
Curricula for Learning Robust Policies with Factored
State Representations in Changing Environments

Panayiotis Panayiotou
Department of Computer Science

University of Bath
Bath, United Kingdom
pp2024@bath.ac.uk

Özgür Şimşek
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Abstract

Robust policies enable reinforcement learning agents to effectively adapt to and
operate in unpredictable, dynamic, and ever-changing real-world environments.
Factored representations, which break down complex state and action spaces into
distinct components, can improve generalization and sample efficiency in policy
learning. In this paper, we explore how the curriculum of an agent using a factored
state representation affects the robustness of the learned policy. We experimentally
demonstrate three simple curricula, such as varying only the variable of highest
regret between episodes, that can significantly enhance policy robustness, offering
practical insights for reinforcement learning in complex environments.

1 Introduction

Reinforcement learning has had remarkable success across a wide range of domains, including
energy management [30], robotic control [26], and strategic board games [24]. However, in many
applications, performance is evaluated solely on the training environment, often neglecting the
importance of generalisation. This lack of emphasis contributes to some of the central challenges in
reinforcement learning, including weak transferability between tasks and the brittleness of policies to
small changes in environments or random seeds [32, 8, 14, 27]. Additionally, reinforcement learning
algorithms often suffer from low sample efficiency, requiring large amounts of data to achieve robust
performance.

Factored representations [20] decompose high-dimensional, unstructured state and action spaces
into a few low-dimensional and high-level variables, each representing distinct and potentially
independent aspects of the environment. This decomposition reduces the problem’s dimensionality,
possibly requiring fewer samples to learn a well-performing policy [29, 2]. Additionally, factored
representations can enhance a policy’s ability to generalise across different parts of the state space,
making it more robust and transferable [1, 9].

Curriculum learning [4] is a training strategy that structures the learning process, such as by organising
different subtasks in a particular sequence, with the goal of improving the learning speed or final
performance. This can involve progressively increasing task difficulty or transferring knowledge
between tasks of similar complexity. In reinforcement learning [16, 18, 17], this strategy involves
training an agent on a sequence of different tasks, enabling it to leverage the knowledge gained from
simpler tasks to tackle more challenging ones. This strategy can improve sample efficiency and
enhance the robustness of the learned policies [25]. For example, Quick Chess is a simplified version
of chess that starts with easier subgames and gradually introduces the player to the whole game [17].
As shown in Figure 1, early subgames can include only pawns to teach players how pawns move,
attack and get promoted.
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Figure 1: Quick Chess subgames, increasing in complexity from left to right (image source: Narvekar
et al. [17]).

The real world is non-stationary and unpredictable, and we cannot capture all its variability in a static
dataset or learning environment. In the real world, no two tasks are ever exactly the same, even if they
may seem so in a simulation environment. Therefore, we aim to train robust policies that generalise
effectively and adapt to unseen environments caused by distributional shifts [13]. For example, a
domain shift might change the position of an object between different runs, or a task shift might
change the designated endpoint in a navigation task.

While factored representations can help in learning more robust policies [1, 9], the role of curriculum
learning in enhancing these policies remains underexplored. In this paper, we experimentally
investigate how curriculum learning can improve the generalisation and adaptability of these policies
to novel environments. We demonstrate the following:

1. Without factored representations, simple curricula are insufficient for training robust policies
that generalise well to unseen environments.

2. Using factored representations, a curriculum of random shifts (domain randomisation) can
enable learning robust policies.

3. Using factored representations, a curriculum of shuffling a few diverse examples can allow
learning robust policies.

4. Using factored representations, we can design a curriculum for learning robust policies by
identifying and adjusting the factors that cause the largest performance discrepancy (regret)
when altered.

2 Preliminaries

Markov Decision Processes. A Markov decision process (MDP) is a mathematical framework
used to model decision-making problems. An MDP is defined by a tuple (S,A, P,R, γ):

• S is a set of states.

• A is a set of actions.

• P : S × A× S → [0, 1] is a transition probability function, where P (s′|s, a) denotes the
probability of transitioning to state s′ from state s after taking action a.

• R : S ×A× S → R is a reward function, where R(s, a, s′) gives the expected reward for
taking action a in state s and transitioning to state s′.

• γ ∈ [0, 1] is a discount factor.

Reinforcement Learning. Most commonly, the reinforcement learning problem is modelled as a
Markov Decision Process. In this framework, a policy π(a|s) represents the probability of taking
action a when the agent is in state s. The objective is to learn a policy that maximises the expected
cumulative return Eπ[Gt], which is the sum of discounted rewards over time when following policy
π. The return Gt from time step t is defined as:

Gt =

∞∑
k=0

γkrt+k+1.
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where rt indicates the reward at time step t. An agent interacts with its environment by taking actions
based on its policy, receiving feedback in the form of rewards, and using this feedback to learn and
improve its policy over time.

Dynamic Bayesian Networks. A Dynamic Bayesian Network is a probabilistic graphical model
representing a set of variables and their conditional dependencies as a directed acyclic graph. It is
specifically designed to model sequences of variables over time. In a Dynamic Bayesian Network, the
state at time t, denoted Xt = (X1,t, X2,t, . . . , Xn,t), depends on the state at time t−1, denoted Xt−1.
The joint probability distribution over Xt is given by the product of the conditional probabilities of
each variable given its parents in the graph, including temporal dependencies:

P (Xt | Xt−1) =

n∏
i=1

P (Xi,t | Pa(Xi,t)),

where the parents of Xi,t, denoted as Pa(Xi,t), include variables from both Xt−1 and Xt.

Factored Representations. Factored representations can decompose the state and action spaces
into sets of variables, each representing different components of the environment. Formally, an
atomic state s is represented as a vector of high-level factors s = (x1, x2, . . . , xn), and similarly an
atomic action a = (y1, y2, . . . , ym).

Factorisation of MDPs. A Factored Markov decision process is a type of MDP in which the
state space, action space, transition model, and sometimes the reward function are represented in
a factored form. Factored models leverage structure in the problem to manage complexity. They
can make solving larger MDPs more computationally feasible without losing accuracy because they
represent the MDP more compactly, reducing the number of parameters. They can also generalise
better in environments with large state or action spaces, allowing for more efficient policy learning
and planning.

The atomic state s and atomic action a can be represented as a factored representation of high-level
factors. The transition probabilities P (s′|s, a) depend on a subset of state and action variables and
are often represented using a Dynamic Bayesian Network. Similarly, the reward function can be
defined as the sum of local reward functions Ri, depending only on a subset of the state and action
variables.

Distribution Shifts. Distribution shifts refer to changes in the data distribution encountered by an
agent during different phases of learning, such as between training and testing. In reinforcement
learning, the environment is often characterised by a set of variables that define its state and dynamics,
such as the transition probabilities, reward functions, or physical properties (e.g. grid size in a
grid-world task, friction coefficients in a robotic simulation, etc.). A distribution over environments
refers to the probabilistic distribution of these variables. By sampling from this distribution, we obtain
different instances of the environment, each with potentially different characteristics. Addressing
distribution shifts is critical because real-world environments are typically non-stationary, meaning
that the variables defining the environment can change over time.

We can distinguish between three different types of learning environments [13]. First, there are
singleton environments where the training and testing environments are identical. Secondly, there are
independent and identically distributed (IID) environments where training and testing environments
are different but from the same distribution. Thirdly, there are out-of-distribution environments where
the training and testing environments are from different distributions.

Low-Regret Policies. Regret is a measure of how much the performance of a policy (expected
discounted cumulative reward) falls short of the optimal performance. Formally, the regret after T
time steps of following policy π from an initial state s0 can be defined as:

Regretπ(s0, T ) =

T∑
t=0

(V ∗(st)− V π(st)) ,

where π∗ is the optimal policy, V ∗(st) is the value function of the optimal policy at state st repre-
senting the expected discounted cumulative reward from that state, and V π(st) is the value function
of the current policy π at state st.
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We consider low-regret policies robust because a low regret ensures that the performance difference
compared to the optimal policy is minimised, demonstrating the policy’s ability to handle various
scenarios and adapt to changes effectively.

3 Background

“No man ever steps in the same river twice.”

– Heraclitus

To effectively apply reinforcement learning in the real world, we must account for its non-stationary
nature. Reflecting the idea of a constantly evolving environment, recent reinforcement learning
research focuses on developing robust policies that can handle changing dynamics [12, 10, 11], high-
lighting the need for policies that work in varied settings. Distribution shifts can significantly impact
performance, leading to poor generalisation and arbitrarily high errors [22, 21]. For reinforcement
learning to be successful in the real world, we must consider robustness and how shifts (e.g. an object
changing colour) can impact both the domain [7] and the task itself [31].

Factored state representations, which involve breaking down the environment into distinct components,
are an active area of research [28, 15, 3]. These representations have been shown to improve the
sample efficiency of reinforcement learning algorithms in both tabular and deep reinforcement
learning methods [29, 2]. Additionally, they can help learn policies that are robust to domain shifts
[1, 9]. It has also been proven that in scenarios where only the agent’s decisions causally influence
the reward (e.g. multi-armed bandits where the state does not affect the reward), all robust agents
learn an approximate causal model [21], which implies a factored representation.

Curriculum learning in reinforcement learning structures an agent’s learning process by strategically
ordering tasks that the agent experiences [17]. It typically aims to enhance the agent’s performance
and learning speed by enabling the forward transfer of skills from simpler tasks to more challenging
ones. A structured curriculum involves several key decisions: choosing the initial set of tasks,
defining the progression of tasks, and establishing criteria for transitioning between them. Examples
of such curricula include the work of Silva and Costa [23], where tasks are randomly generated
and grouped based on their “transfer potential”, and Narvekar et al. [17], where a set of source
tasks is continuously refined to match the agent’s current abilities using methods like mistake-driven
subtasks, which help the agent correct erroneous behaviour. Similarly, unsupervised environment
design [6] is a reinforcement learning training strategy that automatically generates a series of training
environments to learn robust policies. Notable work in this area is ACCEL [19], which uses an
evolutionary environment generator and regret-based feedback to make small edits to the environment
and gradually introduce the agent to more complexity to train a robust policy.

4 The Shifting Frozen Lake

We define the Shifting Frozen Lake environment, where aspects of the environment can exhibit a
shifting behaviour, allowing us to test for out-of-distribution generalisation.

Frozen Lake [5] is a grid-world environment where the agent navigates from a designated start cell
(top-left) to a goal cell (bottom-right). The agent can move up, down, left, or right, and must avoid
falling into holes along the way. Depending on the configuration, the actions can be either stochastic
or deterministic. For an example, refer to Figure 2.

In the original Frozen Lake environment, the start location, goal location, hole locations, and grid
size are kept constant throughout all the episodes. In Shifting Frozen Lake, the grid size N, the
positions of the holes, the starting point, and the goal location can change from one episode to the next.
For simplicity, we assume that these variables remain constant during an episode despite potential
changes, such as warm weather that could cause the lake to start melting. Due to the changing nature
of the environment (e.g. the start location might change), we will refer to different instances of the
environment as “examples”.

Below is a full specification of the task:

• Actions: Left, down, right, up with deterministic transitions.
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Figure 2: A sample Frozen Lake environment. On the right hand side, we present a factored
representation of the state. Using this factored representation, the transition function can be factorised
using a Dynamic Bayesian Network (see Figure 12 in Appendix A).

• State: This is an N × N matrix that shows where the agent, the goal, the holes and the
frozen squares are. We can factorise this using the 5-tuple (grid size, hole locations, agent
location, goal location, distance matrix) as seen in Figure 2.

• Start state: An initial location [xI , xI ] where N ×N are the dimensions of the grid, and
0 ≤ xI , yI < N .

• Goal state: A location [xG, yG] where N × N are the dimensions of the grid, and 0 ≤
xG, yG < N . All examples always include a possible path from the start state to the goal
state.

• Rewards: −0.1 for each move, an additional +10 for reaching the goal, and an additional
−10 for reaching a hole. The discount factor is γ = 1.

• The episode ends if the player moves into a hole or the goal state.

Environment shifts. The initial location, goal location, hole locations, and grid size can change
from episode to episode. The environment supports the following shifting behaviours and the
functionality to switch between them:

• No Shifting: The variables are sampled once upon the creation of the environment and
remain constant for all episodes.

• Random Shifting: At the start of each new episode, the environment uniformly resamples
all variables (start location, goal location, hole locations, grid size).

• Single Preset Variable Shifting: One variable is specified to shift. Upon the creation of the
environment, all variables are sampled once. In each episode, only the chosen variable is
resampled.

• Single Random Variable Shifting: Upon creation, all variables are sampled. In each
episode, one randomly chosen variable is resampled, changed, and reverted at the end of the
episode.

• Stored Examples Shifting: Upon creation, a sample of N examples is stored. For each new
episode, one of these examples is randomly selected and used.

The state can be factorised by using variables that denote the grid size, hole locations, goal location,
the current agent location, and a distance matrix from the goal location. However, this factorisation
has redundancies, e.g. the hole locations can be inferred from the distance matrix. We can optimise the
factored representation by retaining only the relevant variables, reducing redundancy and improving
efficiency. For example, using only the distance matrix and the current agent location, an agent can
learn an optimal and robust policy by always taking the shortest path to the end.
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5 Experiments

Our experiments include the following agents:

• Random Action Selection: Selects action uniformly at random. Used as a baseline.

• Optimal: Achieves the highest possible performance by using breadth-first search to pick
the direction with the smallest distance to the goal (without falling into a hole).

• PPO: Without using a factored representation, we apply a convolutional neural network to
the grid, where each tile is one-hot encoded in a separate channel. We pad the grid with a
special character so all grids have the same size.

• PPO-F: A PPO agent using an optimised factored representation, retaining only the imme-
diate neighbourhood in the distance matrix, which is sufficient for the agent to act optimally
in this task. The agent does not model the transition function or use the assumption that the
transition function can be factorised.

We run all the experiments for five agents and plot the mean and standard error of the total undis-
counted reward per epoch (γ = 1). Each epoch consists of 900 time steps, and each episode has a
timeout of 100 time steps. Performance scores around −30 indicate “stuck” behaviour, where agents
avoid losses by engaging in repetitive, looping movements, such as endlessly alternating between
left and right actions. Scores higher than −30 but worse than optimal performance indicate an agent
that solves some of the grids. For these experiments, we consider random shifting (resampling all
variables at the start of each episode) as a test of deep understanding and generalisation of the task
because it requires agents to know how to navigate to the goal from anywhere and avoid holes.

We explore the following curricula, with changes in curriculum phases indicated by vertical dotted
lines in the figures:

(A) No Shifting to Random Shifting: Fit a single example, then shift all variables randomly to
test generalisation.

(B) No Shifting to Single Random Variable Shifting: Fit a single example and then randomly
shift only one variable per episode.

(C) Random Shifting: Test generalisation from diverse training (domain randomisation) by
shifting all variables randomly from the start.

(D) Stored Examples to Random Shifting: Train a policy by shuffling a few pre-sampled
examples and then test generalisation by shifting all variables randomly.

(E) Single Preset Variable Shifting to Random Shifting: Shift only one specified variable
initially, then shift all variables randomly to test generalisation.

Curriculum (A): No Shifting to Random Shifting. We test generalisation from a single example
and present the results in Figure 3. When fitting a single example, the methods show a significant
standard error because the grid size can vastly change the reward per epoch. For instance, reaching
the goal in 3 steps on a 4x4 grid gives 970 points per epoch, while 20 steps on a 10x10 grid give only
120 points per epoch. None of the trained methods demonstrate significant knowledge transfer after
the shift, as their performance drops to around 0. After the shift, PPO exhibits “stuck” behaviour,
repeatedly moving left/right or up/down. PPO-F is more active but only solves about 25% of the
examples right after the shift. It loses in around 9% of the examples and displays “stuck” behaviour
in the rest.

Curriculum (B): No Shifting to Single Random Variable Shifting. In Figure 4, we see that
both PPO and PPO-F exhibit similarly low knowledge transfer and robustness as there is a big
performance drop when random shifting starts. Notably, after a few epochs with random shifting,
PPO-F adapts quickly to the new task distribution.

Curriculum (C): Random Shifting. In Figure 5, we evaluate how well the agents can generalise
from diverse training. The test and train distributions of the environment here are identical, so
this is IID generalisation. Note, however, that diverse training complicates the learning task. A
closer examination of the PPO agent behaviour reveals that it often fails to reach the goal in any
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Figure 3: Curriculum (A): No Shifting to Ran-
dom Shifting.

Figure 4: Curriculum (B): No Shifting to Single
Random Variable Shifting.

Figure 5: Curriculum (C): Random Shifting. Figure 6: Curriculum (D): 15 Stored Examples
to Random Shifting.

Figure 7: Preliminary Experiment for Curricu-
lum (E): Fit PPO-F to a single example, then
shift only one of the four variables.

Figure 8: Curriculum (E): Single Preset Variable
Shifting to Random Shifting on PPO-F.

Figure 9: PPO-F performance after training
with different numbers of stored examples, fol-
lowed by 50 epochs of random shifting (test).

Figure 10: Comparing Curricula for Factored
Agents.
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Figure 11: Comparing the regret of robust policies learnt by following Curricula C, D, E with varying
holes, and E with a varying goal location.

episode, reverting to “stuck” behaviour. Factored variables, however, provide a significant advantage
in discovering the task structure. The PPO-F agent identifies a robust policy within 75 epochs.
But its policy is far from optimal. We examined the agent’s performance over 50 epochs following
stabilisation and found that 19% of its movements were repetitive, back-and-forth motions. It executed
3.6× more moves than the optimal agent and, on average, fell into a hole 24.8 times per epoch.

Curriculum (D): Stored Examples to Random Shifting. In Figure 6, we evaluate how well the
agent generalises using only 15 training examples. PPO exhibits “stuck” behaviour after the shift and
shows no signs of knowledge transfer or robustness. PPO-F shows strong knowledge transfer and
robustness, performing on par with diverse training after seeing only 15 examples. We examined the
agent’s performance over 50 epochs following stabilisation and found that 35% of its movements
were repetitive, back-and-forth motions. It executed 4.5× more moves than the optimal agent and,
on average, fell into a hole 7.8 times per epoch. This experiment demonstrates that a few diverse
examples are sufficient to build a robust policy over a factored state representation.

Curriculum (D) Follow-Up. We further investigate in Figure 9 how many stored examples are
needed to achieve good test performance under Random Shifting. We train multiple PPO-F agents
with different numbers of training examples and estimate their test performance by averaging over
50 epochs under Random Shifting. Generally, we expect more diverse training with more examples
to correlate with improved performance. However, there are diminishing returns, as fitting more
examples takes longer and does not necessarily result in better performance. Performance gains level
off after fitting 13 examples, and training with more examples significantly increases the training
time.

Preliminary Experiment for Curriculum (E). We train PPO-F on a single example and then shift
only a specific variable on each episode (Single Preset Variable Shifting), as shown in Figure 7. We
find that shifting the goal location, start location, and hole locations leads to high regret while shifting
the grid size does not. In Curriculum (E), we then investigate if shifting only one of these during
training is enough to learn a robust policy.

Curriculum (E): Single Preset Variable Shifting to Random Shifting. In Figure 8, we evaluate
how well the PPO-F agent generalises when only one variable is shifted during training. We examine
four training curricula, each shifting only one variable (holes, grid size, goal location, or start location).
We test OOD generalisation by exposing the agents to random shifts. We find that varying just one
variable, either hole locations or goal location, leads to learning a robust policy. Two of the three
variables that cause high regret are sufficient by themselves when shifted to form a curriculum for
training a robust agent. We examined the agents’ performance over 50 epochs following stabilisation
and found that when changing the holes, they executed 6.8× more moves than the optimal agent and,
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on average, fell into a hole 5.2 times per epoch. When changing the goal location, they executed
8.8× more moves than the optimal agent and, on average, fell into a hole 5.4 times per epoch.

Comparing Curricula for Factored Agents. In Figure 10, we compare PPO-F agents trained with
four robust curricula (C, D, E with varying holes, and E with varying goals) and a single-example
curriculum (A). All robust curricula outperform the single-example curriculum after the start of
random shifting. Training with random shifts gives the best immediate post-shift performance.
However, the other robust curricula perform similarly. Curricula (D) and (E) (with a varying goal)
adapt quickly and reach the same performance as (C). The horizontal dotted line represents the “stuck”
behaviour observed by the single-example curriculum after the shift. Pre-shift performance is not
comparable between agents because each curriculum exposes agents to different environments, and
smaller grids lead to higher total rewards per epoch.

Regret Analysis of Robust Policies. In Figure 11, we rank the four robust curricula (C, D, E-holes,
E-goals) by increasing regret and decreasing robustness (from left to right). This ranking also reflects
decreasing risk-taking and falling in holes. Curriculum (C) benefits from test and train environments
being identical (IID generalisation). The two (E) curricula only modify one variable at a time but
learn robust policies. We suggest that changing the variable that shifts during training could further
enhance policy robustness.

6 Discussion

First, our results demonstrate that methods using factored representations can help learn robust
policies more easily. Agents using an atomic state representation usually fail to reach the goal
when the environment has distribution shifts. While a tailored curriculum could help such agents to
learn robust policies, simple curricula may be enough for agents that use a factored representation.
Secondly, the curriculum used significantly impacted the robustness of the learned policy over a
factored state representation. The agents learned comparably robust policies with either diverse
training, shuffling a few stored examples, or by shifting a single variable that caused high regret when
altered alone (true for two out of three variables). We also quantitatively compare the robustness
of the learned policies following each of the curricula and point out the effect of the curriculum on
the risk aversion and performance of the learned policies. Lastly, we believe that enabling agents to
autonomously generate their own curricula by identifying and adjusting variables that require further
exploration (such as those causing high regret) will lead to learning even more robust policies and
better generalization across diverse environments.
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A Additional Figures
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Figure 12: A Dynamic Bayesian Network for the factored MDP of the Shifting Frozen Lake. The
distance matrix (from the goal location), the grid size, the goal location and the hole locations are
constant throughout each episode.
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