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Abstract

Motion estimation of cardiac MRI videos is crucial for
the evaluation of human heart anatomy and function. Re-
cent researches show promising results with deep learning
based methods. In clinical deployment, however, they suffer
dramatic performance drops due to mismatched distribu-
tions between training and testing datasets, commonly en-
countered in the clinical environment. On the other hand, it
is arguably impossible to collect all representative datasets
and to train a universal tracker before deployment. In this
context, we proposed a novel fast online adaptive learn-
ing (FOAL) framework: an online gradient descent based
optimizer that is optimized by a meta-learner. The meta-
learner enables the online optimizer to perform a fast and
robust adaptation. We evaluated our method through ex-
tensive experiments on two public clinical datasets. The
results showed the superior performance of FOAL in accu-
racy compared to the offline-trained tracking method. On
average, the FOAL took only 0.4 second per video for on-
line optimization.

1. Introduction

Video dense tracking and motion estimation using deep
learning has gained great progress for natural image appli-
cations in recent research [34, 12, 21, 43, 45, 16, 11, 39, 18,
26, 47, 20]. In medical imaging, videos compared to static
images, are ideal for dynamically changing physiological
processes such as the beating heart and are commonly used
in clinical settings. Feature tracking of dynamic cardiac im-
ages can provide precise and comprehensive assessments of
the cardiac motion and has been proved valuable for car-
diac disease management [33, 27, 41, 23]. Motion estima-
tion can also benefit other tasks in cardiac imaging, such as
image reconstruction [10, 30] and semi-supervised segmen-
tation [25, 37, 46, 17, 42]. Recently, deep learning based
methods show promising results in cardiac motion estima-
tion [25, 46, 15, 22]. However, most studies have been de-
signed in a research environment: the proposed models are
trained and tested on the data with similar distributions. In
a clinical environment, however, the imaged objects may

present various anatomies (abnormally thin or thick heart
muscle) and/or dynamics (irregularly beating heart) for dif-
ferent diseases. On top of that, the imaging process itself
commonly introduces many, if not more, variations. This
is especially true for cardiac magnetic resonance (CMR)
imaging, which provides superior video quality over ultra-
sound, but the image appearances are influenced by multi-
ple factors including scanner vendors, main magnetic fields,
different scanning protocols and technicians’ operations. It
is arguably impossible to build a dataset that includes every
combination of the variations and train a universal tracker
on it. It is also not ideal and sometimes impossible in a
clinical setting that the pre-trained network gets fine-tuned
on the data from a different distribution, given the scarcity
nature of medical data. In other words, for a clinically suit-
able deep-trained tracker, the neural network needs to pos-
sess the capability to quickly adapt to new data from un-
seen distributions. Towards this end, we propose a fast on-
line adaptive learning (FOAL) mechanism for dense video
tracking applied to cardiac motion estimation. The pro-
posed framework consists of an online adaptive stage and
an offline meta-learning stage. The offline meta-learning
trains the model to gain the adaptation capability and the
online stage will apply this adaptation to adjust the model
parameters using very few and unseen data. We have de-
signed a unique module for video tracking used in both
stages to train an adaptive tracker. The tracker trained using
the proposed FOAL achieves the state-of-the-art (SOTA) re-
sults compared to strong baselines. The contributions of our
work are summarized as follows.

• In the context of dense motion estimation, we proposed
a novel online model adaptation method, which adapts
a trained baseline model to a new video using a gradi-
ent descent optimization.

• We proposed a meta-learning method optimizing the
proposed online optimizer. The meta-learner enables
the online optimizer to perform a fast and robust adap-
tion.

• We proposed practical solutions for training meta
learner in dense motion estimation task.
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• Our proposed method is not limited to the network
structure of the baseline dense motion estimation. The
extensive experiments consistently demonstrated supe-
rior performance improvement of our method in accu-
racy comparing to the baseline model.

End diastole Systole End systole Diastole End diastole

MYO

LV
RV

Figure 1. Typical cardiac cycle of a healthy subject. The cycle in-
dicates heart relaxation and contraction process. The myocardium
(MYO) appears as a dark ring in the image. The left ventricle (LV)
is filled with hyperintense blood signal contained inside the ring.
The right ventricle (RV) cavity is indicated via red line.

2. Related Work

Section 2.1 discusses state-of-the-arts in the literature for
motion estimation in the computer vision field. Section 2.2
introduces the task of cardiac motion estimation and exist-
ing studies on this topic. Section 2.3 introduces the model-
agnostic meta-learning which has inspired our method.

2.1. Motion Estimation for Camera Videos

Motion estimation is one of the fundamental problems in
computer vision field. In the literature, there are a few deep
learning based approaches solving motion estimation such
as reported works in [2, 5, 12, 34, 21]. Dosovitskiy et al. [5]
proposed two optical flow estimation networks (Flownets):
FlownetSimple and FlownetCorr. The former is a generic
architecture and the latter includes a correlation layer to
fuse feature vectors at different image locations. Flownet
2.0 in the work [12] further adds an extra branch to deal
with pairs with small displacement and uses the original
Flownet to deal with large displacement. Sun et al. [34]
proposed a smaller and more efficient neural network struc-
ture utilizing feature pyramid as well as cost volume to get
a more accurate motion. Most of these above works used
a supervised learning approach with true motion field. In
contrast to these supervised methods, Meister et al. [21]
proposed an unsupervised framework where the flow was
predicted and used to warp the source image to the refer-
ence image. The model is optimized to minimize the differ-
ence between warped image and reference image. In ad-
dition, an occlusion-aware forward-backward consistency
loss is used with the census transform to improve the track-
ing results. Note that our baseline model utilized a similar
self-supervision idea as [21].

2.2. Cardiac Motion Estimation

Cardiac motion estimation takes a time series (video) of
CMR images as input and predicts the heart motion through
time. Motion fields are usually estimated at a pixel level due
to the non-rigid nature of cardiac contraction. Normally the
video records a complete cardiac contraction cycle: from
the onset of contraction (end diastole ED), then to maxi-
mum contraction (end systole ES) and back to relaxation.
Fig. 1 shows example CMR frames from a video of a nor-
mal subject. Motion of a frame is usually estimated relative
to a reference frame that is commonly chosen as the ED or
ES frame. Let frame at time t be I(x, y, t), and I(x, y, tref )
as the reference image. The goal of motion estimation is to
find the mapping Fθ such that

Fθ : (I(x, y, tref ), I(x, y, t)) −→ Vx(x, y, t), Vy(x, y, t)
(1)

where Fθ is the mapping function with parameter θ and
Vx, Vy are the motion fields along x and y directions, re-
spectively. Motion tracking methods can be generally cate-
gorized according to the different formulations of Fθ: opti-
cal flow based, conventional image registration based, and
deep learning based.

Optical flow based method is built on several presump-
tions on image appearance and motion strength, such as
brightness consistency and small motion between source
and reference frames. The problem of applying optical flow
based methods to CMR motion estimation is that the pre-
sumptions are violated in CMR videos [6]. Fig. 2 shows
example images, illustrating the challenges of CMR.

(a) (b) (c) (d)

Figure 2. Examples of challenges in CMR motion estimation. (a)
and (b) are from one CMR video, where the upper part of the LV
myocardium (anterior wall) has a big intensity drop due to the
changes in MR coil detection sensitivity. (c) and (d) are from an-
other CMR video, where large motion occurs between an early
systole frame (source) and an end systole frame (reference).

In addition to the optical flow based approaches, image
registration based methods [24, 28, 4, 31, 32, 36, 15] were
applied to solve cardiac motion estimation.Craene et al. [4]
utilized a B-spline velocity fields with physical constraints
to compute the trajectories of feature points and performed
the tracking. Rueckert et al. [28] proposed a free form de-
formation (FFD) method solving a general deformable im-
age registration problem and recent work [24, 31, 32, 36]
utilize this method to estimate the cardiac motion. It is
known that FFD-like methods suffer from computation effi-
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ciency problem. To address this issue, Vigneault et al. [38]
proposed a coarse-to-fine registration framework to track
cardiac boundary points. This solution improved the time
efficiency but an extra segmentation step was required. In
addition, this sparse tracking lost motion understanding in
the heart muscle region.

Recent success in deep neural network solving many
computer vision problems has inspired efforts to explore
deep learning based cardiac motion estimation. Qin et
al. [25] proposed a multi-task framework that combines
segmentation and motion estimation tasks. The learned car-
diac motion field is used to warp the segmentation mask and
guide the segmentation module in a semi-supervised man-
ner. The results show that both segmentation and motion
estimation performance are improved comparing to single
task. Zheng et al. [46] proposed the apparent flow net which
is a modified U-net. The segmentation masks were used in
apparent flow net in order to improve the motion estima-
tion. In work [15], a conditional variational autoencoder
(VAE) based method was presented to estimate the cardiac
motion. The VAE encoder is used to map deformations to
latent variables, which is regularized via Gassian distribu-
tion and decode to a deformation filed via VAE decoder.
Note that it is generally hard to obtain true cardiac motion
and thus above works were quantitatively evaluated using
the segmentation masks. In this work, we also use this type
of evaluation.

2.3. Model Agnostic Meta Learning

Meta learning, or leaning to learn, aims to build a uni-
versal meta model that could make fast adaptation to new
tasks [29]. Model-agnostic meta learning (MAML) [7] is a
general strategy that searches for a good model-agnostic ini-
tialization parameters that are trained through training tasks
and can quickly adapt to new tasks. Given the initial model
parameters θ, for every task Ti in the training set, the task-
specific parameters θi are independently updated within the
task dataset using gradient descent with a differentiable loss
function L:

θi ← θ − α∇θL(Ti; θ). (2)

Then the original model parameters θ are updated over
all the training tasks:

θ ← θ − β∇θ
∑
i

L(Ti; θi). (3)

Through these meta-training processes, the optimal “ini-
tialization” parameters are supposed to be sensitive to
new task adaptation within limited number of adaptation
steps. MAML has been widely used in few-shot learn-
ing [8, 35, 9], neural architecture search [19], graphical neu-
ral network [9], compressed sensing [40] and transfer learn-
ing [44]. Most applications using MAML are to solve high-
level vision tasks such as classification and recognition. The

MAML method inspired us to utilize a meta learner which
teaches the model to learn how to adapt to a new video.

3. Method
We proposed an online adaptive tracking framework in

the context of the dense motion tracking utilizing a deep
neural network. The proposed method is a general video
tracking framework which is not limited to motion estima-
tion in CMR. Nevertheless, without loss of generality the
method is presented in the CMR context.

STN

Encoder-DecoderIref

Is

Motion Field
Warping

I'ref

Dense Motion Tracker

Figure 3. Overview of the dense tracking framework. The encoder
is a Siamese structure that takes source and reference images as
input. The feature maps produced by Siamese encoder are con-
catenated and fed into the decoder.

3.1. Dense Motion Tracking

Fig. 3 depicts the architecture of our dense tracking
framework. The overall idea of the dense motion track-
ing is an end-to-end unsupervised learning approach that
inspired from [21]. Annotating motion field for heart is an
intractable task and unsupervised learning avoids the neces-
sity of the ground truth. In our work we used a lightweight
backbone of the network: the inputs are source image and
reference image (e.g. two frames in the same video). The
encoder is a Siamese [3] structure. The decoder is a series
of convolution and transpose convolution operators used to
decode the features and restore the output to original image
size. The output is the predicted motion field. To perform
unsupervised learning, the spatial transformer network [13]
is utilized to deform/warp the source image to the reference
image and image reconstruction loss Lmse is used to min-
imize the difference between the warped source image and
the reference image. Lmse is the mean square error (MSE).
In addition to Lmse, motion field smoothness Lsmooth pro-
posed in [25] is used to avoid abrupt motion change and
a bidirectional (forward-backward) flow consistency loss
Lcon proposed in [21] is used. The total loss Ltotal is thus
defined as follows:

Ltotal = Lmse + αsLsmooth + βcLcon, (4)

where αs and βc are used to balance three losses.

3.2. Online Optimizer

The unsupervised dense tracking (Section 3.1) mitigates
the need of ground truth motion fields. However, the dis-

3



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

CVPR
#4635

CVPR
#4635

CVPR 2020 Submission #4635. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

tribution mismatch between training and test datasets is a
continuous challenge, particularly the long tail problem in
medical image domain. The clinical deployment of a deep
learning model suffers domain mismatch problem. It is a
challenge to collect sufficient samples for training a uni-
versal tracker. In this section, in the context of the pro-
posed dense tracking, we extend the tracker to address the
dataset distribution mismatch problem. Instead of training
such a universal tracker offline, we make the tracker be-
ing aware of the test data online. The idea behind this is
to enable a given tracker automatically adapting the model
to a new video x. Suppose we have a model fθ using the
proposed dense tracker trained on dataset Da with a distri-
bution p(Da). The online adaptive learning on video x is
an online optimization algorithm and is realized via back-
propagating through the stochastic gradient descent steps as
follows:

θ′ ← θ′ − α∇θ′L(fθ′), (5)

where θ′ represents the model parameters and is initialized
from θ. α is the learning rate. We utilized the same loss
function L defined in Eq.(4). The overview of the online
adaptive algorithm is outlined in the Algorithm 1.

Algorithm 1 FOAL online optimization
Input: Single video t: xt, learning rate: α, trained model:
fθ, number of online tracking optimization steps: m
θ′t ← θ

Sample K pairs Dt = {a(j)t , b
(j)
t } from video xt

for t from 1 to m do
Evaluate loss Lt(fθ′t) using Dt

Compute parameters with gradient descent:
θ′t ← θ′t − α∇θ′tLt(fθ′t)

end for
Output: updated network weights: θ′t

It’s worth pointing out that the gradient descent steps
are performed over all parameters of the network at on-
line stage. Thus, it is computationally expensive to opti-
mize them on all image pairs (source and reference) with
too many steps. We aim to adapt the offline model in just a
few steps using only a small number of online samples. We
realize this by employing meta-learning to optimize this op-
timization procedure. This idea is inspired by MAML [7],
which is used to learn good initial model parameters via
meta learning. Like in MAML, we perform a second order
optimization by back-propagation using stochastic gradient
descent through the online optimization Eq. (5).

3.3. Meta-learning

We utilized a meta leaner to re-train the model fθ on the
dataset Dmeta from parameters θ in order to teach the on-
line optimizer in Eq. (5) learn to adapt fθ to a given video

Algorithm 2 FOAL offline meta-learning
Input: video set: X , learning rate: α, β, initial model: fθ,

number of online tracking optimization steps: m
while not done do

Sample N videos {x1, x2, ..., xN} from X
for i from 1 to N do

θ′i ← θ

Sample K pairs Di = {a(j)i , b
(j)
i } from video xi

for t from 1 to m do
Evaluate loss Li(fθ′i) using Di

Compute parameters with gradient descent:
θ′i ← θ′i − α∇θ′iLi(fθ′i)

end for
Sample K pairs D′i = {a

(k)
i , b

(k)
i } from video xi

end for
Model update: θ ← θ − β∇θ 1

N

∑N
i Li(fθ′i) using

each D′i and video-specific loss Li(fθ′i)
end while

Output: updated model θ

x. Note that Dmeta is either p(Da) or a new distribution
p(Db), where Db is a new dataset, and p(Db) may mis-
match domain p(Da). The full algorithm is outlined in Al-
gorithm 2. There are two For-loops in Algorithm 2. The
inner For-loop is the proposed optimization algorithm in Al-
gorithm 1 for optimizing the online optimizer Eq. (5). The
outer For-loop is the meta-leaner and the meta optimizer is
defined as follows.

θ ← θ − β∇θ
1

N

N∑
i

Li(fθ′i), (6)

where i is ith video in the training procedure. N is the
number of videos in a batch size for optimizing the meta
learner. β is the learning rate of the meta-learner. Li is the
loss (Eq. 4) evaluating on the ith video. fθ′i is the model
parameters for the ith video.

3.4. Practical Version of the Meta-Learning

Memory limitation and solution: In contrast to
few-shot learning (a classification problem) discussed in
MAML [7], dense motion tracker need store a larger num-
ber of feature maps (i.e. requiring a large amount of GPU
memory) given a larger image size (e.g. 192 × 192). The
meta optimizer (Eq. 6) requires computing derivatives of
each independent model associated with a specific video.
To tackle this problem, by employing the property that the
gradient operator and the average operator are commutative
in Eq. 6, we swap the two operators as shown in Eq. (7).

∇θ
1

N

N∑
i

Li(fθ′i)⇔
1

N

N∑
i

∇θLi(fθ′i) (7)
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which enables computing gradients on GPU and transfer-
ring them to CPU.

First order derivative approximation: Note that
in Eq. (7), second-order derivative is needed in back-
propagation. This involves calculating second-order Hes-
sian matrix, which is computationally costly. As a
workaround, we use first-order approximation, whose effec-
tiveness is demonstrated in MAML [7]. In [7], the approx-
imation rendered comparable results to the second-order
derivatives.

Table 1. Inside distribution v.s. outside distribution Dice co-
efficient results for baseline model, proposed FOAL without
meta learning (FOAL w/o meta) and proposed FOAL with meta-
learning (FOAL + meta). Averaged Dice coefficient with standard
deviation are given among five-fold leave-one-disease-out cross
validation.

Method
LV RV MYO

Inside Distribution Test Set

Baseline 0.838(0.024) 0.825(0.013) 0.797(0.014)
FOAL w/o meta 0.856(0.021) 0.842(0.013) 0.820(0.008)
FOAL + meta 0.873(0.019) 0.859(0.013) 0.840(0.007)

Outside Distribution Test Set
Baseline 0.840(0.094) 0.775(0.096) 0.803(0.045)

FOAL w/o meta 0.863(0.077) 0.801(0.085) 0.828(0.031)
FOAL + meta 0.880(0.065) 0.806(0.086) 0.846(0.027)

Table 2. Inside distribution v.s. outside distribution Hausdorff dis-
tance (mm) results for baseline model, proposed FOAL without
meta learning (FOAL w/o meta) and proposed FOAL with meta-
learning (FOAL + meta). Averaged Hausdorff distance with stan-
dard deviation are given among five-fold leave-one-disease-out
cross validation.

Method
LV RV MYO

Inside Distribution Test Set

Baseline 7.265(0.779) 8.782(0.422) 6.930(0.548)
FOAL w/o meta 6.417(0.627) 8.141(0.329) 6.286(0.469)
FOAL + meta 6.012(0.580) 7.731(0.303) 6.157(0.489)

Outside Distribution Test Set
Baseline 6.921(2.147) 10.173(1.436) 6.716(1.803)

FOAL w/o meta 6.158(1.727) 9.320(1.422) 6.107(1.506)
FOAL + meta 5.832(1.534) 9.378(1.417) 5.987(1.437)

4. Evaluation Methodology

In this section, we present evaluation methodology
on compared tracking methods: tracking performed us-
ing proposed dense motion tracking method (baseline
model), tracking performed using online optimization from
the baseline model without meta-learning (FOAL without
meta-learning), and tracking performed using online opti-
mization with meta-learning (FOAL with meta-learning).

4.1. Datasets and Evaluation Reference

In our study, two public CMR datasets were utilized:
ACDC dataset [1] and Kaggle Data Science Bowl Cardiac
Challenge Data [14]. All data acquisitions were performed
using breathholding so that only cardiac motion is observed
in the videos. It is arguably impossible to make independent
reference standard of the cardiac motion manually. To per-
form quantitative analysis, we utilized segmentation masks
as the independent reference standard. In the test dataset of
the study, we have heart segmentation references at both the
first frame and the evaluated reference frame. We generate
the segmentation masks via warping source segmentation to
the reference and compare it to the annotation using quanti-
tative indices defined in section 4.4.
ACDC Dataset: It includes short-axis view CMR videos
from 100 subjects (healthy and diseased cases). Each sub-
ject contains multiple slices (9-10) and each slice is a video
sequence covering at least one heart beat cycle. Overall,
there are 951 videos in this dataset. Each video provides
two heart segmentation masks: one for ED phase and one
for ES phase. The segmentation labels are: right ventri-
cle (RV) cavity, myocardium (MYO) and left ventricle (LV)
cavity. In addition, the 100 subjects are evenly divided into
5 categories with 20 subjects each. These are diagnosed
into: normal cases (NOR), systolic heart failure with infarc-
tion (MINF), dilated cardiomyopathy (DCM), hypertrophic
cardiomyopathy (HCM), abnormal right ventricle (ARV).
The CMR videos were collected over a 6 year period using
two MRI scanners of different main magnetic fields: 1.5 T
Siemens Area and 3.0 T Siemens Trio Tim (Siemens Medi-
cal Solutions, Germany) [1].
Kaggle Data Science Bowl Cardiac Challenge Dataset:
It includes short-axis view CMR videos from 1100 sub-
jects. Each subject contains multiple slices (8-10) and each
slice is a video sequence covering at least one cardiac cycle.
Overall, there are 11202 videos in this dataset. The origi-
nal challenge is to predict ejection fraction from the videos.
Ejection fraction ground truth was provided but irrelevant
to our study. The subjects have a large health and age range
and the images were collected from numerous sites [14].
However detailed information such as disease types is not
disclosed nor there are segmentation labels. Nevertheless
this large real clinical dataset can be used to train baseline
dense motion model.

4.2. Implementation Details

For image preprocessing, we normalized the gray value
to 0-255 and we applied center cropping and zero padding
to adjust image size to 192 × 192. All models are trained
and tested on a Tesla V100 workstation. The other imple-
mentation details are presented as following.
Dense motion tracker: As for the baseline model, we

5
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Figure 4. The bar-plots of inside distribution v.s. outside distribution Dice coefficient results for baseline model, proposed FOAL without
meta learning (FOAL w/o meta) and FOAL with meta-learning (FOAL with meta) for all five folds. Different diseases as outside distribu-
tions are presented in different columns. Top row is the inside distribution test and the bottom row is the outside distribution test. The data
of the outside distribution disease were excluded in the baseline training and meta-training. Averaged values and standard deviations are
presented.

adopted a lightweight (shallower and narrower) version of
the motion prediction network proposed by Qin et al. [25].
We halved the number of feature maps of each layer and the
number of layers. We set αs = 5 × 10−5 and βc = 10−6

in Eq. (4). The batch size is 20 images. We utilized Adam
optimizer with an initial learning rate 10−3.

Online optimizer: The number of update steps m = 3 and
the number of sampled pairs K = 24 in Algorithm 1. We
used Adam optimizer with learning rate α = 10−4.

Meta learner: We used the number of sampled videos
n = 2, the number of update steps m = 5, and the number
of sampled pairs K = 24 in the online optimization in Al-
gorithm 2. SGD optimizer is used for online optimizer with
a fixed learning rate α = 10−5. Adam optimizer is used for
the meta-learner with an initial learning rate β = 10−5 in
Algorithm 2. The meta training steps are 6,000.

4.3. Experiment Setups

Inside distribution vs Outside distribution: In data
driven machine learning, we always hypothesize that train-
ing samples and testing samples are drawn from the the
same distribution (inside distribution). The violation of the
hypothesis (outside distribution in the testing set) usually
gives poor model generalization on testing set. In this study,
we performed five fold cross validations in light of leaving-
one-disease-out method on the ACDC dataset. The idea be-
hind this is to separate inside distribution (Pin) and out-
side distribution (Pout) in terms of known diseases. Due
to the significant cardiac anatomy and dynamic differences

between different diseases, one disease category could be
viewed as an outside distribution compared to the other 4
diseases. For subjects in the inside distribution set, we sep-
arate them into train set (80×80% = 64 subjects) as p(Da)
and p(Dmeta), and test set (80 × 20% = 16 subjects) as
p(Dtinside

). 100% subjects in the outside distribution (20
subjects) set were used in the test set as p(Dtoutside

). In this
experiment, we trained and evaluated all three compared
methods on the ACDC dataset.
Fine-tuning and Generalization: We observed that the
proposed FOAL with meta-learning needs to train the meta-
learner from a baseline model. In the dense tracking con-
text, it is difficult to train the meta-learner from scratch.
However, our idea behind the FOAL is to enable any dense
tracker to boost their performance via online optimization
through meta-learning. To validate the generalizability, we
utilized Kaggle dataset that is without any meta informa-
tion. Specifically, we used the 30% subjects of the en-
tire Kaggle dataset as p(Da) to train the baseline model.
We then performed leave-one-disease-out cross-validation
on the ACDC dataset. Note that the Kaggle data are
only used for training the baseline model while p(Dmeta),
p(Dtinside

) and p(Dtoutside
) are all from ACDC with the

same split in the first experiment. In addition to the leave-
one-disease-out cross validation, starting from the baseline
model trained on Kaggle, we also evaluated a vanilla fine-
tuning model to FOAL with meta learning using 20% of the
entire ACDC dataset (100 × 20% = 20 subjects). 100%
or 10% of the rest ACDC data were used to train the two
models. All 5 categories were mixed.
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Note that the vanilla fine-tuning model used the same
training parameters as the baseline model except that we
changed the learning rate to 10−5.

4.4. Quantitative Metrics

We used the DICE coefficient (Eq. (8)) and Hausdorff
distance error (Eq. (9)) as quantitative metrics to evalu-
ate the compared tracking methods on segmentation masks.
The metrics are defined as:

DICE =
2× |SA ∩ SB |
|SA|+ |SB |

, (8)

where SA and SB are the segmentation mask A and the
segmentation mask B, respectively.

H(CA, CB) = max
a∈CA

{min
b∈CB

||a− b||2}, (9)

where a and b are the points on the contour A and the con-
tour B, respectively. || · ||2 is the Euclidean distance.

5. Results and Discussion

Inside distribution vs outside distribution on ACDC
data: The five-fold cross-validation experiment in this part
is described in Section 4.3. Fig. 4 depicts all three com-
pared methods (baseline model, FOAL without meta learn-
ing and FOAL with meta learning) in every cross-validation
with test samples drawn from inside or outside distribution.
Table 1 and Table 2 summarize Dice and Hausdorff dis-
tance results, respectively, for both inside and outside dis-
tributions averaged over the five folds. Fig. 4, Table 1 and
Table 2 show that the proposed FOAL with meta learning
approach outperforms the baseline tracker. For the inside
distribution test, our FOAL with meta learning increased
the Dice by 3.7% and reduced Hausdorff distance error by
1.0 mm on average. It is worth pointing out that even the
training and testing are within the same disease distribution,
the variations from patients, scanner types, scanner settings
etc. are still large, which can explain the reduced errors
from our method compared to the baseline. The largest ac-
curacy improvement occurs on MYO with 4.3% on Dice
for both inside distribution and outside distribution. On
the zero-shot (outside distribution) dataset, our FOAL with
meta learning achieves superior performance (e.g. on aver-
age 3.8% increase on Dice) compared to the baseline. In
addition, we observed that FOAL with meta learning out-
performs FOAL without meta learning consistently. This
demonstrates the effectiveness of the meta learning to en-
hance the adaptation capability of the online optimizer. This
result is not surprising because the online optimizer learns
how to adapt to a new video using offline meta training on
a large number of videos. This capability teaches the online
optimizer to find a sub-optimal path to a better solution than
the optimizer without meta learning can.

Fig. 5 depicts the warped segmentation results using
corresponding deformation fields which were generated by
baseline model and FOAL with meta-learning. In Fig. 5,
ED and ES frames in the video are also illustrated. We ob-
served a significant appearance and shape difference inside
the heart region. Refering to annotations, our method im-
proved LV (blue color) and MYO (green color) comparing
to the baseline method.

Table 3. Finetuning experiment with Kaggle baseline training
and ACDC inside and outside distribution test sets. Dice coeffi-
cients are averaged over the five-fold cross validation for baseline
model trained on Kaggle data (Baseline), fine-tunined model on
the ACDC dataset and FOAL with meta-learning (FOAL + meta)
on the ACDC dataset.

Method
LV RV MYO

Inside Distribution Test Set

Baseline 0.864(0.019) 0.847(0.013) 0.830(0.010)
Finetune 0.861(0.023) 0.850(0.012) 0.827(0.014)

FOAL + meta 0.880(0.017) 0.866(0.010) 0.847(0.009)
Outside Distribution Test Set

Baseline 0.874(0.070) 0.796(0.093) 0.841(0.024)
Finetune 0.870(0.070) 0.792(0.094) 0.833(0.031)

FOAL + meta 0.885(0.059) 0.804(0.091) 0.849(0.023)

Fine-tuning and Generalization: The experiment setup
in this part is discussed in Section 4.3. We compared the
baseline model trained on Kaggle data (Baseline), a model
fine-tuned on ACDC data from the baseline model (Fine-
tune) and our proposed FOAL with meta-learning from the
baseline model (FOAL+meta). Averaged Dice coefficients
among five folds for both inside distribution and outside
distribution can be found in Table 3. The baseline model
performs comparably well on both distributions except RV.
This might be because Kaggle dataset consists of a variety
of cardiac diseases and it has distribution overlaps with both
the inside distribution and the outside distribution datasets
but not for RV. Fine-tuning the model on the ACDC dataset
does not improve the performance. Comparing to the base-
line model, our method improved 2.7% on the inside distri-
bution test and 2.4% on the outside distribution test in terms
of Dice.

Table. 4 shows Dice results for vanilla fine-tuning model
and our FOAL with meta-learning using 10% or 100%
ACDC training samples. In contrast to the leave-one-
disease-out experiments, we did not isolate any disease in
the training samples in this experiment and the models were
tested on the entire ACDC test set. Vanilla fine-tuning
model made the performance slightly worse in the 10%
experiment while it slightly improved the accuracy in the
100% experiment comparing to the baseline model. Mean-
while, FOAL with meta-learning gave 1.68% and 1.71%
Dice increases on average for both 10% and 100% exper-
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Figure 5. Examples of the tracking results of the mask overlays warped from ED heart phase to ES heart phase. The warp operation utilized
deformation fields which were generated from the compared methods. From left to right: the starting frame (ED phase), the final frame (ES
phase), baseline model, FOAL with meta-learning and the expert mask annotations. Note that the red mask represents RV, green represents
MYO and blue represents LV.

iments, respectively. This result is consistent with above
five fold cross-validation test. In addition, Fig. 4 demon-
strates that our FOAL performs comparably well using a
small amount of data when it meta-trained from a strong
baseline model.

On average, our FOAL online optimization algorithm
requires 413 ± 8 milliseconds (mean±standard deviation),
which we find it completely durable for most current clini-
cal applications.

Table 4. Finetuning experiment with Kaggle basline training and
100% and 10% ACDC training dataset. Dice coefficients for base-
line model trained on Kaggle data (Baseline), vanilla fine-tuned
model on the ACDC (Finetune) and FOAL with meta-learning on
the ACDC (FOAL + meta) are reported.

Method
LV RV MYO

100% of ACDC training data

Baseline 0.865(0.103) 0.845(0.080) 0.829(0.065)
Finetune 0.865(0.104) 0.854(0.079) 0.831(0.063)
FOAL 0.881(0.086) 0.865(0.070) 0.845(0.051)

10% of ACDC training data
Baseline 0.865(0.103) 0.845(0.080) 0.829(0.065)
Finetune 0.864(0.104) 0.845(0.082) 0.824(0.073)

FOAL +meta 0.882(0.086) 0.863(0.071) 0.845(0.051)

6. Conclusion
In this work, we proposed a novel online adaptive learn-

ing method to minimize the domain mismatch problem in
the context of dense cardiac motion estimation. The online
adaptor is a gradient descent based optimizer which itself is
also optimized by a meta-learner. The meta-learning strat-
egy allows the online optimizer to perform a fast adaption
using a limited number of model updates and a small num-
ber of image pairs from a single video. The tracking perfor-
mance is significantly improved in all the zero-shot (outside
distribution comparing to the training samples) experimen-
tal setups. In addition, it is observed that the online adaptor
is able to minimize the tracking errors in the inside distribu-
tion tests. Experimental results demonstrate that our meth-
ods obtain superior performance compared to the model
without online adaption. The pilot study shows the fea-
sibility of applying tin the context of unsupervised dense
motion tracking or deformable image registration. The pro-
posed method provides a practical and elegant approach to
an often overlooked problem in existing art. We hope to
inspire more discussions and work to benefit other clinical
applications suffer from similar issues.
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