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Abstract

Conditional image generative models hold considerable promise to produce infinite
amounts of synthetic training data. Yet, recent progress in generation quality has
come at the expense of generation diversity, limiting the utility of these models
as a source of synthetic training data. Although guidance-based approaches have
been introduced to improve the utility of generated data by focusing on quality
or diversity, the (implicit or explicit) utility functions oftentimes disregard the
potential distribution shift between synthetic and real data. In this work, we
introduce Chamfer Guidance: a training-free guidance approach which leverages
a handful of real exemplar images to characterize the quality and diversity of
synthetic data. We show that by leveraging the proposed Chamfer Guidance, we
can boost the diversity of the generations w.r.t. a dataset of real images while
maintaining or improving the generation quality on ImageNet-1k and standard
geo-diversity benchmarks. Our approach achieves state-of-the-art few-shot
performance with as little as 2 exemplar real images, obtaining 96.4% in terms of
precision, and 86.4% in terms of distributional coverage, which increase to 97.5%
and 92.7%, respectively, when using 32 real images. We showcase the benefits
of the Chamfer Guidance generation by training downstream image classifiers on
synthetic data, achieving accuracy boost of up to 15% for in-distribution over the
baselines, and up to 16% in out-of-distribution. Furthermore, our approach does
not require using the unconditional model, and thus obtains a 31% reduction in
FLOPs w.r.t. classifier-free-guidance-based approaches at sampling time.

1 Introduction

In the last few years, conditional image generative models [31, 47, 55] have demonstrated extraor-
dinary capabilities, producing highly realistic images from both textual descriptions and class labels.
These models have rapidly evolved from experimental research tools to widely accessible applications,
enabling creative expression for users across various domains. With this acceleration, researchers have
also started exploring the use-cases of conditional image generative models as synthetic training data
for downstream machine learning models [6]. However, recent research has revealed that as models
grow in size and capability, they tend to produce images of higher quality, aligned with human pref-
erence, but with diminished diversity, hindering their utility as synthetic training data generators [5].

Learning-based approaches and guidance-based sampling techniques [4, 25, 26] have been intro-
duced in the literature to mitigate the shortcomings of vanilla synthetic data. On the one hand,
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Figure 1: Our Chamfer Guidance addresses key limitations of existing image generation approaches,
producing high-quality and diverse outputs. Base models (here LDMj sy) necessitate high CFG
scales to achieve prompt adherence and quality, at the expense of diversity. Reference-free methods
can introduce ungrounded diversity, failing to capture the underlying data distribution. While training-
based solutions effectively narrow the fidelity gap with the reference distribution, they suffer from
low subject diversity, particularly in backgrounds. Our Chamfer Guidance achieves superior image
quality without using CFG, substantially improving grounded coverage (C) and aligning the generated
images more precisely (P) with the reference distribution. Best viewed zoomed in.

learning-based approaches [21, 48] aim to improve the overall utility of synthetic data by reducing
the distribution shift between generated samples and real samples. These techniques leverage real
data samples to train or fine-tune parts of existing conditional image generative models. On the other
hand, guidance-based sampling methods define reward functions to guide the process of generating
synthetic data. These reward functions characterize the utility of the generated samples in terms of
generation quality [64] and diversity [25]. However, in-depth analyses of conditional image generative
models have highlighted a tension between these two desirable properties [5]. This tension becomes
more apparent when defining generation diversity as the variation among generated samples without
reference to any target distribution. Contextualizing the desired diversity through real exemplar data
holds the promise of limiting potentially disadvantageous variations in synthetic data.

Using exemplar data at inference time to guide the generation process is reminiscent of few-shot
in-context learning (ICL) approaches in large language models (LLMs), where a small number of
examples are used to adapt to new tasks without requiring model fine-tuning. Yet, in conditional
image generation, most few-shot approaches require partial model training or fine-tuning [21, 48],
and the use of exemplar data at inference time remains underexplored. Following this line of research,
Contextualized Vendi Score Guidance (c-VSG) [25] proposed to leverage a handful of contextualizing
real images to ground the diversity of generations to that of the real data. However, contrary to ICL ap-
proaches [1], increasing the number of examples did not show to improve c-VSG’s performance [25].

In this work, we introduce a new training-free guidance method to increase the utility of synthetic data.
The method leverages exemplar real data to characterize the desired quality and diversity of synthetic
data and scales gracefully with the number of exemplar real images. We define utility of synthetic data
through the Chamfer distance [63] between generated and real data, and use this utility formulation
as reward guidance to improve off-the-shelf state-of-the-art conditional image generative models.
We demonstrate that our Chamfer Guidance approach increases the diversity of generated images
compared to previous methods, while maintaining or improving generation quality. We validate
these results on ImageNet-1k [13] and standard geo-diversity benchmarks [22, 44]. On ImageNet-1k,
we reach a distributional coverage of 91.2% and 92.7% while reaching a precision of 95% and 97.5%
for LDM, 5 [47] and LDM3 sy [18], respectively. To further illustrate the benefits of our approach,
we contrast Chamfer Guidance with alternative approaches in Figure 1. On the geodiversity task,
we observe an improvement w.r.t. prior art of 6.5% and 5.7% in terms of average F; and worst-region
Fy, respectively. To validate the utility of our Chamfer Guidance, we train a classifier for the
ImageNet-1k [13] dataset on synthetic data, and we demonstrate that our guidance can boost
downstream accuracy of up to 15% over the classifier-free guidance sampling. We further investigate
out-of-distribution generalization, and our guidance outperforms the classifier-free guidance sampling
on several ImageNet variants, and it can obtain a boost of up to 16% on ImageNet-Sketch [62]
using LDM3; sy Finally, for LDM3 sy, our approach does not require unconditional model to
obtain state-of-the-art quality and diversity, obtaining a 31% reduction in FLOPs w.r.t. CFG-based
approaches during sampling. With this work, we advance the synthetic training data field and show



that by designing appropriate guidance functions we can unlock the full potential of conditional
image generative models and better exploit the knowledge encapsulated in them.

2 Related work

While most modern text-to-image diffusion models utilize classifier-free guidance [30], there has
been increasing exploration of alternative guidance methods to further improve the sampling process.
A subset of works focus on improving image quality with methods including modifications to
classifier-free guidance to reduce over-saturation, such as Adaptive Projected Guidance (APG) [50],
utilization of blurring [32, 33] or perturbations [2], and employment of a smaller, less-trained
version of the model for guidance [35]. Other works explore guidance methods to improve the
diversity of generated images, e.g., Condition-Annealed Diffusion Sampler (CADS) [49] anneals
the conditioning signal by incorporating scheduled, monotonically decreasing Gaussian noise into
the conditioning vector during the diffusion chain to increase diversity of the generated samples,
while Limited Interval guidance [37] removes the conditioning signal in a certain interval to improve
ungrounded diversity. Particle Guidance [11] overcomes the common assumption of independent
samples in a batched generation, and proposes an extension of sampling where a joint-particle
time-evolving potential enforces diversity. c-VSG, which guides the denoising process to increase the
diversity of a sample compared to images previously generated with the same prompt [25]. Still other
works focus on safety-related guidance by reducing harmful representations, such as using classifier
guidance to guide generations away from inappropriate content [9, 51] or “forgetting” concepts by
zeroing out their cross-attention scores [65]. However, these methods tend to focus on generation
quality/diversity/safety as ends in themselves, rather than as means to increasing a synthetic image
corpus’ utility in training downstream models.

Other recent works have begun to explore use of guidance methods to augment real image training
datasets with synthetic samples for use in downstream tasks, such as using the loss and entropy of
the downstream classifer to guide the synthetic image generator [26], promoting sample diversity to
supplement small-scale datasets [66], and leveraging textual inversion [21] to generate images for
the use of long-tail image classification [53]. There has also been increasing study into the use of
guidance to help in model self-improvement, such as using generated samples as negative guidance
to avoid mode collapse/degradation [3]. Our work complements these methods by utilizing features
from a small set of real images in the guidance process to improve the utility of generated samples.

Finally, in lieu of guidance approaches to improve the generations of diffusion models, a standard
practice is to perform fine-tuning. These methods include fine-tuning directly on additional data
sources that better capture the desired qualities of the generations [12, 17, 18, 47] or utilizing reward
models to incorporate preferences of model outputs [10, 15, 64]. For example, it is possible to directly
fine-tune latent diffusion models by integrating human-preference feedback during the denoising
process using Reward Feedback Learning (ReFL) [64]. Instead of the conventional generate-then-
filter approach, ReFL leverages a reward model to provide gradient feedback. A key insight is that the
quality of generated images becomes discernible only in the later denoising steps. At early timesteps,
the reward scores are uniformly low, but once a sufficient number of steps have been taken (e.g., ,
after 30 out of 40 steps), the reward model produces distinguishable scores. To balance stability
and effective feedback, a random timestep from a designated (late) interval is chosen for fine-tuning.
Although this approach has been proven successful for quality fine-tuning, it is not yet tested whether
this approach would increase diversity in generation given the proper reward. In this work, we study
how strong diversity and quality can be achieved by guidance without the need to perform fine-tuning.

3 Method

In this section, we introduce a training-free approach for diffusion and flow models, which leverages
real data samples to characterize the desired quality and diversity of the synthetic data. Our method
leverages the Chamfer distance as a mechanism to match sets of real and generated samples.

3.1 Preliminaries

Diffusion Models. Diffusion models [31, 55] are generative models that transform a unit Gaussian
prior into a data distribution via iterative denoising. They consist of a forward and a backward



process. The forward process progressively adds noise to data xzg over T timesteps following
a Markovian process q(z¢|zi—1) = N(z;v/1 — Brai—1, BiI), where 8, € (0,1) is a variance
schedule. The backward process learns to reverse this by denoising a sample z; to z;_1, modeled as
po(xi_1|zy) = N(24-1; oz, 1), X (2, ). Ho et al. [31] show how we can equivalently train a
denoising neural network eg(x, t) to predict the noise € using the following objective:

Limple = Et zg.c [I|e — eg (Vauzo + 1 — aye,t) HQ} . )

Sampling starts with z7 ~ N(0,I), and the learned reverse process is iteratively applied to obtain
1—ay

Zo, i.e., T;—1 = denoise(xy, €p) = \/%T (:ct - ﬁeg(:ct,t)) + o, withe ~ N(0,1), and o
a weighting parameter [31].

Flow matching. Flow Matching (FM) is a generative modeling approach that offers a deterministic
alternative to diffusion models by learning continuous transformations between probability distribu-
tions. While diffusion models rely on stochastic processes that gradually add and then remove noise
through stochastic differential equation (SDE), FM employs first-order ordinary differential equations
(ODEs) to define a vector field guiding the transformation from a simple base distribution to the target
data distribution. This deterministic nature results in faster inference and reduced computational
costs. Moreover, FM can work with optimal transport interpolations, which can lead to more direct
and stable mappings compared to the often curved trajectories in diffusion models [39].

CFG. Classifier-free guidance (CFG) [30] enhances controllability in diffusion models by combining
conditional and unconditional outputs during sampling as follows:

6guidance(mh 2 C) = (1 + W)EG (mty t, C) — W€y (xta t), ()

where w adjusts guidance strength, eg(x+, t, ¢) is the noise prediction conditioned on ¢ (commonly
a class label or text prompt), and € (¢, t) is the unconditional counterpart. This extrapolation trades
diversity for fidelity without requiring auxiliary classifiers.

Classifier-guidance. Another approach to control the generation is classifier-guidance [14], which
uses a pretrained classifier py(y|z:) to modify the unconditional score function V, log pg(z),
yielding the following modified score function for conditional generation:

Va, logpe(x|y) = Va, logpe(x) + 7V, log pg(y]ze), 3

where 7 is a scaling factor that controls the strength of the guidance signal. Classifier guidance can
also be used on top of the CFG score prediction from Equation (2).

DDIM. At sampling time, using the insights of DDIM [56], we can obtain an approximate denoised
image for each timestep ¢,

— 1 _
%0, = DDIMApprox(z;) := Tt \/7%69(51%)' @

N

Access to the approximated denoised sample is useful and necessary to apply guidance on the
denoising process at inference time without modifying the diffusion model network €y [25].

3.2 Chamfer distance for image distribution matching

The Chamfer distance [7] is a metric used to quantify the similarity between two sets of points by
measuring the average closest-point distance between each point in one set to the other and vice versa.
It has been widely used in 3D computer vision and computer graphics to register point clouds [58].

In this work, we represent image distributions as sets of points and leverage the Chamfer distance for
distribution matching. Given a set of real images X and a set of generated images )/, our goal is to
encourage the generated set of images to be as close as possible to a set of real target images. We
compute the Chamfer distance between these sets of images as:

ﬁChamfer(Xay) = ﬁ Z:cGX minyey ||SE‘ - y||2 + ﬁ Zygy mingex ||:L' - y”2 N ®)

The distance consists of two terms: The first term matches each real sample with its closest generated
counterpart. This term is reminiscent to diversity metrics used to evaluate synthetic data [36, 41],



and may be viewed as a particular instance of Implicit Maximum Likelihood Estimation [38], which
inherently resists mode collapse by encouraging coverage of the entire data distribution. The second
term matches each generated sample with its closest real counterpart. This term is reminiscent to
Jidelity metrics used to evaluate synthetic data [36, 41].

Representation space projection. Before computing the Chamfer distance, we project both
real and synthetic images into a representation space that induces more semantically meaningful
distances than a naive /5 metric in RGB pixel-space. We use DINOv?2 [42], which captures semantic
information through self-supervised learning. Unlike CLIP’s contrastive learning with text-image
pairs and Inception’s supervised ImageNet training, DINOv2’s self-supervised learning approach
provides a feature representation that balances between focusing on important objects and holistic
image structure [57]. Moreover, DINOv2’s features have been shown to capture human-perceived
similarity better [24] than representations such as CLIP [43] and Inceptionv3 [59].

3.3 Inference-time guidance

To improve the alignment between the generated and real data distributions at inference time, without
requiring any fine-tuning, we introduce a guidance mechanism based on the Chamfer distance. This
builds on the general framework of guidance in diffusion models, where external signals are used to
steer the generative process toward a desired objective [4, 14, 25, 26, 52].

Chamfer Guidance. We introduce Chamfer Guidance, where the external signal is derived from the
Chamfer distance between a batch of generated samples and a batch of real samples. Let X’ denote a
set of features extracted from real images, and let ¢ ; be the denoised approximation of a batch of
generated samples x; at time step ¢ (see Equation (4)). The guidance score becomes:

th log ps (l‘t|C, X) = V:Jct log ps (l‘t|0) - VV:M EChamfer(Xy jO,t), (6)

where Lchamfer 18 the Chamfer distance between the real sample set X' and the current batch of
denoised samples, as defined in Equation (5). The negative sign in Equation (6) reflects the goal of
minimizing the Chamfer distance, thereby encouraging the generated samples to be close to the real
data (fidelity) and to cover its modes (diversity).

Efficient approximation. Evaluating the Chamfer distance across the full reverse diffusion trajectory
is computationally expensive. To mitigate this, similar to [4, 26], we adopt the DDIM approximation
in Equation (4), which provides a first-order estimate of the final denoised sample at each time step ¢.
This allows us to compute a differentiable reward signal and its gradient during the intermediate steps
of the diffusion process without completing all 7" reverse steps.

Chamfer as a reward signal. Chamfer Guidance can also be interpreted in the context of reward-
based generation methods, such as ReFL. In our experiments we find, however, that applying
Chamfer-based guidance at inference time leads to stronger distributional alignment than using the
same reward function for fine-tuning.

4 Experiments

4.1 Experimental setup

We consider three primary experimental settings. The first is an object-centric setup, where the
focus lies on guiding or evaluating the generation of specific object categories. This setting allows
us to assess the capability of conditional diffusion models in producing accurate and semantically
consistent visual representations of well-defined object classes. The second setting addresses
geographic representation and targets the well-documented limitations of T2I models in handling
geographically grounded content. In this setting, we aim to evaluate how well the models capture
regional diversity and mitigate the visually biased depiction of locations [23, 25]. Finally, we
evaluate the downstream utility of the data generated by our Chamfer Guidance by training an image
classifier purely on synthetic data.

Datasets. We utilize three publicly available datasets. For the object-centric setting, we use ImageNet-
1k [13], a large-scale image classification dataset containing over one million images across 1,000
object categories. For the geodiversity representation, we use GeoDE [44] and DollarStreet [22].
GeoDE contains a curated set of images annotated with geographic provenance and object labels.



DollarStreet includes photographs of everyday household items from around the world, labeled by
country and income level, thus enabling fine-grained analysis of regional visual representations, in line
with prior works [23-25]. For downstream utility, we employ ImageNet-1k [13]. We further employ
ImageNet-V2 [46], ImageNet-Sketch [62], ImageNet-R [27], and ImageNet-A [28] to measure
out-of-distribution generalization.

Models. We consider two state-of-the-art T2I models, in particular latent diffusion models (LDMs),
LDM; 5 [47], and LDM3 sy [18], which we use in a class-conditional and text-conditional way.

Implementation Details. All experiments are implemented using the diffusers library [61], using
the default samplers with 40 denoising steps. For the latent projection of our Chamfer Guidance, we
primarily use the DINOv2 [42] (ViT-L) feature space, which offers strong semantic representations
suited for fine-grained perceptual alignment and whose features have been shown to correlate better
with human judgement of similarity [24]. To enable comparison with prior studies [25], we also report
results using CLIP embeddings [43] for the geographic diversity scenario. Evaluation in the object-
centric setting is conducted using the dgm-eval library [57], while the geographic representation
scenario utilizes the publicly available evaluation code from DIG-In [23]. The Chamfer distance
implementation is from PyTorch3D library [45]. As in c-VSG [25], we set the inference-time
guidance frequency to Gyreq = 5, i.e., we apply Chamfer Guidance once every five denoising steps.

4.2 Object-centric scenario: ImageNet-1k

Baselines. We employ reference-free, and reference-based baselines, where reference-based baselines
use a few real data samples as reference. As reference-free baselines, we test the default capabilities
of LDMs with different CFG [30] values, as well as advanced guidance techniques such as APG [50],
CADS [49], Limited Interval guidance [37], and Particle Guidance [11]. Regarding reference-based
approaches, for LDM| 5 we test c-VSG [25], which employs a memory bank of prior outputs and
real-world exemplar images to guide the generation process, balancing ungrounded and grounded
diversity through the use of two Vendi Scores [19]. Additionaly, we employ two training-based
solutions, vanilla fine-tuning and reward-based fine-tuning [64]. For vanilla fine-tuning, we fine-tune
the model through the standard denoising loss in Equation (1), using the set of real reference images
X as fine-tuning data. Drawing inspiration from ImageReward [64] and their ReFL algorithm, we
implement a reward-based fine-tuning approach which leverages a reward function derived from
the negative Chamfer distance, i.e., 7 = —Lcpamfer- As such, this approach requires a few real data
samples to encourage the model to generate samples that minimize the distributional distance to the
real data. Unlike traditional fine-tuning which focuses on individual samples, this approach explicitly
optimizes for distribution-level properties.

Metrics. To comprehensively assess both image quality and diversity aspects, we report Precision
and Recall [36], Density and Coverage [41], F} measured as the harmonic mean of Precision to
Coverage, as well as Fréchet Distance (FD) [29]. Note that these metrics are grounded on a reference
dataset. We use DINOv?2 features to compute all the metrics as recent literature [24, 57] found that
DINOV2 space provides more accurate estimations of perceptual similarity. In addition, we report
the standard FD using InceptionV3 features.

Number of real images. We investigate the effect of increasing the number of real images used in both
fine-tuning and inference-time guidance approaches. This allows us to establish the data efficiency and
scaling properties of each method. For the number of real images we consider k € [1,2,4, 8,16, 32].

Implementation details. For all the experiments with £ < 8, we use a single H100 GPU to perform
training and inference. We use multiple GPUs for & = [16, 32]. Vanilla fine-tuning and Chamfer
fine-tuning solutions are trained for at most 5,000 steps with checkpoints taken every 1,000 steps.
We use a constant learning rate of 10~ across all experiments. For LDM, s, we fine-tune the entire
U-Net backbone, while for LDM3 s we employ LoRA [34] fine-tuning with a rank r = 4 applied on
the key, query, value, and output layers of attention modules. For ReFL hyperparameters, we use the
official implementation and set A\ = 1073, T = 40, T} = 30,7, = 39.

4.2.1 Quantitative Results

We show the quantitative evaluation on ImageNet- 1k dataset for LDM; s and LDM3 sy in Tables 1a
and 1b, respectively. For each k, we report the metrics corresponding to the best F} score w.r.t. the
validation set of each dataset. Our analysis reveals that existing reference-free solutions are unable to



Table 1: Quantitative results on ImageNet-1k using LDM, 5 and LDMj3; sp1. Our Chamfer guidance
consistently achieves state-of-the-art fidelity, diversity, and image quality compared to reference-free

and training-based approaches across both models.
(a) Results using LDM; 5.

Method k w Fi(@P,C)1 PrecisionT Coverage? Density T Recallt FDD| FID |
LDM; s - 1.0 0.507 0.723 0.391 0.551 0.656  431.241 31.289
LDM; 5 - 15 0.709 0.862 0.603 0.775 0.415 248.731 16.116
APG [50] - 40 0.723 0.855 0.626 0.752 0.533  217.937 13.391
CADS [49] - 4.0 0.718 0.850 0.621 0.743 0.546  217.959 13.434
Limited Interval [37] - 40 0.708 0.837 0.613 0.686 0.631 219.168 11.405
Particle Guidance [11] - 4.0 0.719 0.846 0.625 0.744 0.544  222.264 14.516
¢-VSG [25] 2 20 0.660 0.788 0.568 0.632 0.738  236.337 10.742
Vanilla fine-tuning 2 175 0.733 0.867 0.635 0.797 0.495  220.089 14.869
Vanilla fine-tuning 32 75 0.741 0.869 0.646 0.796 0.503  214.045 14.723
Chamfer fine-tuning 2 20 0.759 0.886 0.664 0.868 0.420 211.714 15.464
Chamfer fine-tuning 32 20 0.766 0.898 0.668 0.875 0.404  209.999 15.492
Chamfer Guidance (Ours) 2 2.0 0.886 0.947 0.833 1.108 0.480 156.179 13.670
Chamfer Guidance (Ours) 32 2.0 0.931 0.950 0.912 1.213 0.649 113.301 8.935
(b) Results using LDMj3 s5m.
Method k w Fi1(@P,C)1T PrecisionT Coverage? Density T Recallt FDD| FID |
LDMs3 sm - 1.0 0.599 0.752 0.498 0.560 0.667 314.732 17.268
LDM; sm - 20 0.727 0.872 0.623 0.797 0.502  231.890 15.673
APG [50] - 20 0.723 0.856 0.625 0.783 0.485  237.623 15.433
CADS [49] - 20 0.717 0.851 0.620 0.749 0.518  238.125 15.139
Vanilla fine-tuning 2 40 0.727 0.861 0.628 0.799 0.433  238.856 18.539
Vanilla fine-tuning 32 4.0 0.728 0.855 0.635 0.789 0.472  232.911 18.098
Chamfer fine-tuning 2 20 0.741 0.906 0.626 0.906 0.255  284.654 21.538
Chamfer fine-tuning 32 20 0.731 0.899 0.616 0.890 0.276  286.708 22.061
Chamfer Guidance (Ours) 2 1.0 0.912 0.964 0.864 1.245 0.469 134.305 8.878
Chamfer Guidance (Ours) 32 1.0 0.950 0.975 0.927 1.366 0.550 121.403 9.606

—#— LDM); s, Vanilla fine-tuning

—#4- LDMj sy, Vanilla fine-tuning

Coverage

—e— LDM, 5, Chamfer fine-tuning
—#-  LDMSj sy, Chamfer fine-tuning

Precision

—_

LDM; 5, Chamfer Guidance (Ours)
LDMj3 s5p. Chamfer Guidance (Ours)

o
- ~———

-
-—

280

1 2 4 8 16 32
Grounding samples / Class

0.85

1 2 4 8 16
Grounding samples / Class

1 2 4 8 16 32
Grounding samples / Class

Figure 2: Effect of the number of real reference samples £ on LDM; 5 and LDMj 5y for ImageNet-1k.
We can see that only our Chamfer Guidance can effectively leverage the the increased number of
reference images, consistently obtaining favorable trends across Coverage, Precision, and FDD.

deliver satisfactory outcomes, offering only marginal improvements over the base LDM performance
in terms of diversity. c-VSG achieves the best recall, at the expense of coverage, indicating the
generation of outlier images. Furthermore, we observe that neither vanilla fine-tuning nor Chamfer
fine-tuning improve their performance when trained with an increased number of available training
samples. Interestingly, on LDM3 sy our Chamfer Guidance obtains state-of-the-art results in fidelity
and diversity without using CFG, i.e., w = 1.0. This brings a significant computational reduction
w.r.t. CFG-based approaches of = 31% for the case k = 32. The detailed computation of efficiency
is presented in the Appendix.

Figure 2 shows how our Chamfer Guidance effectively increases the diversity when a higher number
of real samples become available. Meanwhile, training-based approaches only marginally increase
precision when learning on higher number of real samples k, while not improving the image quality
as indicated by the FDD metric. Our results on Chamfer Guidance are in line with recent trends in
LLMs, where test-time compute can be more effective than training or fine-tuning-time compute [54].



Table 2: Comparison on the GeoDE dataset under the geographical representation benchmark of
¢-VSG, with model selection on Fy (P, C). Metrics are computed in Inception space. ' indicates
re-implemented results. AF: Africa, WAS: West Asia, AM: Americas, EU: Europe. “label” is region
label, “desc” is text description, and “img” is exemplar images. Our Chamfer Guidance achieves
state-of-the-art in terms of F1, and coverage scales with an increased amount of available samples.

F, (P,C 1 Precision Coverage 1 CLIPScore 1

Method Ref. Info & Worst-Reg.
Avg. Worst-Reg. Avg. Worst-Reg. Avg. Worst-Reg. Avg. Worst-Reg.

LDM; 5 X - AF 0.412 0.346 0.459 0.378 0.374 0.319 0.251 0.239
SynonymsT X = AF 0.339 0.297 0.350 0.298 0.328 0.297 0.215 0.203
VSG' [25] X - AF 0.353 0.312 0.349 0.307 0.357 0.317 0.180 0.191
Paraphrasing’ desc - WAS 0.329 0.301 0.338 0.309 0.320 0.293 0.231 0.228
Semantic Guidance® label — AF 0.412 0.344 0.458 0.376 0.375 0.317 0.251 0.239
FG CLIP (Loss)" label - AF 0.418 0.391 0.441 0.422 0.397 0.365 0.246 0.244
FG CLIP (Enlropy)f label - AF 0.414 0.357 0.437 0.393 0.393 0.327 0.238 0.236
Textual_ Inversion [21]F img 4 EU 0.300 0.267 0.356 0.308 0.260 0.236 0.212 0.214
¢-VSG' [25] (CLIP) img 2 AM 0.435 0.412 0.424 0.408 0.446 0.416 0.254 0.254
¢-VSG' [25] (CLIP) img 4 AF 0.412 0.357 0.428 0.382 0.398 0.335 0.253 0.253
Chamfer Guidance (Ours, CLIP) img 2 AF 0.495 0.461 0.525 0.487 0.468 0.437 0.265 0.263
Chamfer Guidance (Ours, CLIP) img 4 AM 0.492 0.457 0.513 0.449 0.473 0.465 0.267 0.266
Chamfer Guidance (Ours, DINOv2) img 2 AF 0.488 0.456 0.539 0.513 0.446 0.411 0.257 0.248
Chamfer Guidance (Ours, DINOv2) img 4 AF 0.500 0.469 0.549 0.512 0.459 0.432 0.257 0.249

4.3 Geographic Diversity

We conduct a thorough comparative analysis of our approach against existing geographic diversity
enhancement techniques, particularly focusing on the contextualized Vendi Score Guidance (c-VSG)
method [25], which is the closest in spirit to our approach. This comparison reveals several key
advantages of our Chamfer Guidance.

Datasets and evaluation metrics. We follow the same evaluation protocol of c-VSG, but we employ
the F score between precision and coverage metrics instead of precision and recall. This is to avoid
inflated results due to generated outliers. We use Inception-based metrics and prompt the models
with {object} in {region} for a fair comparison with c-VSG. We report results computed in
DINOvV2 space in the Appendix. When reporting results for “worst region”, we follow the original
protocol to first identify the worst region in terms of the F} score, and then report the other metrics
corresponding to the same region. This may lead to cases where the worst region has a higher value
for the metric w.r.t. the average.

Implementation details. We use LDM; 5 as in c-VSG and apply the same filtering on the GeoDE
dataset as described in prior work [23, 25]. We choose the DINOv2 [42] latent space to compute
the Chamfer distance, but we also report results using CLIP [43] for a fair comparison with c-VSG.

4.3.1 Quantitative Results

To enable a direct comparison, our experiments replicate the settings of c-VSG [25]. Table 2 presents
a comparative analysis of our Chamfer Guidance against c-VSG on the GeoDE dataset, using
recomputed baselines to use the revised F) score. Details about the baselines are presented in
the Appendix. Notably, our optimal approach (DINOv?2 as the feature extractor, and 4 grounding
samples) achieves a nearly 7% improvement in F; score over c-VSG. We also observe a consistent
scaling in coverage, exhibiting the same trend as in the object-centric scenario. This indicates
that the observed behavior persists even in the more challenging context of geographical diversity.
Furthermore, our method substantially enhances worst-region coverage by up to 4.9%, demonstrating
its efficacy in mitigating regional misrepresentation. As expected, the highest image-text alignment,
measured by CLIPScore, is obtained when employing the CLIP latent space for projecting images
during Chamfer distance computation. This methodology effectively guides synthetic images
towards the CLIP subspace corresponding to the target object. Then, we evaluate our approach on
DollarStreet, with results presented in the Appendix, where we demonstrate a 3.5% improvement
in the F; score compared to c-VSG, due to the enhanced quality and diversity of the generated data.
In summary, we can draw the following conclusions from these results: Chamfer Guidance enhances
the quality (precision) and diversity (coverage) of generated data, and demonstrates superior
image-text alignment. Unlike c-VSG, it exhibits favorable scaling with increased real data volume.
We show qualitative results in the Appendix, where our Chamfer Guidance showcases increased
quality, less saturation and more diversity.

Our analysis reveals two additional significant advantages of our approach: (1) Unlike c-VSG, which
necessitates storing intermediate results to continuously update the Vendi Score computation, our
approach operates with significantly lower memory overhead. (2) Our method eliminates the need
to balance between a diversity term and a contextualization term, removing one hyperparameter



from the optimization process. This simplification makes our approach more accessible and easier
to tune, reducing the complexity of the diversity enhancement pipeline.

Table 3: Validation accuracy on real images of classifiers trained with real data, synthetic data, and a

mix of synthetic and training data for ImagetNet-1k. All models are trained for 200k iterations.
(a) Real data only.

Realimages IN1k IN-v2 IN-Sk IN-R IN-A

2k 5.01 3.94 0.63 0.89 0.21
32k 34.05 25.38 4.17 5.04 0.53
1.3M 82.60 70.90 32.50 44.60 29.40

(b) Synthetic only and mixed data. Real and synthetic images refer to the number of samples used to train the classifier.

Real Syn. Guid LDM; s LDMi; sm
mages  Images INIk IN-v2 IN-Sk IN-R IN-A  INlk IN-v2 IN-Sk IN-R  IN-A
w=2 47.67 4033 2049 1749 145 37.83 3407 17.60 1153  0.88
0 I3M  Chamferk=2 52.88 4537 28.07 19.60 171 52.14 44.27 3347 2026 1.93
Chamferk=32 5491 4643 28.08 1978 511 53.66 4546 3444 2067 528
" LM w=2 4847 4107 2121 1696 157 40.89 3172 20.03 1231  1.32
= Chamferk=2 5357 4642 2948 2125 1.65 5295 4526 3352 2051 199
- LM w=2 59.07 49.77 25.04 20.10 2.44  55.65 45.65 21.64 14.97 154

Chamferk=32 63.81 53.84 3234 2240 2.72 62.61 5258 3449 2185 2.36

4.4 Training downstream image classifiers on synthetic data

We complement our analysis by evaluating the downstream utility of our Chamfer guidance in the
“static” ImageNet-1k setup introduced in [4], and generate a dataset of 1, 300, 000 synthetic images
using our approach, with different k real exemplar images from the training set. Each synthetic image
is generated with a simple prompt (class name). We report the accuracy of a ViT-B [16] classifier
trained on this synthetic data and tested on real validation data.

We compare the performance of LDM; s and LDM3 sy against a classifier trained on limited real
images (k times the number of classes), with results shown in Table 3. We initially train the classifier
on only limited real images and present the results in Table 3a to serve as reference. Our findings
demonstrate that this limited real data alone fails to achieve satisfactory performance. Next, we
leverage the available real data per class to generate synthetic images using our Chamfer distance
approach, presenting these results in Table 3b. We study the effect of images generated without and
with our Chamfer guidance, and we show that our synthetic-only approach using Chamfer guidance
achieves substantial improvements over the base LDM generations, with gains of +-12.01 and +15.83
accuracy, respectively. Finally, we find that combining real and synthetic data yields optimal results,
achieving up to 63.81% and 62.61% accuracy when using only 32 real images per class alongside
our generated synthetic data using LDM; 5 and LDM3 sy, respectively. These results also show how
our Chamfer guidance can effectively close the gap in grounded diversity between the two models.
The difference is more than 5% when using only the synthetic data, and we reduce it to 1.25% with
k = 32. An analogous behavior emerges when leveraging real data, reducing the gap from 3.42 to
1.20 with 32k real images.

We also test on ImageNet-V2 [46], ImageNet-Sketch [62], ImageNet-R [27], and ImageNet-A [28]
to measure out-of-distribution (OOD) generalization. Models trained with data generated by our
Chamfer guidance exhibit strong performance on these out-of-distribution datasets, surpassing models
trained on only real data on all variants, given the same number of real images. For ImageNet-Sketch,
LDM;3; sy with our Chamfer guidance surpasses the performance of a classifier trained on the full
(1.3M samples) ImageNet-1k. Our Chamfer guidance always obtains substantial gains over the default
sampling of LDM 5 and LDMj sy across all ImageNet variants, up to 16% when using synthetic data
only for ImageNet-Sketch on LDM3 ). Interestingly, on ImageNet-R and ImageNet-A, adding real
data to our synthetic ones harms the model’s performance. In these domains, which differ significantly
from ImageNet-1k, the gain resulting from synthetic data is less pronounced w.z.z. ImageNet-V2 and
ImageNet-Sketch. R(endition) and A(dversarial) represent more challenging domains where more
natural-looking images bring reduced benefit. Nevertheless, our Chamfer guidance still surpasses
their real-only counterparts. These results confirms the downstream utility of our generated samples
for OOD tasks as well. Similarly to the in-domain results, we observe how our Chamfer guidance
can effectively close the performance gap between LDM, 5 and LDMj sy, and for ImageNet-Sketch,
the performance of LDMj sy is superior to LDM; s.

Finally, we would like to observe how the improvement in quality between LDM| 5 and LDMj3 s
does not correspond to a greater utility of the generated data. What we generally observe is a decrease



in performance between LDM| s and LDMj3 sy, and that our Chamfer guidance can restore the utility
of the most recent models.

4.5 Ablations

We conduct our ablation studies on LDM; s, using the ImageNet-1k dataset. The goal is to understand
the robustness of our Chamfer Guidance to the relevant hyperparameters, i.e., w from Equation (2)
(in Table 4) and the strength of the Chamfer Guidance v from Equation (6) (in the Appendix).
CFG ablation. Table 4 presents the impact of varying the CFG scale w on our method. The results
clearly demonstrate that a moderate w value of 2.0 with k¥ = 32 guiding images achieves optimal
performance, yielding the highest F} score (0.931) and competitive precision (0.950) while achieving
high coverage (0.912). This balance is crucial for generating both accurate and diverse images.
Notably, the FID score of 8.935 at w = 2.0 indicates better image quality compared to higher guidance
settings, which deteriorates to 14.388. This confirms that excessive guidance strength introduces
oversaturation artifacts, compromising perceptual quality. The low FDD score (113.301) at w = 2.0
further validates the effectiveness of this configuration in producing faithful, high-quality, and diverse
image generations. Interestingly, using the conditional model only (w = 1.0) produces competitive
results, confirming that our Chamfer Guidance approach enables state-of-the-art results while reducing
computational complexity. We present a more detailed study on efficiency in the Appendix.

Table 4: w ablation on ImageNet-1k using LDM; 5. Our Chamfer Guidance can achieve near state-of-

the-art results employing only the conditional model, reducing the needed inference computation.
w k Fi1(@P,C)T Precision?T Coverage ! DensityT Recallt FDD| FID|

1.0 2 0.849 0.890 0.811 0.904 0.736  150.748 13.217
1.0 32 0.899 0.923 0.876 1.086 0.735 117.834  9.759
20 2 0.881 0.932 0.835 1.051 0.637 124.191  8.840
20 32 0.931 0.950 0.912 1.213 0.649 113.301 8.935
75 2 0.886 0.947 0.833 1.108 0.480 156.179 13.670
75 32 0.925 0.957 0.894 1.238 0.498  153.111 14.388

5 Conclusion

We introduced Chamfer Guidance, a novel training-free approach to improve the utility of synthetic
data from conditional image models. By leveraging a small set of exemplar real images to guide
the generation process, our method balances quality and diversity while addressing distribution
shifts between synthetic and real data. Experimental results on ImageNet-1k and geo-diversity
benchmarks show Chamfer Guidance achieves state-of-the-art performance and scales its effectiveness
as exemplars increase. Additionally, our synthetic data can be used in downstream applications.
Furthermore, our approach eliminates the computational overhead of CFG, reducing computational
requirements while maintaining superior performance in quality and diversity. These contributions
advance synthetic data generation and demonstrate that thoughtfully designed guidance can unlock
the full potential of conditional image generative models for downstream applications.
Limitations. Our evaluation of reference-based diversity and quality is built on automated metrics,
which inherit intrinsic biases, e.g., , the distribution of the dataset we compare against, or the reliance
on pre-existing feature extractors that might not capture subtle differences. While we rely on previous
works to provide the most accurate metrics possible, these are statistical aggregators and do not ac-
count for individual preferences. Currently, our approach is designed for class-conditional models and
does not directly support text-to-image generation. This limitation opens up several exciting avenues
for future work. To extend our method to text-to-image models, we envision a retrieval-based pipeline.
First, a large text-image dataset would be embedded into semantic vectors to create an offline retrieval
database. Then, at inference time, for a user’s text query, the top-k relevant images would be retrieved
to serve as exemplars for our guidance. Another interesting extension would be a zero-shot, data-free
pipeline. We could envision a self-bootstrapping technique that first generates initial candidate images
for a class, then automatically selects a diverse subset maximizing coverage (or “diameter”) in a
robust feature space, and finally uses this synthetically-generated set as the guidance exemplars.
Societal Impact. Our work builds on image generative models, and it inherits some of the societal
challenges of image content creation. However, our Chamfer Guidance provides a new way to
guide the generations towards a set of exemplary images. As such, it equips the user with a broader
inference-time tool set to better control the sampling process.

Acknowledgments. This work was sponsored by the project FAIR Future Al Research (PE00000013),
funded by NextGeneration EU.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This work studies the use of Chamfer distance as a guidance technique for
generative models to increase grounded diversity in their generation. Description of the
approach is presented in Section 3, quantitative and qualitative evaluations w.r.¢. previous
works are presented in Section 4.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The work includes a “Limitations” section, where we describe the limitations
of automated metrics when dealing with distributional representation. We rely on previous
benchmarks but recognize that a more complete evaluations should include human judges.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include all the relevant implementation details in the Experimental section
(Section 4) of the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We put an effort to make the paper self contained to facilitate reproducibility.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We report used hyperparameters and data splits in the Experiment section

when novel. For the geographical diversity setup we refer to hyperparameters and data splits
of previous works.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Although our approach enables the possibility of conducting multiple evalua-
tions and statistical significance analyses, we follow previous works [25] and use a single
seed to report results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss the type of resources needed to run the experiments in the Imple-
mentation details section.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully inspected the code of ethics, and believe our work conforms
with it.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper includes a “Societal Impact” section, where we discuss the potential
harm a generative model in the wild could bring. Effective filters need to be put in place
before these models are released to a broader audience, to avoid the generation of harmful
content.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We employ pre-trained diffusion models and we use the safeguards put in
place by the original authors. Additionally, we perform our analyses on non-controversial
datasets, such as ImageNet and geo-diversity datasets.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original creators of all models, datasets and algorithms used in this work
are properly credited, with citations in the manuscript. We used their material for only
non-commercial purpose of developing this research paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release any new dataset with our submission.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The study does not involve human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs have been used only for editing and formatting purposes.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Efficiency analysis

We analyze the computational overhead and efficiency gains of our proposed Chamfer guidance
method compared to traditional Classifier-Free Guidance (CFG) when applied to LDM, 5 and
LDMs; sy. This analysis quantifies the significant computational savings achieved by our approach.
We use pytorch’s FlopCounterMode to compute the FLOPs of each module.

A.1 Baseline Diffusion Model Computation

LDM; 5. The standard diffusion process using LDM, 5 requires ~ 800GFLOPs per forward pass.
With the default implementation using 40 denoising steps, the total computation for generating a
single sample amounts to 40 x 800 GFLOPs = 32 TFLOPs.

When applying CFG, which requires a doubled batch size per step, the computational requirements
double, 40 x 1.6 TFLOPs = 64 TFLOPs.

LDM;5vm. The standard diffusion process using LDM3 sy requires approximately 6 TFLOPs per
forward pass. With the implementation using 40 denoising steps, the total computation for generating
a single sample amounts to 40 x 6 TFLOPs = 240 TFLOPs.

When applying CFG, which requires a doubled batch size per step, the computational requirements
double, 40 x 12 TFLOPs = 480 TFLOPs.

We also have to take into consideration the decoding of the final samples, which account for ~
2TFlops for LDM, 5, and ~ 10TFlops for LDM3 s5p.

Therefore we estimate 34 and 66 TFLOPs to generate an image without and with CFG for LDM; s,
and 250 and 490 TFLOPs to generate an image without and with CFG for LDM3 sp.

A.2 Our Chamfer Guidance Approach

The Chamfer guidance method introduces two additional computational components:

Reference Image Processing We use DINOv2 (ViT/L) for feature extraction, which requires
~ 160 GFLOPs per image. Given our largest reference set of k¥ = 32 real images, the total
computation for reference embedding is: 32 x 160 GFLOPs ~ 5.1 TFLOPs. This is a one-time cost
incurred at the beginning of the sampling process.

During generation, we apply our guidance at a frequency of Gfq = 5, meaning we compute the
guidance every 5 steps. Each guidance computation using DINOv2 requires first decoding the samples,
and then encoding in DINO space, therefore the cost for LDM; 5 is (2TFLOPs + 160 GFLOPs) x 8 =~
17.3 TFLOPs, while for LDMj3 5y is: (10TFLOPs + 160 GFLOPs) x 8 ~ 81 TFLOPs.

For the entire sampling process with 40 steps, the reference encoding and the Chamfer guidance adds
approximately ~ 22.4 TFLOPs for LDM, 5, and ~ 86 TFLOPs for LDM3 sp.

The total computation required by our Chamfer guidance method is therefore about 56.4 TFLOPs for
LDM,; s, and 336 TFLOPs for LDM3 sp.

A.3 Efficiency Comparison

Comparing our method with the standard CFG approach:

Computation gy, mer

Efficiency gain LDM;5 =1 — - @)
Computationgpg
56.4 TFLOPs
= 1 —_—
66 TFLOPs ®)
~ 0.15 or 15% ©
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Efficiency gain LDM3 sy = 1 — . (10)
Computationggg
336 TFLOPs
=1-———" 11
490 TFLOPs (n
~ 0.31 or 31% (12)

This analysis demonstrates that our Chamfer guidance method achieves superior generation quality
while reducing the computational requirements by approximately 31% compared to traditional CFG
on LDM3j sy. This translates to ~ 4s. to generate a sample with LDMj3 sp1 on a RTX A6000.

B On the evaluation metrics

Through our experimentation, we identified several limitations in commonly used metrics for eval-
uating generative diversity, leading us to choose the make the following choices to the evaluation
framework:

From Recall to Coverage: We examine the use of recall as a grounded diversity metric and find it
to be highly sensitive to outliers in the generated distribution [41]. A single generated sample that
happens to be far from the other generated points can disproportionately inflate the recall value. As
an alternative, we advocate for the use of coverage, which provides a more reliable assessment of
how well the generated distribution matches the target diverse distribution. Coverage is more robust
to outliers, as the manifold is computed w.rt. real points [41].

F'; with precision and coverage: To evaluate both fidelity and diversity in a single metric, we propose
to modify the F score in previous works [25] to harmonically combine precision and coverage. We
specifically chose precision over density [41] despite their similar purposes, as precision is naturally
bounded between 0 and 1, making it more intuitive to interpret and combine with other metrics. In
contrast, density is potentially unbounded, which complicates its use in composite metrics.

From Inception to DINO space for evaluation: We assess the choice of feature space for computing
similarity-based metrics. While the Inception feature space has been the de facto standard in
generative model evaluation, we advocate for the use of the DINO feature space instead, as supported
by previous works [24, 57]. Self-supervised latent spaces better align with human perception of
image realism, while Inception focuses on specific objects rather than holistic image features, often
ignoring important aspects of images.

C User Study

While the primary focus of our study is the utility of the generated data for representation and as a
training source for downstream tasks, which is confirmed by our extensive experimental evaluation
with downstream classifier training, we also evaluate human perception of our generated images.

To this end, we conduct a small-scale user study to complement our quantitative findings. We
collected 965 data points from more than twenty anonymous annotators. In this study, users were
presented with samples generated from prompts based on the ImageNet dataset. Their task was
to choose their preferred generation in a side-by-side comparison between images from the base
LDMj sm model and images generated with our Chamfer Guidance applied to the same model. Users
were also presented with real images from the dataset to ground their evaluation in real-world quality
and coherence, as we show in Figure 3.

The results showed a strong preference for our method: images generated with our Chamfer Guidance
were preferred in 92% + 2% of the cases. This suggests that the automatic evaluation of quantitative
improvements in downstream utility also correlates with enhanced human-perceived quality and
fidelity to the target concept distribution.
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Q2: Which of the sets of generated images matches the style and diversity of the real images shown
in the first row?

Dataset

Generation 2

TEl=

Generation 1

Generation 2

Figure 3: Example of user study question.

D Geographic diversity baselines

We employ the same baselines defined in c-VSG [25], which uses reference-free and reference-based
solutions. We report descriptions for them as follows.

Without any additional information:

LDM, 5: This is the baseline setup where the base LDM, 5 is used with the prompt {object} in

{region} to condition the generation process.

Synonyms: This strategy maps each object class to its corresponding ImageNet [13] class and
WordNet [40] synset. For each class, we generate images that cover all possible meanings (lemmas),
including the original object word. This means that each synset, which groups lemmas for a specific
sense of the class, guides the image generation process through {synonym} in {region}.

With additional information:

Paraphrasing: LLaMA-2-70B-chat [60] large language model is used to generate paraphrases of
the original prompt template, {object} in {region}. The authors include the specifications and
descriptions used in the collection of GeoDE and DollarStreet. The metaprompts and paraphrases,
as well as the method of tuning prompts and model specifications, are included in the original paper
Supplementary material [25].

Semantic Guidance: Generated images often exhibit diversity problems, as highlighted by
previous works [23], due to an amplification of region-specific object features that go beyond
what is present in the evaluation task. To mitigate this overemphasis on regional data, the authors
utilized Semantic Guidance [8, 20], which involves applying negative guidance corresponding to
the regional term for each generated image.

Feedback Guidance (FG): Inspired by [26, 52], the authors employ an external CLIP-based
classifier [43] to provide feedback during image generation by predicting region labels of these
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images. To promote greater diversity in the generated outputs, they investigate two feedback
guidance strategies: the first maximizes the loss of the classifier, while the second maximizes the
entropy of its predicted class distributions.

* Textual Inversion: Textual Inversion is a technique used to teach text-to-image models new,
specific visual concepts from just a few example images. It achieves this by creating a new “pseudo-
word” or token in the model’s vocabulary that becomes associated with the visual characteristics of
the provided images. We apply textual inversion by learning an embedding for each object in the
dataset using four images per object.

E Additional geographic diversity results

In Table 5 we report the same experiments on GeoDE as in Table 2 of the main body, but with metrics
in DINOv?2 [42] space, which is known to align better with human evaluation [24, 57]. We observe
state-of-the-art results w.rt. relevant baselines, and in particular in terms of I by a significant margin
(+12%) over c-VSG [25], due to an increased precision (+26.7%) and coverage (+7.7%). The
results reported here present a different scale w.r.z. the object-centric scenario due to the k of the kNN
computation of metrics, which we maintain equal to c-VSG benchmark, and set it to 3, differently
from the default value of 5 when using dgm-eval [57].

Table 5: Comparison on the GeoDE dataset under the geographical representation benchmark of
¢-VSG setting, with model selection on F} (P, C'). Metrics are computed in DINOv2 space. All the
results are re-implemented. AF: Africa, AS: Asia, EU: Europe. “label” refers to region label, “desc”
to text description, and “img” to exemplar images.

F,(P,C) 1 Precision 1 Coverage 1 CLIPScore 1

Method Ref. Info k£ Worst-Reg.
Avg. Worst-Reg. Avg. Worst-Reg. Avg. Worst-Reg. Avg. Worst-Reg.

LDM, 5 X = AF 0.166 0.126 0.345 0.284 0.109 0.081 0.244 0.233
Semantic Guidance label - AF 0.160 0.117 0.345 0.289 0.104 0.073 0.248 0.234
FG CLIP (Loss) label = AF 0.186 0.154 0.339 0.308 0.129 0.103 0.246 0.244
FG CLIP (Entropy) label - AF 0.178 0.133 0.328 0.272 0.122 0.088 0.238 0.236
¢-VSG [25] (CLIP) img 2 AF 0.183 0.139 0.337 0.288 0.126 0.091 0.254 0.252
¢-VSG [25] (CLIP) img 4 AF 0.184 0.133 0.338 0.289 0.127 0.086 0.254 0.253
Chamfer Guidance (Ours, DINOv2) img 2 AF 0.246 0.221 0.551 0.507 0.159 0.141 0.248 0.242
Chamfer Guidance (Ours, DINOv2) img 4 AF 0.304 0.292 0.605 0.564 0.204 0.197 0.250 0.244

In Table 6 we present the results computed in InceptionV3 space for DollarStreet [22], using the F}
selection on precision and coverage. Our Chamfer guidance outperforms c-VSG [25] by 3.5% in
terms of F} due to both an increased fidelity (precision) and diversity (coverage) of the generated
samples. As previously reported for GeoDE, our method exhibits an increased image-text alignment
when using CLIP as the feature extractor for the guidance.

Table 6: Comparison on the DollarStreet dataset under the geographical representation benchmark
of ¢c-VSG setting, with model selection on F; (P, C). Metrics are computed in Inception space.
t indicates re-implemented results. AF: Africa, AS: Asia, EU: Europe. “label” refers to region
label, “desc” to text description, and “img” to exemplar images. Our Chamfer guidance achieves
state-of-the-art in terms of F7, obtaining the best grounded diversity.

Fi1 (P,C) 1 Precision 1 Coverage 1 CLIPScore 1

Method Ref. Info k£ Worst-Reg.
Avg. Worst Reg. Avg. Worst Reg. Avg. Worst Reg. Avg. Worst Reg.

LDM;;s ' X = AS 0.473 0.445 0.504 0.504 0.447 0.398 0.249 0.255
Synonymsi X - AS 0.445 0.435 0.448 0.439 0.443 0.432 0.216 0.219
VSGT [25] X = AS 0.424 0.404 0.421 0.419 0.428 0.390 0.195 0.194
PamphrasingT desc - AF 0.440 0.436 0.445 0.451 0.436 0.422 0.226 0.215
Semantic Guidance® label - AS 0.473 0.446 0.504 0.507 0.447 0.398 0.249 0.255
FG CLIP (Loss)" label - AS 0.468 0.429 0.481 0.461 0.456 0.401 0.243 0.244
FG CLIP (Entropy)" label - AS 0.468 0.440 0.487 0.500 0.453 0.393 0.245 0.253
Textual Inversion® img 4 AS 0.076 0.037 0.505 0.491 0.042 0.019 0.213 0.216
¢c-VSG' [25] (CLIP) img 4 EU 0.517 0.504 0.510 0.481 0.526 0.529 0.241 0.241
Chamfer Guidance (Ours, CLIP) img 4 AS 0.528 0.512 0.515 0.514 0.542 0.510 0.244 0.245
Chamfer Guidance (Ours, DINOv2) img 4 AS 0.552 0.532 0.545 0.542 0.560 0.520 0.240 0.244

In Table 7 and Table 8 we report the result with selection of the F; score between precision and recall,
as in the original c-VSG benchmark. Although recall does not represent the best metric for evaluating
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grounded diversity [41], our Chamfer guidance surpasses c-VSG by 3.9% in terms of recall in GeoDE,
and by 2.7% on DollarStreet, leading to state-of-the-art F in both datasets. Interestingly, when using
recall, grounding the generation on more samples does not lead to increased diversity with CLIP,
and to a marginal one with DINOv2. This was the case when using coverage, and we consider these
results to be a result of the inflated recall manifold, which promotes outlier generated images.

Table 7: Comparison on the GeoDE dataset under the geographical representation benchmark of
c-VSG setting, with model selection on Fy (P, R). Metrics are computed in Inception space. AF:
Africa, AS: Asia, EU: Europe. “label” refers to region label, “desc” to text description, and “img” to
exemplar images.

F.(P,R) T Precision 1 Recall CLIPScore 1

Method Ref. Info k& Worst-Reg.
Avg. Worst Reg. Avg. Worst Reg. Avg. Worst Reg. Avg. Worst Reg.

LDM; 5 X - AF 0.364 0.322 0.413 0.273 0.337 0.395 0.242 0.218
Synonyms X - AF 0.357 0.306 0.350 0.298 0.366 0.315 0.215 0.203
VSG [25] X - AF 0.399 0.356 0.349 0.307 0.470 0.424 0.180 0.191
Paraphrasing desc - WAS 0.384 0.354 0.338 0.309 0.449 0.415 0.231 0.228
Semantic Guidance label - WAS 0.420 0.401 0.459 0.519 0.391 0.326 0.245 0.253
FG CLIP (Loss) label - WAS 0.409 0.378 0.387 0.383 0.436 0.373 0.228 0.223
FG CLIP (Entropy) label - AF 0.380 0.337 0.340 0.329 0.429 0.345 0.224 0.227
Textual Inversion img 4 AF 0.369 0.363 0.409 0.444 0.338 0.308 0.234 0.232
¢-VSG [25] (CLIP) img 2 AF 0.455 0.444 0.424 0.417 0.493 0.476 0.254 0.253
Chamfer Guidance (Ours, CLIP) img 2 AF 0.454 0.440 0.398 0.401 0.532 0.489 0.245 0.245
Chamfer Guidance (Ours, CLIP) img 4 AF 0.463 0.449 0.427 0.413 0.509 0.492 0.251 0.246
Chamfer Guidance (Ours, DINOv2) img 2 AF 0.451 0.428 0.435 0.402 0.470 0.457 0.235 0.225
Chamfer Guidance (Ours, DINOv2) img 4 AF 0.460 0.437 0.453 0.401 0.472 0.481 0.236 0.225

Table 8: Comparison on the DollarStreet dataset under the geographical representation benchmark
of c-VSG setting, with model selection on F; (P, R). Metrics are computed in Inception space.
indicates re-implemented results. AF: Africa, AS: Asia, EU: Europe. “label” refers to region label,
“desc” to text description, and “img” to exemplar images.

F,(P,R) T Precision 1 Recall T CLIPScore 1

Method Ref. Info k& Worst-Reg.
Avg. Worst Reg. Avg. Worst Reg. Avg. Worst Reg. Avg. Worst Reg.

LDM; s X - AS 0.448 0.442 0.428 0.434 0.472 0.450 0.231 0.235
Synonyms X - AS 0.464 0.457 0.451 0.448 0.467 0.467 0.216 0.220
VSG [25] X = AS 0.457 0.444 0.413 0.388 0.516 0.518 0.191 0.198
Paraphrasing desc - AF 0.454 0.445 0.445 0.454 0.465 0.437 0.226 0.215
Semantic Guidance label - AS 0.470 0.458 0.447 0.449 0.467 0.467 0.230 0.233
FG CLIP (Loss) label - AS 0.437 0.394 0.401 0.321 0.488 0.510 0.223 0.206
FG CLIP (Entropy) label = AS 0.465 0.462 0.412 0.404 0.535 0.540 0.222 0.219
Textual Inversion img 4 AS 0.425 0.398 0.478 0.491 0.386 0.335 0.217 0.219
¢-VSG' (CLIP) [25] img 4 AS 0.497 0.483 0.486 0.486 0.511 0.479 0.234 0.238
Chamfer Guidance (Ours, CLIP) img 4 AF 0.492 0.478 0.464 0.458 0.524 0.498 0.231 0.225
Chamfer Guidance (Ours, DINOv2) img 4 AF 0.508 0.484 0.482 0.483 0.538 0.486 0.225 0.215

F Additional ablation

~ ablation. This ablation examines the performance using different Chamfer guidance strengths
(7). The results in Table 9 show that this hyperparameter significantly impacts model performance,
with v = 0.07 and k& = 32 achieving the best overall results. This configuration yields the highest
F1 score (0.931) and precision (0.950), indicating superior fidelity and diversity. Interestingly,
while stronger guidance generally improves these metrics, there is a trade-off with image quality,
the FID score increases from 8.840 at v = 0.05 to 13.670 at v = 0.07. This suggests that while
stronger Chamfer guidance (y = 0.07) produces more accurate samples, it somewhat compromises
the distribution statistics compared to the moderate guidance setting (v = 0.05), which maintains
a better balance between precision/coverage performance and image quality. This might also be
due to the use of the Inception network for the computation of FID instead of DINO.

Feature extractor ablation. To further validate the choice of DINOv2, we conducted a preliminary
empirical study comparing its performance as a feature extractor for performing Chamfer guidance
against CLIP on the GeoDE dataset in an “object-centric” setting, e.g., , with prompts like "a photo
of a car.". These experiments were run using LDM; s.

Our findings were as follows:
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Table 9: Chamfer guidance strength -y ablation on ImageNet-1k using LDM; 5. Our Chamfer guidance
obtains the best coverage results when using a high (v = 0.07) strength, but obtains the most balanced
image quality (FID) when using a milder amount (y = 0.05).

¥ k Fi1 (P,C)7T PrecisionT Coverage Density 1 Recallt FDD| FID|

0.02 2 0.837 0.896 0.786 0.910 0.702  145.390  9.268
0.02 32 0.872 0.912 0.835 0.994 0.699 138.917 9.301
0.05 2 0.881 0.932 0.835 1.051 0.637 124.191 8.840
0.05 32 0.914 0.946 0.884 1.162 0.650 114.847 8.906
0.07 2 0.886 0.947 0.833 1.108 0.480 156.179 13.670
0.07 32 0.931 0.950 0.912 1.213 0.649 113.301 8.935

* DINOV2 consistently yielded the best performance, showing substantial gains in both
diversity and fidelity. Similarity in DINOv2 space also correlates to human-perceived
similarity slightly more than CLIP, as reported in [24].

e CLIP improved upon the baselines, and in particular, coverage scales with the number
of guiding samples. With higher k£ we observe reduced marginal improvements, and we
deem this to the fact that the model tended to converge towards generating an average
representation of the object. We hypothesize this is because CLIP’s pre-training is “concept-
centric” (aligning images to general text concepts), whereas DINOv2’s is “instance-centric”
due to its self-supervised training, making it better at preserving the unique features of a
specific reference image.

We report these results in Table 10. This analysis confirms that DINOv?2 is the most effective choice
for our method, with CLIP being an alternative.

Table 10: Comparison of feature extractors across different £ values. DINOv2 shows strong improve-
ments in F7j, precision, and coverage compared to LDM; 5 and CLIP, while also achieving lower
FID.

Feature Extractor k& F.(P,C)71 Precision? Coverage? Density? Recallt FDD | FID |

LDM;sw = 1.0 - 0.2334 0.4363 0.1593 0.1731 0.6135 684.81 35.27
LDM;s w = 2.0 - 0.3277 0.5433 0.2346 0.2647  0.4859 524.59 24.04
LDMsw = 7.5 - 0.2960 0.6222 0.1942 0.3629  0.2025 693.31 42.60
DINOv2 2 0.4242 0.6354 0.3184 0.4027  0.4614 410.84 19.73
DINOv2 4 0.5313 0.8296 0.3907 0.8933  0.1501 368.27 19.08
DINOv2 8 0.6251 0.9010 0.4785 1.3575  0.0708 353.80 18.81
DINOv2 16 0.7527 0.9461 0.6250 2.0309 0.0547 323.11 18.44
CLIP 2 0.3888 0.6367 0.2798 0.3987  0.3604 446.77 19.66
CLIP 4 0.4063 0.5951 0.3084 0.3501 0.4827 421.20 19.01
CLIP 8 0.4163 0.5974 0.3195 0.3567  0.5030 416.75 18.25
CLIP 16 0.4088 0.5757 0.3169 0.3180  0.5735 415.02 18.22

G Additional object-centric results

In Table 11 we show more results of base LDM, 5 and LDM3 sy sampling, and additional set of
parameters for CADS [49] and APG [50]. These results extend those presented in Table 1, and
show how these reference-free approaches cannot significantly increase the fidelity and diversity of
the samples, and that applying APG on a small w brings moderate improvement over the best base
sampling, for both LDM; 5 and LDM3 sp.

H Additional classification results

We complement our downstream utility analysis by evaluating the downstream utility of images
generated using our Chamfer Guidance. We follow the “static” ImageNet-100 setup introduced in [4],
and generate a dataset of 130, 000 synthetic images using our Chamfer Guidance, using k£ = 32 real
exemplar images from the training set. Each synthetic image is generated with a simple prompt
(class name). We report the accuracy of a ViT-B [16] classifier trained on this synthetic data and
tested on real validation data. In Table 12 we compare to the base performance of several LDMs, and
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Table 11: Comparison of different LDM configurations with APG and CADS guidance on ImageNet-
1k.
Method APG CADS w F;i(P,C)1 Precisionf Coveraget Densityt FDD| FID]

LDM 1.5

ILDM 1.5 — — 1.0 0.507 0.723 0.391 0.551  431.2 31.3
LDM 1.5 — — 20 0.673 0.802 0.580 0.648  226.2 10.8
ILDM 1.5 — — 75 0.709 0.862 0.603 0.775  248.7 16.1
LDM15 V X 2.0 0.677 0.809 0.582 0.644  226.0 108
LDM15 VvV X 4.0 0.723 0.855 0.626 0.752 2179 134
ILDM15 X 7.5 0.713 0.853 0.612 0.768 2479 16.2
LDM15 VvV X 10.0 0.707 0.858 0.601 0.766  261.2 17.0
LDM15 X v 1.0 0.487 0.713 0.370 0.526 4314 31.2
LDM15 X v 2.0 0.676 0.806 0.582 0.641  226.5 10.9
LDM15 X v 4.0 0.718 0.850 0.621 0.743  218.0 134
LDM15 X v 7.5 0.715 0.856 0.615 0.771  247.0 16.1
LDM15 X v 10.0 0.707 0.857 0.601 0.770  260.8 16.9
LDM 3.5

LDM 3.5 — — 1.0 0.599 0.752 0.498 0.560  314.7 17.3
LDM 35 — — 20 0.727 0.872 0.623 0.797 2319 15.7
LDM 3.5 — — 75 0.690 0.878 0.568 0.829  329.6 244
LDM35 X 2.0 0.723 0.856 0.625 0.783 2376 154
LDM35 V X 4.0 0.722 0.877 0.613 0.832 2874 214
LDM35 vV X 7.5 0.695 0.874 0.576 0.820  334.7 23.7
LDM35 V X 10.0 0.681 0.870 0.559 0.798  349.8 23.5
LDM35 X v 1.0 0.582 0.751 0.475 0.529  346.6 19.9
LDM35 X v 2.0 0.717 0.851 0.620 0.749  238.1 151
LDM35 X v 4.0 0.712 0.870 0.603 0.807  282.3 20.9
LDM35 X v 7.5 0.688 0.868 0.570 0.799  328.7 23.2
LDM35 X v 10.0 0.679 0.866 0.559 0.778  345.6 23.1

observe substantial gains when using our Chamfer Guidance. Interestingly, the initial performance
gap of 6.5 points between LDM, 5 and LDMj3 sy (presumably because reduced sample diversity in
LDMs3 sy) is reduced to 2.4 points when using Chamfer Guidance. These results confirm the ability
of Chamfer Guidance to improve downstream utility of synthetic data.

Table 12: Validation accuracy on real images of classifiers trained with synthetic data for ImagetNet-

100 classes. All models are trained for 50k iterations.
LDM1A4 LDMz,l LDMXL ‘ LDMLS LDM1,5 + Chamfer ‘ LDM3_5M LDM3,5M + Chamfer

Real Val. Acc. 59.06 55.92 528 | 59.24 67.82 | 5272 65.42

I Licenses

We report the licenses for datasets and models used in Table 13.

J Additional qualitative results

Figure 4 shows LDM; 5 with w = 1.0 without and with our Chamfer guidance, and w = 2.0 with
our Chamfer guidance. LDM| s does not have a “strong” conditional only model (w = 1.0), as
quantitatively highlighted in Table 11, which exhibits poor coverage and density, and a high FID.
Qualitatively, we observe bad-looking images that often lack the correct subject, or present a distorted
one. Our Chamfer guidance, even when applied only the conditional model, can effectively recover
the correct texture, shape, and proportions of the subject. For LDM; s, the best results are obtained
by applying our Chamfer guidance on top of a low w value, e.g., 2.0.

Figure 5 shows that LDM3 s without CFG, i.e., w = 1.0 produces poor quality images, often with
distorted or wrong subjects. We can appreciate that Chamfer distance, applied with moderate strength
v, can effectively steer the generation towards the right subject, increasing the quality and diversity
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Table 13: Links and licenses for the datasets and pre-trained models we use in our study.

Name Link License

ImageNet https://wuw.image-net.org Apache License 2.0

GeoDE https://geodiverse-data-collection.cs.princeton.edu/ CCBY 4.0

DollarStreet ~ https://mlcommons.org/datasets/dollar-street/ CC-BY-SA 4.0

DINOv2 https://github.com/facebookresearch/dinov2 Apache License 2.0

CLIP https://github.com/openai/CLIP MIT License

Llama2-70b  https://huggingface.co/meta-1lama/Llama-2-70b-chat Llama 2 Community License Agreement
LDM, 5 https://huggingface.co/ruwnayml/stable-diffusion-vi-5 CreativeML Open RAIL-M

LDM3 sm https://huggingface.co/stabilityai/stable-diffusion-3.5-medium  Stability Al Community License
dgm-eval https://github.com/layer6ai-labs/dgm-eval MIT License

of the generation. When using a high CFG strength w i.e., 7.5, steering the generation with our
Chamfer guidance requires a higher strength v before becoming effective. Our Chamfer guidance
helps to recover naturalness of the image by reducing oversaturation, and to increase the variety in
the backgrounds.

Figure 6 qualitatively shows the effect of increasing the number of exemplar images k when using
our Chamfer guidance. We can see a greater diversity in both subjects and background when using a
higher number for k, in agreement with the quantitative results presented in Figure 2.

In Figure 7 we show the comparison of the geographic diversity benchmark, in particular the GeoDE
dataset. We show how base generations using LDM; 5 introduce stereotypical elements when using
the geographical indicator, e.g., dilapidated cars, or rusty pans. c-VSG [25] partially mitigates the
issue, but it comes at the expense of quality, generating oversaturated images that do not resemble
the dataset. Our Chamfer guidance effectively mitigates both issues, by generating natural-looking
images without stereotypical elements, due to the guidance of real exemplars.
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w = 1.0 (No Chamfer) . . Dataset

Figure 4: LDM; 5 generations on ImageNet-1k with different w values. k = 32, v = 0.07 for our
Chamfer guidance. The classes are from top to bottom: container ship, pelican, brambling,
and dutch oven.
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Figure 5: LDM3 sy on ImageNet-1k with different w and gamma values, kK = 32. The classes are
from top to bottom: Irish wolfhound and hamster
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Figure 6: LDM3 sp; on ImageNet-1k with different k& values. w and +y are picked based on the best F
score. The classes from left to right are: sports car, golden retriever, and goose.
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(d) Samples from the GeoDE dataset.

Figure 7: Generated images and examples from the GeoDE dataset of cars (left) and cooking pots
(right) using LDM; 5 on GeoDE. Colors indicate images in Africa and Europe. Our Chamfer Guidance
exhibits better-looking images with less saturated colors, increased subject quality and diversity in
the backgrounds.
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