function ¢, of the examples above, a wide class of functions may be parametrized
Theorem B.11. Let f : R>o — 0 be any function with lim f(x) = 0. Then for any ¢ > 0, there is
r—00

a function
h(w) = ) Oxtbr(x)
E
for which
sup |f(z) — h(z)| <e

z€[0,00)

Here the basis functions {1y} may either be chosen as 1y,(2) = (z + N\)™F or ¢ (z) = e~ ko) for
any tg > 0.

Proof. This is a direct consequence of the Weierstrass approximation theorem. [

11
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B.3 GLOBAL LAPLACIAN PROPAGATION MATRICES
A Global Laplacian Propagation matrix is then constructed by applying a function ) arising as a

Laplace transform to a graph Laplacian L. The resulting filter matrix ¢)(L) € RV > acts on scalar
graph signals 2 € R via matrix multiplication; sending x to 1/ (L) - x:

r (L) -
C PROOFS RELATED TO GENERALIZATION ABILITY

C.1 GENERALIZATION ABILITY OF GLOBAL LAPLACIAN PROPAGATION MATRICES

In this section, we establish the generalization ability of global Laplacian propagation matrices.

Theorem C.1. We have that |(L) — J' (L) JY|| < SSO b () |n(t)dt holds true.

Proof. We start by proving the first claim. To this end, we note

) kwﬁeuﬂW%”

< J HeftL — JlemtL gt [ dlpl g
=0

|p(L) — JYp(L) I | =

Using the notation for generalized fundtions, we have d|u|;(t) = |4h(t)|dt and hence

J [eftL _ JTeftLJl] dl%
Rxo

<J' et — JTe gt [d(e)]dt.
R>o

|(L) — J'(L) T =

O

Thus if n(t) = |e™** — JTe™*LJ¢| ~ 0 on the support of v, we also have (L) — JT¢(L)J| ~
0. In this case, propagation as implemented via /(L) is essentially the same as propagation via
JW(L)J*.

C.2 GENERALIZATION AND STABILITY WHEN ||L — L « 1

In this section we prove in addition to results in the main body of the paper also stability and
generalization ability in the setting where for the Laplacians L, L of two graphs G, G defined on
a common node set we have |L — L|| « 1 (as opposed to the setting where one graph is a coarser
version of another). We denote the collection of weight matrices by W, the collection of biases
by B and the (collection of) utilized global Laplacian propagation matrices used in the update
rule "X — Zk (L) XW,;," as ¥. We denote the network by ®y 5 ¢ and write the generated
embeddings for the node feature matrix X as ®yy g ¢ (X). With this, we have:

Theorem C.2. Let @y 5w be a K-layer deep graph convolutional architecture. Assume in each
layer 1 < ¢ < K that Y., |W}| < W and |B*| < B. Choose C > |¥,;(L)| (Vi € I) and w.Lo.g.
assume CW > 1. With this, we have with 6 = max;e{||¥;(L) — U;(L)|} that

~ 1
[Py 29 (L, X) = Py zw(L, X)| < [K CRwEL (|X| + CWIB)} 0.

12
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Proof. For simplicity in notation, let us denote the hidden representations in the network correspond-
ing to L by X*. With this, we note:

X0 = XY < Y a(L) = al D) - X5 W]+ S (D)) - | X5 X W
iel iel
< SW|XETH + oW X — XK
< SWIIXE + CW| XE2| + (CW)?| XK1 — XK

5 K
<C~<Z«NWQXK€0
{=1
—5-(§1mvﬁﬂwwo
c\&

Hence we need to bound the quantity | X7|| in terms of C, W, B and X.
We have

170 < X s D) - 1X77 4 - (W |+ 1187

<CW|X7 Y+ B
< (CW)?|XI7%|+ CWB+ B

N

B(i«mw>+wwmwn

k=0
_[BEML L (cwyi|x| oW 1
iB+IX| oW =1

For the case CW = 1, we thus find

X% - X5 <

K-1
: (Z (JB+ Xl))
=0

: (KX + BK(KQ_D> .

Qle Ql=

For the case CW # 1, we find

K-1 i_ _
|XK—XKM<2-<Z(vaﬂ[Bf$Q_f+wcwmx@>
j=0

For CW > 1, we may further estimate this as

K—1 J_ .
IXE — XK < 9. (Z (CW)K~— [B(CW)I + (CW)'7|X|D

C = CW -1
K(CW)& B
<4 X| 1.
=
This proves the claim. O

C.3 PROOF OF CONVERGENCE IN THE SENSE OF SECTION 3]
The result in Section [3]is concerned with the graph-level setting; i.e. the setting where entire graphs

are embedded into latent spaces. Before proving this result, we first prove a corresponding result for
the node-level, where individual nodes in a graph are embedded. We will then use this node-level

13
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result (Thoerem [C.3]| below) to prove the graph-level Convergence result in section 3]

In the node-level setting, we start by considering initial node-features X on G. We then fix
a graph neural network ® based on global Laplacian propagation schemes and consider two ways of
generating embeddings on the graph G: On the one hand, we may simply generate embeddings with
the network ® on (G. On the other hand, we may also project the node feature matrix X to G via
J*, apply ne the network @ to the matrix .J* X on G and then finally interpolate the generated node
embeddings back to G via J'.

The following result bounds the difference between these two respective node embeddings generated
on the same graph.

Theorem C.3. Let &y 5 v be a K-layer deep Global-Laplacian-Propagation-based network. As-

sume Y, |[WE| < W and bound bias matrices in layer { as |B*| < B. Choose C > |¥;(L)|
(i € I) and w.l.o.g. assume CW > 1 (which can always be satisfied by choosing C large
enough). Assume p(J'X) = J'p(X) and if biases are enabled, assume J'1g = 1g. Set

max;er{ i (L) — J';(L)JY||} = 01 and define 65 = max;cr{|y;(LN)[J'JT — Idg]|}. With
this, we have that

1
|y 0 (L, X) = T @y z9(L, J'X)| < [K LCRwHESL (|X| + OWlB)] - (01 + d2).

It should be noted that the result above is more general than the setting considered in Section 3] In
the setting considered in Section we have JVJ! = Idg (in addition to p(J'X) = J"p(X)). There
we thus automatically have d; = 0.

Proof. Let us define
X :=J'X.

Let us further use the notation 1, := ¢; (L) and ¢; := ;(L).

Denote by X* and X * the (hidden) feature matrices generated in layer ¢ for networks based on v;
and yl respectively: L.e. we have

Xf=p <Z P XIWE + B€>
i€l

and

i€l

‘We then have

@y 0 (L, X) — T @y 0 (L, J* X)|

= X% — JTXF]
i€l i€l
i€l iel

Here we used the assumption that p and J commute. In fact since ReLU(:) maps positive entries
to positive entries and acts pointwise, it commutes with JT. We also made use of the assumption
J'"1¢ = 15 when dealing with biases .

14
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Using the fact that p(-) is 1-Lipschitz-continuous, we can establish
[Py 2.0 (L, X) = T @y z.9(L, JX)|

p (Z i XETIWE 4 BK> —p <JT D xETWE 4 BL> H

el el

<

< .

Z¢1XK_1W1K +BK_JTZ£1XK_1WZK +BK

iel iel

Using the assumption that [¢[J*J" — Idg]|| < 62, we have
|2w. 20 (L, X) = J' @y zu(L, JX)|

<D XKW =N (T NITXETTWE |+ Y T [Tdg — JH XKW
el el el

<D XEAWE (I NI XETWE | + 6y Y XKW
iel iel el

el iel

o X5 w

From this, we find (assuming |J'|,|J'| < 1 for notational simplicity (and which is true in the
setting of Section 3)), that

@9 20 (L, X)— T ®yp 5 w(L, JX)|

<D XKW =N (1 TS X KW sy [ XE W

el el
<D = S HXETWE 4 [T I ST XET = X W 4 sy [ X W
el el

<YW — Tl HXEWE

el

& s = W WXy |5
i€l

<O | XETH W+ oW | ITXET - XET sy | XE W

+OW - | JTXET XK g, | XYW

Arguing as in the proof of Appendix [C.2]then yields the claim.

Let us move from the node-level to the graph-level. We first specify how graph-level latent embeddings
arise:

Definition C.4. We aggregate embeddings X € RN*F of individual nodes to graph-embeddings

QUX)eRF as QX); = Zfil | X5j5| - pi. Here {11;}; is the set of node-weights.

In a social network, a node weight p1; = 1 might e.g. signify that node 7 represents a single user. A
weight y1; > 1 would indicate that node j represents a group of users.

Given such an aggregation of node embeddings into latent-embeddings of entire graphs, we may then
relegate graph-level transferability back to node-level transferability:

Theorem C.5. Assuming Q(X) = Q(J' X), we have in the setting of Theorem that
[0 @y zu(L,X) ~QoCy au(L, J'X)| < |y zu(L,X)~ T @y zv(L, J X)|.

15
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Proof. We note
|20 ®y zu(L, X) = Qo Py g u(L, J'X)|
=@y z,9(L, X)) = APy z9(L J X))
=@y z,9(L, X)) = QI @y z,9(L, T X))|.
To prove the claim from here, we only have to note that the aggregation method (2 as defined in

Definition[C.5]above is 1-Lipschitz (as a consequence of the reverse triangle inequality). The proof
for the bidirectional setting proceeds analogously. O

This result then proves the continuity result of Section[3] Indeed: In the notation of Section 3] we
have F, = Q(®% % v(Ly, X)) and F = Q(®y % v(L, J* X)) Thus we have

|Fo—FE| = [Q0®y z.4(L, X)=Qo®y g 4(L, J*X)| < |®9 29 (Lo, X)=J @y zw(L, J' X)|.
By Theorem and the fact that [Idg — J1J'] = 0, we have

|®w 2.9 (L, X) = T @y 30 (L, J*X)| < max{|[¢y. (L) — (L) T},
with "<" as per usual "denoting smaller than, up to a positive multiplicative constant".

Finally Theorem [C.T|implies

[on(Lo) — Thon(L) IV < f (6 ()t = j e the — gt et Lt e (o) dr.

Thus upon combining these steps and noting that 7., — 0 by (T)), the convergence result of Section [3]
is indeed proved.

D ADDITIONAL EXPERIMENTAL CONSIDERATIONS
Collapsing strongly connected clusters: Intuition and exact Definitions

From a diffusion perspective, information in a graph equal-

\ / izes faster along edges with large weights. In the limit where

/ / ; \ edge-weights within certain sub-graphs tend to infinity, in-
Y **7 \ formation within these clusters equalizes immediately and

\\ / \ >\ - such sub-graphs thus effectively behave as single nodes. We
“@ might thus consider a coarse grained graph G where these

Figure 4: (a) G (stongly connected) strongly connecteq cl}lsters are indeed fused toge.ther and
clusters in red (b) Coarse grained G represented only via single nodes. The corresponding node
set G of G is then given by the set of connected components

in Gpseer (c.f. Fig ' Edges £ are given by elements (R, P) € G x G with non-zero accumu-
lated edge weight Wyrp = > p Zpe p Wrp. Node weights in G are defined accordingly by

aggregating as R = Y rer Mr- To compare signals on these two graphs, we ‘S
define intertwining operators J*, J! transferring information between G and G- ‘/ \

Let x be a scalar graph signal and let 1 be the vector that has 1 as entry for /
nodes r € R and is zero otherwise. Denote by uy the entry of u at node R € G. \

Projection J* is then defined component-wise by evaluation at node R € G as the
average of z over R: (J'z)r = (1g,x)/p - Going in the opposite direction, Figure 5: Goster

[

interpolation is defined as Jhu = ZReg ug - Lg.

In this setting, we have (c.f. Appendix [A) that

let5 — Jle 'Lt < 1/wpih forany ¢ > 0.

Here w{l‘ilg}l » 1 denotes the minimal edge weight inside the strongly connected clusters in G.
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Dataset: The dataset we consider is the QM7 dataset, introduced in Blum & Reymond| (2009);
Rupp et al.| (2012). This dataset contains descriptions of 7165 organic molecules, each with up to
seven heavy atoms, with all non-hydrogen atoms being considered heavy. A molecule is represented
by its Coulomb matrix C“'™®, whose off-diagonal elements

ccmb _ _ZiZ;
Y R - Ry
correspond to the Coulomb-repulsion between atoms ¢ and j. We discard diagonal entries of Coulomb

matrices; which would encode a polynomial fit of atomic energies to nuclear charge Rupp et al.
(2012).

For each atom in any given molecular graph, the individual Cartesian coordinates R; and the atomic
charge Z; are (in principle) also accessible individually. To each molecule an atomization energy -
calculated via density functional theory - is associated. The objective is to predict this quantity. The
performance metric is mean absolute error. Numerically, atomization energies are negative numbers
in the range —600 to —2200. The associated unit is [kcal/mol].

Details on collapsing procedure as applied to QM7: Again, we make use of the QM7 dataset
Rupp et al.| (2012) and its Coulomb matrix description

(Clmb _ ZiZj
7 TR - Ry
of molecules. We modify (all) molecular graphs in QM7 by deflecting hydrogen atoms (H) out of
their equilibrium positions towards the respective nearest heavy atom. This is possible since the QM7
dataset also contains the Cartesian coordinates of individual atoms. Edge weights between heavy
atoms then remain the same, while Coulomb repulsions between H-atoms and respective nearest
heavy atom increasingly diverge; as is evident from (@).

“

Given an original molecular graph G with node weights p; = Z;, the corresponding limit graph
G corresponds to a coarse grained description, where heavy atoms and surrounding H-atoms are
aggregated into single super-nodes.

Mathematically, G is obtained by removing all nodes corresponding to H-atoms from G, while adding
the corresponding charges Zg = 1 to the node-weights of the respective nearest heavy atom. Charges
in (4) are modified similarly to generate the weight matrix W.

On original molecular graphs, atomic charges are provided via one-hot encodings. For the graph of
methane — consisting of one carbon atom with charge Z~ = 6 and four hydrogen atoms of charges
Z = 1 — the corresponding node-feature-matrix is e.g. given as

00 --- 010
10 --- 0 00
X=110 0 00
10 -~ 000
10 --- 0 00

with the non-zero entry in the first row being in the 6™ column, in order to encode the charge Z¢ = 6
for carbon.

The feature vector of an aggregated node represents charges of the heavy atom and its neighbouring
H-atoms jointly.

Node feature matrices are translated as X = J*X. Applying J* to one-hot encoded atomic charges
yields (normalized) bag-of-word embeddings on G: Individual entries of feature vectors encode how
much of the total charge of the super-node is contributed by individual atom-types. In the example of
methane, the limit graph G consists of a single node with node-weight

p=6+1+1+1+1=10.

The feature matrix
X=J'X
is a single row-vector given as

4 6
X=(Z 0.0 —0.---].
== (10)07 ’07 10’07 )
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Experimental Setup: We randomly select 1500 molecules for testing and train on the remaining
graphs. On QM7 we run experiments for 23 different random random seeds and report mean and
standard deviation. All experiments were performed on a single NVIDIA Quadro RTX 8000 graphics
card.

Additional details on training and models: Typical GNN models are divided into standard
architectures (GCN (Kipf & Welling, 2017), ChebNet (Defferrard et al., [2016), ARMA (Bianchi
et al.,[2019), BernNet (He et al.,|2021), GATv2 (Brody et al.,[2022)) and multi- scale architectures
(PushNet (Busch et al., |2020), UFGNet (Zheng et al., 2021), Lanczos (Liao et al., 2019)). Apart
from UFGNet (already acting as a pooling layer) we also consider self-attention-pooling (Lee et al.,
2019); both acting on the final layer (SAG) and as acting on the output of each indivifual layer, with
resulting layer-wise features concatenated to produce the final embedding (SAG-M). All considered
convolutional layers are incorporated into a two layer deep and fully connected graph convolutional
architecture. In each hidden layer, we set the width (i.e. the hidden feature dimension) to

Fy =F, =64.

For BernNet, we set the polynomial order to K = 3 to combat appearing numerical instabilities.
ARMA issetto K = 2and T = 1. ChebNet uses K = 2. Lnaczos uses 20 Lanczos iterations, as
proposed in the original paper (Liao et al.|[2019). UFGNet uses Haar wavelets. For all baselines,
the standard mean-aggregation scheme is employed after the graph-convolutional layers to generate
graph level features. Finally, predictions are generated via an MLP.

For the resolvent based global Laplacian propagation architecture, we set A = 1 and and build filters
using the k = 1 and = 2 matrices in R = {(z + \)7F} 1.

For thebased global Laplacian propagation architecture, based global Laplacian propagation
architecture, we set tg = 1 and and build filters using the ¥ = 1 and = 2 matrices in WP =
{6_(kt0)z}kelN~

As aggregation, we employ the graph level feature aggregation scheme introduced in Definition [C.4]
with node weights set to atomic charges of individual atoms. Predictions are then generated via a
final MLP with the same specifications as the one used for baselines.

18



	Introdution
	Standard GNNs are not multi-scale consistent
	Global Laplace Propagation facilitates scale-consistency
	Coarse-graining Graphs
	Global Laplacian Propagation Matrices, Generalized Functions, Measures and all that
	Complex measures on R0 and their Theory of Integration
	Laplace Transforms
	Global Laplacian Propagation matrices

	Proofs related to Generalization Ability
	Generalization Ability of global Laplacian Propagation Matrices
	Generalization and stability when L - 1
	Proof of Convergence in the sense of Section 3

	Additional Experimental Considerations

