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Abstract

Reusing existing modules in novel settings via compositional generalization is the
hallmark of intelligent behavior. While much research is dedicated to studying how
to enable AI systems to learn and reuse modules effectively for better performance
and increased computational efficiency, there is still a lack of consensus on which
modules the brain leverages and how to identify them. To shed some light on this
matter, here we investigate the modularity principles the brain uses to control the
body efficiently. After briefly revisiting established models of domain-specific
spatial and temporal motor modularity, we introduce a new, unifying computational
model of compositional generalization in the motor system based on the Canonical
Polyadic Decomposition (CPD) model. We show that the model — which leverages
gain modulation — can simultaneously capture modularity in the spatial, temporal,
and action domains with a lower number of parameters than established models.
Furthermore, we show that the geometrical organization of the action modules
the model isolates is not random but describes a smooth manifold that allows the
zero-shot learning of muscle patterns for untrained movements. Taken together,
our results suggest that the decomposition proposed here represents an effective
compositional strategy the brain could leverage to control complex movements
while saving computational resources.

1 Introduction

A large body of research is dedicated to studying the properties of compositional generalization of
AI systems (e.g., Schug et al. [2023], Lippl and Stachenfeld [2024], Hupkes et al. [2020], Lake and
Baroni [2018]), with the ultimate goal of encouraging intelligent behavior through the flexible reuse
of previously learned modules (e.g., Duan et al. [2023], Liu et al. [2023], Berg et al. [2023]). But
how does the brain accomplish compositional generalization? Can we identify the modules the brain
uses to save computational resources and boost generalization? To take a step in this direction, in this
work, we investigate compositional generalization in the motor system.

Converging behavioral [Tresch et al., 1999, Ivanenko et al., 2004] and neurophysiological [Takei
et al., 2017, Levine et al., 2014] evidence suggests that the motor system employs spatial [Tresch
et al., 1999, Levine et al., 2014, Takei et al., 2017] and temporal [Ivanenko et al., 2004, Hart and
Giszter, 2010, Takei et al., 2017] modules to simplify the control of movement. These modules
are fixed across movements and allow the reuse of the spatiotemporal muscle activity patterns that
are successful at moving the body purposefully. The adoption of this strategy relieves the motor
system from the burden of computing such spatiotemporal patterns de novo for each movement and
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reduces the problem of computing appropriate muscle activation commands for new movements
to the determination of scaling weights for such modules. If the motor system produces reaching
movements by flexibly combining such fixed building blocks, one would expect activity patterns in
higher motor centers that largely invariant across reaching trajectories. Interestingly, this is consistent
with what has been observed in primary motor cortex [Churchland et al., 2012], where the population
dynamics tend to exhibit rotational structure that is invariant across conditions.
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Figure 1: Schematics of decomposition models. Both the classical decomposition models (A-C) and
the one proposed in this work (D) can be interpreted as simple linear feedforward neural networks.
The space-centric model (A) is only able to capture the spatial invariances experimentally observed
in the spatio-temporal muscle activity patterns; this is achieved at the cost of increasing the model
complexity in the temporal domain where the model assumes the existence of action-specific motor
commands. The time-centric model (B) is only able to capture the temporal invariances; this is
achieved at the cost of increasing the model complexity in the spatial domain, where the model
assumes the existence of action-and-muscle-specific weights. The space-by-time decomposition
model (C) is able to capture both spatial and temporal invariances; this is achieved at the cost of
increasing the complexity at the network-level, as the model introduces an additional hidden layer
that can completely change the routing of the motor commands to the downstream layers. The
gain-modulated network model (D) can also capture both spatial and temporal invariances without
introducing network-level complexity; the model assumes that new actions can be generated by only
modulating the gains of the input neurons.

Despite the large body of evidence supporting the existence of both spatial and temporal motor mod-
ules, the classical methods used to extract such modules from muscle activity signals — Non-negative
Matrix Factorization and Principal Component Analysis — are intrinsically matrix decomposition
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Figure 2: Decomposition of muscle activity of representative participant. (A) Space-centric
decomposition into spatial modules (left) and time-dependent coefficients. (B) Time-centric de-
composition into temporal modules (right) and space-dependent coefficients. (C) Space-by-time
decomposition into spatial modules (left), temporal modules (right), and action coefficients (center);
(D) Canonical polyadic decomposition into spatial (left), temporal (right) and action (center) modules.
Note: the time-varying coefficients in (A) and the temporal modules in (B), (C), and (D) can be
interpreted as motor commands sent to the muscles from higher motor centers.

methods and can only identify either spatial or temporal motor modules, but not both [Chiovetto et al.,
2022]. This leads to potentially overparameterized models that, rather than providing a plausible
account of the mechanism the brain uses to simplify the control of movement, capture the regularities
in a single target domain while increasing the computational burden in the non-target domain. For
example, models based on spatial modules [Tresch et al., 1999] simplify the control problem in the
spatial (i.e., muscle) domain at the cost of complicating it in the temporal domain, where they assume
the existence of time-varying coefficients that are specific to each action (Fig. 1A). According to this
view, to specify the temporal activation patterns for a new movement, the motor system would need
to find a way to determine a completely new waveform for each spatial module — in general, not a
trivial problem. Likewise, models based on temporal modules [Ivanenko et al., 2004] assume the
existence of muscle- and action-specific coefficients that need to be computed for every movement
(Fig. 1B).

To meet the challenge of simultaneous identification of spatial and temporal modules, we propose a
decomposition of muscle signals based on the Canonical Polyadic Decomposition (CPD) [Harshman
et al., 1970] — a higher-order tensor decomposition method. In particular, we show that the CPD
model can effectively factorize muscle activity into fixed spatial and temporal modules that are
flexibly modulated by space- and time-independent coefficients, depending on the movement to
perform (Fig. 1D).

2 Modularity models for the space, time, and action domains

If the motor system generates muscle activation commands employing both spatial and temporal
modules, it should be possible to approximate the muscle activity signals y recorded from muscle m
during movement θ at time t as the sum of the product of the contributions of Ns spatial modules ai

and temporal modules ui, weighted by action-coding coefficients bi. That is:
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Figure 3: Observed and reconstructed action manifold of gain-modulated network model (A)
Observed factors. (B) Factors predicted with radial basis function network.

y(m, θ, t) ≈
Ns∑
i=1

ai(m) · bi(θ) · ui(t) (1)

To estimate the parameters of this model, we organize the muscle activations y(m, θ, t) into a third-
order tensor Y ∈ IRNMXNθXNT and fit a non-negative Canonical Polyadic Decomposition (CPD)
model [Harshman et al., 1970], which approximates the original tensor as the sum of Ns rank-one
tensors, with the non-negative randomized hierarchical alternating least squares (HALS) algorithm
[Erichson et al., 2018]. Importantly, this decomposition differs from popular space-centric [Tresch
et al., 1999] and time-centric [Ivanenko et al., 2004] decomposition models, which can only isolate
either spatial or temporal modules, respectively.

Specifically, the space-centric decomposition is given by:

y(m, θ, t) ≈
NSP

s∑
i=1

aSP
i (m) · uSP

i (θ, t) (2)

On the other hand, the time-centric decomposition is given by:

y(m, θ, t) ≈
NTE

s∑
i=1

aTE
i (m, θ) · uTE

i (t) (3)

To estimate the parameters of the space-centric model, we first organize the muscle activation
data into a matrix Y SP ∈ IRNMX(NθNT ) — where the signals related to different movements are
concatenated along the temporal dimension — and then apply non-negative matrix factorization
[Lee and Seung, 1999]. Similarly, to estimate the parameters of the time-centric model, we apply
non-negative matrix factorization to the matrix Y TE ∈ IR(NMNθ)XNT — where the signals related
to different movements are concatenated along the spatial dimension.

More recently, Delis et al. [2014] proposed a space-by-time decomposition model that has the potential
to isolate both spatial and temporal modules underlying muscle signal activations. Compared to the
CPD, the space-by-time decomposition accommodates different numbers of spatial and temporal
modules, at the cost requiring the specification of action coefficient for each combination of spatial
and temporal modules. Specifically, this decomposition is given by:

y(m, θ, t) ≈
NST

ss∑
i=1

NST
ts∑

j=1

aST
i (m) · bST

ij (θ) · uST
j (t) (4)
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To fit this model, we applied the sample-based non-negative matrix tri-factorization algorithm (sNM3F
— Delis et al. [2014]).

All of the above decomposition models require the a priori specification of the number of underlying
spatial and/or temporal modules. Following standard practice [d’Avella et al., 2006], to identify a
plausible number of modules, we first fit, for each decomposition model, models with a linearly
increasing number of modules N . We then analyze how the coefficient of determination R2 varies
with N , and identified the elbow of the curve by locating the number of modules N∗ from which the
curve is well approximated by a line. The resulting curves we used to select the number of modules
are reported in Fig.4. We note that, for the space-by-time decomposition model, we computed the R2

curve by including, at each step, the temporal or spatial module that increased R2 the most.

3 Dataset

To isolate the spatial and temporal invariances underlying muscle activity patterns during reaching
movements, we analyzed the surface electromyographic data [Israely et al., 2018] recorded from
healthy participants during the execution of reaches in the frontal plane. The reaches were performed
towards nine targets arranged on a rectangular grid in front of the participants. The data were
preprocessed with a custom pipeline and averaged across trials to isolate the condition-specific
muscle patterns.

4 Validation

If the motor system leverages spatial and temporal modules, their recruitment should not be random
but systematically vary with reaching direction. To quantify the regularity in the recruitment strat-
egy, we fitted linear and radial basis function network recruitment models to the action-depended
coefficients of the four decomposition models considered in this work and quantified the reconstruc-
tion error. To further assess the robustness of the decomposition models and the regularity in the
recruitment strategy, we measured the ability of the decomposition models to facilitate the zero-shot
generation of muscle patterns for untrained reaching directions. To achieve this, we first fitted
decomposition models on reduced datasets that excluded the data for one of the reaching directions;
we then fitted recruitment models to the estimated action-dependent coefficients; we finally used
such recruitment models to estimate the action coefficients corresponding to the left-out reaching
direction, and with these, the full set of muscle signals. Specifically, recruitment models are obtained
by fitting a real-valued function fi(x, y) that maps the target coordinates to the action-coding values
isolated by the modularity models for each action-coding module i. Note that only the CPD model
completely isolates the action-coding modules. Therefore, while for the CPD model we only need Ns

recruitment models (i.e., one recruitment model per module), we need NSP
s ·NT for the space-centric

model, NTE
s ·NM for the time-centric model, and NST

ss ·NST
ts for the space-by-time model.

5 Results

We found that, compared with classical decomposition models [Tresch et al., 1999, Ivanenko et al.,
2004], CPD identifies qualitatively similar spatial and temporal modules (Fig.2), explains a compa-
rable amount of data variance (Fig. 4), and requires a lower number of parameters. Furthermore,
we found that the space-by-time decomposition model [Delis et al., 2014], despite having a similar
number of action-coding coefficients, tends to underfit the data (Fig. 4). Moreover, we found that
the geometrical organization of the action coefficients in all models is not random, but describes a
smooth manifold that is well approximated by simple recruitment models (e.g., see Fig.5 for the
reconstruction quality of the action coefficients of the considered models, and Fig.3 for observed and
estimated action coefficients of the CPD model). The smoothness of the action manifolds allows
the zero-shot generation of muscle activity patterns for untrained reaching directions that closely
resemble those experimentally recorded (Fig.6). However, the reconstruction quality obtained by
fitting recruitment models on the space-by-time action coefficients tends to be worse than those of the
other models (Fig. 5), consistently with what we observed when fitting the recruitment model to the
muscle activity data (Fig. 4). Taken together, our results suggest that the decomposition proposed here
represents a biologically plausible hierarchical organization of the control of reaching movements
that the brain could leverage to control the body efficiently via compositional generalization.
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6 Discussion

A fundamental research question in motor control is how the human motor system enables smooth
behavior by effortlessly controlling the over 600 muscles that actuate the human body [Stewart and
Cooley, 2009]. Modularity has been theorized [Sherrington, 1910] and identified [Tresch et al.,
1999] early on as a fundamental organizing principle exploited by the motor system to both simplify
the control problem and save computational resources. Nevertheless, it has never been clear how
the system could exploit modularity in the spatial and temporal domains simultaneously. Here, we
showed that a simple model – the CPD model [Harshman et al., 1970] – provides a potential solution
to this problem. According to this model, new movements θ can be composed by simply specifying
a vector of gains b(θ), which determines the recruitment of paired spatial and temporal modules.
Thus, the motor system can generate new movements through the principle of compositional gain
modulation.

Gain modulation is an established neural computational mechanism [Salinas and Thier, 2000, Fergu-
son and Cardin, 2020] that allows modulating the input-output behavior of a neuron without altering
other aspects of its response, such as its tuning properties. This kind of modulation appears to be
critical for functions including coordinate transformation (e.g., from retinocentric to head-centric)
[Salinas and Abbott, 1995], attention allocation [Treue and Trujillo, 1999], and context-dependent
processing [Salinas, 2004]. Importantly, gain modulation has been observed not only in cortical but
also in spinal networks, which are largely believed to be the locus of action-invariant motor modules
[Tresch et al., 1999, Hart and Giszter, 2010, Levine et al., 2014, Takei et al., 2017]. Indeed, a few
studies have found consistent evidence that the gain of spinal motoneurons can be modulated with
subsecond precision [Hultborn et al., 2004, Wei et al., 2014, Vestergaard and Berg, 2015] to strike the
right balance between movement precision and vigor for the intended movement.

The CPD model proposed here provides a simple gain-based mechanism to compose new movements
by recruiting pre-existing motor modules. We have shown that, for simple movements like frontal
reaches, action-coding gains describe a smooth manifold such that reaches to similar directions require
similar gain vectors, facilitating the generation of reaches to new directions. The gains necessary for
reaches to new directions, which can be considered as variations of the same basic movement, can be
thus performed leveraging smooth recruitment models or simple similarity-based mechanisms. But
how can such gains be learned for new classes of movements? Additionally, do these out-of-repertoire
movements require learning new motor modules? First, gain modulation has been previously linked
to learning [Eldar et al., 2013, Williams et al., 2018, Ferguson and Cardin, 2020], while lack of
gain-modulating inputs has been shown to affect motor skill learning [Molina-Luna et al., 2009] and
retention [Leow et al., 2013, Marinelli et al., 2017]. Thus, it appears that neural gain modulation
is a mechanism the motor system can leverage to learn new movements. Second, although there is
abundant evidence that different classes of movements can be performed via the adaptive recruitment
of a fixed set of motor modules [d’Avella and Bizzi, 2005, Torres-Oviedo et al., 2006, Al Borno
et al., 2020], new modules can be learned [Kargo and Nitz, 2003, Berger et al., 2013, Sawers et al.,
2015]. Thus, out-of-repertoire movements can potentially be performed by reusing existing existing
modules or learning new ones. However, a unifying computational theory of learning and recruitment
of spatial and temporal modules is still lacking and warrants further research.

Finally, we note that the spatial and temporal modules recruited by the model to compose new
movements are assumed to be pre-defined; thus, how they are implemented remains unclear. While
spatial modules are likely to be encoded by synaptic weight patterns of effectively feedforward
networks in the spinal cord [Tresch et al., 1999, Levine et al., 2014, Takei et al., 2017], temporal
modules are likely to be generated by recurrent networks in the spinal cord [Grillner and El Manira,
2019, Lindén et al., 2022], primary motor cortex [Churchland et al., 2012, Russo et al., 2018], or
motor thalamocortical networks [Guo et al., 2017, Logiaco et al., 2021]. Recent modeling work [Duan
et al., 2023, Lindén et al., 2022, Salatiello and Giese, 2020, Stroud et al., 2018, Sussillo et al., 2015,
Hennequin et al., 2014] was able to effectively model important features of the recurrent dynamics
underlying the generation of movement-specific temporal patterns. Notably, some models elucidated
how such temporal patterns can be learned without interference and chained together in time [Logiaco
et al., 2021, Duan et al., 2023], and how they can be learned with a biologically plausible mechanism
while supporting speed [Stroud et al., 2018, Lindén et al., 2022] and amplitude [Lindén et al., 2022]
modulation; nevertheless, these models do not offer a clear separation of temporal and spatial modules,
a core feature of compositional motor control.
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A Appendix

A.1 Model fitting procedure
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Figure 4: R2 curves of the model fitting procedure used to determine the number of modules.
To select the optimal number of motor modules nf for each model, we followed the standard practice
[d’Avella et al., 2006] of identifying the elbow of the R2(nf ) curve, defined as the point from which
the curve is well approximated by a line (MSE < 10−4). For the space-by-time decomposition model,
we computed the curve by including, at each step, the temporal or spatial module that increased R2

the most [Delis et al., 2014]. The top panel shows the R2 curves, while the bottom panel shows the
MSE of the linear fits.
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A.2 Fitting of action manifolds for zero-shot learning

Figure 5: R2 bars of the recruitment models. Recruitment models are obtained by fitting a real-
valued function fi(x, y) of two variables that maps the target coordinates x, y to the action-coding
values isolated by the modularity models for each action-coding module i. For some recruitment
models (Linear+Inter. and RBF+Inter), we also consider an interaction term z = xy.
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A.3 Zero-shot generation of muscle activity

Figure 6: True and zero-shot estimated muscle patterns. Each row shows the zero-shot predictions
of one modularity model for three example reaching targets (7, 8, and 9) and three example muscles (1,
2, and 3). Model predictions are represented by dotted lines, while ground-truth data are represented
by solid lines. For each reaching target direction, the predictions are based on paired modularity
and recruitment models trained on the remaining 8 target directions. The recruitment model used to
generate this figure is the RBF+Inter. model.
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