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Summary
Inverse reinforcement learning (IRL) alleviates the practical challenges of reward design by

extracting reward functions from approximately rational demonstrators. Despite enjoying the-
oretical advantages, IRL has not received as much adoption as Behavior Cloning (BC) which
does not require repeatedly solving a complex RL inner problem and is completely offline.
Recently, a new class of IRL algorithms proposes an implicit reward function parameterization
which enables directly updating the Q function without the RL inner loop or a reward model,
making the algorithms more similar to BC, more memory efficient, and potentially easier to
scale. In this paper, we aim to understand how implicit IRL differs from explicit IRL. We
analyze their distinct learning dynamics, preference learning, and credit assignment mecha-
nisms and suggest learning a dynamics model can overcome the dataset challenges of prior
model-free approaches. We propose a new algorithm extending implicit IRL to the offline
model-based setting to leverage suboptimal datasets without requiring online training. Using
the D4RL MuJoCo benchmarks, we show that the proposed algorithm is competitive with ex-
plicit model-based offline IRL in matching expert performance with only a few demonstrations
and enhances the performance of model-free baselines. Furthermore, our ablation experiments
support the learning dynamics analysis of entangled preference learning and credit assignment
mechanisms in implicit IRL and suggest a solution by prioritizing preference learning.

Contribution(s)
1. This paper presents a new algorithm for model-based offline inverse reinforcement learning

with implicit reward models.
Context: Implicit reward models have been proposed to improve and simplify IRL in
the online and offline model-free settings (Garg et al., 2021; Sikchi et al., 2023; Al-Hafez
et al., 2023). However, they have not been applied in the offline model-based setting and
the associated design choices and learning dynamics are unknown.

2. This paper studies the difference between explicit and implicit IRL from a credit assignment
perspective. The main observation is that implicit IRL entangles preference learning and
credit assignment, and thus requires more delicate hyperparameter choices.
Context: Prior work such as Sikchi et al. (2023); Al-Hafez et al. (2023) have studied
implicit IRL from the distribution matching perspective. However, these works focus on the
functional role of implicit IRL (i.e., why it works) but not its mechanistic role (i.e., how it
works), such as its learning dynamics and how different algorithmic components interact.
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Abstract

Inverse reinforcement learning (IRL) alleviates the practical challenges of reward de-1
sign by extracting reward functions from approximately rational demonstrators. Despite2
enjoying theoretical advantages, IRL has not received as much adoption as Behavior3
Cloning (BC) which does not require repeatedly solving a complex RL inner problem4
and is completely offline. Recently, a new class of IRL algorithms proposes an implicit5
reward function parameterization which enables directly updating the Q function with-6
out the RL inner loop or a reward model, making the algorithms more similar to BC,7
more memory efficient, and potentially easier to scale. In this paper, we aim to un-8
derstand how implicit IRL differs from explicit IRL. We analyze their distinct learning9
dynamics, preference learning, and credit assignment mechanisms and suggest learning10
a dynamics model can overcome the dataset challenges of prior model-free approaches.11
We propose a new algorithm extending implicit IRL to the offline model-based setting12
to leverage suboptimal datasets without requiring online training. Using the D4RL Mu-13
JoCo benchmarks, we show that the proposed algorithm is competitive with explicit14
model-based offline IRL in matching expert performance with only a few demonstra-15
tions and enhances the performance of model-free baselines. Furthermore, our ablation16
experiments support the learning dynamics analysis of entangled preference learning17
and credit assignment mechanisms in implicit IRL and suggest a solution by prioritiz-18
ing preference learning.19

1 Introduction20

Designing policies or reward functions that capture desired behavior is a very difficult task in prac-21
tice. Failures of mis-specified reward functions are widely documented in the literature (Amodei22
et al., 2016; Knox et al., 2023; Gao et al., 2023). Inverse reinforcement learning (IRL; Ng et al.,23
2000) addresses this challenge by extracting reward functions from near-optimal or expert demon-24
strations. The extracted rewards can be used for not only training agent policies but also gaining25
insights into the demonstrated behavior for safety and scientific purposes (Bovenzi et al., 2024;26
Joselowitz et al., 2024; Ke et al., 2025; Muelling et al., 2014). Compared to its imitation learning27
counterpart Behavior Cloning (BC), IRL enjoys a number of theoretical advantages such as higher28
demonstration efficiency, robustness to distribution shift, and the ability to learn from suboptimal29
data (Spencer et al., 2021). However, in practice, BC has seen much wider adoption than IRL be-30
cause of its simplicity and the ability to learn completely offline. How can we retain the advantages31
of IRL but make it more simple and scalable as BC?32

The main contributor to IRL’s complexity is its inherent bi-level structure as a result of modeling33
the expert as (approximately) reward optimal; the learner then has to search in the space of rewards,34
each time solving a RL problem so that the estimated policy can be compared with the expert. Re-35
cently, a new class of IRL algorithms starting from IQ-Learn proposes an alternative reward func-36
tion parameterization by applying the inverse Bellman operator T̃ π on parameterized Q functions:37

1



Under review for RLC 2025, to be published in RLJ 2025

Figure 1: Illustration of preference learning and credit assignment mechanisms in explicit (left) and
implicit (middle and right) IRL. At the first rollout step (circle labeled "1"), the learner chooses two
actions a1 and a2 and simulates their effects forward. The action that takes or keeps the learner out
of the expert distribution is negatively reinforced, via a decrease in Q value (i.e., negative preference
learning) and backpropagation to preceding state-actions to assign negative credit. The action that
takes or keeps the learner in distribution is positively reinforced. Explicit IRL decouples preference
learning and credit assignment by training a separate reward model (circle labeled "R" in the left
panel). Implicit IRL couples preference learning and credit assignment via TD regularization (blue
arrow in middle and right panels).

R(s, a) = T̃ π[Q](s, a) := Q(s, a) − γEP (s′|s,a)[V (s′)] (Garg et al., 2021). This implicit reward38
parameterization allows bypassing the inner loop RL step because after each implicit reward update39
step, the optimal policy can be extracted either in closed form or easily from the Q function (e.g., by40
training an actor).41

Theoretically, implicit IRL has been studied from the perspectives of reparameterization, distribu-42
tion matching, and regularized behavior cloning (Garg et al., 2021; Sikchi et al., 2023; Al-Hafez43
et al., 2023). The last perspective highlights its connection with BC and potential for simplified44
implementation and better scalability by being "RL-free". However, these perspectives focus on45
studying implicit IRL functionally (i.e., why it works) but not mechanistically (i.e., how it works),46
which may be important for algorithmic design choices. We address the latter with a mechanistic47
comparison of explicit and implicit IRL’s learning dynamics summarized in Fig. 1. We focus on48
preference learning (i.e., how the agent learns to prefer some state-action pairs and avoid others) and49
credit assignment (i.e., how such preferences are generalized and reinforced across the state-action50
space) and highlight the differences in these two mechanisms between explicit and implicit IRL,51
especially the entanglement of these mechanisms in the latter. The learning dynamics also suggests52
datasets with certain branching structure are desirable.53

Practically, implicit IRL has mostly been studied in the online model-free setting. Recently, Ma54
et al. (2022); Sikchi et al. (2023) extended it to the offline model-free setting, allowing the agent55
to learn from additional large non-expert datasets. Yet, these methods struggled when few expert56
demonstrations exist in the offline dataset. Particularly, implicit IRL has, to our knowledge, not57
been studied in the offline model-based setting, where explicit IRL methods have demonstrated58
strong performance and robustness to dataset quality (Zeng et al., 2023; Chang et al., 2021). We59
propose a new implicit IRL algorithm in this setting based on the framework of Wei et al. (2023),60
which simultaneously trains the reward and an adversarial dynamics model. This simply requires61
replacing the explicit reward model with an implicit one, and the resulting algorithm becomes a62
straightforward extension of the offline model-free algorithm of Sikchi et al. (2023). Furthermore,63
learning a dynamics model enables the agent to generate dataset with desired branching structures64
from the mechanistic analysis and, for the analysis of implicit IRL algorithms, provides a new65
intervention mode of model rollout designs in addition to changing offline data mixtures.66

Using the D4RL MuJoCo datasets, we show that the proposed algorithm is competitive with explicit67
model-based offline IRL algorithms while enhancing the performance of model-free baselines. Our68
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ablation experiments validate the mechanistic explanations and contribute to better understanding of69
implicit IRL algorithms and design choices.70

2 Background71

Markov decision process We denote an entropy-regularized Markov decision process with72
(S,A, P,R, d0, γ, α) where S is the state space, A the action space, P (s′|s, a) ∈ ∆(S) the transi-73
tion dynamics, R(s, a) ∈ R the reward function, d0 ∈ ∆(S) the initial state distribution, γ ∈ (0, 1)74
the discount factor, α > 0 the temperature parameter or entropy regularization weight. We denote75
the discounted occupancy measure as ρπP (s, a) = Ed0,P,π[

∑∞
t=0 γ

t Pr(st = s, at = a)] and the76
marginal state-action distribution as dπP (s, a) = (1 − γ)ρπP (s, a). The optimal policy maximizes77
expected discounted cumulative rewards plus policy entropy: maxπ Ed0,P,π[

∑∞
t=0 γ

t(R(st, at) +78
αH[π(·|st)])], where H[π(·|s)] := −

∑
a π(a|s) log π(a|s), and is known to have a softmax form79

(Haarnoja et al., 2018).80

Inverse reinforcement learning The goal of IRL is to estimate the reward function optimized by81
an expert from a dataset of trajectories DE = {(s0:T , a0:T )Nn=1} generated from expert interaction82
with the environment which we denote as dE . It is well known in the literature that IRL aims to83
solve the following max-min optimization problem:84

max
R∈R

min
π∈Π

(
− E(s,a)∼dπ [R(s, a)]− αH[π]

)
+ E(s,a)∼dE [R(s, a)]− βψ(R) , (1)

where H[π] := Es∼dπ [H[π(·|s)]], ψ : R|R| → R is a convex regularizer on the reward function,85
and β > 0 is the regularization weight. This objective can be motivated from either the maximum86
entropy (Ziebart et al., 2008) or maximum likelihood perspective (Zeng et al., 2022).87

Implicit reward models Recently, a family of IRL algorithms proposed an implicit reward88
parameterization using parameterized Q functions: R(s, a) = T̃ π[Q](s, a) := Q(s, a) −89
γEP (s′|s,a)[V (s′)], where V (s) = α log

∑
a exp(Q(s, a)/α) (Garg et al., 2021). This method90

bypasses the inner loop RL problem because, after each update, the optimal policy can be found91
either easily or in closed form using π(a|s) ∝ exp(Q(s, a)/α). Depending on the chosen reward92
regularizer, the algorithm can be understood as minimizing different divergence measures with the93
expert via convex duality, which provides a principled way to incorporate non-expert offline datasets94
(Sikchi et al., 2023).95

Model-based offline IRL In model-based offline IRL, we estimate a dynamics model M(s′|s, a)96
from expert data and optionally a non-expert transition dataset to help with reward learning. A key97
concern is avoiding distribution shift caused by model inaccuracy. We adopt the framework of Wei98
et al. (2023) which proposed a Bayesian model for simultaneous estimation of reward and dynamics99
called RMIRL. Using a prior belief over dynamics model that enforces accuracy on the expert (and100
optionally transition) dataset, a maximum a posteriori estimate of the reward and dynamics is the101
solution to the following max-min optimization problem:102

max
R∈R
M∈M

min
π∈Π

(
− E(s,a)∼dπ

M
[R(s, a)]− αH[π]

)
+ E(s,a,s′)∼dE [R(s, a) + λ logM(s′|s, a)]− βψ(R) ,

(2)

with λ ≫ 0. In words, the dynamics model is trained adversarially to the policy, which helps103
mitigate distribution shift. With explicitly parameterized reward, we can view the inner loop as104
solving a robust RL problem (Rigter et al., 2022).105
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3 Model-based offline IRL with implicit rewards106

In this section, we propose an extension of RMIRL by replacing the explicit reward model in (2)107
with an implicit one, which we refer to as implicit-RMIRL (i-RMIRL). We set the regularizer as108
the squared implicit reward value with penalty weight β > 0 on a mixture distribution of the expert109
dataset and rollout data generated by the policy π and dynamics M from the previous iteration:110
Dmix := DE

⋃
Dπ

M
. From RMIRL’s Bayesian view, the TD regularizer can be seen as a Gaussian111

prior over the reward magnitude.112

Using a semi-gradient update rule, the critic and dynamics objective functions are the following (see113
derivation and practical algorithm in Appendix B):114

max
Q∈Q

E(s,a)∼DE [Q(s, a)]− E(s,a)∼dπ
M
[Q(s, a)]︸ ︷︷ ︸

Preference learning

−βE(s,a,s′)∼Dmix

[
(Q(s, a)− γV (s′))2

]︸ ︷︷ ︸
Credit assignment

,

min
M∈M

E(s,a)∼dπ
M
[Q(s, a)]︸ ︷︷ ︸

Adversarial training

−λE(s,a,s′)∼DE [logM(s′|s, a)] .

(3)

The policy uses the SAC objective (Haarnoja et al., 2018) and is unchanged. The first two terms of115
the critic objective performs preference learning by contrasting the values of expert and learner state-116
action pairs, and the last term performs credit assignment by setting the values of all state-action117
pairs to that of their subsequent γ-discounted state using a temporal difference (TD) regularization.118
The critic objective has the same form as the RECOIL algorithm from Sikchi et al. (2023), which can119
be seen as minimizing χ2 divergence with the expert distribution. The difference is the data mixture120
used for contrastive learning and TD regularization is augmented by model-based samples. Without121
the TD regularizer, the algorithm reduces to implicit behavior cloning (Florence et al., 2022).122

4 Credit assignment analysis123

The dominant theoretical view of implicit IRL is distribution matching with the expert dataset, which124
upon convergence should have matching performance with the expert. However, the empirical per-125
formance of these algorithms decreases substantially when only a few expert demonstrations exist in126
the offline dataset (Sikchi et al., 2023). In contrast, explicit model-based offline IRL upholds strong127
performance in the few-expert data setting (Zeng et al., 2023; Wei et al., 2023). In this section,128
we analyze this phenomenon from a credit assignment perspective to understand how model-based129
methods address this gap and shed light on algorithm design and dataset selection choices.130

Learning dynamics & modes Our main argument, as summarized in Fig. 1, is that explicit and131
implicit IRL differ in their learning dynamics, which alternates between two main steps. In the132
preference learning step, the values of state-action pairs outside the expert distribution are decreased.133
In the credit assignment step, the values of state-action pairs are propagated upstream to preceding134
state-action pairs. The main difference between explicit and implicit IRL is that, whereas preference135
learning and credit assignment are decoupled and performed by two different networks in explicit136
IRL, these two steps are coupled and performed by a single network in implicit IRL. Furthermore,137
implicit IRL assigns credit not by accumulating future rewards but rather by directly setting the value138
of a state-action pair to (γ times) that of its subsequent state using TD regularization. Depending on139
the TD regularization strength, preference learning may be inhibited by credit assignment in implicit140
IRL (as we show later in the experiments), which does not occur in explicit IRL.141

We also observe two possible credit assignment modes: a negative reinforcement mode and a posi-142
tive reinforcement mode, which may occur in both explicit and implicit IRL. In the negative mode143
(Fig. 1 left and middle), credit assignment is based on identifying key states from which good ac-144
tions keep the learner in distribution while bad actions take the learner out of distribution, and the145
learner policy learns to avoid bad actions. In the positive mode (Fig. 1 right), credit assignment relies146
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Table 1: D4RL MuJoCo benchmark performance. We use 10 expert trajectories for RMIRL and
i-RMIRL and 20 expert trajectoreis for the rest. Each row reports the mean and standard deviation
of the inter-quartile mean of normalized returns over 3 random seeds. We use pink to highlight
settings that underperform substantially from expert level.

Environment Dataset BC IBC RECOIL RMIRL i-RMIRL (ours)
HalfCheetah Medium-expert 40.02± 16.98 29.31± 9.26 104.14± 0.93 106.67± 1.05 103.07± 0.80

HalfCheetah Medium-replay 40.02± 16.98 29.31± 9.26 77.80± 9.22 100.04± 1.49 94.50± 3.05

Hopper Medium-expert 89.76± 10.85 56.78± 6.31 98.92± 3.21 96.82± 5.30 96.74± 4.02

Hopper Medium-replay 89.76± 10.85 56.78± 6.31 81.28± 15.77 99.12± 0.30 100.18± 0.28

Walker2D Medium-expert 99.46± 0.22 78.35± 18.42 100.27± 0.20 99.14± 0.33 99.98± 0.32

Walker2D Medium-replay 99.46± 0.22 78.35± 18.42 99.95± 0.34 95.56± 8.15 99.23± 0.58

on states in the dataset self-correcting and returning to the expert distribution, so that in-distribution147
state values at later time steps are propagated to corrective actions in earlier time steps, even if these148
"good" actions and their associated state are not in the expert dataset. Intuitively, the positive mode149
requires exploration and is less likely in general because we would expect only expert policies to150
self-correct.151

Design insights For offline IRL algorithms, the analysis suggests that having datasets exhibiting152
the branching structure in the negative reinforcement mode or the self-correcting structure in the153
positive reinforcement mode is crucial, albeit the latter is more challenging to acquire and verify.154
One empirical observation that supports this argument is that adding more expert trajectories to the155
offline dataset (without labeling them as experts) leads to better performance (Sikchi et al., 2023).156

One way to overcome the offline dataset limitations is to train a dynamics model and rollout from157
expert states to generate negative reinforcement data. This is similar to recent expert-reset based158
methods to accelerate explicit IRL by avoiding solving a globally optimal policy (Swamy et al.,159
2023).160

Finally, one can address objective inhibition in implicit IRL by prioritizing preference learning and161
reducing the TD regularization weight.162

5 Experiments163

We conduct experiments on the D4RL MuJoCo datasets to validate the proposed algorithm and164
observations in the credit assignment analysis. Specifically, we aim to answer the following ques-165
tions: 1) Does i-RMIRL improve over model-free baselines and is it competitive with SOTA166
offline IRL algorithms? 2) How does coupled preference learning and credit assignment affect167
i-RMIRL and whether prioritizing preference learning improves performance? 3) How do168
positive and negative reinforcement modes affect i-RMIRL?169

For Q1, we use RMIRL (Wei et al., 2023) as the SOTA comparison. Our main goal is to improve170
upon RECOIL (Sikchi et al., 2023) which is model-free but able to learn from suboptimal data171
using the same value and policy objective as (3). We also include BC and IBC (Florence et al.,172
2022), which cannot learn from suboptimal offline data, as additional baselines for bottom-line173
performance. We replace the Langevin action sampler in IBC with a SAC style policy (Haarnoja174
et al., 2018) to unify implementations across all algorithms. RECOIL does not work well with the175
SAC loss and instead uses advantage weighted regression (Peng et al., 2019). We use 10 expert176
trajectories (10k steps) for RMIRL and i-RMIRL and 20 expert trajectories for the rest because they177
become much more unstable with 10 expert trajectories. For RECOIL, RMIRL, and i-RMIRL, we178
use a maximum of 1M steps from the suboptimal offline datasets. We discuss more implementation179
details in Appendix C.180

To answer Q2 and Q3, we conduct the following ablations. First, we study the preference learning-181
credit assignment trade off by varying the TD regularization weight between [0.5, 1, 2]. Lower TD182
weight prioritizes preference learning. To understand the credit assignment modes, we vary the183
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Figure 2: Effects of TD weight and expert rollout ratio on normalized return IQM. Higher TD weight
generally hurts performance by inhibiting preference learning. Higher expert rollout ratio generally
improves performance by generating more (branching) negative reinforcement data. Lower expert
rollout ratio responds more negatively to high TD weight.

expert rollout ratio between [0, 0.5, 1], which refers to the ratio of expert states to initiate model184
rollouts. Lower expert ratio prohibits negative reinforcement by reducing the amount of such data.185

Overall performance We measure the overall performance of each algorithm using the inter-186
quartile means (Agarwal et al., 2021) of normalized returns of 30 evaluation runs averaged over187
3 seeds. The results are listed in Table 1. All algorithms presented here use a single set of hy-188
perparameters. The best overall configuration for i-RMIRL is 0.5 expert rollout ratio and 0.5 TD189
regularization weight. Although BC underperforms in halfcheetah and hopper, their learning curves190
in Appendix D suggests this is mainly due to performance decrements towards the end of train-191
ing, likely due to overfitting. RECOIL only underperforms with much higher return variance on192
the medium-replay datasets of halfcheetah and hopper compared to RMIRL. i-RMIRL enhances193
RECOIL’s performance particularly in these settings and reaches the performance of RMIRL.194

Compute-wise, i-RMIRL has fewer parameters than RMIRL because it does not need a reward195
model, however, it has longer training time because the critic objective in (3) requires more evalua-196
tions of the Q networks for the preference learning loss (see Table 3 in Appendix C). This presents197
a memory-time efficiency trade off. In preliminary experiments, we found that replacing the double198
Q network with a single Q network achieves similar performance with significant time speed up in199
some environments. But we did not fully investigate this choice and leave it to future work.200

Ablations Fig. 2 shows the performances of i-RMIRL for different TD regularization weights201
and expert rollout ratios on the medium-expert datasets. Higher TD weight substantially decreases202
performance with TD weight of 2 leading to nearly zero performance in halfcheetah with 0 expert203
ratio. This confirms our observation of the inhibition between preference learning and credit as-204
signment, although the effect of TD inhibition is environment dependent. On the other hand, higher205
expert rollout ratio generally improves performance for all TD weights, where even having all roll-206
outs initiated from expert data at ratio 1 can lead to expert performance, and low expert rollout ratio207
generally leads to decreased performance. The exception is walker with 0.5 TD weight. A likely208
reason for this is overfitting to expert state distribution. Still, this highlights the role of the negative209
reinforcement mode in the learning dynamics. However, this does not provide evidence for the ex-210
istence or the effect of the positive reinforcement mode, which is more challenging to study and we211
leave to future work. Finally, TD weight and expert ratio interact with each other with lower expert212
ratio responding more negatively to high TD weight.213

6 Conclusion214

In this paper, we study implicit IRL from a credit assignment perspective. We first bring implicit215
IRL to the offline, model-based setting by extending a prior SOTA algorithm. Having access to a216
learned model allowed us to perform ablation experiments to validate our observations of the entan-217
gled preference learning and credit assignment mechanisms in implicit IRL. Our results show that218
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prioritizing preference learning over credit assignment benefits implicit IRL in the offline, model-219
based setting, leading to matching performance with its explicit counterpart and the expert. Overall,220
while implicit and explicit IRL each have its own pros and cons, with the former being simpler and221
more memory efficient and the latter being less sensitive to hyperparameters, our results show that222
both can excel when chosen for the right domains and properly tuned.223

A limitation is we did not investigate in depth the positive reinforcement mode of the IRL learning224
dynamics. However, its requirement on the offline dataset is much higher and may not be practical225
in realistic settings. We also did not investigate alternative ways to decouple preference learning and226
credit assignment, such as orthogonal gradient methods (Mao et al., 2024). We leave these to future227
work.228
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320

A Related work321

In this section, we discuss prior works bridging IRL and BC. The common thread among all these322
works is directly learning the Q function to bypass the inner RL problem. However, the exact ap-323
proaches differed. In the linear reward setting, Klein et al. (2012) proposed estimating the successor324
feature of the expert policy ΨπE

(s, a) such that behavior cloning can be formulated as classifi-325
cation with a structured Q function: Qθ(s, a) = θ⊺ΨπE

(s, a) where θ ∈ R|S|×|A| is the linear326
reward weights. However, the Monte Carlo successor feature estimator only worked for simple en-327
vironments. Lee et al. (2019) extended this idea to more complex continuous environments using328
deep RL based successor feature estimator and estimate the successor feature of the learner policy329
Ψπ(s, a) instead of the expert policy ΨπE

(s, a). A similar algorithm was used by Filos et al. (2021)330
for opponent modeling in multi-agent RL.331

Another line of work trains neural network parameterized Q functions using the behavior cloning332
loss: log π(a|s) = Q(s, a) − log

∑
ã exp(Q(s, ã)) under constraints or regularizations on the Q333

function. Reddy et al. (2018) used this method to learn the "internal" dynamics of human users in334
assistive applications, where the constraint is the squared TD error with a known reward function335
averaged over uniformly sampled states and actions. Perhaps the first to identify the implicit reward336
parameterization, Chan & van der Schaar (2021) used the same behavior cloning loss with regular-337
ization on the squared implicit reward value averaged over the expert dataset. However, this direct338
parameterization approach only worked for discrete actions. IQ-learn (Garg et al., 2021) and follow339
up works (Al-Hafez et al., 2023; Sikchi et al., 2023) arguably extended this to the continuous action340
setting using actor-critic algorithms along with regularizing the implicit reward on non-expert data341
distribution which we showed is crucial. Sikchi et al. (2023) showed that implicit behavior cloning342
(Florence et al., 2022) which substantially enhanced the expressivity of BC policies and performance343
on robotics manipulation tasks using an energy-based model loss on expert-only data can be seen344
as an instance of this family of algorithms with a different regularization. The maximum likelihood345
and Bayesian formulations of (Zeng et al., 2022; Wei et al., 2023) can also be seen as attempts to346
formulate IRL with the BC loss function. However, due to the maximum entropy RL constraint in347
the formulation, the resulting algorithm resembled adversarial IRL (Ho & Ermon, 2016; Fu et al.,348
2017) and required solving the inner loop RL problem.349

B Model-based offline IRL derivation350

In this section, we derive the implicit-RMIRL formulation in (2) and (3).351

B.1 Bayesian formulation352

Let us denote the dataset with DE = {τi:N}, τ = (s0:T , a0:T ) ∼ PE(τ). Starting from the Bayesian353
formulation of Wei et al. (2023), we denote the posterior over reward and dynamics as:354

P (R,M |D) ∝ P (D|R,M)P (R)P (M) =

N∏
i=1

T∏
t=0

π(ai,t|si,t, R,M)P (R)P (M) , (4)

where355

P (R) ∝ exp(βψ(R)), P (M) ∝ exp

(
λ

N∑
i=1

T−1∑
t=0

logM(si,t+1|si,t, ai,t)

)
. (5)
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Inverse scaling by the dataset size NT , the MAP estimator maximizes the follow objective:356

L(R,M) =
1

NT

N∑
i=1

T∑
t=0

[
log π(ai,t|si,t, R,M) + λ logM(si,t+1|si,t, ai,t) + βψ(R)

]
≈ E(s,a,s′)∼dE [log π(a|s,R,M) + λ logM(s′|s, a)] + β

NT
ψ(R) ,

(6)

under the constraint that π is the optimal entropy-regularized policy w.r.t. R,M :357

s.t. π = argmax
π∈Π

Ed0,M,π

[ ∞∑
t=0

γt (R(st, at) + αH[π(·|st)])

]
. (7)

We now expand the likelihood term:358

E(s,a)∼dE [log π(a|s,R,M)]

= (1− γ)EPE(τ)

[ ∞∑
t=0

γt log π(at|st, R,M)

]

= (1− γ)EPE(τ)

[ ∞∑
t=0

γt (Q(st, at)− V (st))

]

= (1− γ)

{
EPE(τ)

[ ∞∑
t=0

γt(R(st, at) + γEM(s′|st,at)[V (s′)])

]
− EPE(τ)

[ ∞∑
t=0

γtV (st)

]}

= (1− γ)

{
EPE(τ)

[ ∞∑
t=0

γtR(st, at)

]
+

∞∑
t=0

γtEdE(st,at)[γEM(s′|st,at)[V (s′)]]

− Ed0(s0)[V (s0)]−
∞∑
t=1

γtEdE(st)[V (st)]

}

= (1− γ)

{
EPE(τ)

[ ∞∑
t=0

γtR(st, at)

]
− Ed0(s0)[V (s0)]

+

∞∑
t=0

γt+1EdE(st,at)[EM(s′|st,at)[V (s′)]− EP (s′′|st,at)[V (s′′)]]

}
= EdE(s,a)[R(s, a)]− Edπ

M (s,a)[R(s, a)] + γEdE(s,a)[EM(s′|s,a)[V (s′)]− EP (s′′|s,a)[V (s′′)]]︸ ︷︷ ︸
T1

.

(8)

Wei et al. (2023); Zeng et al. (2023) showed that with a sufficiently accurate dynamics model M359
under the expert data distribution, T1 can be ignored.360

Thus, dropping T1 and adding the regularizations and the policy entropy objective, we get the final361
RMIRL objective:362

max
R∈R
M∈M

min
π∈Π

(
− E(s,a)∼dπ

M
[R(s, a)]− αH[π]

)
+ E(s,a,s′)∼dE [R(s, a) + λ logM(s′|s, a)]− β̃ψ(R) ,

(9)

where β̃ = β/(NT ).363
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Algorithm 1 Implicit Robust Model-based IRL (i-RMIRL)

Require: Expert dataset DE , suboptimal dataset DS , dynamics model M(s′|s, a), critic Q(s, a),
actor π(a|s), expert rollout ratio κ, TD weight β, dynamics accuracy weight λ.

1: for k = 1 : K do
2: Rollout dynamics model M and policy π from s ∼ DES

κ and add to buffer
3: Sample expert state-action pairs from DE

4: Sample learner state-action pairs from buffer
5: Evaluate (13) and take an actor-critic gradient step
6: if k mod 1000 = 0 then
7: Sample (s, a, s′) ∼ DES for dynamics model training
8: Evaluate (14) and take a few dynamics gradient steps
9: end if

10: end for

B.2 Implicit reward parameterization364

With the above formulation, it is easy to replace the explicit reward with an implicit one. Recall the365
implicit reward is defined as:366

R(s, a) = T̃ π[Q](s, a) := Q(s, a)− γEP (s′|s,a)[V (s′)] . (10)

Furthermore, we define the regularizer as the squared reward values averaged over the dataset367
Dmix := DE

⋃
Dπ

M
, Dπ

M
∼ dπ

M
is the rollout dataset generated by policy π and dynamics M368

from the previous iteration. The regularizer can be written as:369

ψ(R) = E(s,a,s′)∼Dmix

[
(Q(s, a)− γV (s′))2

]
. (11)

This can be understood as independent Gaussian priors over R(s, a).370

We can then write the implicit-RMIRL objective as:371

max
Q∈Q
M∈M

min
π∈Π

(
− E(s,a,s′)∼dπ

M
[Q(s, a)− γV (s′)]− αH[π]

)
+ E(s,a,s′)∼dE [Q(s, a)− γV (s′)]

+ λE(s,a,s′)∼dE [logM(s′|s, a)]− β̃E(s,a,s′)∼Dmix

[
(Q(s, a)− γV (s′))2

]
.

(12)

B.3 Practical algorithm372

Our algorithm 1 follows the design of Wei et al. (2023) where we alternate between actor-critic373
training and dynamics model training. To construct dπM , we start model rollouts from a mixture374
of expert-suboptimal datasets with expert ratio κ. We denote the κ-mixed dataset as DES

κ and raw375
concatenation as DES . We then take a semi-gradient approach to update the critic, this reduces (12)376
to:377

max
Q∈Q

min
π∈Π

(
− E(s,a)∼dπ

M
[Q(s, a)]− αH[π]

)
+ E(s,a)∼dE [Q(s, a)]

− β̃E(s,a,s′)∼Dmix

[
(Q(s, a)− γV (s′))2

]
.

(13)

Then every 1000 steps, we train the dynamics model adversarially while maximizing log likelihood378
on the combined expert-suboptimal dataset DES using the following objective:379

min
M∈M

1

λ
E(s,a)∼dπ

M
[Q(s, a)]− E(s,a,s′)∼DES [logM(s′|s, a)] . (14)
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We use the branched rollout method from Rigter et al. (2022) to approximate dπM for adversarial380
model training. We estimate the dynamics model gradient using REINFORCE with baseline:381

∇ME(s,a)∼dπ
M
[Q(s, a)] ∝ ∇ME(s,a)∼dπ

M

[
γEs′∼M(·|s,a),a′∼π(a′|s′)[Q(s′, a′)]

]
= E(s,a,s′)∼dπ

M

[(
γEa′∼π(a′|s′)[Q(s′, a′)]− b(s, a)

)
∇M logM(s′|s, a)

]
,

(15)

where we set the baseline to b(s, a) = Q(s, a).382

B.4 Connection with implicit behavior cloning383

Depending on the learner rollout distribution, the objective (12) can and often does contain an IBC384
term. To show this, let us assume the learner distribution can be expressed as a mixture of expert385
and suboptimal state distributions dπM (s) = δdE(s) + (1− δ)dS(s), where δ ∈ (0, 1) is the mixing386
weight. This can be achieved by rolling out the model from expert states as described in the previous387
section. We can then write the semi-gradient contrastive loss as:388

E(s,a)∼dE [Q(s, a)]− E(s,a)∼dπ
M
[Q(s, a)]

= δE(s,a)∼dE [Q(s, a)]− δEs∼dE ,a∼π[Q(s, a)] + (1− δ)E(s,a)∼dE [Q(s, a)]− (1− δ)Es∼dS ,a∼π[Q(s, a)]

= δ E(s,a)∼dE [log π(a|s)]︸ ︷︷ ︸
Behavior cloning

+(1− δ)

(
E(s,a)∼dE [Q(s, a)]− Es∼dS ,a∼π[Q(s, a)]

)
.

(16)

C Implementation details389

We use our own implementations of all baseline algorithms, which as shown in Table 1 are tuned to390
expert level whenever possible. Our implementations largely follow prior works and released code391
bases. Policy, critic, and dynamics model architectures are shared between different algorithms. We392
discuss necessary details below.393

Dynamics model pre-training Following Janner et al. (2019), we use ensemble MLP dynamics394
models with 3 hidden layers of 200 units each and SiLU activation. Each ensemble member predicts395
a Gaussian distribution over the difference between the next state and the current state. More details396
can be found in the appendix of Wei et al. (2023).397

For pre-training, we sample 10 expert trajectories (a total of 10k steps) and combine with a maximum398
of 1M steps from the offline dataset in the D4RL MuJoCo suit as the dynamics model training data.399
Medium-replay datasets are on the order of 200k, which is much less than 1M. Wei et al. (2023) did400
not add expert trajectories to the dynamics model training dataset, which is likely the reason why401
their reported performances on the medium-replay datasets are not as good as ours. Our results show402
that explicit model-based offline IRL performance could be much stronger than previously known.403

Policy and critic We use the standard TanhNormal MLP policy with 3 hidden layers of 256 units404
each and SiLU activation. RMIRL uses automatic entropy tuning. For all other algorithms, the405
entropy coefficient α is fixed to 0.1. For RMIRL, i-RMIRL, and RECOIL, we use double Q network406
by default. IBC uses a single Q network. All Q networks have the same architecture as the policy.407

Gradient penalty We use the IBC gradient penalty to improve reward or critic training stability.408
Applying gradient penalty to the critic in the case of i-RMIRL is more tricky than applying it to the409
reward. Gradient norm target that’s too small hurts performance in certain environments. In those410
cases, we remove the gradient penalty.411
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Terminal state handling Several works have suggested properly handling terminal states can lead412
to better performance in imitation learning (Kostrikov et al., 2018; Al-Hafez et al., 2023). We found413
that using terminal state flags hurts stability for RMIRL and i-RMIRL. This is likely because in the414
offline setting model error causes incorrect terminal flags.415

IBC As mentioned in the main text, we train a policy to sample from the energy-based model416
parameterized by the critic for IBC rather than using Langevin dynamics to sample actions. The417
policy is trained simultaneously with the critic as in standard actor-critic training. The critic is418
trained using the info-NCE loss function. For the negative samples, we draw 1 sample from the419
policy and 3 samples uniformly at random from within the action bounds.420

RMIRL Our RMIRL implementation makes several additional modifications to the original im-421
plementation to enhance stability and performance. First, we apply the expert rollout ratio idea to422
RMIRL and sample half of the rollout batch from expert data and the other half from offline data.423
Second, instead of generating a separate rollout batch for each reward update step and then discard-424
ing the data and updating the reward at a much slower scale of every 1000 policy steps, we follow425
standard adversarial IRL algorithm designs and update the reward model using data from the policy426
training buffer at a faster scale of every 10 policy steps (the reason for not updating every 1 policy427
step is to reduce training time). For adversarial dynamics model training, rather than letting the428
model rollout for all specified steps, we terminate rollouts when the max observation norm exceeds429
a threshold (30 of the normalized observation scale) and refill with new samples from the expert-430
offline buffer mixture to maintain a constant batch size. The latter two modifications prevent loss431
blow-ups in the middle of training and performance collapse at the end of training.432

RECOIL Our RECOIL implementation adopts two implementation tricks from the official im-433
plementation. First, we train the policy using advantage-weighted regression (AWR) (Peng et al.,434
2019) rather than the SAC loss because the latter did not work well in our initial experiments. The435
AWR objective is defined as:436

max
π∈Π

E(s,a)∼D

[
e(Q(s,a)−V (s))/α log π(a|s)

]
, V (s) = Ea∼π(·|s)[Q(s, a)] , (17)

where the value baseline doesn’t include the entropy bonus. We also used a l2 loss to regress437
expert state-action pairs onto a target value. Different from the original implementation, for the438
TD regularizer loss, we did not train a separate value network using implicit maximization. Rather,439
we approximate state values by sampling actions from the policy as in standard actor-critic. We also440
added a small action noise of 0.1 to the AWR loss to prevent overfitting dataset actions.441

i-RMIRL Our i-RMIRL implementation adapts the implementation of RMIRL and RECOIL. Dif-442
ferent from RECOIL, we did not use AWR policy loss or the l2 loss to regress expert state-action443
pairs onto a target value. AWR could potentially make i-RMIRL even more stable than the SAC444
loss, however, our goal here is to make the implementation consistent with RMIRL. Following Al-445
Hafez et al. (2023), we clip the critic value to a range, which we set to [−1000, 1000]. To stabilize446
training, we use cosine annealing of the critic learning rate from 3e− 4 to 1e− 5 on top of gradient447
penalty. In preliminary experiments, we found that gradient penalty and double Q network were448
not needed for halfcheetah and hopper. However, we did not systematically investigate the effects449
of these hyperparameters. The best hyperparameters across all environments from our searches are450
listed in Table 2.451

Computational efficiency The number of parameters in total and per module for RMIRL and i-452
RMIRL are listed in Table 3. i-RMIRL uses fewer parameters because it does not have a reward453
model. However, the approximate training times for RMIRL and i-RMIRL are 2.97 hours and 3.75454
hours respectively on a MacBook Pro M3 with 18 GB unified memory. This is because evaluating455
the loss in (13) requires more queries of the double Q network than RMIRL due to the contrastive456
terms and the gradient penalty is computed on the double Q network rather than a single reward457
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Table 2: Best hyperparameters for i-RMIRL.

Hyparameter i-RMIRL

R
ol

lo
ut

model rollout expert ratio (κ) 0.5
model rollout batch size 5000

model rollout steps 20
model rollout every steps 250

model retain epochs 5

A
ct

or
-c

ri
tic

actor learning rate 3e-4
critic learning rate 3e-4

min critic learning rate 1e-5
critic warmup epochs 300

discount factor (γ) 0.99
soft target update parameter (τ ) 5e-3

temperature (α) 0.1
TD regularization (β) 0.5

batch size 256
training epochs 1000
steps per epoch 1000

D
yn

am
ic

s

# model networks 7
# elites 5

adv. rollout batch size 256
adv. loss weighting (1/λ) 0.05

learning rate 1e-4
adv. update steps 50

model. As mentioned before, removing gradient penalty and replacing the double Q network with a458
single Q network can significantly speed up training. However, we did not fully validate the stability459
of this setup in all environments.460

Table 3: Model parameter counts in the halfcheetah environment.

Module RMIRL i-RMIRL
Actor 139,276 139,276
Critic 275,970 275,970

Dynamics 460,204 460,204
Reward 137,985 -

Total 1,013,435 875,450

D Additional results461

Fig. 3 shows the normalized return IQM over the number of policy update steps for all algorithms462
except IBC. We train BC for 200k steps, IBC and RECOIL for 500k steps, and others for 1000k463
steps.464
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Figure 3: Normalized return IQM vs. the number of thousand (K) policy update steps.
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