
From Canonical Correlation Analysis to
Self-supervised Graph Neural Networks

Hengrui Zhang1⇤, Qitian Wu2, Junchi Yan2, David Wipf3, Philip S. Yu1†
1 Department of Computer Science, University of Illinois at Chicago

2 Department of Computer Science and Engineering, Shanghai Jiao Tong University
3AWS Shanghai AI Lab

hzhan55@uic.edu, {echo740, yanjunchi}@sjtu.edu.cn
daviwipf@amazon.com, psyu@uic.edu

Abstract

We introduce a conceptually simple yet effective model for self-supervised represen-
tation learning with graph data. It follows the previous methods that generate two
views of an input graph through data augmentation. However, unlike contrastive
methods that focus on instance-level discrimination, we optimize an innovative
feature-level objective inspired by classical Canonical Correlation Analysis. Com-
pared with other works, our approach requires none of the parameterized mutual
information estimator, additional projector, asymmetric structures, and most im-
portantly, negative samples which can be costly. We show that the new objective
essentially 1) aims at discarding augmentation-variant information by learning
invariant representations, and 2) can prevent degenerated solutions by decorrelating
features in different dimensions. Our theoretical analysis further provides an under-
standing for the new objective which can be equivalently seen as an instantiation
of the Information Bottleneck Principle under the self-supervised setting. Despite
its simplicity, our method performs competitively on seven public graph datasets.
The code is available at: https://github.com/hengruizhang98/CCA-SSG.

1 Introduction

Self-supervised learning (SSL) has been a promising paradigm for learning useful representations
without costly labels [7, 46, 5]. In general, it learns representations via a proxy objective between
inputs and self-defined signals, among which contrastive methods [46, 40, 16, 5, 12] have achieved
impressive performance on learning image representations by maximizing the mutual information of
two views (or augmentations) of the same input. Such methods can be interpreted as a discrimination
of a joint distribution (positive pairs) from the product of two marginal ones (negative pairs) [50].

Inspired by the success of contrastive learning in vision [17, 46, 40, 5, 16, 12, 6], similar methods
have been adapted to learning graph neural networks [48, 15, 33, 57, 58]. Although these models
have achieved impressive performance, they require complex designs and architectures. For example,
DGI [48] and MVGRL [15] rely on a parameterized mutual information estimator to discriminate
positive node-graph pairs from negative ones; GRACE [57] and GCA [58] harness an additional
MLP-projector to guarantee sufficient capacity. Moreover, negative pairs sampled or constructed from
data often play an indispensable role in providing effective contrastive signals and have a large impact
on performance. Selecting proper negative samples is often nontrivial for graph-structured data, not
to mention the extra storage cost for prohibitively large graphs. BGRL [39] is a recent endeavor on

⇤This work was done during the author’s internship at AWS Shanghai AI Lab.
†Corresponding author.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/hengruizhang98/CCA-SSG

Table 1: Technical comparison of self-supervised node representation learning methods. We provide
a conceptual comparison with more self-supervised methods in Appendix G. Target denotes the
comparison pair, N/G/F denotes node/graph/feature respectively. MI-Estimator: parameterized mutual
information estimator. Proj/Pred: additional (MLP) projector or predictor. Asymmetric: asymmetric
architectures such as EMA and Stop-Gradient, or two separate encoders for two branches. Neg

examples: requiring negative examples to prevent trivial solutions. Space denotes space requirement
for storing all the pairs. Our method is simple without any listed component and memory-efficient.

Methods Target MI-Estimator Proj/Pred Asymmetric Neg examples Space

In
st

an
ce

-le
ve

l DGI [48] N-G ! - - ! O(N)

MVGRL [15] N-G ! - ! ! O(N)

GRACE [57] N-N - ! - ! O(N2)

GCA [58] N-N - ! - ! O(N2)

BGRL [39] N-N - ! ! - O(N)

CCA-SSG (Ours) F-F - - - - O(D2)

targeting a negative-sample-free approach for GNN learning through asymmetric architectures [12, 6].
However, it requires additional components, e.g., an exponential moving average (EMA) and Stop-
Gradient, to empirically avoid degenerated solutions, leading to a more intricate architecture.

Deviating from the large body of previous works on contrastive learning, in this paper we take a
new perspective to address SSL on graphs. We introduce Canonical Correlation Analysis inspired
Self-Supervised Learning on Graphs (CCA-SSG), a simple yet effective approach that opens the
way to a new SSL objective and frees the model from intricate designs. It follows the common
practice of prior arts, generating two views of an input graph through random augmentation and
acquiring node representations through a shared GNN encoder. Differently, we propose to harness a
non-contrastive and non-discriminative feature-level objective, which is inspired by the well-studied
Canonical Correlation Analysis (CCA) methods [18, 10, 11, 14, 2, 4]. More specifically, the new
objective aims at maximizing the correlation between two augmented views of the same input and
meanwhile decorrelating different (feature) dimensions of a single view’s representation. We show
that the objective 1) essentially pursuits discarding augmentation-variant information and preserving
augmentation-invariant information, and 2) can prevent dimensional collapse [19] (i.e., different
dimensions capture the same information) in nature. Furthermore, our theoretical analysis sheds
more lights that under mild assumptions, our model is an instantiation of Information Bottleneck
Principle [43, 44, 37] under SSL settings [53, 9, 45].

To sum up, as shown in Table 1, our new objective induces a simple and light model without
reliance on negative pairs [48, 15, 57, 58], a parameterized mutual information estimator [48, 15],
an additional projector or predictor [57, 58, 39] or asymmetric architectures [39, 15]. We provide a
thorough evaluation for the model on seven node classification benchmarks. The empirical results
demonstrate that despite its simplicity, CCA-SSG can achieve very competitive performance in
general and even superior test accuracy in five datasets. It is worth noting that our approach is
agnostic to the input data format, which means that it can potentially be applied to other scenarios
beyond graph-structured data (such as vision, language, etc.). We leave such a technical extension for
future works.

Our contributions are as follows:
1) We introduce a non-contrastive and non-discriminative objective for self-supervised learning,
which is inspired by Canonical Correlation Analysis methods. It does not rely on negative samples,
and can naturally remove the complicated components. Based on it we propose CCA-SSG, a simple
yet effective framework for learning node representations without supervision (see Section 3).
2) We theoretically prove that the proposed objective aims at keeping augmentation-invariant in-
formation while discarding augmentation-variant one, and possesses an inherent relationship to an
embodiment of Information Bottleneck Principle under self-supervised settings (see Section 4).
3) Experimental results show that without complex designs, our method outperforms state-of-the-art
self-supervised methods MVGRL [15] and GCA [58] on 5 out of 7 benchmarks. We also provide
thorough ablation studies on the effectiveness of the key components of CCA-SSG (see Section 5).

2

2 Related Works and Background

Contrastive Learning on Graphs. Contrastive methods [46, 40, 17, 16, 5, 12] have been shown to
be effective for unsupervised learning in vision, which have also been adapted to graphs. Inspired by
the local-global mutual information maximization viewpoints [17], DGI [48] and InfoGraph [38] put
forward unsupervised schemes for node and graph representation learning, respectively. MVGRL [15]
generalizes CMC [40] to graph-structured data by introducing graph diffusion [23] to create another
view for a graph. GCC [33] adopts InfoNCE loss [46] and MoCo-based negative pool [16] for large-
scale GNN pretraining. GRACE [57], GCA [58] and GraphCL [52] follow the spirit of SimCLR [5]
and learn node/graph representations by directly treating other nodes/graphs as negative samples.
BGRL [39] targets a negative-sample-free model, inspired by BYOL [12], on node representation
learning. But it still requires complex asymmetric architectures.

Feature-level Self-supervised Objectives. The above-mentioned methods all focus on instance-
level contrastive learning. To address their drawbacks, some recent works have been turning to
feature-level objectives. For example, Contrastive Clustering [25] regards different feature di-
mensions as different clusters, thus combining the cluster-level discrimination with instance-level
discrimination. W-MSE [8] performs a differentiable whitening operation on learned embeddings,
which implicitly scatters data points in embedding space. Barlow Twins [53] borrows the idea of
redundancy reduction and adopts a soft decorrelation term that makes the cross-correlation matrix
of two views’ representations close to an identity matrix. By contrast, our method is based on the
classical Canonical Correlation Analysis, working by correlating the representations of two views
from data augmentation and meanwhile decorrelating different feature dimensions of each view’s
representation.

Canonical Correlation Analysis. CCA is a classical multivariate analysis method, which is first
introduced in [18]. For two random variables X 2 Rm and Y 2 Rn, their covariance matrix is
⌃XY = Cov(X,Y). CCA aims at seeking two vectors a 2 Rm and b 2 Rn such that the correlation
⇢ = corr(a>X, b>Y) = a>⌃XY bp

a>⌃XXa
p

b>⌃Y Y b
is maximized. Formally, the objective is

max
a,b

a>⌃XY b, s.t. a>⌃XXa = b>⌃Y Y b = 1. (1)

For multi-dimensional cases, CCA seeks two sets of vectors maximizing their correlation and
subjected to the constraint that they are uncorrelated with each other [10]. Later studies apply CCA to
multi-view learning with deep models [2, 11, 14], by replacing the linear transformation with neural
networks. Concretely, assuming X1, X2 as two views of an input data, it optimizes

max
✓1,✓2

Tr
�
P>
✓1(X1)P✓2(X2)

�
s.t. P>

✓1(X1)P✓1(X1) = P>
✓2(X2)P✓2(X2) = I. (2)

where P✓1 and P✓2 are two feedforward neural networks and I is an identity matrix. Despite its
preciseness, such computation is really expensive [4]. Fortunately, soft CCA [4] removes the hard
decorrelation constraint by adopting the following Lagrangian relaxation:

min
✓1,✓2

Ldist (P✓1(X1), P✓2(X2)) + � (LSDL(P✓1(X1)) + LSDL(P✓2(X2))) , (3)

where Ldist measures correlation between two views’ representations and LSDL (called stochastic
decorrelation loss) computes an L1 distance between P✓i(Xi) and an identity matrix, for i = 1, 2.

3 Approach

3.1 Model Framework

In this paper we focus on self-supervised node representation learning, where we consider a single
graph G = (X,A). X 2 RN⇥F and A 2 RN⇥N denote node features and adjacency matrix
respectively. Here N is the number of nodes within the graph and F denotes feature dimension.

Our model simply consists of three parts: 1) a random graph augmentation generator T . 2) a GNN-
based graph encoder f✓ where ✓ denotes its parameters. 3) a novel feature-level objective function
based on Canonical Correlation Analysis. Fig. 1 is an illustration of the proposed model.

3

tA � �

tB � �

GNN�

GNN�

share

weights

ZA

ZB

G = (X, A)

(1) random augmentation (2) graph neural network

CCA

(3) CCA-based objectiveView A

View B

Figure 1: Illustration of the proposed model: given an input graph, we first generate two views through
random augmentations: edge dropping and node feature masking. The two views are subsequently
put into a shared GNN encoder to generate representations. The loss function is applied on the
column-normalized embedding matrix of the two views. Note that this simple yet effective pipeline
can also be conceptually applied for other data like vision and texts, which we leave for future works.

Algorithm 1: PyTorch-style code for CCA-SSG

f: encoder network
lambda: trade-off
D: embedding dimension
g: input graph
feat: node features

generate two views through random augmentation
g1, feat1 = augment(g, feat)
g2, feat2 = augment(g, feat)
z1 = f(g1, feat1) # embedding of the 1st view
z2 = f(g2, feat2) # embedding of the 2st view

batch normalization
z1_norm = ((z1 - z1.mean(0)) / z1.std(0))/ sqrt(N)
z2_norm = ((z2 - z2.mean(0)) / z2.std(0))/ sqrt(N)

covariance matrix of each view
c1 = torch.mm(z1_norm.T(), z1_norm)
c2 = torch.mm(z2_norm.T(), z2_norm)

iden = torch.eye(D)
loss_inv = (z1_norm - z2_norm).pow(2).sum()
loss_dec_1 = (c1 - iden).pow(2).sum()
loss_dec_2 = (c2 - iden).pow(2).sum()
loss_dec = loss_dec_1 + loss_dec_2
loss = loss_inv + lambda * loss_dec

Graph augmentations. We consider the
standard pipeline for random graph augmen-
tation that has been commonly used in pre-
vious works [57, 39]. To be specific, we
harness two ways for augmentation: edge
dropping and node feature masking. Edge
dropping randomly drops a fraction of edges
from the original graph, while node feature
masking randomly masks a fraction of fea-
tures for all the nodes. In this way, T is
composed of all the possible graph transfor-
mation operations and each t ⇠ T denotes
a specific graph transformation for graph G.
Note that we use commonly adopted aug-
mentation methods to stay our focus on the
design of objective function and conduct fair
comparison with existing approaches. More
complicated random augmentations [52, 58]
can also be readily plugged into our model.
Details for the used augmentation functions
are in Appendix E.

Training. In each training iteration, we first randomly sample two graph transformations tA and
tB from T , and then generate two views G̃A = (X̃A, ÃA) and G̃B = (X̃B , ÃB) according to the
transformations. The two views are subsequently fed into a shared GNN encoder to generate the node
embeddings of the two views: ZA = f✓(X̃A, ÃA), ZB = f✓(X̃B , ÃB), where ZA,ZB 2 RN⇥D

and D denotes embedding dimension. We further normalize the node embeddings along instance
dimension so that each feature dimension has a 0-mean and 1/

p
N -standard deviation distribution:

Z̃ =
Z� µ(Z)

�(Z) ⇤
p
N

(4)

The normalized Z̃A, Z̃B will be used to compute a feature-level objective in Section 3.2. To help
better understand the proposed framework, we provide the PyTorch-style pseudocode for training
CCA-SSG in Algorithm 1.

Inference. To generate node embeddings for downstream tasks, we put the original graph G =
(X,A) into the trained graph neural network f✓ and obtain node embeddings Z = f✓(X,A).

4

3.2 Learning Objective

Canonical Correlation Analysis has shown its great power in multi-view learning like instance
recognition [4]. However, it still remains unexplored to leverage CCA for self-supervised learning.
Note that in SSL, one generates two sets of data from the same input through transformation or
random data augmentation, which could be regraded as two views of the input data. This inspires us
to introduce the following objective for self-supervised representation learning:

L =
���Z̃A � Z̃B

���
2

F| {z }
invariance term

+�

✓���Z̃>
AZ̃A � I

���
2

F
+

���Z̃>
BZ̃B � I

���
2

F

◆

| {z }
decorrelation term

(5)

where � is a non-negative hyperparameter trading off two terms. Note that minimizing the invariance
term is essentially maximizing the correlation between two views as their representations are already
normalized. In SSL, as the two augmented views come randomly from the same distribution, we can
adopt one encoder f✓ that is shared across two branches and seek for a regularization that encourages
different feature dimensions to capture distinct semantics via the decorrelation term.

We next provide a variance-covariance perspective to the new objective, following similar lines of
reasoning in [41, 42]. Assume that input data come from a distribution x ⇠ p(x) and s is a view of x
through random augmentation s ⇠ paug(·|x). Denote zs as the representation of s, then minimizing
the invariance term, by expectation, is to minimize the variance of the normalized representation z̃s,
conditioned on x. Also, minimizing the decorrelation term is to push the off-diagonal elements of the
covariance matrix (given by two z̃s’s) close to 0. Formally, we have

Linv =
���Z̃A � Z̃B

���
2

F
=

NX

i=1

DX

k=1

(z̃Ai,j � z̃Bi,j)
2 ⇠= Ex

"
DX

k=1

Vs|x[z̃s,k]

#
⇤ 2N, (6)

Ldec =
���Z̃>

S Z̃S � I
���
2

F
= kCovs[z̃]� Ik2F ⇠=

X

i 6=j

�
⇢zs
i,j

�2
, for Z̃S 2 {Z̃A, Z̃B}, (7)

where ⇢ is the Pearson correlation coefficient.

3.3 Advantages over Contrastive Methods

In this subsection we provide a systematic comparison with previous self-supervised methods for node
representation learning, including DGI [48], MVGRL [15], GRACE [57], GCA [58] and BGRL [39],
and highlight the merits of CCA-SSG. A quick overview is presented in Table 1.

No reliance on negative samples. Most of previous works highly rely on negative pairs to avoid
collapse or interchangeable, trivial/degenerated solutions [48, 15, 57, 58]. E.g., DGI and MVGRL
generate negative examples by corrupting the graph structure severely, and GRACE/GCA treats all
the other nodes within a graph as negative examples. However, for self-supervised learning on graphs,
it is non-trivial to construct informative negative examples since nodes are structurally connected, and
selecting negative examples in an arbitrary manner may lead to large variance for stochastic gradients
and slow training convergence [51]. The recently proposed BGRL model adopts asymmetric encoder
architectures for SSL on graphs without the use of negative samples. However, though BGRL could
avoid collapse empirically, it still remains as an open problem concerning its theoretical guarantee for
preventing trivial solutions [41]. Compared with these methods, our model does not rely on negative
pairs and asymmetric encoders. The feature decorrelation term can naturally prevent trivial solutions
caused by the invariance term. We discuss the collapse issue detailedly in Appendix B.

No MI estimator, projector network nor asymmetric architectures. Most previous works rely on
additional components besides the GNN encoder to estimate some score functions in final objectives.
DGI and MVGRL require a parameterized estimator to approximate mutual information between
two views, and GRACE leverages a MLP projector followed by an InfoNCE estimator. BGRL
harnesses asymmetric encoder architecture which consists of EMA (Exponential Moving Average),
Stop-Gradient and an additional projector. MVGRL also induces asymmetric architectures as it
adopts two different GNNs for the input graph and the diffusion graph respectively. In contrast, our
approach requires no additional components except a single GNN encoder.

Better efficiency and scalability to large graphs. Consider a graph with N nodes. DGI and
MVGRL contrast node embeddings with graph embedding, which would require O(N) space cost.

5

GRACE treats two views of the same node as positive pairs and treat views of different nodes as
negative pairs, which would take O(N2) space. BGRL focuses only on positive pairs, which will
also take O(N) space. By contrast, our method works on feature dimension. If we embed each node
into a D-dimensional vector, the computation of the loss function would require O(D2) space. This
indicates that the memory cost does not grow consistently as the size of graph increases. As a result,
our method is promising for handling large-scale graphs without prohibitively large space costs.

4 Theoretical Insights with Connection to Information Theory

In this section we provide some analysis of the proposed objective function: 1) Interpretation of the
loss function with entropy and mutual information. 2) The connection between the proposed objective
and the Information Bottleneck principle. 3) Why the learned representations would be informative
to downstream tasks. The proofs of propositions, theorems and corollaries are in Appendix D.

Notations. Denote the random variable of input data as X and the downstream task as T (it could be
the label Y if the downstream task is classification). Note that in SSL, we have no access to T in
training and here we introduce the notation for our analysis. Define S as the self-supervised signal
(i.e., an augmented view of X), and S shares the same space as X . Our model learns a representation
for the input, denoted by ZX and its views, denoted by ZS . ZX = f✓(X), ZS = f✓(S), f✓(·) is
a encoder shared by the original data and its views, which is parameterized by ✓. The target of
representation learning is to learn a optimal encoder parameter ✓. Furthermore, for random variable
A,B,C, we use I(A,B) to denote the mutual information between A and B, I(A,B|C) to denote
conditional mutual information of A and B on a given C, H(A) for the entropy, and H(A|B) for
conditional entropy. The proofs of propositions, theorems and corollaries are in Appendix D.

4.1 An Entropy and Mutual Information Interpretation of the Objective

We first introduce an assumption about the distributions of P (ZS) and P (ZS |X).
Assumption 1. (Gaussian assumption of P (ZS |X) and P (ZS)):

P (ZS |X) = N (µX ,⌃X), P (ZS) = N (µ,⌃). (8)

With Assumption 1, we can arrive at the following propositions:
Proposition 1. In expectation, minimizing Eq. (6) is equivalent to minimizing the entropy of ZS

conditioned on input X , i.e.,

min
✓

Linv
⇠= min

✓
H(ZS |X). (9)

Proposition 2. Minimizing Eq. (7) is equivalent to maximizing the entropy of ZS , i.e.,

min
✓

Ldec
⇠= max

✓
H(ZS). (10)

The two propositions unveil the effects of two terms in our objective. Combining two propositions,
we can further interpret Eq. (5) from an information-theoretic perspective.
Theorem 1. By optimizing Eq (5), we maximize the mutual information between the augmented

view’s embedding ZS and the input data X , and minimize the mutual information between ZS and

the view itself S, conditioned on the input data X . Formally we have

min
✓

L) max
✓

I(ZS , X) and min
✓

I(ZS , S|X). (11)

The proof is based on the facts I(ZS , X) = H(ZS) �H(ZS |X) and I(ZS , S|X) = H(ZS |X) +
H(ZS |S) = H(ZS |X). Theorem 1 indicates that our objective Eq. (5) learns representations
that maximize the information of the input data, i.e., I(ZS , X), and meanwhile minimize the lost
information during augmentation, i.e., I(ZS , S|X).

4.2 Connection with the Information Bottleneck Principle

The analysis in Section 4.1 enables us to further build a connection between our objective Eq. (5) and
the well-studied Information Bottleneck Principle [43, 44, 37, 1] under SSL settings. Recall that the
supervised Information Bottleneck (IB) is defined as follows:

6

Definition 1. The supervised IB aims at maximizing an Information Bottleneck Lagrangian:

IBsup = I(Y, ZX)� �I(X,ZX), where � > 0. (12)

As we can see, IBsup attempts to maximize the information between the data representation ZX and
its corresponding label Y , and concurrently minimize the information between ZX and the input data
X (i.e., exploiting compression of ZX from X). The intuition of IB principle is that ZX is expected
to contain only the information that is useful for predicting Y .

Several recent works [9, 45, 53] propose various forms of IB under self-supervised settings. The
most relevant one names Self-supervised Information Bottleneck:
Definition 2. (Self-supervised Information Bottleneck [53]). The Self-supervised IB aims at maxi-

mizing the following Lagrangian:

IBssl = I(X,ZS)� �I(S,ZS), where � > 0. (13)

Intuitively, IBssl posits that a desirable representation is expected to be informative to augmentation
invariant features, and to be a maximally compressed representation of the input.

Our objective Eq. (5) is essentially an embodiment of IBssl:
Theorem 2. Assume 0 < � 1, then by minimizing Eq. (5), the self-supervised Information

Bottleneck objective is maximized, formally:

min
✓

L) max
✓

IBssl (14)

Theorem 2 also shows that Eq. (5) implicitly follows the same spirit of IB principle under self-
supervised settings. As further enlightenment, we can relate Eq. (5) with the multi-view Information

Bottleneck [9] and the minimal and sufficient representations for self-supervision [45]:
Corollary 1. Let X1 = S, X2 = X and assume 0 < � 1, then minimizing Eq. (5) is equivalent to

minimizing the Multi-view Information Bottleneck Loss in [9]:

LMIB = I(Z1, X1|X2)� �I(X2, Z1), where 0 < � 1. (15)

Corollary 2. When the data augmentation process is reversible, minimizing Eq. (5) is equivalent to

learning the Minimal and Sufficient Representations for Self-supervision in [45]:

Zssl

X = argmax
ZX

I(ZX , S), Zsslmin

X = argmin
ZX

H(ZX |S) s.t. I(ZX , S) is maximized. (16)

4.3 Influence on Downstream Tasks

We have provided a principled understanding for our new objective. Next, we discuss its effect on
downstream tasks T . The rationality of data augmentations in SSL is rooted in a conjecture that an
ideal data augmentation approach would not change the information related to its label. We formulate
this hypothesis as a building block for analysis on downstream tasks [36, 9].
Assumption 2. (Task-relevant information and data augmentation). All the task-relevant information

is shared across the input data X and its augmentations S, i.e., I(X,T) = I(S, T) = I(X,S, T),
or equivalently, I(X,T |S) = I(S, T |X) = 0.

This indicates that all the task-relevant information is contained in augmentation invariant features.
We proceed to derive the following theorem which reveals the efficacy of the learned representations
by our objective with respect to downstream tasks.
Theorem 3. (Task-relevant/irrelevant information). By optimizing Eq. (5), the task-relevant informa-

tion I(ZS , T) is maximized, and the task-irrelevant information H(ZS |T) is minimized. Formally,

min
✓

L) max
✓

I(ZS , T) and min
✓

H(ZS |T). (17)

Therefore, the learned representation ZS is expected to contain minimal and sufficient information
about downstream tasks [45, 9], which further illuminates the reason why the embeddings given by
SSL approaches have superior performance on various downstream tasks.

7

Table 2: Test accuracy on citation networks. The input column highlights the data used for training.
(X for node features, A for adjacency matrix, S for diffusion matrix, and Y for node labels).

Methods Input Cora Citeseer Pubmed

Supervised

MLP [47] X,Y 55.1 46.5 71.4
LP [56] A,Y 68.0 45.3 63.0
GCN [22] X,A,Y 81.5 70.3 79.0
GAT [47] X,A,Y 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3

Unsupervised

Raw Features [48] X 47.9 ± 0.4 49.3 ± 0.2 69.1 ± 0.3
Linear CCA [18] X 58.9 ± 1.5 27.5 ± 1.3 75.8 ± 0.4
DeepWalk [32] A 70.7 ± 0.6 51.4 ± 0.5 74.3 ± 0.9
GAE [21] X,A 71.5 ± 0.4 65.8 ± 0.4 72.1 ± 0.5
DGI [48] X,A 82.3 ± 0.6 71.8 ± 0.7 76.8 ± 0.6
MVGRL1 [15] X,S,A 83.5 ± 0.4 73.3 ± 0.5 80.1 ± 0.7
GRACE2 [57] X,A 81.9 ± 0.4 71.2 ± 0.5 80.6 ± 0.4
CCA-SSG (Ours) X,A 84.2 ± 0.4 73.1 ± 0.3 81.6 ± 0.4

1 Results on Cora with authors’ code is inconsistent with [15]. We adopt the results with authors’ code.
2 Results are from our reproducing with authors’ code, as [57] did not use the public splits.

5 Experiments

We assess the quality of representations after self-supervised pretraining on seven node classifica-
tion benchmarks: Cora, Citeseer, Pubmed, Coauthor CS, Coauthor Physics and Amazon Computer,

Amazon-Photo. We adopt the public splits for Cora, Citeseer, Pubmed, and a 1:1:9 training/valida-
tion/testing splits for the other 4 datasets. Details of the datasets are in Appendix E.

Evaluation protocol. We follow the linear evaluation scheme as introduced in [48]: i) We first train
the model on all the nodes in a graph without supervision, by optimizing the objective in Eq. (5). ii)
After that, we freeze the parameters of the encoder and obtain all the nodes’ embeddings, which are
subsequently fed into a linear classifier (i.e., a logistic regression model) to generate a predicted label
for each node. In the second stage, only nodes in training set are used for training the classifier, and
we report the classification accuracy on testing nodes.

We implement the model with PyTorch. All experiments are conducted on a NVIDIA V100 GPU with
16 GB memory. We use the Adam optimizer [20] for both stages. The graph encoder f✓ is specified
as a standard two-layer GCN model [22] for all the datasets except citeseer (where we empirically
find that a one-layer GCN is better). We report the mean accuracy with a standard deviation through
20 random initialization (on Coauthor CS, Coauthor Physics and Amazon Computer, Amazon-Photo,
the split is also randomly generated). Detailed hyperparameter settings are in Appendix E.

5.1 Comparison with Peer Methods

We compare CCA-SSG with classical unsupervised models, Deepwalk [32] and GAE [21], and
self-supervised models, DGI [48], MVGRL [15], GRACE [57] and GCA [58]. We also compare with
supervised learning models, including MLP, Label Propagation (LP) [56], and supervised baselines
GCN [22] and GAT [47]3. The results of baselines are quoted from [15, 57, 58] if not specified.

We report the node classification results of citation networks and other datasets in Table 2 and Table 3
respectively. As we can see, CCA-SSG outperforms both the unsupervised competitors and the fully
supervised baselines on Cora and Pubmed, despite its simple architecture. On Citeseer, CCA-SSG
achieves competitive results as of the most powerful baseline MVGRL. On four larger benchmarks,
CCA-SSG also achieves the best performance in four datasets except Coauther-Physics. It is worth
mentioning that we empirically find that on Coauthor-CS a pure 2-layer-MLP encoder is better than
GNN models. This might because the graph-structured information is much less informative than
the node features, presumably providing harmful signals for classification (in fact, on Coauthor-CS,
linear models using merely node features can greatly outperform DeepWalk/DeepWalk+features).

3The BGRL [39] is not compared as its source code has not been released.

8

Table 3: Test accuracy on co-author and co-purchase networks. We report both mean accuracy and
standard deviation. Results of baseline models are from [58].

Methods Input Computer Photo CS Physics

Supervised GCN [22] X,A,Y 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31 95.65 ± 0.16
Supervised GAT [47] X,A,Y 86.93 ± 0.29 92.56 ± 0.35 92.31 ± 0.24 95.47 ± 0.15

U
ns

up
er

vi
se

d

Raw Features [48] X 73.81 ± 0.00 78.53 ± 0.00 90.37 ± 0.00 93.58 ± 0.00
Linear CCA [18] X 79.84 ± 0.53 86.92 ± 0.72 93.13 ± 0.18 95.04 ± 0.17
DeepWalk [32] A 85.68 ± 0.06 89.44 ± 0.11 84.61 ± 0.22 91.77 ± 0.15
DeepWalk + features X,A 86.28 ± 0.07 90.05 ± 0.08 87.70 ± 0.04 94.90 ± 0.09
GAE [21] X,A 85.27 ± 0.19 91.62 ± 0.13 90.01 ± 0.71 94.92 ± 0.07
DGI [48] X,A 83.95 ± 0.47 91.61 ± 0.22 92.15 ± 0.63 94.51 ± 0.52
MVGRL [15] X,S,A 87.52 ± 0.11 91.74 ± 0.07 92.11 ± 0.12 95.33 ± 0.03
GRACE1 [57] X,A 86.25 ± 0.25 92.15 ± 0.24 92.93 ± 0.01 95.26 ± 0.02
GCA1 [58] X,A 87.85 ± 0.31 92.49 ± 0.09 93.10 ± 0.01 95.68 ± 0.05
CCA-SSG (Ours) X,A 88.74 ± 0.28 93.14 ± 0.14 93.31 ± 0.22 95.38 ± 0.06

1 GCA is essentially an enhanced version of GRACE by adopting adaptive augmentations. Both GRACE
and GCA would suffer from out of memory on Coauthor-Physics using a GPU wth 16GB memory. The
reported results are from authors’ papers using a 32GB GPU.

5.2 Ablation Study and Scalability Comparison

Effectiveness of invariance/decorrelation terms. We alter our loss by removing the invari-
ance/decorrelation term respectively to study the effects of each component, with results reported in
Table 4. We find that only using the invariance term will lead to merely performance drop instead of
completely collapsed solutions. This is because node embeddings are normalized along the instance
dimension to have a zero-mean and fixed-standard deviation, and the worst solution is no worse than
dimensional collapse (i.e., all the embeddings lie in an line, and our decorrelation term can help to
prevent it) instead of complete collapse (i.e., all the embeddings degenerate into a single point). As
expected, only optimizing the decorrelation term will lead to poor result, as the model learns nothing
meaningful but disentangled representation. In Appendix B we discuss the relationship between
complete/dimensional collapse, when the two cases happen and how to avoid them.

Effect of decorrelation intensity. We study how the intensity of feature decorrelation improves/de-
grades the performance by increasing the trade-off hyper-parameter �. Fig. 2 shows test accuracy
w.r.t. different �’s on Cora, Citeseer and Pubmed. The performance benefits from a proper selection
of � (from 0.0005 to 0.001 in our experiments). When � is too small, the decorrelation term does
not work; if it is too large, the invariance term would be neglected, leading to serious performance
degrade. An interesting finding is that even when � is very small or even equals to 0 (w/o Ldec

in Table 4), the test accuracy on Citeseer does not degrade as much as that on Cora and Citeseer.
The reason is that node embeddings of Citeseer is already highly uncorrelated even without the
decorrelation term. Appendix F visualizes the correlation matrices without/with decorrelations.

Effect of embedding dimension. Fig. 3 shows the effect of the embedding dimension. Similar
to contrastive methods [48, 15, 57, 58], CCA-SSG benefits from a large embedding dimension
(compared with supervised learning), while the optimal embedding dimension of CCA-SSG (512
on most benchmarks) is a bit larger than other methods (usually 128 or 256). Yet, we notice a
performance drop as the embedding dimension increases. We conjecture that the CCA is essentially a
dimension-reduction method, the ideal embedding dimension ought to be smaller than the dimension
of input. Hence we do not apply it on well-compressed datasets (e.g. ogbn-arXiv and ogbn-product).

Scalability Comparison. Table 5 compares model size, training time (till the epoch that gives the
highest evaluation accuracy) and memory cost of CCA-SSG with other methods, on Cora, Pubmed

and Amazon-Computers. Overall, our method has fewer parameters, shorter training time, and fewer
memory cost than MVGRL, GRACE and GCA in most cases. DGI is another simple and efficient
model, but it yields much poorer performance. The results show that despite its simplicity and
efficiency, our method achieves even better (or competitive) performance.

9

Table 4: Ablation study of node
classification accuracy (%) on the
key components of CCA-SSG.

Variants Cora Citeseer Pubmed

Baseline 84.2 73.1 81.6

w/o Ldec 79.1 72.2 75.3
w/o Linv 40.1 28.9 46.5

Figure 2: Effect of �. Figure 3: Effect of D.

Table 5: Comparison of the number of parameters, training time for achieving the best performance,
and the memory cost of different methods on Cora, Pubmed and Amazon-Computer. MVGRL on
Pubmed and Computer requires subgraph sampling with graph size 4000. Others are full-graph.

Methods Cora (N : 2,708) Pubmed (N : 19,717) Computer (N : 13,752)
#Paras Time Mem #Paras Time Mem #Paras Time Mem

DGI 1260K 6.4s 1.4G 782K 5.9s 1.9G 919K 14.1s 1.9G
MVGRL 1731K 26.9s 4.6G 775K 29s 5.4G 1049K 31.5s 5.5G
GRACE/GCA 997K 8.3s 1.7G 520K 756s 12.6G 273K 314s 7.6G
CCA-SSG(Ours) 997K 3.8s 1.6G 519K 9.6s 2.7G 656K 14.8s 2.5G

6 Conclusion and Discussions

In this paper, we have introduced CCA-SSG, a conceptually simple, efficient yet effective method
for self-supervised representation learning on graphs, based on the idea of Canonical Correlation
Analysis. Compared with contrastive methods, our model does not require additional components
except random augmentations and a GNN encoder, whose effectiveness is justified in experiments.

Limitations of the work. Despite the theoretical grounds and the promising experimental justi-
fications, our method would suffer from several limitations. 1) The objective Eq. (5) is essentially
performing dimension reduction, while SSL approach usually requires a large embedding dimension.
As a result, our method might not work well on datasets where input data does not have a large feature
dimension. 2) Like other augmentation based methods, CCA-SSG highly relies on a high-quality,
informative and especially, label-invariant augmentations. However, the augmentations used in our
model might not perfectly meet these requirements, and it remains an open problem how to generate
informative graph augmentations that have non-negative impacts on the downstream tasks.

Potential negative societal impacts. This work explores a simple pipeline for representation
learning without large amount of labeled data. However, in industry there are many career workers
whose responsibility is to label or annotate data. The proposed method might reduce the need for
labeling data manually, and thus makes a few individuals unemployed (especially for developing
countries and remote areas). Furthermore, our model might be biased, as it tends to pay more attention
to the majority and dominant features (shared information across most of the data). The minority
group whose features are scare are likely to be downplayed by the algorithm.

Acknowledgments and Disclosure of Funding

This work was supported in part by NSF under grants III-1763325, III-1909323, III-2106758, and
SaTC-1930941. Qitian Wu and Junchi Yan were partly supported by Shanghai Municipal Science and
Technology Major Project (2021SHZDZX0102). We thank Amazon Web Services for sponsoring
computation resources for this work.

References
[1] Rana Ali Amjad and Bernhard C. Geiger. Learning representations for neural network-based

classification using the information bottleneck principle. IEEE Trans. Pattern Anal. Mach.

10

Intell., 42(9):2225–2239, 2020.
[2] Galen Andrew, Raman Arora, Jeff A. Bilmes, and Karen Livescu. Deep canonical correlation

analysis. In ICML, volume 28, pages 1247–1255, 2013.
[3] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio,

Aaron Courville, and Devon Hjelm. Mutual information neural estimation. In International

Conference on Machine Learning, pages 531–540, 2018.
[4] Xiaobin Chang, Tao Xiang, and Timothy M. Hospedales. Scalable and effective deep CCA via

soft decorrelation. In CVPR, pages 1488–1497, 2018.
[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework

for contrastive learning of visual representations. In ICML, Proceedings of Machine Learning
Research, pages 1597–1607, 2020.

[6] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. arXiv preprint

arXiv:2011.10566, 2020.
[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of

deep bidirectional transformers for language understanding. In NAACL, pages 4171–4186,
2019.

[8] Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. Whitening for
self-supervised representation learning. arXiv preprint arXiv:2007.06346, 2020.

[9] Marco Federici, Anjan Dutta, Patrick Forré, Nate Kushman, and Zeynep Akata. Learning robust
representations via multi-view information bottleneck. In ICLR, 2020.

[10] Gene H Golub and Hongyuan Zha. The canonical correlations of matrix pairs and their numerical
computation. Linear algebra for signal processing, pages 27–29, 1995.

[11] Yunchao Gong, Qifa Ke, Michael Isard, and Svetlana Lazebnik. A multi-view embedding space
for modeling internet images, tags, and their semantics. Int. J. Comput. Vis., 106(2):210–233,
2014.

[12] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent - A
new approach to self-supervised learning. In NeurIPS, 2020.

[13] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics, pages 297–304, 2010.
[14] David R. Hardoon, Sándor Szedmák, and John Shawe-Taylor. Canonical correlation analysis:

An overview with application to learning methods. Neural Comput., 16(12):2639–2664, 2004.
[15] Kaveh Hassani and Amir Hosein Khas Ahmadi. Contrastive multi-view representation learning

on graphs. In ICML, volume 119 of Proceedings of Machine Learning Research, pages 4116–
4126. PMLR, 2020.

[16] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum contrast
for unsupervised visual representation learning. In CVPR, pages 9726–9735, 2020.

[17] R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip Bachman,
Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information
estimation and maximization. In ICLR, 2019.

[18] Harold Hotelling. Relations between two sets of variates. Biometrika, 28:322–377, 1936.
[19] Tianyu Hua, Wenxiao Wang, Zihui Xue, Yue Wang, Sucheng Ren, and Hang Zhao. On feature

decorrelation in self-supervised learning. arXiv preprint arXiv:2105.00470, 2021.
[20] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR,

2015.
[21] Thomas N. Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint

arXiv:1611.07308, 2016.
[22] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional

networks. In ICLR, 2017.

11

[23] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. In NeurIPS, pages 13333–13345, 2019.

[24] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In AAAI, volume 32, 2018.

[25] Yunfan Li, Peng Hu, Jerry Zitao Liu, Dezhong Peng, Joey Tianyi Zhou, and Xi Peng. Contrastive
clustering. arXiv preprint arXiv:2009.09687, 2020.

[26] Julian J. McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. Image-based
recommendations on styles and substitutes. In SIGIR, pages 43–52, 2015.

[27] Jin Ming, Zheng Yizhen, Li Yuan-Fang, Gong Chen, Zhou Chuan, and Pan Shirui. Multi-
scalecontrastive siamese networks for self-supervised graph representation learning. In IJCAI,
2021.

[28] Xu Minghao, Wang Hang, Ni Bingbing, Guo Hongyu, and Tang Jian. Self-supervised graph-
levelrepresentation learning with local and global structure. In ICML, 2021.

[29] Galileo Namata, Ben London, Lise Getoor, Bert Huang, and UMD EDU. Query-driven active
surveying for collective classification. In 10th International Workshop on Mining and Learning

with Graphs, volume 8, 2012.
[30] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural

samplers using variational divergence minimization. In NIPS, pages 271–279, 2016.
[31] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and Junzhou

Huang. Graph representation learning via graphical mutual information maximization. In WWW,
pages 259–270, 2020.

[32] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social repre-
sentations. In KDD, pages 701–710. ACM, 2014.

[33] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan
Wang, and Jie Tang. GCC: graph contrastive coding for graph neural network pre-training. In
KDD, pages 1150–1160, 2020.

[34] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[35] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Paul Hsu, and Kuansan
Wang. An overview of microsoft academic service (MAS) and applications. In WWW, pages
243–246, 2015.

[36] Karthik Sridharan and Sham M. Kakade. An information theoretic framework for multi-view
learning. In COLR, pages 403–414. Omnipress, 2008.

[37] DJ Strouse and David J. Schwab. The deterministic information bottleneck. In UAI, 2016.
[38] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and

semi-supervised graph-level representation learning via mutual information maximization. In
ICLR, 2020.

[39] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos, Petar Velick-
ovic, and Michal Valko. Bootstrapped representation learning on graphs. arXiv preprint

arXiv:2102.06514, 2021.
[40] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In ECCV,

pages 776–794, 2020.
[41] Yuandong Tian, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning

dynamics without contrastive pairs. arXiv preprint arXiv:2102.06810, 2021.
[42] Yuandong Tian, Lantao Yu, Xinlei Chen, and Surya Ganguli. Understanding self-supervised

learning with dual deep networks. arXiv preprint arXiv:2010.00578, 2020.
[43] Naftali Tishby, Fernando C. N. Pereira, and William Bialek. The information bottleneck method.

arXiv preprint physics/0004057, 2000.
[44] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In

ITW, pages 1–5, 2015.
[45] Yao-Hung Hubert Tsai, Yue Wu, Ruslan Salakhutdinov, and Louis-Philippe Morency. Self-

supervised learning from a multi-view perspective. In ICLR, 2021.

12

[46] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[47] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

[48] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon
Hjelm. Deep graph infomax. In ICLR, 2019.

[49] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,
Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang
Li, Alexander J. Smola, and Zheng Zhang. Deep graph library: Towards efficient and scalable
deep learning on graphs. arXiv, 1909.01315, 2019.

[50] Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through
alignment and uniformity on the hypersphere. In ICML, pages 9929–9939, 2020.

[51] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed,
and Arnold Overwijk. Approximate nearest neighbor negative contrastive learning for dense
text retrieval. In ICLR, 2021.

[52] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. In NeurIPS, 2020.

[53] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In ICML, 2021.

[54] Jiaqi Zeng and Pengtao Xie. Contrastive self-supervised learning for graph classification. arXiv

preprint arXiv:2009.05923, 2020.
[55] Hanlin Zhang, Shuai Lin, Weiyang Liu, Pan Zhou, Jian Tang, Xiaodan Liang, and Eric P Xing.

Iterative graph self-distillation. arXiv preprint arXiv:2010.12609, 2020.
[56] Xiaojin Zhu, Zoubin Ghahramani, and John D. Lafferty. Semi-supervised learning using

gaussian fields and harmonic functions. In ICML, pages 912–919, 2003.
[57] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive

representation learning. arXiv preprint arXiv:2006.04131, 2020.
[58] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive

learning with adaptive augmentation. In WWW, 2021.

13

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 6.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Assump-
tion 1 and Assumption 2.

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix D.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See supplemen-
tal material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix E.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section 5.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix E.3.
(b) Did you mention the license of the assets? [Yes] See Appendix E.3.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] The data used for experiments are all publicly available.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] The data we used contain no personally
indentifiable information nor offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

