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Abstract
This study presents a novel evaluation frame-001
work for the Vision-Language Navigation002
(VLN) task. It aims to diagnose current mod-003
els for various instruction categories at a finer-004
grained level. The framework is structured005
around the context-free grammar (CFG) of the006
task. The CFG serves as the basis for the prob-007
lem decomposition and the core premise of008
the instruction categories design. We propose009
a semi-automatic method for CFG construc-010
tion with the help of Large-Language Models011
(LLMs). Then, we induct and generate data012
spanning five principal instruction categories013
(i.e., direction change, landmark recognition,014
region recognition, vertical movement, and nu-015
merical comprehension). Our analysis of dif-016
ferent models reveals notable performance dis-017
crepancies and recurrent issues. The stagnation018
of numerical comprehension, heavy selective019
biases over directional concepts, and other in-020
teresting findings contribute to the development021
of future language-guided navigation systems.022

1 Introduction023

In the Vision-Language Navigation (VLN; Ander-024

son et al. 2018) task, an agent is instructed to nav-025

igate through virtual environments by following026

detailed natural language instructions. This task027

requires an understanding of the interplay between028

natural language instructions, visual cues, and the029

sequence of actions undertaken by the agent. This030

capability is crucial for a wide range of robotic031

applications, extending from healthcare support to032

everyday household assistance.033

Despite significant advancements in the latest re-034

search, we argue that the performance of VLN mod-035

els may be overestimated. The current standard036

for evaluating vision-language navigation, as ex-037

emplified by the Room-to-Room (R2R; Anderson038

et al. 2018) and Room-across-Room (RxR; Ku et al.039

2020) datasets, predominantly hinges on endpoint040

success rates and broad path alignment metrics.041

Figure 1: Examples of constructed interventions for
VLN instructions. Example 1 demonstrates an inter-
vention related to directional concepts, while Example
2 focuses on landmarks. Nonetheless, a subset of the
model’s predictions remains unchanged following the
intervention, suggesting a deficiency in the model’s abil-
ity to grasp underlying concepts.

The recent work (Wang et al., 2023) suggests the 042

performance of the state-of-the-art is high and even 043

quite close to human performance on these stan- 044

dards. Does this mean that the major challenges of 045

the VLN task are almost solved? This perspective 046

might be overly optimistic. For instance, the high 047

success rate of a randomly navigating agent (An- 048

derson et al., 2018) is non-negligible. This indi- 049

cates that current evaluation metrics may be insuf- 050

ficiently detailed. Furthermore, agents enhanced 051

by Large Multimodal Models (LMMs; Zhou et al. 052

2023; Lin et al. 2024) perform unexpectedly low 053

on standard VLN datasets. This contrasts with the 054

strong multimodal understanding demonstrated by 055

LMMs in other domains (Fu et al., 2024; Wake 056

et al., 2023). This discrepancy motivates us to re- 057
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visit the evaluation of VLN models.058

In this work, we introduce a new evaluation059

framework that focuses on atomic instructions,060

i.e., the singular actions fundamental to VLN in-061

structions. Diagnosing VLN models at the atomic-062

instruction level allows us to gauge performance063

through various nuanced perspectives. To achieve064

this, we first iteratively construct a context-free065

grammar (CFG; Hopcroft et al. 2001) with the help066

of LLMs to systematically articulate the structure067

of VLN task instructions. CFG, treated as a com-068

prehensive representation of VLN instructions, al-069

lows us to induct and define atomic instruction070

categories. We group the components in our CFG071

into five main categories (i.e., direction change,072

vertical movement, landmark recognition, region073

recognition, and numerical comprehension) and074

generate data accordingly to form our novel eval-075

uation dataset NAVNUANCES. For each entry in076

NAVNUANCES, a candidate path is determined by077

the specific path proposing strategy according to its078

instruction category. The instruction is then gener-079

ated using CFG and further enriched by LLMs. To080

ensure the data correctness, we incorporate human081

refinement into this automated generation process082

in the end. The rigorous evaluation protocols in our083

dataset pose significant challenges, as they require084

models to demonstrate a thorough understanding085

of individual concepts.086

We benchmark various types of models based on087

our proposed evaluation framework. Experiments088

with NAVNUANCES expose model discrepancies089

and common issues. We observe that recent ad-090

vancements in the standard R2R dataset primarily091

stem from enhanced capabilities in vertical move-092

ment and region recognition. Despite this progress,093

numerical comprehension shows stagnation across094

various models. In terms of specific models, zero-095

shot agents enhanced by LLMs demonstrated even096

significant superiority over traditional supervised097

ones in handling changes in direction and recogniz-098

ing landmarks. Traditional supervised approaches099

suffer from selective bias, often leading to deficien-100

cies in adapting to shifts in atomic concepts, as101

demonstrated in Figure 1.102

Our contributions are threefold: Firstly, we de-103

vise a comprehensive evaluation framework that104

addresses diverse facets of Vision-and-Language105

Navigation (VLN) at a granular level. Secondly,106

our work includes a thorough benchmarking of107

prevalent methodologies on ninety diverse scenes,108

coupled with an in-depth analysis. The experi-109

ments demonstrate the deficiencies and differences 110

in the capabilities of previous models, providing 111

valuable insights for advancing the development 112

of VLN methods. Thirdly, we present a zero- 113

shot baseline as a minor contribution, which en- 114

hances NavGPT (Zhou et al., 2023) with GPT- 115

4-vision (Achiam et al., 2023) integrating direct 116

vision-instruction alignment. 117

2 Related Work 118

2.1 Vision-language navigation Datasets 119

Vision-Language Navigation (VLN; Anderson et al. 120

2018) tasks integrate language guidance within em- 121

bodied environments. This task is initially intro- 122

duced by the Room-to-Room dataset (R2R; An- 123

derson et al. 2018) which requires step-by-step 124

navigation in virtual spaces. Subsequent research 125

expanded this framework through variations like 126

multilingual RXR datasets (Ku et al., 2020) and ad- 127

dressed more complex navigation challenges. The 128

advent of conversational interfaces led to interac- 129

tive VLN tasks, exemplified by CVDN (Thoma- 130

son et al., 2020) and Teach (Padmakumar et al., 131

2022), fostering navigation via dialogue interpre- 132

tation. Concurrently, efforts like VLN-CE (Krantz 133

et al., 2020) aimed to transition VLN tasks into 134

continuous environments. Despite these advance- 135

ments, a nuanced evaluation of VLN models on 136

atomic-level instructions remained underexplored. 137

Our work addresses this by developing a dataset 138

specifically designed to assess the fundamental ca- 139

pabilities of VLN agents, thereby contributing to 140

the refinement of models across various VLN set- 141

tings. 142

2.2 Models in VLN tasks 143

The introduction of the R2R dataset (Anderson 144

et al., 2018) catalyzed the development of numer- 145

ous models focusing on VLN tasks in discrete envi- 146

ronments. Early efforts, such as the Seq2Seq (An- 147

derson et al., 2018) and RCM (Wang et al., 2019) 148

models, emphasized training strategies leveraging 149

Imitation and Reinforcement Learning within a 150

conventional front-view framework. Subsequent 151

innovations like CLIP-ViL (Shen et al., 2021) aug- 152

mented these models with advanced visual fea- 153

tures from CLIP (Radford et al., 2021). Attention 154

then turned to the effective encapsulation of histor- 155

ical data, with approaches like VLN-BERT (Hong 156

et al., 2021) utilizing recurrent transformer struc- 157

tures, and HAMT (Chen et al., 2021) compactly 158
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encoding historical visual cues. More recent en-159

deavors (Chen et al., 2022; An et al., 2023) have160

explored the integration of topological or even met-161

ric maps to enrich navigational contexts. Parallel to162

these model-centric advancements, initiatives such163

as ScaleVLN (Wang et al., 2023) aimed at scaling164

up training data. More recently, the research focus165

has switched to exploring VLN with LLMs (Zhou166

et al., 2023; Long et al., 2023; Chen et al., 2023;167

Lin et al., 2024). Despite these significant strides, a168

comprehensive understanding of how these method-169

ologies enhance specific VLN abilities, particularly170

atomic instruction comprehension, remains unclear.171

Our work seeks to shed light on this fundamen-172

tal aspect and offers insights into the underlying173

capabilities necessary for effective VLN.174

3 NavNuances Dataset175

The challenge of curating a nuanced dataset is to176

comprehensively cover the atomic categories in177

VLN instructions. To achieve this, our approach178

begins by iteratively constructing a context-free179

grammar (CFG) with the help of LLM to articulate180

and cover all components of VLN instructions in181

a unified representation (Section 3.1). Then, we182

induct and categorize the atomic components of183

the CFG into five principal categories (Section 3.2).184

Building on these categorizations, we develop a185

semi-automatic process for data annotation of each186

atomic instruction category, adhering to the CFG-187

defined natural instruction standards (Section 3.3).188

3.1 The Context-Free Grammar for VLN189

Our CFG defines a set of rules and concepts that190

structure the instructions in VLN. It can be for-191

malized as a quadruple, i.e., CFG = (N,T, P, S).192

Non-terminals N (in uppercase such as Landmark193

in List 1) represent broader conceptual categories194

or composite concepts. Terminals T signify spe-195

cific actionable elements or descriptors and are196

denoted by lowercase words (e.g., left, right). Pro-197

duction Rules P within the CFG outline how198

various elements are combined to form higher-199

level Non-terminals. And Start Symbol S trig-200

gers the instruction generation process. An illus-201

trative instruction such as walk past the red chair202

can be generated by the pattern “ActionO+ Land-203

mark(Modifier(Attribute) + Object)" in List 1. The204

complete version of CFG is available in the supple-205

mentary materials (Appendix E).206

To ensure the integrity and completeness of the207

List 1: Context-free grammar (partial)
1: S → V p
2: V p → ActionT
3: |ActionS
4: |ActionO + Landmark
5: |ActionR + Region
6: |V p+ V p
7: |V p+ Ir
8: Ir → (action irrelevant sentence)
9: Numerical → first|second|third| . . .

10: Room → room|kitchen|bathroom| . . .
11: Direction → left|right
12: Object → bed|table|chair| . . .
13: Attribute → red|yellow| . . .
14: Modifier → Attribute|...|ϵ
15: Landmark → Modifier +Object
16: ActionO → “walk past”|“walk towards”|...
17: ...

CFG, we instruct GPT-4 (Achiam et al., 2023) 208

to parse the instructions in standard datasets 209

(R2R (Anderson et al., 2018) and RxR (Ku et al., 210

2020)) using the CFG and identify any omissions 211

in the current CFG. Through an iterative refine- 212

ment process incorporating manual adjustment, we 213

continuously update the CFG until GPT-4 can no 214

longer detect missing components. An example is 215

illustrated in Appendix I. The final CFG is defined 216

at the conceptual level and ignores linguistic varia- 217

tions linked to the same concept. For example, the 218

phrases “move towards" and “go towards" are both 219

represented by the same terminal “walk towards" 220

in CFG. 221

3.2 Atomic Instruction Categories 222

CFG provides a comprehensive yet elegant repre- 223

sentation of VLN instructions. Based on this, we 224

can discern what kind of concepts or patterns are 225

fundamental to the VLN instructions. This fur- 226

ther enables us to induct the atomic instruction 227

categories. We define five primary categories intro- 228

duced below: 229

Direction Change: This category stems from the 230

CFG’s ActionT, which encapsulates turning actions. 231

These turning actions are distinct because they ex- 232

clusively pertain to directional changes and are 233

independent of the agent’s observations. 234

Vertical Movement: Derived from the ActionS, 235

this category is associated with movements in the 236

vertical plane, such as ascending or descending 237

stairs. It highlights the agent’s interactions with 238
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Figure 2: Schematic diagram of annotation criteria for five main categories in the NAVNUANCES dataset.

vertical elements in the environment.239

Numerical Comprehension: Numerical compre-240

hension, i.e., being able to count or even calcu-241

late, is quite hard yet crucial for an agent. This is242

challenging even for the latest LLMs (Stolfo et al.,243

2023; Lu et al., 2023). We propose to separately244

evaluate this category in the VLN task. It focuses245

on instructions that incorporate an unambiguous246

numerical concept, aiding in the identification of247

multiple landmarks or regions.248

Landmark Recognition: This category is in-249

ducted from production rules that involve a singular250

center object. It encompasses instructions that di-251

rect the agent towards or past specific landmarks252

within the environment.253

Region Recognition: Similar to Landmark Recog-254

nition, this category pertains to instructions related255

to distinct areas or rooms.256

3.3 Dataset Construction257

Our dataset is collected from 90 Matterport (Chang258

et al., 2017) virtual environments aided by the se-259

mantic annotations in the Habitat simulator (Szot260

et al., 2021). Our annotation workflow consists of261

four stages: rule-based candidate path proposing,262

CFG-driven instruction crafting, human refinement,263

and linguistic enrichment via rephrasing by LLMs.264

Each annotated datum contains a natural language265

instruction, the agent’s initial pose, and annotations266

for evaluation purposes, such as the ground truth267

paths or landmark locations. We finally annotated268

1787 data in total. The statistics and examples of269

NAVNUANCES are detailed in the Appendix D. 270

Direction Change category: Instructions in the 271

direction change category direct the agent to make 272

turns. We eliminate ambiguity by selecting junc- 273

tions with a clear divergence in path directions (ad- 274

jacent paths exceeding a large angle between them 275

as depicted in Figure 2a), ensuring distinct naviga- 276

tion choices. We integrate forward movement into 277

the instruction crafting to accommodate different 278

VLN models and to facilitate evaluation, leading 279

to concise instructions like “turn left/right/around, 280

then walk straight". Humans are involved in re- 281

fining the dataset by excluding starting positions 282

without central obstacles in the view. This exclu- 283

sion is necessary; some instances meet the selection 284

criteria only because the navigation graph is sparse. 285

We additionally annotate the paired instructions for 286

left and right turns with the same starting view. 287

Vertical Movement category: Vertical movement 288

in VLN tasks is typically confined to ascending 289

or descending stairs. Therefore, we identify the 290

longest paths within 3D bounding boxes labeled 291

by ’stairs’ in each environment. The instruction 292

template is straightforward containing only “go 293

upstairs/downstairs and stop on the next floor". 294

Given the bounding boxes’ imprecision, human an- 295

notators are involved to adjust the start and end 296

positions. For views that encompass two staircases 297

in opposite vertical directions, annotators are in- 298

structed to mark these special positions and anno- 299

tate paired paths from the same starting viewpoint, 300
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as shown in Figure 2b. This subset is small but301

important for assessing awareness of the vertical302

direction. The human-refined trajectories are con-303

sidered as the ground truth and included in the304

dataset for evaluation purposes.305

Numerical comprehension category: This cat-306

egory emphasizes the memory of sequential ele-307

ments and instance-level identification. We focus308

on region-level numerical comprehension, utilizing309

the semantic annotations of ’hallway’. The process310

begins by filtering out hallways with insufficient311

doors and using the longest paths within to deter-312

mine the starting positions. Subsequently, human313

annotators are asked to annotate the room count and314

the respective sides while navigating. The instruc-315

tion follows the template: “walk along the corridor316

and turn into the ith room on your left/right". An317

example case is shown in Figure 2c. Paths that318

share identical initial poses, yet differ in numerical319

and directional values, are treated as negative data.320

These are included in the dataset to support the321

evaluation of numerical comprehension.322

Landmark Recognition category: This category323

requires taking a path associated with a specific324

landmark. To assess landmark recognition capa-325

bilities, it is necessary to provide instance-level326

descriptions in the instructions. We begin by iden-327

tifying potential navigable objects using semantic328

annotations. We leverage GPT-4-vision (Achiam329

et al., 2023) for precise object category identifica-330

tion and instance-level description generation given331

the view orientated towards the object. We then332

construct paths that meet specific criteria regard-333

ing curvature and proximity to the object’s center,334

as shown in Figure 2d. The resulting instructions335

encompass actions such as “walk past + modifier336

+ object". We include manual checks and modifi-337

cations to ensure the visibility of target landmarks338

from starting viewpoints. The object center is in-339

cluded in the dataset as supplementary information340

for evaluation.341

Region Recognition category: Finally, the region342

recognition category is narrowed down to ’go into’343

and ’exit’ actions due to the potential ambiguity in344

’go through’ instructions. Unlike specific endpoint-345

related data, region-related data pertains to a set of346

points associated with the concept. For example, in347

Figure 2e, given a starting point and the instruction348

“go into the bedroom", we record all points inside349

adjacent bedrooms as correct responses. For “exit350

the dining area", all areas outside the current room351

are marked as valid positions.352

4 Experiment 353

We conduct a comprehensive evaluation of various 354

existing VLN models across the five main cate- 355

gories in our NAVNUANCES dataset. 356

4.1 Baselines 357

In this study, we examine baseline models catego- 358

rized by input modalities, action spaces, memory 359

representations, and supervision approaches. In- 360

put modalities range from front-view RGB images 361

(e.g., Seq2Seq model (Anderson et al., 2018)) and 362

panorama images (e.g., VLN-BERT (Hong et al., 363

2021)) to textual descriptions of panorama views 364

(e.g., NavGPT (Zhou et al., 2023)). Models differ 365

in their action space, utilizing viewpoint selection 366

(e.g., ScaleVLN (Wang et al., 2023)), predefined 367

rule-based actions (e.g., Seq2Seq (Anderson et al., 368

2018)), or a combination thereof. Memory repre- 369

sentation varies among models, employing hidden 370

states (e.g., CLIP-ViL (Shen et al., 2021)), past 371

visual inputs (e.g., HAMT (Chen et al., 2021)), 372

topological (e.g., DUET (Chen et al., 2022)) or 373

metric maps (e.g., BEVBERT (An et al., 2023)), 374

or interactive chat histories (e.g., NavGPT (Zhou 375

et al., 2023)). Except for differences in the pre- 376

training data sources, all the supervised models 377

are fine-tuned on the R2R dataset (Anderson et al., 378

2018). More details are available in Appendix A. 379

We introduce NavGPT4v, an enhancement of 380

the text-based NavGPT (Zhou et al., 2023) model 381

with visual inputs, integrating actual image views 382

with GPT-4-vision (Achiam et al., 2023). We mod- 383

ify the initial prompt in NavGPT to highlight the 384

presence of visual resources and their relevance to 385

a particular direction, as illustrated in Appendix F. 386

This development targets incorporating direct vi- 387

sual information to capture essential details that 388

pre-captioning might miss. 389

4.2 Evaluation Protocols 390

In this section, we introduce the evaluation proto- 391

cols for our Vision-Language Navigation (VLN) 392

evaluation set. These protocols are designed to 393

precisely measure the performance of navigation 394

models based on detailed success criteria for differ- 395

ent categories of atomic instructions. 396

For categories Landmark Recognition, Numer- 397

ical Comprehension, and Vertical Movement, the 398

evaluations follow the distance-related protocols. 399

The criteria differ slightly depending on the na- 400

ture of the movement. For instance, in the vertical 401
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Method Experimental setting Evaluation Results R2R unseen
Vision Action History DC NU LR RR VM SR nDTW SPL

Su
pe

rv
is

ed

Random None viewpoint None 36.79 7.69 30.22 57.45 11.76 15.88 24.21 14.04
Seq2Seq front-view rule-based hidden state 75.30 21.79 21.89 53.09 25.88 21.46 25.04 18.50
CLIP-ViL front-view rule-based hidden state 77.20 29.49 39.85 74.18 69.41 52.15 47.75 47.64
VLN-BERT panorama viewpoint hidden state 72.02 29.49 34.31 80.36 75.29 62.75 65.49 56.89
HAMT panorama viewpoint past views 79.62 28.21 34.74 77.81 68.82 63.22 66.37 57.70
DUET panorama viewpoint topo. map 64.76 26.92 35.62 77.45 76.47 71.52 67.78 60.85
BEVBERT panorama viewpoint topo./metric map 63.21 24.35 30.22 80.36 84.12 75.18 69.40 63.68
ScaleVLN panorama viewpoint topo. map 72.88 26.92 27.59 84.73 84.71 80.97 74.76 70.33

0-
sh

ot NavGPT3.5 pano. text viewpoint text history 81.87 20.51 58.54 39.63 7.06 12.67 40.82 11.45
NavGPT4 pano. text viewpoint text history 91.87 34.78 54.83 67.61 11.36 34.78 47.53 31.64
NavGPT4v panorama viewpoint text history 92.68 39.13 62.87 56.25 13.64 41.30 54.78 36.84

Human front-view turn/vpt. memory 95.83 89.13 89.44 89.89 94.42 - - -

Table 1: Main Results for baselines evaluated on five main categories of NavNuances dataset, i.e., Direction
Change (DC), Vertical Movement (VM), Landmark Recognition (LR), Region Recognition (RR) and
Numerical Comprehension (NU). We also post the reproduced results on the standard R2R unseen dataset
using three principal metrics: Success Rate (SR), normalized Dynamic Time Warping (nDTW) and Success
rate weighted by normalized inverse Path Length (SPL)

movement category, success is defined by a 3-meter402

radius to a specified endpoint. For instructions in-403

volving more localized navigation, such as walking404

towards a landmark, the metric focuses more on405

the reduction in distance to the landmark. Further406

details can be found in Appendix B.407

Region Recognition category is more related408

to inclusion-related protocol. Distance metrics are409

inadequate due to the lack of a precise endpoint.410

Success in this category is defined by the model’s411

ability to stop within a designated region, deter-412

mined by its boundaries.413

For Direction Change category, we evaluate the414

model’s compliance with directional instructions.415

The protocol involves dividing the area around the416

starting point into sectors to assess the accuracy of417

the model’s initial movement direction in response418

to the given instruction.419

4.3 Main Results420

We report the performance evaluated on NAVNU-421

ANCES as well as the reproduced results on the422

validation unseen split of the R2R dataset (Ander-423

son et al., 2018) in Table 1. We assess NavGPT4424

and NavGPT4v using a random subset of around425

130 samples, ensuring replicability of the officially426

reported NavGPT performance without incurring427

significant API costs.428

Reflecting on the advancements in the standard429

R2R dataset, it appears that improved layout and430

spatial understanding underpin the progress of431

VLN models. This is evident from the results in432

vertical movement (VM) and region recognition433

(RR) tasks on our dataset. This correlation is prob- 434

ably due to the statistics of the R2R unseen split. 435

We find that more than 35% of the instructions 436

necessitate navigation through stairs, and the ma- 437

jority involve concepts related to rooms. The cor- 438

relation is observed consistently across different 439

models. For instance, CLIP-ViL’s leap in perfor- 440

mance on the R2R unseen split compared to the 441

prior model Seq2Seq (30.69% absolute increase 442

in success rate) correlates with significant gains in 443

vertical movement (from 25.88% to 69.41%) and 444

region recognition (from 53.09% to 74.18%). And 445

the low performance of zero-shot methods on R2R 446

also follows the lower success rates in these tasks. 447

Despite advancements, there is a noticeable 448

stagnation in models’ numerical comprehension 449

(NU), likely due to the sparse numerical data in 450

existing datasets and the non-essential nature of nu- 451

merical comprehension for task completion. Com- 452

pared to traditional methods, LLM-enhanced mod- 453

els show slightly better performance but still fall 454

significantly short of human capabilities. These 455

findings highlight that numerical comprehension 456

presents a substantial challenge across various 457

model types, the inference ability w.r.t. numeri- 458

cal values require further improvement. 459

In examining directional changes (DC) within 460

supervised methods, models with explicit direc- 461

tional commands (such as the methods with rule- 462

based action space, Seq2Seq, and CLIP-ViL) can 463

easily reach or even outperform those employing 464

viewpoint selection techniques, suggesting the im- 465

portance of clear action spaces for effective turning 466
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choices. This is further supported by the superior467

performance of zero-shot agents, as each observa-468

tion in the zero-shot agent’s prompt includes a clear469

description of its orientation.470

In landmark recognition (LR), zero-shot471

agents outperform models supervised on R2R data,472

which shows a contrast to their performance on473

the standard R2R dataset. This indicates that ex-474

tensive knowledge of large pre-trained models can475

overcome the constraints inherent in small-scale su-476

pervised training. A notable comparison between477

NavGPT4 and our NavGPT4v reveals that condi-478

tioning observations on specific instructions leads479

to more accurate landmark recognition, attributed480

to the richness of visual content beyond mere cap-481

tions. In addition, the high performance of the482

random agent suggests the choices within a fixed483

radius are limited. This highlights the limitations484

of supervised agents. Their performance, while485

comparable to the random agent, falls short of a486

true understanding of individual object instances.487

Compared to traditional supervised methods, the488

performances of LMMs (e.g., NavGPT4v) on Re-489

gion Recognition (RR) and Vertical Movement490

(LM) are significantly lower. This trend is more491

clear from Figure 6 of the Appendix. The dimin-492

ished performance in vertical movement may be493

attributed to a lack of contextual understanding, as494

discussed in recent multimodal benchmark CODIS495

(Luo et al., 2024). Regarding the surprisingly496

low performance on region recognition, this issue497

seems to stem from the LMM’s imprecise bound-498

ary judgment; the model tends to prematurely halt499

while merely observing the target region. Further500

discussion is available in Appendix C.501

4.4 Additional Experiments502

Does the agent understand numerical values?503

In this additional experiment, we aim to further504

study the numerical comprehension capabilities of505

models. Despite observing an overall low perfor-506

mance in this category, these models do show some507

improvements over a baseline random walk agent.508

However, the concept of "numerical" functions as509

a special modifier, which always links to a specific510

object or region with a certain spatial relation. This511

association leads to an overestimation of the ca-512

pability of numerical comprehension. Thus, we513

introduce two additional random agents to isolate514

these factors: The first agent simulates a basic un-515

derstanding of spatial layouts (Agent 1*), enabling516

the agent to select a room to enter. The second517

Figure 3: Success rate relative to two additional random
agents in the numerical comprehension category. Agent
1* is the random agent that knows the concept of enter-
ing the room in the corridor. Agent 2* is the random
agent which also has directional awareness. The success
rate of Agent 1* and Agent 2* are 32.06% and 41.03%.

agent embodies directional intelligence (Agent 2*), 518

allowing the agent to choose a room on the specific 519

side, such as entering a room on the left. 520

As shown in Figure 3, for some of the supervised 521

models such as HAMT and ScaleVLN, the per- 522

formance is comparable (relative success rate ap- 523

proach zero) to that of the Agent 1* but significantly 524

lagged behind the Agent 2*. Zero-shot agents en- 525

hanced by GPT-4 can surpass but still have much 526

lower performance than humans (50% success rate 527

below). This discrepancy highlights a critical gap 528

in current models: while they may grasp basic lay- 529

out concepts to a degree, their understanding of 530

more complex scenarios involving both numerical 531

values and directional cues is markedly deficient. 532

The results, as illustrated in Figure 3, highlight the 533

need for advanced models that integrate numerical, 534

layout, and directional understanding. 535

Can the model understand specific landmarks 536

and the spatial relation with them? 537

In the Landmark recognition category, we fur- 538

ther assess the models’ performance in its two dis- 539

tinct subsets: navigating towards a specific object 540

and navigating past an object. The former primar- 541

ily tests the models’ visual grounding capabilities, 542

while the latter introduces an additional layer of 543

complexity by requiring an understanding of spatial 544

relationships based on sequential observations. 545

We evaluate these subsets against three cate- 546

gories of baseline models: supervised front-view 547

models, supervised panorama-view models, and 548

7



Figure 4: Results of two subsets of Landmark recogni-
tion category in NavNuances dataset. The significant
gap of the ’moving towards’ subset comes from large
pre-trained vision models since NavGPT3.5

zero-shot models enhanced with Large Multimodal549

models (LMMs). As illustrated in Figure 4, the550

simplest Seq2Seq model augmented with CLIP551

features (from the CLIP-ViL model) outperforms552

more recent approaches like HAMT and ScaleVLN553

on both tasks. This indicates that even when utiliz-554

ing only frontal views, robust visual features can555

effectively align with object-centric instructions.556

Advanced models like BLIP2 (Li et al., 2023)557

(in NavGPT 3.5 and 4) and GPT-4-vision (in558

NavGPT4v) show marked improvements in nav-559

igating towards objects. However, they still strug-560

gle with the spatial relation aspect, particularly in561

navigating past objects. Analysis of error cases562

reveals inconsistent decision-making. For instance,563

the models correctly interpret moving from an ob-564

ject’s front to back as having navigated past it in565

some cases. However, the models sometimes as-566

sume they have passed an object merely because567

it is beside them, contradicting the commonsense568

of walking past. This inconsistency highlights the569

need for future models to better align with nuanced570

human commonsense in spatial reasoning.571

Any bias in the choice of turning direction?572

To assess if vision-language navigation models573

exhibit a turning direction preference, we analyze574

their performance on turn left and turn right com-575

mands using models like HAMT and NavGPT. Our576

dataset, containing paired turn right and turn left577

instructions for each starting viewpoint, facilitated578

this analysis. We introduced a "Dual Success Rate"579

(Dual SR) metric to measure a model’s accuracy in580

Figure 5: Results for the left/right turn subsets within
the direction change category of the NAVNUANCES
dataset, with Dual SR indicating the success rates for
both right and left turns from a specific starting view

executing both directions from the same point. 581

Our findings, as depicted in Figure 5, indicate 582

a directional bias in some models. For instance, 583

ScaleVLN shows a notable preference for turn 584

right instructions, with an 18.23% higher success 585

rate for right turns compared to left turns. There are 586

also general selective biases across all supervised 587

models, as evidenced by their heavily reduced per- 588

formance on the Dual SR metric. One possible 589

reason for this bias is that there might be the mod- 590

els’ potential preference for specific visual cues 591

over the given navigational commands. Conversely, 592

zero-shot models like NavGPT3.5 and NavGPT4v 593

show minimal bias and perform comparably to hu- 594

mans in handling both left and right turns. 595

5 Conclusion 596

In this study, we establish a systematic frame- 597

work to diagnose deficiencies in the capabilities 598

of Vision-Language Navigation (VLN) models at 599

the atomic instruction level. Our experiment results 600

on NAVNUANCES across diverse models clearly 601

uncover the limitations of specific models and re- 602

veal common issues, which highlight ongoing chal- 603

lenges in the VLN task. In addition, our investiga- 604

tion into a modified zero-shot agent enhanced by 605

GPT-4-vision provides empirical evidence that a 606

direct alignment between vision and instructions 607

significantly enhances landmark recognition per- 608

formance. This insight underscores the potential 609

for leveraging advanced large multimodal models 610

in improving VLN systems. 611
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Limitations612

Despite the data involved in our study are suffi-613

ciently representative to support the insights pro-614

vided by our initial findings, the constraints im-615

posed by the static discrete environments (Matter-616

port3D) lead to several limitations. Since we are617

not able to edit the environment such as adding or618

removing objects, we are restricted to generating619

data from existing layouts. This limits the data620

diversity for some instruction categories. For in-621

stance, in the numerical comprehension category,622

due to a lack of identical object categories within623

single regions, we are unable to encompass numer-624

ical comprehension data in the object level, such625

as “move close to the [i]-th apple on your right".626

Additionally, because we cannot rearrange object627

attributes and positions, it is difficult to achieve a628

detailed attribute-level data design in the landmark629

recognition category.630

In addition, this study focuses exclusively on631

atomic-level capabilities, which do not encompass632

the full range of capabilities of VLN agents such as633

error correction for executing long instructions. Un-634

derstanding sequences of multiple actions within635

long instructions is also a crucial aspect of the VLN636

task. Evaluating from this aspect is challenging but637

represents a promising direction for future research.638

In this work, we leverage CFG as the basis of the639

problem decomposition and construct a diagnostic640

dataset based on it. Our semi-automatic approach641

for CFG construction is well-suited for designing642

specialized datasets in fields like law or finance.643

However, for more complex tasks, relying on man-644

ual corrections may be inefficient and challenging645

in ensuring comprehensive coverage of concepts.646

An improvement would be the development of a647

fully automatic induction method, leveraging the648

extensive world knowledge encapsulated in large649

language models, to potentially replace the current650

semi-automatic method.651
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A Details of baseline models811

We mainly study the following models:812

1. Random Agent: This model, serving as a rudi-813

mentary baseline in VLN tasks, executes five814

arbitrary movements within the navigation815

graph without relying on navigational instruc-816

tions or environmental observations.817

2. Seq2Seq (Anderson et al., 2018) / CLIP-ViL-818

VLN (Shen et al., 2021): These models pro-819

cess only the frontal RGB visual input. The vi-820

sual features for Seq2Seq and CLIP-ViL-VLN821

are derived from pre-trained ImageNet (Deng822

et al., 2009) and CLIP vision encoders (Rad-823

ford et al., 2021), respectively. Navigation824

decisions are stored in LSTM’s hidden states,825

with the action space confined to predefined826

movements such as forward, left, right, up,827

and down.828

3. VLN-BERT (Hong et al., 2021): Distin-829

guished by its use of panoramic visuals at each830

navigation point, this model alters the action831

space to the selection of subsequent naviga-832

tion points. It utilizes the first special token in833

the Transformer-based model to represent the834

history state.835

4. HAMT (Chen et al., 2021): Similar to VLN-836

BERT in terms of visual input and action837

space, this model differentiates itself by em-838

ploying the features of historical observations839

to represent navigational memory.840

5. DUET (Chen et al., 2022) / ScaleVLN (Wang841

et al., 2023): Both models utilize panoramic842

visuals and navigate by choosing subsequent843

points. The historical memory is encapsulated844

within a topological graph. ScaleVLN fur-845

ther enhances its capability by incorporating a846

vast collection of automatically gathered VLN847

data.848

6. BEVBERT (An et al., 2023): Building849

upon the foundation laid by VLN-DUET,850

BEVBERT introduces metric maps as an addi-851

tional observational and memory component,852

aiming for a more enriched navigational con-853

text.854

7. NavGPT (Zhou et al., 2023) / NavCoT (Lin855

et al., 2024): These zero-shot large language856

Figure 6: The success rate of models evaluated on five
main categories of NavNuances dataset. Human perfor-
mance is denoted by the green dashed line.

models (LLMs) encapsulate navigational his- 857

tory within a dialogue history, offering a novel 858

approach to VLN tasks. Observations are con- 859

verted into descriptions by a pre-trained cap- 860

tioning model, treating the VLN task as a text- 861

based navigation challenge. 862

8. NavGPT4v: We enhance the text-based 863

NavGPT model (Zhou et al., 2023) by visual 864

input, NavGPT4v incorporates actual image 865

views alongside a Large Multimodal Model 866

(LMM) - GPT-4-vision (Achiam et al., 2023) 867

with modified prompts. This addition aims 868

to address the limitations of pre-captioning 869

observations, which may overlook critical de- 870

tails in the views due to the generic nature of 871

captions. 872

Through the lens of these diverse models, our study 873

aims to shed light on the multifaceted nature of 874

VLN tasks and the inherent capabilities and limita- 875

tions of each approach. 876

B Detailed Evaluation metrics 877

This section presents the evaluation metrics for 878

each category within the NavNuances dataset, ad- 879

hering to the overarching protocols delineated in 880

Section 4.2. 881

B.1 Direction Change category 882

In Direction Change category, we design evalua- 883

tion metrics based on the direction protocol, focus- 884

ing exclusively on the initial sub-path—defined as 885

the trajectory connecting the first and second nav- 886

igation points. The categorization of directional 887

changes is as follows: if the sub-path’s orienta- 888

tion relative to the starting point falls within a 120- 889

degree arc to the left, it is classified as a turn left; 890
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similarly, a 120-degree arc to the right is classified891

as a turn right, and a 120-degree arc to the rear892

is classified as a turn around. An agent’s success893

is determined by the accuracy of its directional894

change in response to the given instruction.895

B.2 Landmark Recognition category896

For the Landmark Recognition category, metrics897

are based on a distance protocol, utilizing object898

center coordinates for evaluation:899

walking towards a specific landmark: Success is900

determined if the agent’s final position is nearer to901

the landmark’s center coordinate compared to its902

starting position, with the landmark being visible903

and at a distance from the starting point.904

walking past a specific landmark: the agent’s905

decision is considered as success if the object cen-906

ter can projected within the line segment defined907

by start and end position, and the end position is908

within three meters of the landmark’s center.909

B.3 Numerical Comprehension category910

This category employs a distance protocol, with911

a unique consideration for path similarity. Given912

that paths within the same hallway and identical913

starting points are indexed by the same set number,914

success criteria include:915

1. The agent’s final position must be within 3 me-916

ters in geometric distance of the endpoint.917

2. The normalized Dynamic Time Warping918

(nDTW) metric, which assesses path similarity,919

must indicate that the agent’s path more closely920

aligns with the ground truth path than with any921

other paths in the set (nDTW larger than other paths922

in the same set).923

B.4 Vertical Movement category924

Adhering to a distance protocol, an agent is deemed925

successful in the Vertical Movement category if it926

stops within a three-meter geometric radius of the927

annotated endpoint, emphasizing vertical naviga-928

tion accuracy.929

B.5 Region Recognition category930

The Region Recognition category utilizes the inclu-931

sion evaluation protocol:932

entering a region: Success is achieved if the agent933

stops within a region marked with the same room934

category as specified in the instruction and proxi-935

mate to the starting region.936

Figure 7: Results for success rate of subsets in room
recognition category.

exiting a region: Success is determined if the 937

agent’s stopping point lies outside the boundaries 938

of the starting region. 939

C Whether the model can understand 940

room category very well? 941

In our primary results, we focused on evaluating 942

various actions related to navigating through re- 943

gions within a dataset to gauge the models’ profi- 944

ciency with region-associated tasks. This approach 945

provides a general overview of a model’s capability 946

in handling layout concepts. However, the tasks 947

of entering a region and exiting a region present 948

unique challenges. Specifically, entering a region 949

demands a more nuanced understanding of the re- 950

gion’s category. For example, when given the in- 951

struction "go into the dining room" from a location 952

adjacent to multiple rooms, the agent must discern 953

the characteristics that define a dining room to nav- 954

igate successfully. Conversely, leaving a region 955

only involves recognizing the concept of a region, 956

without necessitating an in-depth categorization. 957

To delve deeper into this distinction, we evaluate 958

these two subsets from the data of region recogni- 959

tion category: one is related to entering a region, 960

and the other is related to exiting a region. Zero- 961

shot agents, which typically perform poorly and 962

lack a clear understanding of region boundaries, 963

often optimistically halt upon merely observing the 964

room from just outside the boundary. The error 965

cases can be found in Figure 13. In this subsection, 966

we only discuss the results of supervised methods. 967

As shown in Figure 7, starting from the VLN-BERT 968

model onwards, the performance on tasks involv- 969
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ing ’exit a region’ has remained consistently high,970

indicating that subsequent models have effectively971

grasped the concept of a region. On the other hand,972

the ability to understand and categorize different973

types of regions appears to have progressively im-974

proved with each new model iteration.975

However, when comparing these results to hu-976

man performance, a significant discrepancy be-977

comes evident. The gap in understanding and cate-978

gorizing regions between humans and the current979

state-of-the-art (SOTA) models is approximately980

21.59%. This gap highlights the ongoing challenge981

in the field of Vision-Language Navigation (VLN)982

to develop models that can match human-level983

comprehension of spatial and categorical concepts984

within navigational tasks.985
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D Dataset statistics and examples 986

Our NAVNUANCES dataset comprises 579 instances of Direction Change, 170 of Vertical Movement 987

(with 44 having a pair of staircases in opposing directions at the initial viewpoint), 78 of Numerical 988

Comprehension, 275 of Region Recognition, and 685 of Landmark Recognition. 989

The statistics for subsets in each category: 990

Direction Change: there are 192 instances for “turn right", 192 instances for “turn left" and 195 instances 991

for “turn around". 992

Landmark Recognition: there are 353 instances for “walk towards a landmark", 332 instances for “walk 993

past a landmark". 994

Numerical Comprehension: there are 31 instances for “first room", 24 instances for “second room", 13 995

instances for “third room", 6 instances for “fourth room", 2 instances for “fifth room", and 2 instances for 996

“sixth room". 997

Region Recognition: there are 105 instances for “go into a room", 170 instances for “exit a room". 998

Vertical Movement: there are 87 instances for “go upstairs", 83 instances for “go downstairs". 999

Figure 8: Landmark Recognition data samples

Figure 9: Numerical Comprehension data samples
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Figure 10: Vertical Movement data samples

Figure 11: Region Recognition data samples

Figure 12: Direction Change data samples
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E The context-free grammar in concept for VLN instruction 1000

For the initial set of production rules we refer to our observations and also definitions in prior works such 1001

as A2Nav (Chen et al., 2023; Long et al., 2023). Then we interact with GPT-4 (Achiam et al., 2023), we 1002

input the CFG definitions with long instructions, and the GPT-4 with return the parsing results. We find 1003

GPT-4 can leverage CFG very well, and automatically detect which instruction segment cannot be parsed 1004

by the CFG. Then we utilize this information to update our CFG. This iterative updating will last for about 1005

ten rounds. 1006

List 2: Context-free grammar
1: S → V p
2: V p → ActionT
3: |ActionS
4: |ActionO + Landmark
5: |ActionR + Region
6: |V p+ V p
7: |V p+ Ir
8: Ir → (sentence describing the state of observation, not action)
9: Numerical → first|second|third|fourth|fifth| . . .

10: Room → room|kitchen|bathroom| . . .
11: Direction → left|right
12: Object → bed|table|chair| . . .
13: Attribute → red|yellow| . . .
14: Modifier →

Object+ “is on the” +Direction|Attribute|Numerical|Direction|Modifier +Modifier|ϵ
15: Landmark → Modifier +Object
16: Region → Modifier +Room
17: ActionT → “turn” +Direction|“turn around”
18: ActionO → “walk towards”(“wait at”)|“walk past”|“walk past from” +Direction
19: ActionR → “go into”(“wait at”)|“exit”|“walk through”
20: ActionS → “go upstairs”|“go downstairs”

1007
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F Prompts used1008

Listing 1: NavGPT4v prompts (extend from NavGPT). The actual implementation of api calls will split the template
into several parts, vision related inputs will follow the API standard in GPT-4-vision to first transfer the image to
base64 encoded string and then add special tag.
As an intelligent embodied agent , you will navigate an indoor environment to reach a1009
target viewpoint based on a given instruction , performing the Vision and Language1010

Navigation (VLN) task. You 'll move among static positions within a pre -defined graph1011
, aiming for minimal steps.1012

1013
You will receive a trajectory instruction at the start and will have access to step1014
history (your Thought , Action , Action Input and Obeservation after the Begin! sign)1015
and current viewpoint observation (including the photos captured around , breif scene1016
descriptions , objects , and navigable directions/distances within 3 meters). Each1017

photo has a blue index on its topleft corner. The correspondence between the photo1018
index and the viewing direction is as follows: photo 0 is Front view; photo 1 is1019
Front Right view; photo 2 is Right view; photo 3 is Rear Right view; photo 4 is Rear1020
view; photo 5 is Rear Left view; photo 6 is Left view; photo 7 is Front Left view.1021

Scene descriptions and object descriptions are just for reference , might be1022
incomplete.1023

1024
Orientations range from -180 to 180 degrees , with 0 being forward , right 901025
rightward , right/left 180 backward , and left 90 leftward.1026

1027
Explore the environment while avoiding revisiting viewpoints by comparing current1028
and previously visited IDs. Reach within 3 meters of the instructed destination , and1029
if it 's visible but no objects are detected , move closer.1030

1031
At each step , determine if you 've reached the destination.1032
If yes , stop and output 'Final Answer: Finished!'.1033
If not , continue by considering your location and the next viewpoint based on the1034
instruction , using the action_maker tool.1035
Show your reasoning in the Thought section.1036

1037
Follow the given format and use provided tools.1038
{tool_descriptions}1039
Do not fabricate nonexistent viewpoint IDs.1040

1041
----1042
Starting below , you should follow this format:1043

1044
Instruction: the instruction describing the whole trajectory1045
Initial Observation: the initial observation of the environment1046
Thought: you should always think about what to do next and why1047
Action: the action to take , must be one of the tools [{ tool_names }]1048
Action Input: "Viewpoint ID"1049
Observation: the result of the action1050
... (this Thought/Action/Action Input/Observation can repeat N times)1051
Thought: I have reached the destination , I can stop.1052
Final Answer: Finished!1053
----1054

1055
Begin!1056

1057
Instruction: {action_plan}1058
Initial Observation: {visual_observations}1059
Thought: I should start navigation according to the instruction , {agent_scratchpad}1060
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Listing 2: Prompts for landmark description
1061

Here is a picture with probably some objects in the middle. Please breifly describe 1062
the most identifiable object which is close to you in under ten words with 1063
elementary -level vocabularies. The object should be large and unique in the given 1064
picture , for instance a 'black round table '. The object category cannot be the 1065
mirror , door , floor , ceiling , wall , windows , light switch , control panel or any 1066
small objects. If you cannot find any valid object in the picture , return the ' 1067
object not found '. If in the center of the image is a wall or the doorframe , please 1068
also return 'object not found '. 1069

1070
Picture: {image} 1071

Listing 3: Prompts for linguistic enrichment
1072

Here is a simple instruction , please rephrase it without changing its content. 1073
Please also keep the rephrased instruction natural. For turning action about turn 1074
around , try not modify this action. 1075

1076
Instruction: {instr}. 1077
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G Case studies1078

Figure 13: Failure case of “entering" subset of Region Recognition category: NavGPT4v stop before entering the
target region
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Figure 14: Failure case of “walking past" subset under Landmark Recognition category for NavGPT4v: Incorrect
conceptual understanding of ’walking past’ instruction, stop by the side of the object rather than fully walk past the
target landmark.
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Figure 15: Failure case of “walking past" subset under Landmark Recognition category: NavGPT4v stop before
fully past the target landmar. Correct conceptual understanding by recognizing that navigating from the front to the
back of an object signifies having walked past it. But misinterpreted the front view as the rear.
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H Instruction given to the annotator 1079

During the annotation process, we utilize command line instructions to guide the annotators. Each 1080

annotator begins with a starting view, which is pre-selected according to our path-proposing strategy 1081

within the specified instruction category. Following this, the annotator receives instructions on how to 1082

navigate and perform annotations within the virtual environment. Additionally, we provide a navigation 1083

graph that displays the user’s trajectory, facilitating easier self-localization. 1084

Figure 16: An example of interactive annotation.
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I CFG iterative construction1085

In the main content, we discuss the procedure of iteratively constructing a context-free grammar to cover1086

all concepts in VLN instructions. In this section, we pose one iteration of the process. The omissions1087

detected by GPT-4 will be manually updated to the existing CFG.1088
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