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Abstract

We use the “map of elections” approach of Szufa et al. (AAMAS-2020) to analyze
several well-known vote distributions. For each of them, we give an explicit for-
mula or an efficient algorithm for computing its frequency matrix, which captures
the probability that a given candidate appears in a given position in a sampled
vote. We use these matrices to draw the “skeleton map” of distributions, evaluate
its robustness, and analyze its properties. Finally, we develop a general and uni-
fied framework for learning the distribution of real-world preferences using the
frequency matrices of established vote distributions.

1 Introduction

Computational social choice is a research area at the intersection of social choice (the science of
collective decision-making) and computer science, which focuses on the algorithmic analysis of
problems related to preference aggregation and elicitation (Brandt et al., 2013). Many of the early
papers in this field were primarily theoretical, focusing on establishing the worst-case complexity
of winner determination and strategic behavior under various voting rules—see, e.g., the papers of
Hemaspaandra et al. (1997), Dwork et al. (2001), and Conitzer et al. (2007)—but more recent work
often combines theoretical investigations with empirical analysis. For example, formal bounds on the
running time and/or approximation ratio of a winner determination algorithm can be complemented
by experiments that evaluate its performance on realistic instances; see, e.g., the works of Conitzer
(2006), Betzler et al. (2014), Faliszewski et al. (2018) and Wang et al. (2019).

However, performing high-quality experiments requires the ability to organize and understand the
available data. One way to achieve this is to form a so-called “map of elections,” recently introduced
by Szufa et al. (2020) and extended by Boehmer et al. (2021b). The idea is as follows. First, we
fix a distance measure between elections. Second, we sample a number of elections from various
distributions and real-life datasets—e.g., those collected in PrefLib (Mattei & Walsh, 2013)—and
measure the pairwise distances between them. Third, we embed these elections into the 2D plane,
mapping each election to a point so that the Euclidean distances between points are approximately
equal to the distances between the respective elections. Finally, we plot these points, usually coloring
them to indicate their origin (e.g., the distribution from which a given election was sampled); see
Figure 2 later in the paper for an example of such a map. A location of an election on a map provides
useful information about its properties. For example, Szufa et al. (2020) and Boehmer et al. (2021a,b)
have shown that it can be used to predict (a) the Borda score of the winner of the election, (b) the
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running time of ILP solvers computing the winners under the Harmonic-Borda multiwinner voting
rule, or (c) the robustness of Plurality and Borda winners. Moreover, real-world elections of the
same type (such as the ones from politics, sports, or surveys) tend to cluster in the same areas of the
map; see also the positions on the map of the datasets collected by Boehmer & Schaar (2022). As
such, the map has proven to be a useful framework to analyze the nature of elections and to visualize
experimental results in a non-aggregate fashion.

Unfortunately, extending the map to incorporate additional examples and distributions is a challenging
task, as the visual representation becomes cluttered and, more importantly, the embedding algorithms,
which map elections to points in 2D, find it more difficult to preserve pairwise distances between
points as the number of points increases. It is therefore desirable to reduce the number of points in a
way that preserves the key features of the framework.

We address this challenge by drawing a map of distributions rather than individual elections, which
we call the skeleton map. That is, instead of sampling 20–30 points from each distribution and placing
them all on the map, as Szufa et al. (2020) and Boehmer et al. (2021b) do (obtaining around 800
points in total), we create a single point for each distribution. This approach is facilitated by the
fact that prior work on the “map of elections” framework represented elections by their frequency
matrices, which capture their essential features. The starting point of our work is the observation that
this representation extends to distributions in a natural way. Thus, if we can compute the frequency
matrix of some distribution D, then, instead of sampling elections from D and creating a point on the
map for each sample, we can create a single point for D itself.

Our Contribution. We provide three sets of results. First, for a number of prominent vote
distributions, we show how to compute their frequency matrices, by providing an explicit formula or
an efficient algorithm. Second, we draw the map of distributions (the skeleton map) and argue for its
credibility and robustness. Finally, we use our results to estimate the parameters of the distributions
that are closest to the real-world elections considered by Boehmer et al. (2021b). In more detail,
we work in the setting of preference learning, where we are given an election and we want to learn
the parameters of some distribution, so as to maximize the similarity of the votes sampled from this
distribution and the input election. For example, we may be interested in fitting the classic model of
Mallows (1957). This model is parameterized by a central vote v and a dispersion parameter φ, which
specifies how likely it is to generate a vote at some distance from the central one (alternatively, one
may use, e.g., the Plackett–Luce model). Previous works on preference learning typically proposed
algorithms to learn the parameters of one specific (parameterized) vote distribution (see, e.g., the
works of Lu & Boutilier (2014); Mandhani & Meilǎ (2009); Meila & Chen (2010); Vitelli et al. (2017);
Murphy & Martin (2003); Awasthi et al. (2014) for (mixtures of) the Mallows model and the works
of Guiver & Snelson (2009); Hunter (2004); Minka (2004); Gormley & Murphy (2008) for (mixtures
of) the Plackett–Luce model). Using frequency matrices, we offer a more general approach. Indeed,
given an election and a parameterized vote distribution whose frequency matrix we can compute,
the task of learning the distribution’s parameters boils down to finding parameters that minimize the
distance between the election and the matrices of the distribution. While this minimization problem
may be quite challenging, our approach offers a uniform framework for dealing with multiple kinds
of distributions at the same time. We find that for the case of the Mallows distribution, our approach
learns parameters very similar to those established using maximum likelihood-based approaches.
Omitted proofs and discussions are in the appendix. The source code used for the experiments is
available in a GitHub repository1.

2 Preliminaries

Given an integer t, we write [t] to denote the set {1, . . . , t}. We interpret a vector x ∈ Rm as an
m× 1 matrix (i.e., we use column vectors as the default).

Preference Orders and Elections. Let C be a finite, nonempty set of candidates. We refer to
total orders over C as preference orders (or, equivalently, votes), and denote the set of all preference
orders over C by L(C). Given a vote v and a candidate c, by posv(c) we mean the position of c in v
(the top-ranked candidate has position 1, the next one has position 2, and so on). If a candidate a
is ranked above another candidate b in vote v, we write v : a � b. Let rev(v) denote the reverse of

1github.com/Project-PRAGMA/Expected-Frequency-Matrices-NeurIPS-2022
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vote v. An election E = (C, V ) consists of a set C = {c1, . . . , cm} of candidates and a collection
V = (v1, . . . , vn) of votes. Occasionally we refer to the elements of V as voters rather than votes.

Frequency Matrices. Consider an election E = (C, V ) with C = {c1, . . . , cm} and
V = (v1, . . . , vn). For each candidate cj and position i ∈ [m], we define #freqE(cj , i) to
be the fraction of the votes from V that rank cj in position i. We define the column vector
#freqE(cj) to be (#freqE(cj , 1), . . . ,#freqE(cj ,m)) and matrix #freq(E) to consist of vectors
#freqE(c1), . . . ,#freqE(cm). We refer to #freq(E) as the frequency matrix of election E. Fre-
quency matrices are bistochastic, i.e., their entries are nonnegative and each of their rows and columns
sums up to one.

Example 2.1. Let E = (C, V ) be an election with candidate set C = {a, b, c, d, e} and four voters,
v1, v2, v3, and v4. Below, we show the voters’ preference orders (on the left) and the election’s
frequency matrix (on the right).

v1 : a � b � c � d � e,
v2 : c � b � d � a � e,
v3 : d � e � c � b � a,
v4 : b � c � a � d � e.


a b c d e

1 1/4 1/4 1/4 1/4 0
2 0 1/2 1/4 0 1/4
3 1/4 0 1/2 1/4 0
4 1/4 1/4 0 1/2 0
5 1/4 0 0 0 3/4


Given a vote v, we write #freq(v) to denote the frequency matrix of the election containing this vote
only; #freq(v) is a permutation matrix, with a single 1 in each row and in each column. Thus, for an
election E = (C, V ) with V = (v1, . . . , vn) we have #freq(E) = 1

n ·
∑n
i=1 #freq(vi).

Compass Matrices. For even m, Boehmer et al. (2021b) defined the following four m × m
“compass” matrices, which appear to be extreme on the “map of elections”:

1. The identity matrix, IDm, has ones on the diagonal and zeroes everywhere else (it corre-
sponds to an election where all voters agree on a single preference order).

2. The uniformity matrix, UNm, has all entries equal to 1/m (it corresponds to lack of agreement;
each candidate is ranked at each position equally often).

3. The stratification matrix, STm, is partitioned into four quadrangles, where all entries in the
top-left and bottom-right quadrangles are equal to 2/m, and all other entries are equal to
zero (it corresponds to partial agreement; the voters agree which half of the candidates is
superior, but disagree on everything else).

4. The antagonism matrix, ANm, has values 1/2 on both diagonals and zeroes elsewhere (it
captures a conflict: it is a matrix of an election where half of the voters rank the candidates
in one way and half of the voters rank them in the opposite way).

Below, we show examples of these matrices for m = 4:

UN4 =


1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4

 , ID4 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , ST4 =


1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2

 ,AN4 =


1/2 0 0 1/2
0 1/2 1/2 0
0 1/2 1/2 0
1/2 0 0 1/2

 .

We omit the subscript in the names of these matrices if its value is clear from the context or irrelevant.

EMD. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two vectors with nonnegative real entries
that sum up to 1. Their Earth mover’s distance, denoted EMD(x, y), is the cost of transforming x
into y using operations of the form: Given indices i, j ∈ [n] and a positive value δ such that xi ≥ δ,
at the cost of δ · |i − j|, replace xi with xi − δ and xj with xj + δ (this corresponds to moving δ
amount of “earth” from position i to position j). EMD(x, y) can be computed in polynomial time by
a standard greedy algorithm.

Positionwise Distance (Szufa et al., 2020). Let A = (a1, . . . , am) and B = (b1, . . . , bm)
be two m × m frequency matrices. Their raw positionwise distance is rawPOS(A,B) =
minσ∈Sm

∑m
i=1 EMD(ai, bσ(i)), where Sm denotes the set of all permutations over [m]. We will

normalize these distances by 1
3 (m2 − 1), which Boehmer et al. (2021b, 2022) proved to be the

maximum distance between two m × m frequency matrices and the distance between IDm and
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Figure 1: Three examples of clone decomposition trees.

UNm: nPOS(A,B) = rawPOS(A,B)
1
3 (m

2−1) . For two elections E and F with equal-sized candidate sets,
their positionwise distance, raw or normalized, is defined as the positionwise distance between their
frequency matrices.

Paths Between the Compass Matrices. Let X and Y be two compass matrices. Boehmer
et al. (2021b) showed that if we take their affine combination Z = αX + (1 − α)Y (0 ≤ α ≤
1) then nPOS(X,Z) = (1 − α)nPOS(X,Y ) and nPOS(Z, Y ) = αnPOS(X,Y ). Such affine
combinations form direct paths between the compass matrices; they are also possible between any
two frequency matrices of a given size, not just the compass ones, but may require shuffling the
matrices’ columns (Boehmer et al., 2021b).

Structured Domains. We consider two classes of structured elections, single-peaked elec-
tions (Black, 1958), and group-separable elections (Inada, 1964). For a discussion of these domains
and the motivation behind them, see the original papers and the overviews by Elkind et al. (2017,
2022).

Intuitively, an election is single-peaked if we can order the candidates so that, as each voter considers
the candidates in this order (referred to as the societal axis), his or her appreciation first increases and
then decreases. The axis may, e.g., correspond to the left-right political spectrum.
Definition 2.2. Let v be a vote over C and let C be the societal axis over C. We say that v is single-
peaked with respect to C if for every t ∈ [|C|] its t top-ranked candidates form an interval within C.
An election is single-peaked with respect to C if all its votes are. An election is single-peaked (SP) if
it is single-peaked with respect to some axis.

Note that the election from Example 2.1 is single-peaked with respect to the axis aC bC cC dC e.

We also consider group-separable elections, introduced by Inada (1964). For our purposes, it will
be convenient to use the tree-based definition of Karpov (2019). Let C = {c1, . . . , cm} be a set of
candidates, and consider a rooted, ordered tree T whose leaves are elements of C. The frontier of
such a tree is the preference order that ranks the candidates in the order in which they appear in the
tree from left to right. A preference order is consistent with a given tree if it can be obtained as its
frontier by reversing the order in which the children of some nodes appear.
Definition 2.3. An election E = (C, V ) is group-separable if there is a rooted, ordered tree T whose
leaves are members of C, such that each vote in V is consistent with T .

The trees from Definition 2.3 form a subclass of clone decomposition trees, which are examples of
PQ-trees (Elkind et al., 2012; Booth & Lueker, 1976).
Example 2.4. Consider candidate set C = {a, b, c, d}, trees T1, T2, and T3 from Figure 1, and votes
v1 : a � b � c � d, v2 : c � d � b � a, and v3 : b � d � c � a. Vote v1 is consistent with each of
the trees, v2 is consistent with T2 (reverse the children of y1 and y2), and v3 is consistent with T3
(reverse the children of x1 and x3).

3 Frequency Matrices for Vote Distributions

We show how to compute frequency matrices for several well-known distributions over votes.

3.1 Setup and Interpretation

A vote distribution for a candidate set C is a function D that assigns a probability to each pref-
erence order over C. Formally, we require that for each v ∈ L(C) it holds that D(v) ≥ 0 and
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∑
v∈L(C)D(v) = 1. We say that a vote v is in the support of D if D(v) > 0. Given such a distribu-

tion, we can form an election by repeatedly drawing votes according to the specified probabilities.
For example, we can sample each element of L(C) with equal probability; this distribution, which is
known as impartial culture (IC), is denoted by DIC (we omit the candidate set from our notation as it
will always be clear from the context). The frequency matrix of a vote distribution D over a candidate
set C is #freq(D) =

∑
v∈L(C)D(v) ·#freq(v). For example, we have #freq(DIC) = UN. One

interpretation of #freq(D) is that the entry for a candidate cj and a position i is the probability
that a vote v sampled from D has cj in position i (which we denote as P[posv(cj) = i]). Another
interpretation is that if we sample a large number of votes then the resulting election’s frequency
matrix would be close to #freq(D) with high probability. More formally, if we letMn be a random
variable equal to the frequency matrix of an n-voter election generated according to D, then it holds
that limn→∞ E(Mn) = #freq(D).

3.2 Group-Separable Elections

We first consider sampling group-separable votes. Given a rooted tree T whose leaves are labeled by
elements of C = {c1, . . . , cm}, let DTGS be the distribution assigning equal probability to all votes
consistent with T , and zero probability to all other votes; one can think of DTGS as impartial culture
restricted to the group-separable subdomain defined by T . To sample from DTGS, we can toss a fair
coin for each internal node of T , reversing the order of its children if this coin comes up heads, and
output the frontier of the resulting tree. We focus on the following types of trees:

1. Flat(c1, . . . , cm) is a tree with a single internal node, whose children, from left to right, are
c1, c2, . . . , cm. There are only two preference orders consistent with this tree, c1 � · · · � cm
and its reverse.

2. Bal(c1, . . . , cm) is a perfectly balanced binary tree with frontier c1, . . . , cm (hence we
assume the number m of candidates to be a power of two).

3. CP(c1, . . . , cm) is a binary caterpillar tree: it has internal nodes x1, . . . , xm−1; for each
j ∈ [m− 2], xj has cj as the left child and xj+1 as the right one, whereas xm−1 has both
cm−1 and cm as children.

The first tree in Figure 1 is flat, the second one is balanced, and the third one is a caterpillar tree.
If T is a caterpillar tree, then we refer to DTGS as the GS/caterpillar distribution. We use a similar
terminology for the other trees.
Theorem 3.1. Let F be the frequency matrix of distribution DTGS. If T is flat then F = AN, and if it
is balanced then F = UN. If T is a caterpillar tree CP(c1, . . . , cm), then for each candidate cj the
probability that cj appears in a position i ∈ [m] in a random vote v sampled from DTGS is:

1
2j

(
j−1
i−1
)
· 1i≤j + 1

2j

(
j−1

(i−1)−(m−j)
)
· 1i>m−j .

Proof. The cases of flat and balanced trees are immediate, so we focus on caterpillar trees. Let
T = CP(c1, . . . , cm) with internal nodes x1, . . . , xm−1, and consider a candidate cj and a position
i ∈ [m]. Let v be a random variable equal to a vote sampled from DTGS. We say that a node x`,
` ∈ [m− 1], is reversed if the order of its children is reversed. Note that for ` < r it holds that cr
precedes c` in the frontier if and only if x` is reversed. Suppose that xj is not reversed. Then v ranks
cj above each of cj+1, . . . , cm. This means that for cj to be ranked exactly in position i, it must be
that j ≥ i and exactly i− 1 nodes among x1, . . . , xj−1 are not reversed. If j ≥ i, the probability that
xj and i − 1 nodes among x1, . . . , xj−1 are not reversed is 1

2j ·
(
j−1
i−1
)
. On the other hand, if xj is

reversed, then v ranks candidates cj+1, . . . , cm above cj . As there are m− j of them, for cj to be
ranked exactly in position i it must hold that i > m− j and exactly (i− 1)− (m− j) nodes among
x1, . . . , xj−1 are not reversed. This happens with probability 1

2j ·
(

j−1
(i−1)−(m−j)

)
.

Regarding distributions DTGS not handled in Theorem 3.1, we still can compute their frequence
matrices efficiently.
Theorem 3.2. There is an algorithm that given a tree T computes #freq(DTGS) using polynomially
many arithmetic operations with respect to the number of nodes in T .
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3.3 From Caterpillars to Single-Peaked Preferences.

There is a relationship between GS/caterpillar votes and single-peaked ones, which will be very
useful when computing one of the frequency matrices in the next section.
Theorem 3.3. Given a ranking v over C = {c1, . . . , cm}, let v̂ be another ranking over C such
that, for each j ∈ [m], if cj is ranked in position i in v then ci is ranked in position m− j + 1 in v̂.
Suppose that v is in the support of DTGS, where T = CP(c1, . . . , cm). Then v̂ is single-peaked with
respect to c1 C · · ·C cm.

There are exactly 2m−1 votes in the support of DTGS (this follows by simple counting) and there are
2m−1 votes that are single-peaked with respect to c1 C · · ·C cm. As u 6= v implies û 6= v̂, it follows
that the mapping v 7→ v̂ is a bijection between all votes in the support of DTGS and all votes that are
single-peaked with respect to c1 C · · ·C cm.

3.4 Single-Peaked Elections

We consider two models of generating single-peaked elections, one due to Walsh (2015) and one due
to Conitzer (2009). Let us fix a candidate set C = {c1, . . . , cm} and a societal axis c1 C · · ·C cm.
Under the Walsh distribution, denoted DWal

SP , each vote that is single-peaked with respect to C has
equal probability (namely, 1

2m−1 ), and all other votes have probability zero. By Theorems 3.1 and 3.3,
we immediately obtain the frequency matrix for the Walsh distribution (in short, it is the transposed
matrix of the GS/caterpillar distribution).
Corollary 3.4. Consider a candidate setC = {c1, . . . , cm} and an axis c1C· · ·Ccm. The probability
that candidate cj appears in position i in a vote sampled from DWal

SP is: 1
2m−i+1

(
m−i
j−1
)
· 1j≤m−i+1 +

1
2m−i+1

(
m−i
j−i
)
· 1j>i−1.

To sample a vote from the Conitzer distribution, DCon
SP (also known as the random peak distribution),

we pick some candidate cj uniformly at random and rank him or her on top. Then we perform m− 1
iterations, where in each we choose (uniformly at random) a candidate directly to the right or the left
of the already selected ones, and place him or her in the highest available position in the vote.
Theorem 3.5. Let c1 C · · · C cm be the societal axis, where m is an even number, and let v be a
random vote sampled from DCon

SP for this axis. For j ∈ [m2 ] and i ∈ [m] we have:

P[posv(cj) = i] =



2/2m if i < j,
(j+1)/2m if i = j,
1/2m if j < i < m− j + 1,
(m−j+1)/2m if i = m− j + 1,
0 if i+ j > m.

Further, for each candidate cj ∈ C and each position i ∈ [m] we have P[posv(cj) = i] =
P[posv(cm−j+1) = i].

3.5 Mallows Model

Finally, we consider the classic Mallows distribution. It has two parameters, a central vote v∗ over m
candidates and a dispersion parameter φ ∈ [0, 1]. The probability of sampling a vote v from this
distribution (denoted Dv

∗,φ
Mal ) is: Dv

∗,φ
Mal (v) = 1

Zφ
κ(v,v∗), where Z = 1 · (1 + φ) · (1 + φ + φ2) ·

· · · · (1 + · · ·+ φm−1) is a normalizing constant and κ(v, v∗) is the swap distance between v and v∗
(i.e., the number of swaps of adjacent candidates needed to transform v into v∗). In our experiments,
we consider a new parameterization, introduced by Boehmer et al. (2021b). It uses a normalized
dispersion parameter norm-φ, which is converted to a value of φ so that the expected swap distance
between the central vote v∗ and a sampled vote v is norm-φ

2 times the maximum swap distance
between two votes (so, norm-φ = 1 is equivalent to IC and for norm-φ = 0.5 we get elections that
lie close to the middle of the UN–ID path).

Our goal is now to compute the frequency matrix of Dv
∗,φ

Mal . That is, given the candidate ranked
in position j in the central vote, we want to compute the probability that he or she appears in a

6



given position i ∈ [m] in the sampled vote. Given a positive integer m, consider the candidate set
C(m) = {c1, . . . , cm} and the central vote v∗m : c1 � · · · � cm. Fix a candidate cj ∈ C(m), and a
position i ∈ [m]. For every integer k between 0 and m(m−1)/2, let S(m, k) be the number of votes
in L(C(m)) that are at swap distance k from v∗m, and define T (m, k, j, i) to be the number of such
votes that have cj in position i. One can compute S(m, k) in time polynomial inm (OEIS Foundation
Inc., 2020); using S(m, k), we show that the same holds for T (m, k, j, i).

Lemma 3.6. There is an algorithm that computes T (m, k, j, i) in polynomial time with respect to m.

We can now express the probability of sampling a vote v, where the candidate ranked in position j in
the central vote v∗ ends up in position i under Dv

∗,φ
Mal , as:

fm(φ, j, i) = 1
Z

∑m(m−1)/2
k=0 T (m, k, j, i)φk. (1)

The correctness follows from the definitions of T and Dv
∗,φ

Mal . By Lemma 3.6, we have the following.

Theorem 3.7. There exists an algorithm that, given a number m of candidates, a vote v∗, and a
parameter φ, computes the frequency matrix of Dv

∗,φ
Mal using polynomially many operations in m.

Note that Equation (1) only depends on φ, j and i (and, naturally, on m). Using this fact, we can also
compute frequency matrices for several variants of the Mallows distribution.

Remark 3.8. Given a vote v, two dispersion parameters φ and ψ, and a probability p ∈ [0, 1], we
define the distribution p-Dv,φ,ψMal as p · Dv,φMal + (1− p) · Drev(v),ψ

Mal , i.e., with probability p we sample
a vote from Dv,φMal and with probability 1− p we sample a vote from Drev(v),ψ

Mal . The probability that
candidate cj appears in position i in the resulting vote is p ·fm(φ, j, i)+(1−p) ·fm(ψ,m− j+1, i).

Remark 3.9. Consider a candidate set C = {c1, . . . , cm}. Given a vote distribution D over L(C)
and a parameter φ, define a new distribution D′ as follows: Draw a vote v̂ according to D and
then output a vote v sampled from Dv̂,φMal; indeed, such models are quite natural, see, e.g., the work
of Kenig & Kimelfeld (2019). For each t ∈ [m], let g(j, t) be the probability that cj appears in
position t in a vote sampled from D. The probability that cj appears in position i ∈ [m] in a
vote sampled from D′ is

∑m
t=1 g(j, t) · f(φ, t, i). In terms of matrix multiplication, this means that

#freq(D′) = #freq(Dv
∗,φ

Mal ) ·#freq(D), where v∗ is c1 � · · · � cm. We write φ-Conitzer (φ-Walsh)
to refer to this model where we use the Conitzer (Walsh) distribution as the underlying one and
normalized dispersion parameter φ.

4 Skeleton Map

Our goal in this section is to form what we call a skeleton map of vote distributions (skeleton map,
for short), evaluate its quality and robustness, and compare it to the map of Boehmer et al. (2021b).
Throughout this section, whenever we speak of a distance between elections or matrices, we mean
the positionwise distance (occasionally we will also refer to the Euclidean distances on our maps, but
we will always make this explicit). Let Φ = {0, 0.05, 0.1, . . . , 1} be a set of normalized dispersion
parameters that we will be using for Mallows-based distributions in this section.

We form the skeleton map following the general approach of Szufa et al. (2020) and Boehmer
et al. (2021b). For a given number of candidates, we consider the four compass matrices (UN,
ID, AN, ST) and paths between each matrix pair consisting of their convex combinations (gray
dots), the frequency matrices of the Mallows distribution with normalized dispersion parameters
from Φ (blue triangles), and the frequency matrices of the Conitzer (CON), Walsh (WAL), and
GS/caterpillar distribution (CAT). Moreover, we add the frequency matrices of the following vote
distributions (we again use the dispersion parameters from Φ): (i) The distribution 1/2-Dv,φ,φMal as
defined in Remark 3.8 (red triangles), (ii) the distribution where with equal probability we mix the
standard Mallows distribution and 1/2-Dv,φ,φMal (green triangles), and (iii) the φ-Conitzer and φ-Walsh
distributions as defined in Remark 3.9 (magenta and orange crosses). For each pair of these matrices
we compute their positionwise distance. Then we find an embedding of the matrices into a 2D plane,
so that each matrix is a point and the Euclidean distances between these points are as similar to
the positionwise distances as possible (we use the MDS algorithm, as implemented in the Python
sklearn.manifold.MDS package). In Figure 3 we show our map for the case of 10 candidates (the
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Figure 2: Map of elections, to-
gether with the compass matri-
ces, as presented by Boehmer
et al. (2021b).
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Figure 3: The skeleton map with
10 candidates. We have MID =
1/2AN + 1/2ID. Each point la-
beled with a number is a real-
world election as described in
Section 5.

Figure 4: In the top-right part,
we show the normalized posi-
tionwise distance. In the bottom-
left one, we show the embedding
misrepresentation ratios.

lines between some points/matrices show their positionwise distances; to maintain clarity, we only
provide some of them).

We now verify the credibility of the skeleton map. As the map does not have many points, we expect
its embedding to truly reflect the positionwise distances between the matrices. This, indeed, seems
to be the case, although some distances are represented (much) more accurately than the others.
In Figure 4 we provide the following data for a number of matrices (for m = 10; matrix M2W is
the Mallows matrix in our data set that is closest to the Walsh matrix). In the top-right part (the
white-orange area), we give positionwise distances between the matrices, and in the bottom-left part
(the blue area), for each pair of matrices X and Y we report the misrepresentation ratio Euc(X,Y )

nPOS(X,Y ) ,
where Euc(X,Y ) is the Euclidean distance between X and Y in the embedding, normalized by the
Euclidean distance between ID and UN. The closer they are to 1, the more accurate is the embedding.
The misrepresentation ratios are typically between 0.8 and 1.15, with many of them between 0.9 and
1.05. Thus, in most cases, the map is quite accurate and offers good intuition about the relations
between the matrices. Yet, some distances are represented particularly badly. As an extreme example,
the Euclidean distance between the Walsh matrix and the closest Mallows matrix, M2W, is off by
almost a factor of 8 (these matrices are close, but not as close as the map suggests). Thus, while
one always has to verify claims suggested by the skeleton map, we view it as quite credible. This
conclusion is particularly valuable when we compare the skeleton map and the map of Boehmer
et al. (2021b), shown in Figure 2. The two maps are similar, and analogous points (mostly) appear
in analogous positions. Perhaps the biggest difference is the location of the Conitzer matrix on the
skeleton map and Conitzer elections in the map of Boehmer et al., but even this difference is not
huge. We remark that the Conitzer matrix is closer to UN and AN than to ID and ST, whereas for
the Walsh matrix the opposite is true. Boehmer et al. (2021b) make a similar observation; our results
allow us to make this claim formal. In Appendix E, we analyze the robustness of the skeleton map
with respect to varying the number of candidates. We find that except for pairs including the Walsh or
GS/caterpillar matrices, which "travel" on the map as the number of candidates increases, the distance
between each pair of matrices in the skeleton map stays nearly constant.

5 Learning Vote Distributions

We demonstrate how the positionwise distance and frequency matrices can be used to fit vote
distributions to given real-world elections. Specifically, we consider the Mallows model (Dv,φMal)
and the φ-Conitzer and φ-Walsh models. Naturally, we could use more distributions, but we focus
on showcasing the technique and the general unified approach. Concerning our results, among
others, we verify that for Mallows model our approach is strongly correlated with existing maximum-
likelihood approaches. Moreover, unlike in previous works, we compare the capabilities of different
distributions to fit the given elections. We remark that if we do not have an algorithm for computing
a frequency matrix of a given vote distribution, we can obtain an approximate matrix by sampling
sufficiently many votes from this distribution. In principle, it is also possible to deal with distributions
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Table 1: Closest distributions for seven illustrative real-world elections. For each, we include the
parameterization that produces the closest frequency matrix, and give the normalized positionwise
distance of the elections from this matrix.

id source Dv,φMal φ-Walsh φ-Conitzer

φ dist φ dist φ dist

1 f. skate 0.44 0.32 0.14 0.38 0.11 0.44
2 f. skate 0.23 0.24 0 0.36 0.02 0.56
3 aspen 0.68 0.18 0.3 0.16 0.23 0.27
4 f. skate 0.05 0.09 0 0.37 0 0.69
5 s. skate 0.46 0.11 0.15 0.18 0.16 0.35
6 irish 0.75 0.1 0.42 0.12 0.36 0.16
7 cities 0.93 0.06 0.69 0.06 0.63 0.06

over elections that do not correspond to vote distributions and hence are not captured by expected
frequency matrices (as is the case, e.g., for the Euclidean models where candidates do not have fixed
positions; see the work of Szufa et al. (2020) for examples of such models in the context of the map
of elections): If we want to compute the distance of such a distribution, we sample sufficiently many
elections and compute their average distance from the input one. However, it remains unclear how
robust this approach is.

Approach. To fit our vote distributions to a given election, we compute the election’s distance to
the frequency matrices of Dv,φMal, φ-Conitzer, and φ-Walsh, for φ ∈ {0, 0.001, . . . , 1}. We select the
distribution corresponding to the closest matrix.

Data. We consider elections from the real-world datasets used by Boehmer et al. (2021b). They
generated 15 elections with 10 candidates and 100 voters (with strict preferences) from each of the
eleven different real-world election datasets (so, altogether, they generated 165 elections, most of
them from Preflib (Mattei & Walsh, 2013)). They used four datasets of political elections (from North
Dublin (Irish), various non-profit and professional organizations (ERS), and city council elections
from Glasgow and Aspen), four datasets of sport-based elections (from Tour de France (TDF), Giro
d’Italia (GDI), speed skating, and figure skating) and three datasets with survey-based elections (from
preferences over T-shirt designs, sushi, and cities). We present the results of our analysis for seven
illustrative and particularly interesting elections in Table 1 and also include them in our skeleton map
from Figure 3.

Basic Test. There is a standard maximum-likelihood estimator (MLE; based on Kemeny vot-
ing (Mandhani & Meilǎ, 2009)) that given an election provides the most likely dispersion parameter
of the Mallows distribution that might have generated this election. To test our approach, we com-
pared the parameters provided by our approach and by the MLE for our 165 elections and found them
to be highly correlated (with Pearson correlation coefficient around 0.97). In particular, the average
absolute difference between the dispersion parameter calculated by our approach and the MLE is
only 0.02. See Appendix F for details.

Fitting Real-World Elections. Next, we consider the capabilities of Dv,φMal, φ-Conitzer, and φ-
Walsh to fit the real-world elections of Boehmer et al. (2021b). Overall, we find that these three
vote distributions have some ability to capture the considered elections, but it certainly is not perfect.
Indeed, the average normalized distance of these elections to the frequency matrix of the closest
distribution is 0.14. To illustrate that some distance is to be expected here, we mention that the
average distance of an election sampled from impartial culture (DIC, with 10 candidates and 100
voters) to the distribution’s expected frequency matrix is 0.09 (see Appendix E.4 for a discussion
of this and how it may serve as an estimator for the “variance of a distribution”). There are also
some elections that are not captured by any of the considered distributions to an acceptable degree;
examples of this are elections nr. 1 and nr. 2, which are at distance at least 0.32 and 0.25 from all our
distributions, respectively. Remarkably, while coming from the same dataset, elections nr. 1 and nr. 2
are still quite different from each other and, accordingly, the computed dispersion parameter is also
quite different. It remains a challenge to find distributions capturing such elections.
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Comparing the power of the three considered models, nearly all of our elections are best captured
by the Mallows model rather than φ-Conitzer or φ-Walsh. There are only twenty elections that are
closer to φ-Walsh or φ-Conitzer than to a Mallows model (election nr. 3 is the most extreme example),
and, unsurprisingly, both φ-Walsh and φ-Conitzer perform particularly badly at capturing elections
close to ID (see election nr. 4). That is, φ-Conitzer and φ-Walsh are not needed to ensure good
coverage of the space of elections; the average normalized distance of our elections to the closest
Mallows model is only 0.0007 higher than their distance to the closest distribution (elections nr. 3-6
are three examples of elections which are well captured by the Mallows model and distributed over
the entire map).2 Nevertheless, φ-Walsh is also surprisingly powerful, as the average normalized
distance of our elections to the closest φ-Walsh distribution is only 0.03 higher than their distance
to the closest distribution (however, this might be also due to the fact that most of the considered
real-world elections fall into the same area of the map, which φ-Walsh happens to capture particularly
well (Boehmer et al., 2021b)). φ-Conitzer performs considerably worse: there are only three elections
for which it produces a (slightly) better result than φ-Walsh.

Moreover, our results also emphasize the complex nature of the space of elections: Election nr. 7 is
very close to Dv,0.95Mal , hinting that its votes are quite chaotic. At the same time, this election is very
close to 0.63-Conitzer and 0.69-Walsh distributions, which suggests at least a certain level of structure
among its votes (because votes from Conitzer and Walsh distributions are very structured, and the
Mallows filter with dispersion between 0.63 and 0.69 does not destroy this structure fully). However,
as witnessed by the fact that the frequency matrix of GS/balanced (which is highly structured) is
UN, such phenomena can happen. Lastly, note that most of our datasets are quite “homogenous”, in
that the closest distributions for elections from the dataset are similar and also at a similar distance.
However, there are also clear exceptions, for instance, elections nr. 1 and nr. 4 from the figure skating
dataset. Moreover, there are two elections from the speed skating dataset where one election is
captured best by Dv,0.76Mal and the other by Dv,0.32Mal .

6 Summary

We have computed the frequency matrices (Szufa et al., 2020; Boehmer et al., 2021b) of several
well-known distributions of votes. Using them, we have drawn a “skeleton map”, which shows how
these distributions relate to each other, and we have analyzed its properties. Moreover, we have
demonstrated how our results can be used to fit vote distributions to capture real-world elections.

For future work, it would be interesting to compute the frequency matrices of further popular vote
distributions, such as the Plackett–Luce model (we conjecture that its frequency matrix is computable
in polynomial time). It would also be interesting to use our approach to fit more complex models,
such as mixtures of Mallows models, to real-world elections. Further, it may be interesting to use
expected frequency matrices to reason about the asymptotic behavior of our models. For example, it
might be possible to formally show where, in the limit, do the matrices of our models end up on the
map as we increase the number of candidates.
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