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Abstract

Reusing existing modules in novel settings via compositional generalization is the1

hallmark of intelligent behavior. While much research is dedicated to studying how2

to enable AI systems to learn and reuse modules effectively for better performance3

and increased computational efficiency, there is still a lack of consensus on which4

modules the brain leverages and how to identify them. To shed some light on this5

matter, here we investigate the modularity principles the brain uses to control the6

body efficiently. After briefly revisiting established models of domain-specific7

spatial and temporal motor modularity, we introduce a new, unifying computational8

model of compositional generalization in the motor system based on the Canonical9

Polyadic Decomposition (CPD) model. We show that the model — which leverages10

gain modulation — can simultaneously capture modularity in the spatial, temporal,11

and action domains with a lower number of parameters than established models.12

Furthermore, we show that the geometrical organization of the action modules13

the model isolates is not random but describes a smooth manifold that allows the14

zero-shot learning of muscle patterns for untrained movements. Taken together,15

our results suggest that the decomposition proposed here represents an effective16

compositional strategy the brain could leverage to control complex movements17

while saving computational resources.18

1 Introduction19

A large body of research is dedicated to studying the properties of compositional generalization of20

AI systems (e.g., Schug et al. [2023], Lippl and Stachenfeld [2024], Hupkes et al. [2020], Lake and21

Baroni [2018]), with the ultimate goal of encouraging intelligent behavior through the flexible reuse22

of previously learned modules (e.g., Duan et al. [2023], Liu et al. [2023], Berg et al. [2023]). But23

how does the brain accomplish compositional generalization? Can we identify the modules the brain24

uses to save computational resources and boost generalization? To take a step in this direction, in this25

work, we investigate generalization in the motor system.26

Converging behavioral [Tresch et al., 1999, Ivanenko et al., 2004] and neurophysiological [Takei27

et al., 2017, Levine et al., 2014] evidence suggests that the motor system employs spatial [Tresch28

et al., 1999, Levine et al., 2014, Takei et al., 2017] and temporal [Ivanenko et al., 2004, Hart and29

Giszter, 2010, Takei et al., 2017] modules to simplify the control of movement. These modules30

are fixed across movements and allow the reuse of the spatiotemporal muscle activity patterns that31

are successful at moving the body purposefully. The adoption of this strategy relieves the motor32

system from the burden of computing such spatiotemporal patterns de novo for each movement and33

reduces the problem of computing appropriate muscle activation commands for new movements34

to the determination of scaling weights for such modules. If the motor system produces reaching35

movements by flexibly combining such fixed building blocks, one would expect activity patterns in36
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higher motor centers that largely invariant across reaching trajectories. Interestingly, this is consistent37

with what has been observed in primary motor cortex [Churchland et al., 2012], where the population38

dynamics tend to exhibit rotational structure that is invariant across conditions.
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Figure 1: Schematics of decomposition models. Both the classical decomposition models (A-C) and
the one proposed in this work (D) can be interpreted as simple linear feedforward neural networks.
The space-centric model (A) is only able to capture the spatial invariances experimentally observed
in the spatio-temporal muscle activity patterns; this is achieved at the cost of increasing the model
complexity in the temporal domain where the model assumes the existence of action-specific motor
commands. The time-centric model (B) is only able to capture the temporal invariances; this is
achieved at the cost of increasing the model complexity in the spatial domain, where the model
assumes the existence of action-and-muscle-specific weights. The space-by-time decomposition
model (C) is able to capture both spatial and temporal invariances; this is achieved at the cost of
increasing the complexity at the network-level, as the model introduces an additional hidden layer
that can completely change the routing of the motor commands to the downstream layers. The
gain-modulated network model (D) can also capture both spatial and temporal invariances without
introducing network-level complexity; the model assumes that new actions can be generated by only
modulating the gains of the input neurons.

39

Despite the large body of evidence supporting the existence of both spatial and temporal motor mod-40

ules, the classical methods used to extract such modules from muscle activity signals — Non-negative41

Matrix Factorization and Principal Component Analysis — are intrinsically matrix decomposition42

methods and can only identify either spatial or temporal motor modules, but not both [Chiovetto et al.,43

2022]. This leads to potentially overparameterized models that, rather than providing a plausible44

account of the mechanism the brain uses to simplify the control of movement, capture the regularities45
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Figure 2: Decomposition of muscle activity of representative participant. (A) Space-centric
decomposition into spatial modules (left) and time-dependent coefficients. (B) Time-centric de-
composition into temporal modules (right) and space-dependent coefficients. (C) Space-by-time
decomposition into spatial modules (left), temporal modules (right), and action coefficients (center);
(D) Canonical polyadic decomposition into spatial (left), temporal (right) and action (center) modules.
Note: the time-varying coefficients in (A) and the temporal modules in (B), (C), and (D) can be
interpreted as motor commands sent to the muscles from higher motor centers.

in a single target domain while increasing the computational burden in the non-target domain. For46

example, models based on spatial modules [Tresch et al., 1999] simplify the control problem in the47

spatial (i.e., muscle) domain at the cost of complicating it in the temporal domain, where they assume48

the existence of time-varying coefficients that are specific to each action (Fig. 1A). According to this49

view, to specify the temporal activation patterns for a new movement, the motor system would need50

to find a way to determine a completely new waveform for each spatial module — in general, not a51

trivial problem. Likewise, models based on temporal modules [Ivanenko et al., 2004] assume the52

existence of muscle- and action-specific coefficients that need to be computed for every movement53

(Fig. 1B).54

To meet the challenge of simultaneous identification of spatial and temporal modules, we propose a55

decomposition of muscle signals based on the Canonical Polyadic Decomposition (CPD) [Harshman56

et al., 1970] — a higher-order tensor decomposition method. The associated model factorizes57

muscle activity into fixed spatial and temporal modules that are flexibly modulated by space- and58

time-independent coefficients, depending on the movement to perform (Fig. 1D).59

2 Modularity models for the space, time, and action domains60

If the motor system generates muscle activation commands employing both spatial and temporal61

modules, it should be possible to approximate the muscle activity signals y recorded from muscle m62

during movement θ at time t as the sum of the product of the contributions of Ns spatial modules ai63

and temporal modules ui, weighted by action-coding coefficients bi. That is:64

y(m, θ, t) ≈
Ns∑
i=1

ai(m) · bi(θ) · ui(t) (1)
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Figure 3: Observed and reconstructed action manifold of gain-modulated network model (A)
Observed factors. (B) Factors predicted with radial basis function network.

To estimate the parameters of this model, we organize the muscle activations y(m, θ, t) into a third-65

order tensor Y ∈ IRNmXNθXNT and fit a non-negative Canonical Polyadic Decomposition (CPD)66

model [Harshman et al., 1970], which approximates the original tensor as the sum of Ns rank-one67

tensors, with the non-negative randomized hierarchical alternating least squares (HALS) algorithm68

[Erichson et al., 2018]. Importantly, this decomposition differs from popular space-centric [Tresch69

et al., 1999] and time-centric [Ivanenko et al., 2004] decomposition models, which can only isolate70

either spatial or temporal modules, respectively.71

Specifically, the space-centric decomposition is given by:72

y(m, θ, t) ≈
NSP

s∑
i=1

aSP
i (m) · uSP

i (θ, t) (2)

On the other hand, the time-centric decomposition is given by:73

y(m, θ, t) ≈
NTE

s∑
i=1

aTE
i (m, θ) · uTE

i (t) (3)

To estimate the parameters of the space-centric model, we first organize the muscle activation data into74

a matrix Y SP ∈ IRNmX(NθNT ) — where the signals related to different movements are concatenated75

along the temporal dimension — and then apply non-negative matrix factorization [Lee and Seung,76

1999]. Similarly, to estimate the parameters of the time-centric model, we apply non-negative matrix77

factorization to the matrix Y TE ∈ IRNmNθXNT — where the signals related to different movements78

are concatenated along the spatial dimension.79

More recently, Delis et al. [2014] proposed a space-by-time decomposition model that has the potential80

to isolate both spatial and temporal modules underlying muscle signal activations. Compared to the81

CPD, the space-by-time decomposition accommodates different numbers of spatial and temporal82

modules, at the cost requiring the specification of action coefficient for each combination of spatial83

and temporal modules. Specifically, this decomposition is given by:84

y(m, θ, t) ≈
NST

ss∑
i=1

NST
ts∑

j=1

aST
i (m) · bST

ij (θ) · uST
j (t) (4)

To fit this model, we applied the sample-based non-negative matrix tri-factorization algorithm (sNM3F85

— Delis et al. [2014]).86

All of the above decomposition models require the a priori specification of the number of underlying87

spatial and/or temporal modules. Following standard practice (e.g., d’Avella et al. [2006]), to identify88
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a plausible number of modules we first fit, for each decomposition model, models with a linearly89

increasing number of modules N . We then analyze how the coefficient of determination R2 varies90

with N , and identified the elbow of the curve by locating the number of modules N∗ from which91

the R2 curve is well approximated by a line. The resulting R2 curves we used to select the number92

of modules are reported in Fig.4. We note that, for the space-by-time decomposition model, we93

computed the R2 curve by including, at each step, the temporal or spatial module that increased R294

the most.95

3 Dataset96

To isolate the spatial and temporal invariances underlying muscle activity patterns during reaching97

movements, we analyzed the surface electromyographic data [Israely et al., 2018] recorded from98

healthy participants during the execution of reaches in the frontal plane. The reaches were performed99

towards nine targets arranged on a rectangular grid in front of the participants. The data were100

preprocessed with a custom pipeline and averaged across trials to isolate the condition-specific101

muscle patterns.102

4 Validation103

If the motor system makes use of spatial and temporal modules, their recruitment should not be104

random, but systematically vary with reaching direction. To quantify the regularity in the recruitment105

strategy, we fitted linear and radial basis function network recruitment models to the action-depended106

coefficients of the four decomposition models considered in this work, and quantified the recon-107

struction error. To further assess the robustness of the decomposition models and the regularity108

in the recruitment strategy, we measured the ability of the decomposition models to facilitate the109

zero-shot learning of muscle patterns for untrained reaching directions. To achieve this, we first fitted110

decomposition models on reduced datasets that excluded the data for one of the reaching directions;111

subsequently, we fitted recruitment models to the estimated action-dependent coefficients; finally,112

we used such recruitment models to estimate the action coefficients corresponding to the left-out113

reaching direction, and with these, the full set of muscle signals.114

5 Results115

We found that, compared with classical decomposition models [Tresch et al., 1999, Ivanenko et al.,116

2004], CPD identifies qualitatively similar spatial and temporal modules (Fig.2), explains a compa-117

rable amount of data variance (Fig. 4), and requires a lower number of parameters. Furthermore,118

we found that the space-by-time decomposition model [Delis et al., 2014], despite having a similar119

number of action-coding coefficients, tends to underfit the data (Fig. 4). Moreover, we found that120

the geometrical organization of the action coefficients in all models is not random, but describes a121

smooth manifold that is well approximated by simple recruitment models (e.g., see Fig.5 for the122

reconstruction quality of the action coefficients of the considered models, and Fig.3 for observed and123

estimated action coefficients of the CPD model). The smoothness of the action manifolds allows124

the zero-shot generation of muscle activity patterns for untrained reaching directions that closely125

resemble those experimentally recorded (Fig.6). However, the reconstruction quality obtained by126

fitting recruitment models on the space-by-time action coefficients tends to be worse than those of the127

other models (Fig. 5), consistently with what we observed when fitting the recruitment model to the128

muscle activity data (Fig. 4). Taken together, our results suggest that the decomposition proposed here129

represents a biologically plausible hierarchical organization of the control of reaching movements130

that the brain could leverage to control the body efficiently via compositional generalization.131
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A Appendix187

A.1 Model fitting procedure188
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Figure 4: R2 curves of the model fitting procedure used to determine the number of modules.
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A.2 Fitting of action manifolds for zero-shot learning189

Figure 5: R2 bars of the action-coefficient models
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A.3 Zero-shot generation of muscle activity190

Figure 6: True and zero-shot estimated muscle patterns.
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