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Abstract

Inverse reinforcement learning (IRL) alleviates the practical challenges of reward de-
sign by extracting reward functions from approximately rational demonstrators. Despite
enjoying theoretical advantages, IRL has not received as much adoption as Behavior
Cloning (BC) which does not require repeatedly solving a complex RL inner problem
and is completely offline. Recently, a new class of IRL algorithms proposes an implicit
reward function parameterization which enables directly updating the Q function with-
out the RL inner loop or a reward model, making the algorithms more similar to BC,
more memory efficient, and potentially easier to scale. In this paper, we aim to un-
derstand how implicit IRL differs from explicit IRL. We analyze their distinct learning
dynamics, preference learning, and credit assignment mechanisms and suggest learning
a dynamics model can overcome the dataset challenges of prior model-free approaches.
We propose a new algorithm extending implicit IRL to the offline model-based setting
to leverage suboptimal datasets without requiring online training. Using the D4RL Mu-
JoCo benchmarks, we show that the proposed algorithm is competitive with explicit
model-based offline IRL in matching expert performance with only a few demonstra-
tions and enhances the performance of model-free baselines. Furthermore, our ablation
experiments support the learning dynamics analysis of entangled preference learning
and credit assignment mechanisms in implicit IRL and suggest a solution by prioritiz-
ing preference learning.

1 Introduction

Designing policies or reward functions that capture desired behavior is a very difficult task in prac-
tice. Failures of mis-specified reward functions are widely documented in the literature (Amodei
et al., 2016; Knox et al., 2023; Gao et al., 2023). Inverse reinforcement learning (IRL; Ng et al.,
2000) addresses this challenge by extracting reward functions from near-optimal or expert demon-
strations. The extracted rewards can be used for not only training agent policies but also gaining
insights into the demonstrated behavior for safety and scientific purposes (Bovenzi et al., 2024;
Joselowitz et al., 2024; Ke et al., 2025; Muelling et al., 2014). Compared to its imitation learning
counterpart Behavior Cloning (BC), IRL enjoys a number of theoretical advantages such as higher
demonstration efficiency, robustness to distribution shift, and the ability to learn from suboptimal
data (Spencer et al., 2021). However, in practice, BC has seen much wider adoption than IRL be-
cause of its simplicity and the ability to learn completely offline. How can we retain the advantages
of IRL but make it more simple and scalable as BC?

The main contributor to IRL’s complexity is its inherent bi-level structure as a result of modeling
the expert as (approximately) reward optimal; the learner then has to search in the space of rewards,



Reinforcement Learning Journal 2025

Figure 1: Illustration of preference learning and credit assignment mechanisms in explicit (left) and
implicit (middle and right) IRL. At the first rollout step (circle labeled "1"), the learner chooses two
actions a1 and a2 and simulates their effects forward. The action that takes or keeps the learner out
of the expert distribution is negatively reinforced, via a decrease in Q value (i.e., negative preference
learning) and backpropagation to preceding state-actions to assign negative credit. The action that
takes or keeps the learner in distribution is positively reinforced. Explicit IRL decouples preference
learning and credit assignment by training a separate reward model (circle labeled "R" in the left
panel). Implicit IRL couples preference learning and credit assignment via TD regularization (blue
arrow in middle and right panels).

each time solving a RL problem so that the estimated policy can be compared with the expert. Re-
cently, a new class of IRL algorithms starting from IQ-Learn proposes an alternative reward func-
tion parameterization by applying the inverse Bellman operator T̃ π on parameterized Q functions:
R(s, a) = T̃ π[Q](s, a) := Q(s, a) − γEP (s′|s,a)[V (s′)] (Garg et al., 2021). This implicit reward
parameterization allows bypassing the inner loop RL step because after each implicit reward update
step, the optimal policy can be extracted either in closed form or easily from the Q function (e.g., by
training an actor).

Theoretically, implicit IRL has been studied from the perspectives of reparameterization, distribu-
tion matching, and regularized behavior cloning (Garg et al., 2021; Sikchi et al., 2023; Al-Hafez
et al., 2023). The last perspective highlights its connection with BC and potential for simplified
implementation and better scalability by being "RL-free". However, these perspectives focus on
studying implicit IRL functionally (i.e., why it works) but not mechanistically (i.e., how it works),
which may be important for algorithmic design choices. We address the latter with a mechanistic
comparison of explicit and implicit IRL’s learning dynamics summarized in Fig. 1. We focus on
preference learning (i.e., how the agent learns to prefer some state-action pairs and avoid others) and
credit assignment (i.e., how such preferences are generalized and reinforced across the state-action
space) and highlight the differences in these two mechanisms between explicit and implicit IRL,
especially the entanglement of these mechanisms in the latter. The learning dynamics also suggests
datasets with certain branching structure are desirable.

Practically, implicit IRL has mostly been studied in the online model-free setting. Recently, Ma
et al. (2022); Sikchi et al. (2023) extended it to the offline model-free setting, allowing the agent
to learn from additional large non-expert datasets. Yet, these methods struggled when few expert
demonstrations exist in the offline dataset. Particularly, implicit IRL has, to our knowledge, not
been studied in the offline model-based setting, where explicit IRL methods have demonstrated
strong performance and robustness to dataset quality (Zeng et al., 2023; Chang et al., 2021). We
propose a new implicit IRL algorithm in this setting based on the framework of Wei et al. (2023),
which simultaneously trains the reward and an adversarial dynamics model. This simply requires
replacing the explicit reward model with an implicit one, and the resulting algorithm becomes a
straightforward extension of the offline model-free algorithm of Sikchi et al. (2023). Furthermore,
learning a dynamics model enables the agent to generate dataset with desired branching structures
from the mechanistic analysis and, for the analysis of implicit IRL algorithms, provides a new
intervention mode of model rollout designs in addition to changing offline data mixtures.
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Using the D4RL MuJoCo datasets, we show that the proposed algorithm is competitive with explicit
model-based offline IRL algorithms while enhancing the performance of model-free baselines. Our
ablation experiments validate the mechanistic explanations and contribute to better understanding of
implicit IRL algorithms and design choices.

2 Background

Markov decision process We denote an entropy-regularized Markov decision process with
(S,A, P,R, d0, γ, α) where S is the state space, A the action space, P (s′|s, a) ∈ ∆(S) the transi-
tion dynamics, R(s, a) ∈ R the reward function, d0 ∈ ∆(S) the initial state distribution, γ ∈ (0, 1)
the discount factor, α > 0 the temperature parameter or entropy regularization weight. We denote
the discounted occupancy measure as ρπP (s, a) =

∑∞
t=0 γ

t Pr(st = s, at = a) and the marginal
state-action distribution as dπP (s, a) = (1−γ)ρπP (s, a). The optimal policy maximizes expected dis-
counted cumulative rewards plus policy entropy: maxπ Ed0,P,π[

∑∞
t=0 γ

t(R(st, at)+αH[π(·|st)])],
where H[π(·|s)] := −

∑
a π(a|s) log π(a|s), and is known to have a softmax form (Haarnoja et al.,

2018).

Inverse reinforcement learning The goal of IRL is to estimate the reward function optimized by
an expert from a dataset of trajectories DE = {(s0:T , a0:T )Nn=1} generated from expert interaction
with the environment which we denote as dE . It is well known in the literature that IRL aims to
solve the following max-min optimization problem:

max
R∈R

min
π∈Π

(
− E(s,a)∼dπ [R(s, a)]− αH[π]

)
+ E(s,a)∼dE [R(s, a)]− βψ(R) , (1)

where H[π] := Es∼dπ [H[π(·|s)]], ψ : R|R| → R is a convex regularizer on the reward function,
and β > 0 is the regularization weight. This objective can be motivated from either the maximum
entropy (Ziebart et al., 2008) or maximum likelihood perspective (Zeng et al., 2022).

Implicit reward models Recently, a family of IRL algorithms proposed an implicit reward
parameterization using parameterized Q functions: R(s, a) = T̃ π[Q](s, a) := Q(s, a) −
γEP (s′|s,a)[V (s′)], where V (s) = α log

∑
a exp(Q(s, a)/α) (Garg et al., 2021). This method

bypasses the inner loop RL problem because, after each update, the optimal policy can be found
either easily or in closed form using π(a|s) ∝ exp(Q(s, a)/α). Depending on the chosen reward
regularizer, the algorithm can be understood as minimizing different divergence measures with the
expert via convex duality, which provides a principled way to incorporate non-expert offline datasets
(Sikchi et al., 2023).

Model-based offline IRL In model-based offline IRL, we estimate a dynamics model M(s′|s, a)
from expert data and optionally a non-expert transition dataset to help with reward learning. A key
concern is avoiding distribution shift caused by model inaccuracy. We adopt the framework of Wei
et al. (2023) which proposed a Bayesian model for simultaneous estimation of reward and dynamics
called RMIRL. Using a prior belief over dynamics model that enforces accuracy on the expert (and
optionally transition) dataset, a maximum a posteriori estimate of the reward and dynamics is the
solution to the following max-min optimization problem:

max
R∈R
M∈M

min
π∈Π

(
− E(s,a)∼dπ

M
[R(s, a)]− αH[π]

)
+ E(s,a,s′)∼dE [R(s, a) + λ logM(s′|s, a)]− βψ(R) ,

(2)

with λ ≫ 0. In words, the dynamics model is trained adversarially to the policy, which helps
mitigate distribution shift. With explicitly parameterized reward, we can view the inner loop as
solving a robust RL problem (Rigter et al., 2022).
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3 Model-based offline IRL with implicit rewards

In this section, we propose an extension of RMIRL by replacing the explicit reward model in (2)
with an implicit one, which we refer to as implicit-RMIRL (i-RMIRL). We set the regularizer as
the squared implicit reward value with penalty weight β > 0 on a mixture distribution of the expert
dataset and rollout data generated by the policy π and dynamics M from the previous iteration:
Dmix := DE

⋃
Dπ

M
. From RMIRL’s Bayesian view, the TD regularizer can be seen as a Gaussian

prior over the reward magnitude.

Using a semi-gradient update rule, the critic and dynamics objective functions are the following (see
derivation and practical algorithm in Appendix B):

max
Q∈Q

E(s,a)∼DE [Q(s, a)]− E(s,a)∼dπ
M
[Q(s, a)]︸ ︷︷ ︸

Preference learning

−βE(s,a,s′)∼Dmix

[
(Q(s, a)− γV (s′))2

]︸ ︷︷ ︸
Credit assignment

,

min
M∈M

E(s,a)∼dπ
M
[Q(s, a)]︸ ︷︷ ︸

Adversarial training

−λE(s,a,s′)∼DE [logM(s′|s, a)] .

(3)

The policy uses the SAC objective (Haarnoja et al., 2018) and is unchanged. The first two terms of
the critic objective performs preference learning by contrasting the values of expert and learner state-
action pairs, and the last term performs credit assignment by setting the values of all state-action
pairs to that of their subsequent γ-discounted state using a temporal difference (TD) regularization.
The critic objective has the same form as the RECOIL algorithm from Sikchi et al. (2023), which can
be seen as minimizing χ2 divergence with the expert distribution. The difference is the data mixture
used for contrastive learning and TD regularization is augmented by model-based samples. Without
the TD regularizer, the algorithm reduces to implicit behavior cloning (Florence et al., 2022).

4 Credit assignment analysis

The dominant theoretical view of implicit IRL is distribution matching with the expert dataset, which
upon convergence should have matching performance with the expert. However, the empirical per-
formance of these algorithms decreases substantially when only a few expert demonstrations exist in
the offline dataset (Sikchi et al., 2023). In contrast, explicit model-based offline IRL upholds strong
performance in the few-expert data setting (Zeng et al., 2023; Wei et al., 2023). In this section,
we analyze this phenomenon from a credit assignment perspective to understand how model-based
methods address this gap and shed light on algorithm design and dataset selection choices.

Learning dynamics & modes Our main argument, as summarized in Fig. 1, is that explicit and
implicit IRL differ in their learning dynamics, which alternates between two main steps. In the
preference learning step, the values of state-action pairs outside the expert distribution are decreased.
In the credit assignment step, the values of state-action pairs are propagated upstream to preceding
state-action pairs. The main difference between explicit and implicit IRL is that, whereas preference
learning and credit assignment are decoupled and performed by two different networks in explicit
IRL, these two steps are coupled and performed by a single network in implicit IRL. Furthermore,
implicit IRL assigns credit not by accumulating future rewards but rather by directly setting the value
of a state-action pair to (γ times) that of its subsequent state using TD regularization. Depending on
the TD regularization strength, preference learning may be inhibited by credit assignment in implicit
IRL (as we show later in the experiments), which does not occur in explicit IRL.

We also observe two possible credit assignment modes: a negative reinforcement mode and a posi-
tive reinforcement mode, which may occur in both explicit and implicit IRL. In the negative mode
(Fig. 1 left and middle), credit assignment is based on identifying key states from which good ac-
tions keep the learner in distribution while bad actions take the learner out of distribution, and the
learner policy learns to avoid bad actions. In the positive mode (Fig. 1 right), credit assignment relies
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Table 1: D4RL MuJoCo benchmark performance. We use 10 expert trajectories for RMIRL and
i-RMIRL and 20 expert trajectoreis for the rest. Each row reports the mean and standard deviation
of the inter-quartile mean of normalized returns over 3 random seeds. We use pink to highlight
settings that underperform substantially from expert level.

Environment Dataset BC IBC RECOIL RMIRL i-RMIRL (ours)
HalfCheetah Medium-expert 40.02± 16.98 29.31± 9.26 104.14± 0.93 106.67± 1.05 103.07± 0.80

HalfCheetah Medium-replay 40.02± 16.98 29.31± 9.26 77.80± 9.22 100.04± 1.49 94.50± 3.05

Hopper Medium-expert 89.76± 10.85 56.78± 6.31 98.92± 3.21 96.82± 5.30 96.74± 4.02

Hopper Medium-replay 89.76± 10.85 56.78± 6.31 81.28± 15.77 99.12± 0.30 100.18± 0.28

Walker2D Medium-expert 99.46± 0.22 78.35± 18.42 100.27± 0.20 99.14± 0.33 99.98± 0.32

Walker2D Medium-replay 99.46± 0.22 78.35± 18.42 99.95± 0.34 95.56± 8.15 99.23± 0.58

on states in the dataset self-correcting and returning to the expert distribution, so that in-distribution
state values at later time steps are propagated to corrective actions in earlier time steps, even if these
"good" actions and their associated state are not in the expert dataset. Intuitively, the positive mode
requires exploration and is less likely in general because we would expect only expert policies to
self-correct.

Design insights For offline IRL algorithms, the analysis suggests that having datasets exhibiting
the branching structure in the negative reinforcement mode or the self-correcting structure in the
positive reinforcement mode is crucial, albeit the latter is more challenging to acquire and verify.
One empirical observation that supports this argument is that adding more expert trajectories to the
offline dataset (without labeling them as experts) leads to better performance (Sikchi et al., 2023).

One way to overcome the offline dataset limitations is to train a dynamics model and rollout from
expert states to generate negative reinforcement data. This is similar to recent expert-reset based
methods to accelerate explicit IRL by avoiding solving a globally optimal policy (Swamy et al.,
2023).

Finally, one can address objective inhibition in implicit IRL by prioritizing preference learning and
reducing the TD regularization weight.

5 Experiments

We conduct experiments on the D4RL MuJoCo datasets to validate the proposed algorithm and
observations in the credit assignment analysis. Specifically, we aim to answer the following ques-
tions: 1) Does i-RMIRL improve over model-free baselines and is it competitive with SOTA
offline IRL algorithms? 2) How does coupled preference learning and credit assignment affect
i-RMIRL and whether prioritizing preference learning improves performance? 3) How do
positive and negative reinforcement modes affect i-RMIRL?

For Q1, we use RMIRL (Wei et al., 2023) as the SOTA comparison. Our main goal is to improve
upon RECOIL (Sikchi et al., 2023) which is model-free but able to learn from suboptimal data
using the same value and policy objective as (3). We also include BC and IBC (Florence et al.,
2022), which cannot learn from suboptimal offline data, as additional baselines for bottom-line
performance. We replace the Langevin action sampler in IBC with a SAC style policy (Haarnoja
et al., 2018) to unify implementations across all algorithms. RECOIL does not work well with the
SAC loss and instead uses advantage weighted regression (Peng et al., 2019). We use 10 expert
trajectories (10k steps) for RMIRL and i-RMIRL and 20 expert trajectories for the rest because they
become much more unstable with 10 expert trajectories. For RECOIL, RMIRL, and i-RMIRL, we
use a maximum of 1M steps from the suboptimal offline datasets. We discuss more implementation
details in Appendix C.

To answer Q2 and Q3, we conduct the following ablations. First, we study the preference learning-
credit assignment trade off by varying the TD regularization weight between [0.5, 1, 2]. Lower TD
weight prioritizes preference learning. To understand the credit assignment modes, we vary the
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Figure 2: Effects of TD weight and expert rollout ratio on normalized return IQM. Higher TD weight
generally hurts performance by inhibiting preference learning. Higher expert rollout ratio generally
improves performance by generating more (branching) negative reinforcement data. Lower expert
rollout ratio responds more negatively to high TD weight.

expert rollout ratio between [0, 0.5, 1], which refers to the ratio of expert states to initiate model
rollouts. Lower expert ratio prohibits negative reinforcement by reducing the amount of such data.

Overall performance We measure the overall performance of each algorithm using the inter-
quartile means (IQM; Agarwal et al. 2021) of normalized returns of 30 evaluation runs averaged
over 3 seeds. The results are listed in Table 1. All algorithms presented here use a single set of
hyperparameters. The best overall configuration for i-RMIRL is 0.5 expert rollout ratio and 0.5
TD regularization weight. Although BC underperforms in halfcheetah and hopper, their learning
curves in Appendix D suggests this is mainly due to performance decrements towards the end of
training, likely due to overfitting. RECOIL only underperforms with much higher return variance
on the medium-replay datasets of halfcheetah and hopper compared to RMIRL. i-RMIRL enhances
RECOIL’s performance particularly in these settings and reaches the performance of RMIRL.

Compute-wise, i-RMIRL has fewer parameters than RMIRL because it does not need a reward
model, however, it has longer training time because the critic objective in (3) requires more evalua-
tions of the Q networks for the preference learning loss (see Table 3 in Appendix C). This presents
a memory-time efficiency trade off. In preliminary experiments, we found that replacing the double
Q network with a single Q network achieves similar performance with significant time speed up in
some environments. But we did not fully investigate this choice and leave it to future work.

Ablations Fig. 2 shows the performances of i-RMIRL for different TD regularization weights
and expert rollout ratios on the medium-expert datasets. Higher TD weight substantially decreases
performance with TD weight of 2 leading to nearly zero performance in halfcheetah with 0 expert
ratio. This confirms our observation of the inhibition between preference learning and credit as-
signment, although the effect of TD inhibition is environment dependent. On the other hand, higher
expert rollout ratio generally improves performance for all TD weights, where even having all roll-
outs initiated from expert data at ratio 1 can lead to expert performance, and low expert rollout ratio
generally leads to decreased performance. The exception is walker with 0.5 TD weight. A likely
reason for this is overfitting to expert state distribution. Still, this highlights the role of the negative
reinforcement mode in the learning dynamics. However, this does not provide evidence for the ex-
istence or the effect of the positive reinforcement mode, which is more challenging to study and we
leave to future work. Finally, TD weight and expert ratio interact with each other with lower expert
ratio responding more negatively to high TD weight.

6 Conclusion

In this paper, we study implicit IRL from a credit assignment perspective. We first bring implicit
IRL to the offline, model-based setting by extending a prior SOTA algorithm. Having access to a
learned model allowed us to perform ablation experiments to validate our observations of the entan-
gled preference learning and credit assignment mechanisms in implicit IRL. Our results show that
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prioritizing preference learning over credit assignment benefits implicit IRL in the offline, model-
based setting, leading to matching performance with its explicit counterpart and the expert. Overall,
while implicit and explicit IRL each have its own pros and cons, with the former being simpler and
more memory efficient and the latter being less sensitive to hyperparameters, our results show that
both can excel when chosen for the right domains and properly tuned.

A limitation is we did not investigate in depth the positive reinforcement mode of the IRL learning
dynamics. However, its requirement on the offline dataset is much higher and may not be practical
in realistic settings. We also did not investigate alternative ways to decouple preference learning and
credit assignment, such as orthogonal gradient methods (Mao et al., 2024). We leave these to future
work.
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A Related work

In this section, we discuss prior works bridging IRL and BC. The common thread among all these
works is directly learning the Q function to bypass the inner RL problem. However, the exact ap-
proaches differed. In the linear reward setting, Klein et al. (2012) proposed estimating the successor
feature of the expert policy ΨπE

(s, a) such that behavior cloning can be formulated as classifi-
cation with a structured Q function: Qθ(s, a) = θ⊺ΨπE

(s, a) where θ ∈ R|S|×|A| is the linear
reward weights. However, the Monte Carlo successor feature estimator only worked for simple en-
vironments. Lee et al. (2019) extended this idea to more complex continuous environments using
deep RL based successor feature estimator and estimate the successor feature of the learner policy
Ψπ(s, a) instead of the expert policy ΨπE

(s, a). A similar algorithm was used by Filos et al. (2021)
for opponent modeling in multi-agent RL.

Another line of work trains neural network parameterized Q functions using the behavior cloning
loss: log π(a|s) = Q(s, a) − log

∑
ã exp(Q(s, ã)) under constraints or regularizations on the Q

function. Reddy et al. (2018) used this method to learn the "internal" dynamics of human users in
assistive applications, where the constraint is the squared TD error with a known reward function
averaged over uniformly sampled states and actions. Perhaps the first to identify the implicit reward
parameterization, Chan & van der Schaar (2021) used the same behavior cloning loss with regular-
ization on the squared implicit reward value averaged over the expert dataset. However, this direct
parameterization approach only worked for discrete actions. IQ-learn (Garg et al., 2021) and follow
up works (Al-Hafez et al., 2023; Sikchi et al., 2023) arguably extended this to the continuous action
setting using actor-critic algorithms along with regularizing the implicit reward on non-expert data
distribution which we showed is crucial. Sikchi et al. (2023) showed that implicit behavior cloning
(Florence et al., 2022) which substantially enhanced the expressivity of BC policies and performance
on robotics manipulation tasks using an energy-based model loss on expert-only data can be seen
as an instance of this family of algorithms with a different regularization. The maximum likelihood
and Bayesian formulations of (Zeng et al., 2022; Wei et al., 2023) can also be seen as attempts to
formulate IRL with the BC loss function. However, due to the maximum entropy RL constraint in
the formulation, the resulting algorithm resembled adversarial IRL (Ho & Ermon, 2016; Fu et al.,
2017) and required solving the inner loop RL problem.

B Model-based offline IRL derivation

In this section, we derive the implicit-RMIRL formulation in (2) and (3).

B.1 Bayesian formulation

Let us denote the dataset with DE = {τi:N}, τ = (s0:T , a0:T ) ∼ PE(τ). Starting from the Bayesian
formulation of Wei et al. (2023), we denote the posterior over reward and dynamics as:

P (R,M |D) ∝ P (D|R,M)P (R)P (M) =

N∏
i=1

T∏
t=0

π(ai,t|si,t, R,M)P (R)P (M) , (4)

where

P (R) ∝ exp(βψ(R)), P (M) ∝ exp

(
λ

N∑
i=1

T−1∑
t=0

logM(si,t+1|si,t, ai,t)

)
. (5)
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Inverse scaling by the dataset size NT , the MAP estimator maximizes the follow objective:

L(R,M) =
1

NT

N∑
i=1

T∑
t=0

[
log π(ai,t|si,t, R,M) + λ logM(si,t+1|si,t, ai,t) + βψ(R)

]
≈ E(s,a,s′)∼dE [log π(a|s,R,M) + λ logM(s′|s, a)] + β

NT
ψ(R) ,

(6)

under the constraint that π is the optimal entropy-regularized policy w.r.t. R,M :

s.t. π = argmax
π∈Π

Ed0,M,π

[ ∞∑
t=0

γt (R(st, at) + αH[π(·|st)])

]
. (7)

We now expand the likelihood term:

E(s,a)∼dE [log π(a|s,R,M)]

= (1− γ)EPE(τ)

[ ∞∑
t=0

γt log π(at|st, R,M)

]

= (1− γ)EPE(τ)

[ ∞∑
t=0

γt (Q(st, at)− V (st))

]

= (1− γ)

{
EPE(τ)

[ ∞∑
t=0

γt(R(st, at) + γEM(s′|st,at)[V (s′)])

]
− EPE(τ)

[ ∞∑
t=0

γtV (st)

]}

= (1− γ)

{
EPE(τ)

[ ∞∑
t=0

γtR(st, at)

]
+

∞∑
t=0

γtEdE(st,at)[γEM(s′|st,at)[V (s′)]]

− Ed0(s0)[V (s0)]−
∞∑
t=1

γtEdE(st)[V (st)]

}

= (1− γ)

{
EPE(τ)

[ ∞∑
t=0

γtR(st, at)

]
− Ed0(s0)[V (s0)]

+

∞∑
t=0

γt+1EdE(st,at)[EM(s′|st,at)[V (s′)]− EP (s′′|st,at)[V (s′′)]]

}
= EdE(s,a)[R(s, a)]− Edπ

M (s,a)[R(s, a)] + γEdE(s,a)[EM(s′|s,a)[V (s′)]− EP (s′′|s,a)[V (s′′)]]︸ ︷︷ ︸
T1

.

(8)

Wei et al. (2023); Zeng et al. (2023) showed that with a sufficiently accurate dynamics model M
under the expert data distribution, T1 can be ignored.

Thus, dropping T1 and adding the regularizations and the policy entropy objective, we get the final
RMIRL objective:

max
R∈R
M∈M

min
π∈Π

(
− E(s,a)∼dπ

M
[R(s, a)]− αH[π]

)
+ E(s,a,s′)∼dE [R(s, a) + λ logM(s′|s, a)]− β̃ψ(R) ,

(9)

where β̃ = β/(NT ).
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Algorithm 1 Implicit Robust Model-based IRL (i-RMIRL)

Require: Expert dataset DE , suboptimal dataset DS , dynamics model M(s′|s, a), critic Q(s, a),
actor π(a|s), expert rollout ratio κ, TD weight β, dynamics accuracy weight λ.

1: for k = 1 : K do
2: Rollout dynamics model M and policy π from s ∼ DES

κ and add to buffer
3: Sample expert state-action pairs from DE

4: Sample learner state-action pairs from buffer
5: Evaluate (13) and take an actor-critic gradient step
6: if k mod 1000 = 0 then
7: Sample (s, a, s′) ∼ DES for dynamics model training
8: Evaluate (14) and take a few dynamics gradient steps
9: end if

10: end for

B.2 Implicit reward parameterization

With the above formulation, it is easy to replace the explicit reward with an implicit one. Recall the
implicit reward is defined as:

R(s, a) = T̃ π[Q](s, a) := Q(s, a)− γEP (s′|s,a)[V (s′)] . (10)

Furthermore, we define the regularizer as the squared reward values averaged over the dataset
Dmix := DE

⋃
Dπ

M
, Dπ

M
∼ dπ

M
is the rollout dataset generated by policy π and dynamics M

from the previous iteration. The regularizer can be written as:

ψ(R) = E(s,a,s′)∼Dmix

[
(Q(s, a)− γV (s′))2

]
. (11)

This can be understood as independent Gaussian priors over R(s, a).

We can then write the implicit-RMIRL objective as:

max
Q∈Q
M∈M

min
π∈Π

(
− E(s,a,s′)∼dπ

M
[Q(s, a)− γV (s′)]− αH[π]

)
+ E(s,a,s′)∼dE [Q(s, a)− γV (s′)]

+ λE(s,a,s′)∼dE [logM(s′|s, a)]− β̃E(s,a,s′)∼Dmix

[
(Q(s, a)− γV (s′))2

]
.

(12)

B.3 Practical algorithm

Our algorithm 1 follows the design of Wei et al. (2023) where we alternate between actor-critic
training and dynamics model training. To construct dπM , we start model rollouts from a mixture
of expert-suboptimal datasets with expert ratio κ. We denote the κ-mixed dataset as DES

κ and raw
concatenation as DES . We then take a semi-gradient approach to update the critic, this reduces (12)
to:

max
Q∈Q

min
π∈Π

(
− E(s,a)∼dπ

M
[Q(s, a)]− αH[π]

)
+ E(s,a)∼dE [Q(s, a)]

− β̃E(s,a,s′)∼Dmix

[
(Q(s, a)− γV (s′))2

]
.

(13)

Then every 1000 steps, we train the dynamics model adversarially while maximizing log likelihood
on the combined expert-suboptimal dataset DES using the following objective:

min
M∈M

1

λ
E(s,a)∼dπ

M
[Q(s, a)]− E(s,a,s′)∼DES [logM(s′|s, a)] . (14)
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We use the branched rollout method from Rigter et al. (2022) to approximate dπM for adversarial
model training. We estimate the dynamics model gradient using REINFORCE with baseline:

∇ME(s,a)∼dπ
M
[Q(s, a)] ∝ ∇ME(s,a)∼dπ

M

[
γEs′∼M(·|s,a),a′∼π(a′|s′)[Q(s′, a′)]

]
= E(s,a,s′)∼dπ

M

[(
γEa′∼π(a′|s′)[Q(s′, a′)]− b(s, a)

)
∇M logM(s′|s, a)

]
,

(15)

where we set the baseline to b(s, a) = Q(s, a).

B.4 Connection with implicit behavior cloning

Depending on the learner rollout distribution, the objective (12) can and often does contain an IBC
term. To show this, let us assume the learner distribution can be expressed as a mixture of expert
and suboptimal state distributions dπM (s) = δdE(s) + (1− δ)dS(s), where δ ∈ (0, 1) is the mixing
weight. This can be achieved by rolling out the model from expert states as described in the previous
section. We can then write the semi-gradient contrastive loss as:

E(s,a)∼dE [Q(s, a)]− E(s,a)∼dπ
M
[Q(s, a)]

= δE(s,a)∼dE [Q(s, a)]− δEs∼dE ,a∼π[Q(s, a)] + (1− δ)E(s,a)∼dE [Q(s, a)]− (1− δ)Es∼dS ,a∼π[Q(s, a)]

= δ E(s,a)∼dE [log π(a|s)]︸ ︷︷ ︸
Behavior cloning

+(1− δ)

(
E(s,a)∼dE [Q(s, a)]− Es∼dS ,a∼π[Q(s, a)]

)
.

(16)

C Implementation details

We use our own implementations of all baseline algorithms, which as shown in Table 1 are tuned to
expert level whenever possible. Our implementations largely follow prior works and released code
bases. Policy, critic, and dynamics model architectures are shared between different algorithms. We
discuss necessary details below.

Dynamics model pre-training Following Janner et al. (2019), we use ensemble MLP dynamics
models with 3 hidden layers of 200 units each and SiLU activation. Each ensemble member predicts
a Gaussian distribution over the difference between the next state and the current state. More details
can be found in the appendix of Wei et al. (2023).

For pre-training, we sample 10 expert trajectories (a total of 10k steps) and combine with a maximum
of 1M steps from the offline dataset in the D4RL MuJoCo suit as the dynamics model training data.
Medium-replay datasets are on the order of 200k, which is much less than 1M. Wei et al. (2023) did
not add expert trajectories to the dynamics model training dataset, which is likely the reason why
their reported performances on the medium-replay datasets are not as good as ours. Our results show
that explicit model-based offline IRL performance could be much stronger than previously known.

Policy and critic We use the standard TanhNormal MLP policy with 3 hidden layers of 256 units
each and SiLU activation. RMIRL uses automatic entropy tuning. For all other algorithms, the
entropy coefficient α is fixed to 0.1. For RMIRL, i-RMIRL, and RECOIL, we use double Q network
by default. IBC uses a single Q network. All Q networks have the same architecture as the policy.

Gradient penalty We use the IBC gradient penalty to improve reward or critic training stability.
Applying gradient penalty to the critic in the case of i-RMIRL is more tricky than applying it to the
reward. Gradient norm target that’s too small hurts performance in certain environments. In those
cases, we remove the gradient penalty.
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Terminal state handling Several works have suggested properly handling terminal states can lead
to better performance in imitation learning (Kostrikov et al., 2018; Al-Hafez et al., 2023). We found
that using terminal state flags hurts stability for RMIRL and i-RMIRL. This is likely because in the
offline setting model error causes incorrect terminal flags.

IBC As mentioned in the main text, we train a policy to sample from the energy-based model
parameterized by the critic for IBC rather than using Langevin dynamics to sample actions. The
policy is trained simultaneously with the critic as in standard actor-critic training. The critic is
trained using the info-NCE loss function. For the negative samples, we draw 1 sample from the
policy and 3 samples uniformly at random from within the action bounds.

RMIRL Our RMIRL implementation makes several additional modifications to the original im-
plementation to enhance stability and performance. First, we apply the expert rollout ratio idea to
RMIRL and sample half of the rollout batch from expert data and the other half from offline data.
Second, instead of generating a separate rollout batch for each reward update step and then discard-
ing the data and updating the reward at a much slower scale of every 1000 policy steps, we follow
standard adversarial IRL algorithm designs and update the reward model using data from the policy
training buffer at a faster scale of every 10 policy steps (the reason for not updating every 1 policy
step is to reduce training time). For adversarial dynamics model training, rather than letting the
model rollout for all specified steps, we terminate rollouts when the max observation norm exceeds
a threshold (30 of the normalized observation scale) and refill with new samples from the expert-
offline buffer mixture to maintain a constant batch size. The latter two modifications prevent loss
blow-ups in the middle of training and performance collapse at the end of training.

RECOIL Our RECOIL implementation adopts two implementation tricks from the official im-
plementation. First, we train the policy using advantage-weighted regression (AWR) (Peng et al.,
2019) rather than the SAC loss because the latter did not work well in our initial experiments. The
AWR objective is defined as:

max
π∈Π

E(s,a)∼D

[
e(Q(s,a)−V (s))/α log π(a|s)

]
, V (s) = Ea∼π(·|s)[Q(s, a)] , (17)

where the value baseline doesn’t include the entropy bonus. We also used a l2 loss to regress
expert state-action pairs onto a target value. Different from the original implementation, for the
TD regularizer loss, we did not train a separate value network using implicit maximization. Rather,
we approximate state values by sampling actions from the policy as in standard actor-critic. We also
added a small action noise of 0.1 to the AWR loss to prevent overfitting dataset actions.

i-RMIRL Our i-RMIRL implementation adapts the implementation of RMIRL and RECOIL. Dif-
ferent from RECOIL, we did not use AWR policy loss or the l2 loss to regress expert state-action
pairs onto a target value. AWR could potentially make i-RMIRL even more stable than the SAC
loss, however, our goal here is to make the implementation consistent with RMIRL. Following Al-
Hafez et al. (2023), we clip the critic value to a range, which we set to [−1000, 1000]. To stabilize
training, we use cosine annealing of the critic learning rate from 3e− 4 to 1e− 5 on top of gradient
penalty. In preliminary experiments, we found that gradient penalty and double Q network were
not needed for halfcheetah and hopper. However, we did not systematically investigate the effects
of these hyperparameters. The best hyperparameters across all environments from our searches are
listed in Table 2.

Computational efficiency The number of parameters in total and per module for RMIRL and i-
RMIRL are listed in Table 3. i-RMIRL uses fewer parameters because it does not have a reward
model. However, the approximate training times for RMIRL and i-RMIRL are 2.97 hours and 3.75
hours respectively on a MacBook Pro M3 with 18 GB unified memory. This is because evaluating
the loss in (13) requires more queries of the double Q network than RMIRL due to the contrastive
terms and the gradient penalty is computed on the double Q network rather than a single reward
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Table 2: Best hyperparameters for i-RMIRL.

Hyparameter i-RMIRL

R
ol

lo
ut

model rollout expert ratio (κ) 0.5
model rollout batch size 5000

model rollout steps 20
model rollout every steps 250

model retain epochs 5

A
ct

or
-c

ri
tic

actor learning rate 3e-4
critic learning rate 3e-4

min critic learning rate 1e-5
critic warmup epochs 300

discount factor (γ) 0.99
soft target update parameter (τ ) 5e-3

temperature (α) 0.1
TD regularization (β) 0.5

batch size 256
training epochs 1000
steps per epoch 1000

D
yn

am
ic

s

# model networks 7
# elites 5

adv. rollout batch size 256
adv. loss weighting (1/λ) 0.05

learning rate 1e-4
adv. update steps 50

model. As mentioned before, removing gradient penalty and replacing the double Q network with a
single Q network can significantly speed up training. However, we did not fully validate the stability
of this setup in all environments.

Table 3: Model parameter counts in the halfcheetah environment.

Module RMIRL i-RMIRL
Actor 139,276 139,276
Critic 275,970 275,970

Dynamics 460,204 460,204
Reward 137,985 -

Total 1,013,435 875,450

D Additional results

Fig. 3 shows the normalized return IQM over the number of policy update steps for all algorithms
except IBC. We train BC for 200k steps, IBC and RECOIL for 500k steps, and others for 1000k
steps.
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Figure 3: Normalized return IQM vs. the number of thousand (K) policy update steps.


