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Abstract
Feature shifts between data sources are present in
many applications involving healthcare, biomedi-
cal, socioeconomic, financial, survey, and multi-
sensor data, among others, where unharmonized
heterogeneous data sources, noisy data measure-
ments, or inconsistent processing and standard-
ization pipelines can lead to erroneous features.
Localizing shifted features is important to ad-
dress the underlying cause of the shift and cor-
rect or filter the data to avoid degrading down-
stream analysis. While many techniques can
detect distribution shifts, localizing the features
originating them is still challenging, with cur-
rent solutions being either inaccurate or not scal-
able to large and high-dimensional datasets. In
this work, we introduce the Feature Shift Lo-
calization Network (FSL-Net), a neural network
that can localize feature shifts in large and high-
dimensional datasets in a fast and accurate man-
ner. The network, trained with a large number
of datasets, learns to extract the statistical proper-
ties of the datasets and can localize feature shifts
from previously unseen datasets and shifts with-
out the need for re-training. The code and ready-
to-use trained model are available at https:
//github.com/AI-sandbox/FSL-Net.

1. Introduction
Feature distribution shifts between data sources are common
in many real-world applications using multi-dimensional
data composed of a set of “corrupted” features (i.e., di-
mensions) with mismatching statistical qualities between
sources. These feature shifts are prevalent in healthcare,
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biomedical, and life sciences datasets, where different sam-
ples are generated at different organizations (e.g., hospitals,
labs), with differing lab technologies, hardware, and data
processing producing unique structural biases. In clinical ge-
nomics, feature shifts can arise from heterogeneous data ac-
quisition protocols, which may involve differences in geno-
typing arrays or phenotype curation procedures (Moreno-
Grau et al., 2024). Similar shifts are found in social sciences,
streaming, and e-business applications, where combining
tabular and structured data from multiple sources, regions,
and times without proper homogenization steps can lead
to mismatching and biased features due to incorrect data
collection procedures, human entry errors, faulty standard-
ization, or erroneous data processing (Barchard & Pace,
2011; Dai et al., 2015). Similarly, multi-sensor applica-
tions in the manufacturing industry, medicinal monitoring,
finance analysis, and defense can suffer feature shifts due
to faulty sensors and measuring devices (Qian et al., 2022;
Barrabés et al., 2023). While numerous techniques enable
pre-processing data sources to reduce feature shifts, proper
data homogenization can be a challenging task requiring
data-dependent and domain-specific techniques (Lim et al.,
2018). When data homogenization fails, unattended feature
shifts can negatively impact downstream applications, lead-
ing to erroneous scientific results or biased machine learning
models, which makes feature shift localization critical in
many data-driven domains.

Feature shift localization is the task of enumerating which
features of multi-dimensional datasets are originating the
distribution shift between two or more data sources. The
localization step is necessary to identify and correct the er-
ror source, whether by data removal or correction in tabular
data-based applications or through physical intervention in
multi-sensory scenario applications. Extensive literature
on anomaly detection and distribution shift detection (Yu
et al., 2018; Pan et al., 2020) has led to numerous tools for
automated shift detection that are common in data-centric
AI (DCAI) and machine learning systems (MLSys) tech-
nologies, providing functionalities for data quality control,
homogenization, and monitoring (Ginart et al., 2022; Piano
et al., 2022; Zha et al., 2023; Subasri et al., 2023). While
many methods focus on asserting whether two datasets fol-
low the same distribution, most do not localize the exact
features causing the shift, and recent promising shift lo-
calization techniques still fail to scale to large and high-
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dimensional datasets common in many areas (Kulinski et al.,
2020; Barrabés et al., 2023).

In this work, we introduce a novel neural network, the
Feature Shift Localization Network (FSL-Net), which can
localize shifts with high accuracy while scaling to high-
dimensional and large datasets. The network extracts sta-
tistical descriptors from two datasets and then processes
them to localize the features originating the distribution
shift. Namely, FSL-Net has two subnetworks, a Statistical
Descriptor Network that compresses datasets into statisti-
cal functionals that summarize their underlying distribution,
and a Prediction Network that combines the statistical de-
scriptors between datasets to predict the probability of being
corrupted for each feature. FSL-Net makes use of convo-
lutional and pooling layers to achieve invariance to sample
order and approximate equivariance to feature order. The
network is trained end-to-end using multiple datasets with
different types of simulated feature shifts and is evaluated on
previously unseen datasets and shift types, showing that it
generalizes well out-of-the-box to a large variety of data and
shifts without the need for re-training. FSL-Net surpasses
previous feature shift localization methods in localization
accuracy and speed.

Our contributions include: (1) we propose a novel neural
network architecture that provides invariance to sample
order and equivariance to feature order while scaling to
large and high-dimensional datasets; (2) we design a training
approach leading to a network that generalizes to unseen
data and shifts without the need for re-training; (3) we
provide an in-depth experimental evaluation with multiple
manipulation types, datasets, and network configurations.

2. Related Work
Distribution Shift Detection. The detection of distribu-
tion shifts consists of predicting if p ̸= q, where p and q
are the reference and query distributions, respectively. Nu-
merous techniques exist for detecting distribution shifts in
univariate distributions (Gama et al., 2014; Lu et al., 2018;
Pan et al., 2020), and there is a growing focus on multivari-
ate data (Rabanser et al., 2019), which can exhibit various
types of shifts such as marginal, concept, covariate, or la-
bel shifts (Lu et al., 2016; Losing et al., 2016; Liu et al.,
2020). Recent shift detection techniques include (Yu et al.,
2018), which makes use of hypothesis testing for concept
drift detection, and (Rabanser et al., 2019), which applies
two-sample multivariate hypothesis testing via Maximum-
Mean Discrepancy (MMD) (Gretton et al., 2012), univariate
hypothesis tests with marginal Kolmogorov-Smirnov (KS)
tests, and dimensionality reduction techniques.

Feature Shift Localization. While distribution shift de-
tection techniques focus on detecting whether a shift exists

between distributions, feature shift localization methods
aim to predict which features are causing the shift. A no-
table contribution in this area is the work by (Kulinski et al.,
2020), which introduces a conditional test capable of ac-
curately identifying shifted features with model-free and
model-based approaches: K-Nearest Neighbors with KS
statistic (KNN-KS), multivariate Gaussian with KS (MB-
KS), multivariate Gaussian and Fisher-divergence test statis-
tics (MB-SM), and deep density neural models with Fisher-
divergence test (Deep-SM). DataFix (Barrabés et al., 2023)
is a more recent method that improves localization accu-
racy by iteratively training a random forest to distinguish
between reference and query distributions, removing the fea-
tures with the highest impurity-based importance scores un-
til divergence is minimized, and applying a knee-detection
algorithm to determine the optimal stopping point. Although
DataFix performs well in many cases, it struggles with de-
tecting challenging feature shifts and scales poorly with
high-dimensional and large datasets. Its repeated use of
random forest training results in significant computational
overhead, limiting its applicability to real-world applica-
tions involving massive datasets. In this paper, we adopt
the same evaluation benchmark as DataFix and introduce
FSL-Net to overcome these limitations.

Feature Selection. Feature selection methods localize the
most relevant features for classification or regression, pro-
viding interpretability and removing redundancy. Wrapper
(Maldonado & Weber, 2009; Mustaqeem et al., 2017), fil-
tering (Nasir et al., 2020; Hopf & Reifenrath, 2021), and
embedded methods (Tran et al., 2016; Huang et al., 2018)
are among the most common techniques. Wrapper meth-
ods select features of interest by training ML models and
adding or removing features through a search process. Fil-
tering methods include Mutual Information (MI) (Battiti,
1994), ANOVA-F test (Elssied et al., 2014), Chi-square
test (Bahassine et al., 2020), Minimum Redundancy Max-
imum Relevance (MRMR) (Ding & Peng, 2005; Li et al.,
2018), and Fast-Conditional Mutual Information Maximiza-
tion (FAST-CMIM) (Fleuret, 2004), among others. Such
methods extract statistical information from the data to rank
the importance of each feature. Embedded methods rank fea-
tures using built-in scores from ML models, such as logistic
regression weights (Cheng et al., 2006) or the mean decrease
in impurity (Gini index) in random forests (Sylvester et al.,
2018), selecting those with the highest scores.

Optimal Transport. Optimal transport (OT) theory com-
pares probability distributions by computing the minimal
cost required to transform one into another, inducing a mean-
ingful distance that reflects both global structure and the
geometry of the underlying space. Its formulation as a lin-
ear programming problem (Kantorovitch, 1958) connected
OT to the broader field of optimization (Quanrud, 2018).
Its relevance has since expanded across fields, including
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computer vision (Izquierdo & Civera, 2024), economics
(Galichon, 2018), logistics (Nadal-Roig & Plà-Aragonés,
2015), and statistical inference (Goldfeld et al., 2024). Re-
cent advances in scalable numerical solvers, such as entropic
regularization and Sinkhorn iterations, have enabled OT to
scale to high-dimensional settings and find applications in
data science (Peyré et al., 2019; Montesuma et al., 2024),
generative modeling (Sanjabi et al., 2018), and domain adap-
tation (Courty et al., 2016). However, while OT techniques
can characterize divergences, they do not provide a direct
methodology to localize divergent features, which is the
main focus of this paper, and would require modifications
in order to be applied for the feature shift localization task.

Data-centric AI. Data-centric AI (DCAI) is the paradigm
that encapsulates tools and techniques aimed at improving
data quality and quantity to build robust, accurate, and effi-
cient AI systems. Unlike model-centric approaches, which
prioritize refining models while working with a fixed dataset,
DCAI emphasizes improving datasets through systematic
and iterative processes. Key aspects include expanding
datasets through data collection (Ghosh & Kaviraj, 2023),
annotation (Boecking et al., 2020; Caporali et al., 2023),
augmentation (Montserrat et al., 2017; Geleta et al., 2023),
and integration (Xiaojuan & Yu, 2023), as well as refining
data through cleaning (Krishnan & Wu, 2019; Costanzo,
2023; Barrabés et al., 2024) and feature engineering (Sinaci
et al., 2023; Buckley et al., 2023). The increasing com-
plexity and scale of datasets have made automated methods
indispensable for data refinement. A growing focus within
DCAI is the localization of feature shifts (Zha et al., 2023;
Barrabés et al., 2023).

Deep Sets, Equivariant, and Invariant Networks. In-
variance and equivariance properties are important in many
applications and have proved successful in modeling physics
and chemical systems, with numerous neural networks de-
veloped to have such properties (Benton et al., 2020; Batzner
et al., 2022; Ruhe et al., 2024). Graph neural networks and
attention-based networks have been shown to provide sim-
ilar properties (Lim & Nelson, 2022). Deep Sets (Zaheer
et al., 2017) introduced an architecture for modeling set-
structured data, ensuring invariance on the order of samples.
Our proposed FSL-Net adopts similar design choices as
Deep Sets to obtain sample-order invariance and approxi-
mate feature-order equivariance.

Section A provides a more detailed description of the bench-
marking methods evaluated in this paper, including DataFix,
MB-SM, MB-KS, KNN-KS, and Deep-SM, as well as MI,
SelectKBest, MRMR, and Fast-CMIM.

3. Feature Shift Localization Network
Problem Formulation. We follow a similar problem for-
mulation as described in (Kulinski et al., 2020; Barrabés
et al., 2023), with minor adaptations:

Definition 1. [Empirical Feature Shift Localization
Task] We are given two sets of d-dimensional samples
X = {x1, x2, ..., xN} and Y = {y1, y2, ..., yM} from dis-
tributions p and q respectively, with xi, yi ∈ Rd, |X| = N ,
and |Y | = M . The feature shift localization task con-
sists of predicting the subset of shifted features C from
the input data X and Y using a mapping F , such that
C = F (X,Y ), that satisfies D(pC , qC) = 0, D(p, q) > 0,
and C = argminD(pC ,qC)=0 |C|, where D is a valid statis-
tical distance.

A feature shift between d−dimensional distributions p and
q is present if after removing the “corrupted” dimensions C
and keeping only the “non-corrupted” dimensions S = C,
with d = |S| + |C|, the divergence between the restricted
distributions is D(pS , qS) = 0. The number of corrupted
features |C| is assumed to be unknown. We refer to X and
Y as the “reference” and “query” datasets, and to p and q as
the “reference” and “query” distributions, respectively. In
practice, p and q are unknown and only accessible through
the samples X and Y , requiring the task to be approximated
by a method F̃ that maps the input data to the predicted set
of corrupted features: Ĉ = F̃ (X,Y ). Such method F̃ can
have the form of machine learning-based hypothesis testing
(Kulinski et al., 2020), iterative heuristic algorithms as in
DataFix (Barrabés et al., 2023), or the end-to-end trained
parametric neural network introduced in this paper. Typ-
ically, F̃ is designed to predict a set Ĉ that is as close as
possible to the true set of corrupted features C. This set
can be represented either as a collection of positional in-
dices or as a d−dimensional Boolean vector C ∈ {0, 1}d,
where each entry indicates whether a corresponding feature
is corrupted or not. Note that the vector representation is
equivariant to the feature ordering. In this paper, we use
the set and vector notations interchangeably unless unclear
from the context. We focus on scenarios where either no
features or only a subset exhibit a shift. If all features expe-
rienced a shift, it would be impossible to determine whether
the differences arise naturally between the reference and
the query. Thus, we base our approach on the assumption
that the true, unmodified query originates from the same
distribution as the reference.

As described in (Barrabés et al., 2023), the presented defi-
nition of feature shifts covers a wide range of distribution
shifts: marginal shifts with D(pi, qi) > 0, where pi and qi
represent the marginal distribution of the ith dimension; cor-
relation shifts with D(p, q) > 0 and D(pi, qi) = 0 for all
i, where marginal distributions match but the multi-variate
distributions do not; and similarly, correlation shifts with
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Figure 1. Diagram illustrating the FSL-Net architecture.

D(pS , qS) = 0 andD(pC , qC) = 0 butD(p, q) > 0, where
correlations are maintained locally, but a shift is present
when considering C and S simultaneously. Note that this
framework can also model label shifts in regression or clas-
sification tasks by simply considering the label as an addi-
tional dimension of p and q.

Feature Shift Localization Network Overview. The pro-
posed Feature Shift Localization Network (FSL-Net) is a
model trained end-to-end to predict the set of corrupted
features: Ĉ = Fθ(X,Y ). FSL-Net infers the probabil-
ity of each feature being part of C; that is, the network
takes as input the reference and query datasets and predicts
a d−dimensional vector of probabilities, P̂ = ψθ(X,Y ),
such that the ith dimension indicates the probability of the
ith feature being corrupted P̂ (i ∈ C) = P̂i = ψθ(X,Y )i.
The complete predicted set of corrupted features Ĉ can then
be obtained by selecting all the features with a probability
higher than 0.5: Ĉ = {i : P̂ (i ∈ C) > 0.5}.

The Feature Shift Localization Network has two main sub-
networks: the Statistical Descriptor Network ϕθ, which gen-

erates a finite-dimensional vector summarizing the input dis-
tribution µp = ϕθ(p) (and equivalently for q), and the Pre-
diction Network γθ, which takes both vectors and predicts
the corruption probability for each feature: P̂ = γθ(µp, µq).
The network is designed to generalize well across datasets
of different feature dimensionalities and sample sizes, and
by using convolutions, it can scale to high-dimensional and
large datasets without requiring re-training.

Statistical Functionals and Statistical Functional Maps.
A statistical functional is a mapping T that takes as in-
put a cumulative density function (CDF) P (or similarly
a pdf) of a distribution p and outputs a scalar or vector
µ = T (P ) = T (p). Some examples of statistical function-
als include the mean, variance, mode, and histograms of
the distribution. Because p and q are unknown and only
accessible through X and Y , we extract the statistical func-
tionals from the empirical distributions pN and qM , which
are constructed by assigning equal probability mass to each
of the N and M samples of X and Y , respectively. Sta-
tistical functionals of interest include linear functionals of
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the form µ = A(p) =
∫
g(x)dP (x), which can be ex-

pressed as a simple average for empirical distributions:
µN = A(p) = 1

N

∑N
j=1 g(xj). Note that g(·) does not

need to be a linear mapping and can be any (potentially non-
linear) function, even a neural network. Empirical mean and
histogram estimates are examples of linear functionals.

In this paper, we extend the concept of statistical functionals
to statistical functional maps – mappings T that project a
d−dimensional multivariate CDF P (or equivalently a pdf
p) into a d × t tensor µ ∈ Rd×t, where the ith and kth
component µi,k = T k(P, i) is obtained by applying the
mapping T k to the multivariate distribution P while using
the positional information i (i.e., dimension index). An ex-
ample of a statistical functional map is a tensor representing
a histogram of t bins for each of the d marginal distribu-
tions, which can be computed as µH

i,k = 1
N

∑N
j=1 1bk(xj,i),

with 1 ≤ k ≤ t and 1 ≤ i ≤ d, where xj,i is the ith di-
mension of the jth sample, and 1bk(x) equals 1 if x is in
the interval bk defining the kth bin, and 0 otherwise. Other
examples include tensors capturing the first t moments of
the d marginal distributions or the d× d covariance matrix
µC
i,k = Covp(i, k) of distribution p, with t = d. Statistical

functional maps, indexed by dimension i, provide finite-
dimensional summaries of multivariate distributions, where
each ith component captures the statistical properties of the
ith dimension of the distribution and its interactions with
other dimensions.

Statistical Descriptor Network. The Statistical Descriptor
Network is the first component of FSL-Net. This network ex-
tracts multiple statistical functional maps from the reference
and query datasets, which are then fed into the Prediction
Network to localize potential shifts. The Statistical Descrip-
tor Network extracts three statistical functional maps: (1) a
non-parametric map µS = ϕS(pN ), with µS ∈ Rd×t1 , con-
sisting of simple statistical measures such as marginal means
and histograms; (2) a map predicted by a parametric shallow
network named Moment Extraction Network µτ = ϕτ (pN ),
with µτ ∈ Rd×t2 , designed to extract second and higher
moments of the data; and (3) a final map extracted by a
parametric deep residual network named Neural Embedding
Network µω = ϕω(pN ), with µω ∈ Rd×t3 , designed to
extract a richer representation of the dataset. The maps are
concatenated, generating a unique map µp ∈ Rd×t describ-
ing distribution p (and similarly for q), with t = t1+ t2+ t3.
Note that d varies with each input dataset, but t remains
fixed across datasets and only depends on the network hy-
perparameters. We use µp = ϕθ(pN ) = [µS ;µτ ;µω] to
denote the complete mapping of the three statistical func-
tional maps for distribution pN .

Statistical Measures. The first statistical functional map
µS = ϕS(pN ) contains various measures that capture key
statistical properties of individual features in the reference

and query datasets. Namely, these measures include the
mean (indicating the average value), standard deviation
(indicating the spread), median (indicating the midpoint),
mean absolute deviation (indicating the average distance
from the mean), p−order moments (capturing univariate
higher-order characteristics), marginal histograms (approxi-
mating marginal pdfs), and empirical marginal CDFs. Table
1 presents the formulas for each measure. Note that except
for histograms, empirical CDFs, and p−order moments, all
measures can be represented with arrays of dimensionality
d× 1, while the histograms and empirical CDFs are repre-
sented in tensors of size d× th, where th is the number of
bins or powers p used. By concatenating all the measures,
we obtain a statistical functional map µS ∈ Rd×t1 .

Table 1. Statistical measures of the Statistical Descriptor Network.
N is the number of observations in X , xj denotes the ith dimen-
sion of the jth sample (subscript i is omitted for brevity), ϵ is a
small positive constant for numerical stability, bk and ck are his-
togram intervals and CDF thresholds, respectively, and x and σ are
the empirical mean and standard deviation of the ith dimension.

Statistical Measure Linear Equation µi,k

Mean Yes x = 1
N

∑N
j=1 xj

Standard Deviation No σ =
√

1
N

∑N
j=1(xj − x)2

Median No x
(N

2
)

Mean Absolute Deviation Yes 1
N

∑N
j=1 |xj − x|

p-order Moments Yes 1
N

∑N
j=1 xp

j

Histogram Yes 1
N

∑N
j=1 1(xj ∈ bk)

Empirical CDF Yes 1
N

∑N
j=1 1(xj ≤ ck)

Moment Extraction Network. The previously described sta-
tistical measures work well for capturing marginal distri-
butions, but they fail to capture correlations and higher-
order relations between dimensions. While the covariance
matrix could address this, it becomes impractical for high-
dimensional datasets due to its quadratic growth with the
number of features. In order to capture higher-order rela-
tions between features, we make use of the Moment Extrac-
tion Network µτ = ϕτ (pN ) = 1

N

∑N
i=1(Wxi+b)+, where

(W, b) represent an affine mapping, and (·)+ is the ReLU
activation function. In order to adapt to changing input di-
mensionalities d, the affine mapping is parametrized using
a convolutional layer and a batch normalization layer. By
applying padding, the output of the network has dimension-
ality d×t2, where t2 is the number of output channels of the
convolution. The convolutional and ReLU layers are applied
to each sample xj independently, and a sample-wise mean
pooling operation is applied to obtain a dataset-level vector.
Note that this network can be seen as approximating gener-
alized moments of the data (Gretton et al., 2012; Li et al.,
2015; Perera et al., 2022). Both the Moment Extraction
Network and the Neural Embedding Network are trained
jointly with the Prediction Network by using a cross-entropy
loss and auxiliary loss (see the loss functions Section).
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Neural Embedding Network. To complement the statistical
measures and the Moment Extraction Network, we include
a convolutional deep residual network to predict a linear sta-
tistical functional map: µω = ϕω(pN ) = 1

N

∑N
j=1 ωθ(xj).

The Neural Embedding Network, as well as the Prediction
Network detailed below, is built upon residual blocks. Each
residual block consists of alternating 1D-convolutional lay-
ers across features, batch normalization (BN), and a hyper-
bolic tangent activation function (Tanh). Skip connections
are incorporated to facilitate efficient information flow and
mitigate vanishing gradients. We conducted experiments
with attention-based Multi-Layer Perceptrons (MLPs) using
unit-kernel convolutions, but a fully convolutional design
worked best (see Section D).

The ith output of the statistical functional map predicted
by the Neural Embedding Network has the form µω,i =
1
N

∑N
j=1

(
Wxj,i +

∑H
h=1 ωh(xj)

)
, where Wxj,i is an

affine transformation of the ith input feature, and ωh(xj) de-
notes the output of each of the H residual blocks, capturing
non-linear relationships between features.

The complete Statistical Descriptor Network is applied to
X and Y , yielding µp = ϕθ(pN ) = ϕθ(X) and µq =
ϕθ(qM ) = ϕθ(Y ). Note that ϕθ(·) is shared between the
reference and the query. These descriptors are then fed into
the Prediction Network.

Prediction Network. The Prediction Network γθ com-
bines the statistical functional maps µp = ϕθ(pN ) and
µq = ϕθ(qM ) to predict a vector of probabilities P̂ =
γθ(µp, µq), indicating the likelihood of each feature be-
longing to the corrupted set C. These maps are combined
through an operation α(·), producing a joint statistical map
µp,q = α(µp, µq). After evaluating various merging opera-
tions (see Section E.3), we selected the normalized squared
difference: α(µp, µq) =

(µp−µq)
2

||µp||+ϵ , where ϵ is a small posi-
tive constant for numerical stability. This approach enables
the network to compare statistical maps in a manner that
accounts for their relative magnitudes. The resulting joint
representation has dimensions µp,q ∈ Rd×t. The Predic-
tion Network then applies multiple residual blocks to the
joint map µp,q and produces the final probability estimates
through a sigmoid activation layer. Note that, by employing
the squared difference, the Prediction Network observes
a difference between statistical maps resembling the Max-
imum Mean Discrepancy (MMD) metric (Gretton et al.,
2012; Li et al., 2015) and acts as a mapping from a distance
between distributions into shift probability estimates.

The complete structure of the feature shift localization net-
work has the following form:

P̂ = ψθ(pN , qM ) = ψθ(X,Y ) = γθ(ϕθ(pN ), ϕθ(qM ))
(1)

Loss Functions. FSL-Net is trained end-to-end using
the binary cross-entropy loss between the predicted prob-
abilities P̂ and the ground truth corrupted feature set
C: ℓCE(C, P̂ ) =

∑d
k=1 Ck log(P̂k) + (1 − Ck) log(1 −

P̂k). We also add an auxiliary loss function to the pre-
dicted statistical functional maps to encourage the learn-
ing of useful discriminative features and enforce local-
ity: ℓaux(C, µp, µq) =

||µpC̄−µqC̄ ||2

||µpC−µqC ||2 . The loss is com-
puted and averaged across multiple labeled datasets with
simulated shifts, denoted as D = {(C(z), X(z), Y (z)) :
1 ≤ z ≤ ND}, resulting in the total loss func-
tion: L(ψθ, D) =

∑Nd

z=1 ℓCE

(
C(z), ψθ(X

(z), Y (z))
)
+

λℓaux(C
(z), ϕθ(X

(z)), ϕθ(Y
(z))). In practice, L(ψθ, D) is

approximated by using mini-batches and gradient accumu-
lation and optimized with the Adam optimizer.

Sample-wise Invariance, Feature-wise Equivariance, and
Locality. Ensuring feature equivariance and sample invari-
ance can help neural networks generalize across datasets
with varying numbers of features and samples; (a) Sample-
wise invariance: The mean pooling operation used in the lin-
ear functionals, Neural Embedding, and Moment Extraction
Networks provides maps with shapes that are independent of
dataset size, allowing FSL-Net to generalize across datasets
of different dimensions. Additionally, the non-linear statisti-
cal functionals are computed with the samples sorted from
smallest to largest, making them invariant to sample order;
(b) Feature-wise invariance: The statistical measures are
applied to the marginal distributions, making them equiv-
ariant to feature ordering. Convolutions, however, are not
typically feature-wise equivariant. Instead, FSL-Net ap-
proximates feature invariance by shuffling features in each
training mini-batch, enforcing learned representations to be
invariant to feature order; (c) Locality: We enforce that the
ith dimension of the statistical functional maps primarily
captures the statistical properties of the ith input feature by
(1) using marginal distribution-based statistical measures,
(2) incorporating a residual connection in the Neural Em-
bedding Network, and (3) applying the auxiliary loss to the
statistical functional maps.

Training and Validation Datasets. We source a total of
1,032 diverse tabular datasets from OpenML (Van Rijn et al.,
2013), with 10–28k features and 500–3.6M samples, cov-
ering continuous, categorical, and mixed data types. Addi-
tionally, we generate 368 simulated datasets: 184 based on
probabilistic distributions (Gaussian, Bernoulli, and Beta
mixtures) and 184 from algebraic functions (Polynomial,
Sine, and Logarithmic), each with 5,000 samples and 1,000
features. In total, 1,350 datasets are used for training, with
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Table 2. Manipulation types applied to continuous and/or categorical features during training and validation.
Type Mapping Description Shift Data

T1 βixi

βi ∼ Uniform(0, 1)
Each value is multiplied by a random number
between 0 and 1.

pi ̸= qi Cont.

T2 βi(1−x)+(1−βi)x
βi ∼ Uniform(0, 1)

Each value is replaced by a linear combination of
x and its negation.

pi ̸= qi Cont.

T3 xi ∼ pNi The ith feature of Y is replaced by sampling from
the ref. empirical marginal distribution pNi.

pi = qi, pC ̸= qC ,
qC =

∏
i∈C qi

Both

T4 clamp0,1(x + ϵ)

ϵ ∼ Normal(µ, σ)
Add Gaussian noise with µ ∼ Uni.(−0.2, 0.2)
and σ ∼ Uni.(0.001, 0.5).

pi ̸= qi,E[qi] ≈ E[pi] + µ Cont.

T5 CNN(x) Forward through a CNN with min-max normal-
ization or binarization.

pi ̸= qi Both

T6 xC ∼ pNC Similar to manipulation (c), but all the features
within C are sampled simultaneously from pNC .

pi = qi, pC = qC , p ̸= q Both

T7 KNN(x)
K = {1−4, 7−9}

Predict feature with KNN (Regressor). - Cont.

T8 KNN(x)
K = {1−4, 7−9}

Predict feature with KNN (Classifier). - Cat.

50 reserved for validation. Section B describes in detail the
dataset selection, preprocessing, and simulation procedures.

Training and Validation Manipulations Simulations.
During training, datasets are shuffled in sample and fea-
ture order, and random subsets of samples (from 1,000 to
10,000) and features (from 8 to 256) are selected, with each
feature normalized to a range of 0 to 1. Each subset is
then split equally into reference and query samples. In the
query set, a random subset of features (up to 25%) is ma-
nipulated based on feature type (continuous or categorical).
Validation batches follow the same process but are limited
to 2,048 features. Manipulations, outlined in Table 2 (T1 to
T8), are selected with probabilities inversely proportional
to the validation F-1 score performance observed during
training for each given type. Multiple manipulations are
used to simulate a wide range of feature shifts. Note that the
manipulations applied during training and validation differ
from those applied to the test set.

4. Experimental Results
Evaluation Setup. Our evaluation setup is consistent with
(Barrabés et al., 2023), using the same reference and query
sets and optimized benchmarking methods. Hyperparam-
eter tuning for FSL-Net is detailed in Section E. We com-
pare FSL-Net against five feature shift localization methods
(DataFix, MB-SM, MB-KS, KNN-KS, and Deep-SM) and
four feature selection methods (MI, SelectKBest, MRMR,
and Fast-CMIM). The SelectKBest method employs the Chi-
square test for categorical datasets and the ANOVA-F test
for continuous datasets. For MB-SM, MB-KS, KNN-KS,
and Deep-SM, the number of manipulated features |C| is
provided, while the other methods, including FSL-Net, do
not require it, reflecting a more realistic setting.

Evaluation Data. We use the same evaluation manipula-
tions and evaluation datasets as in (Barrabés et al., 2023),
with the Gas, Covid, and Energy datasets also aligning with

Table 3. Datasets used during benchmarking.
Dataset Type Dataset # Features # Samples

Continuous

Gas 8 12,815
Covid 10 9,889
Energy 26 19,735
Musk2 166 6,598
Scene 294 2,407
MNIST 784 70,000
Polynomial 1,000 10,000
Cosine 1,000 10,000
Dilbert 2,000 10,000

Categorical
Phenotypes 1,227 31,424
Founders 10,000 4,144
Canine 198,473 1,444

those in (Kulinski et al., 2020). The benchmark datasets
vary in data type, feature dimensionality (from 8 to 198,473),
and sample size (from 1,444 to 70,000). Table 3 provides
an overview of each dataset, detailing its data type (continu-
ous or categorical), sample size, and feature dimensionality.
The continuous datasets are sourced from the UCI repository
(Gas (Huerta et al., 2016), Energy (Candanedo et al., 2017),
and Musk2 (Blake, 1998)) and OpenML (Scene (Boutell
et al., 2004), MNIST (Deng, 2012), and Dilbert (Vanschoren
et al., 2014)). Additionally, a Covid-19 dataset (Force,
2022) and two simulated datasets generated from algebraic
functions that differ from those used in our training and
validation simulations (Cosine and Polynomial) (Barrabés
et al., 2023) are included. The categorical datasets consist
of high-dimensional biomedical data, including the Phe-
notypes dataset (Qian et al., 2020), a subset of categorical
traits from the UK Biobank, the Founders dataset containing
binary-coded human DNA sequences (Perera et al., 2022),
and the Canine dataset comprising binary-coded dog DNA
sequences (Barrabés et al., 2023). Each dataset is normal-
ized on a per-feature basis to a range of 0 to 1, and the
samples are evenly divided into two subsets, forming the
reference and query sets. As in (Barrabés et al., 2023), a
random fraction of query features (5%, 10%, or 25%) un-
dergoes one of 10 manipulation types for continuous data or
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Figure 2. Performance and runtime comparison across feature shift localization methods: a) mean F-1 scores across manipulation types,
fractions of manipulated features, and datasets; b) mean F-1 scores vs. mean runtime; c) mean F-1 scores vs. maximum runtime; d) mean
runtime vs. sample-feature size product per dataset; e) mean F-1 scores by manipulation type; f) mean F-1 scores by dataset.

8 for categorical data (referred to as manipulations E1-E10).
This process generates 30 query sets for continuous data
and 24 for categorical data, each with a unique manipulation
applied to a given feature subset. Section C details the eval-
uation manipulation types. Note that both testing datasets
and manipulations differ from those used during FSL-Net
training and validation (see Table 2).

Evaluation Protocol and Hardware Specifications. Per-
formance is evaluated using the F-1 score for feature shift
localization accuracy and wall-clock runtime for computa-
tional efficiency. Each experiment is run for up to 30 hours,
which prevents some methods from completing evaluations
on large datasets. To handle incomplete evaluations, we im-
pute missing results with the lowest F-1 score from the same
experiment among competing methods and assign them a
30-hour limit. All evaluations were conducted on an Intel
Xeon Gold with 12 CPU cores.

Feature Shift Localization Performance and Runtime
Comparison. Figure 2 presents the performance and
runtime comparison across different methods. Figure 2a
presents the average F-1 scores of feature shift localization
computed across manipulation types, fractions of manip-
ulated features, and datasets. Figure 2b depicts the mean
F-1 scores against the mean runtime in hours, while Figure
2c illustrates the F-1 scores against the maximum runtime,
highlighting the worst-case computational demands. Higher
positions in these plots indicate better performance, whereas
leftward positions indicate lower runtimes, emphasizing the
balance between effectiveness and efficiency. SelectKbest
and MI, despite their efficiency, exhibit poor performance
in feature shift localization. Methods such as MRMR and
FAST-CMIM struggle with scalability and display limited
localization capabilities. Notably, FSL-Net achieves the
highest average F-1 score, with feature shift localization per-
formance comparable to that of DataFix but at significantly

8
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faster speeds. Specifically, FSL-Net is approximately 36×
faster on average than DataFix, and up to 136× on the high-
dimensional Phenotypes dataset. Additionally, FSL-Net
significantly outperforms MB-SM, MB-KS, KNN-KS, and
Deep-SM, even though these methods have the advantage
of accessing the ground truth |C|, while also demonstrating
substantially faster computational speeds. While DataFix
relies on a computationally intensive iterative optimization
heuristic, and MB-SM, MB-KS, KNN-KS, and Deep-SM
require dataset-specific training, FSL-Net only requires per-
forming a forward pass through the network for each dataset,
providing highly fast inference. Figure 2d shows the mean
runtime as a function of the product between the sample and
feature sizes for each dataset, confirming that FSL-Net con-
sistently outperforms DataFix in speed across all datasets,
ranking as the second fastest method after selectKBest, com-
parable to MI, but with much higher accuracy. Namely,
DataFix requires up to 13 hours on the high-dimensional
Phenotypes dataset from the UK Biobank and 9 hours on
the Canine dataset, whereas FSL-Net completes these tasks
in just 2 minutes and 12 minutes, respectively. These results
highlight the practical advantage of FSL-Net: it is well-
suited for processing high-dimensional large databases, such
as those commonly found in biomedicine and e-commerce,
making it a valuable alternative to DataFix due to its efficient
scalability and excellent localization accuracy.

Performance across Manipulation Types and Datasets.
Figure 2e and Figure 2f show the mean F-1 scores cate-
gorized by type of manipulation and dataset, respectively.
FSL-Net consistently matches or exceeds the performance
of competing methods across all manipulation types, ex-
cept for E9 and E4, where DataFix exhibits superior perfor-
mance. These manipulations introduce only minimal pertur-
bations that FSL-Net fails to localize, though lower prob-
ability thresholds may improve detection. DataFix fails to
accurately detect E10, a shortcoming effectively addressed
by FSL-Net. Methods relying on univariate tests, such as
MRMR and Fast-CMIM, perform well for manipulations
causing marginal distribution shifts but fail entirely with
manipulations affecting feature correlations (manipulations
E3 and E8). In contrast, techniques based on conditional
testing (MB-SM, MB-KS, KNN-KS, and Deep-SM), along
with DataFix and FSL-Net, successfully identify these more
complex manipulations. FSL-Net shows a clear advantage
in high-dimensional datasets (Phenotypes, Founders, and
Canine), outperforming all competing methods and high-
lighting its effectiveness in handling large feature sets.

Ablation Analysis. We assess the impact of each compo-
nent of FSL-Net’s Statistical Descriptor Network by training
models with different combinations of its three components:
Statistical Measures (SM), Moment Extraction Network
(ME), and Neural Embedding Network (NE). All variants
include the Prediction Network (PN), except for the SM-

only baseline, where predictions are obtained by directly
thresholding the statistical measures. Table 4 presents the
mean F-1 score achieved by each configuration. Training
lasted three days for all variants, except for the full model,
which was trained for an extended period of seven days. Us-
ing the Prediction Network in the SM-only baseline greatly
improves feature shift localization performance compared
to simply thresholding the statistical measures (from an F-1
score of 0.307 to 0.710), emphasizing the crucial importance
of the Prediction Network. Each component contributes to
performance improvements, suggesting that each compo-
nent has unique value, with extended training resulting in
additional gains.

Table 4. Mean F-1 scores for various configurations of FSL-Net.
Training Duration Model Configuration F-1 Score

3-Day

SM 0.307
SM + PN 0.710
ME + PN 0.742
NE + PN 0.783
ME + NE + PN 0.770
SM + ME + PN 0.855
SM + NE + PN 0.878
SM + ME + NE + PN 0.889

7-Day SM + ME + NE + PN 0.894

Additional experimental results are presented in Section F,
including: (1) a median-based evaluation of feature shift
localization performance and runtime across different meth-
ods; (2) a detailed performance and efficiency comparison
between FSL-Net and DataFix; (3) extended evaluations of
FSL-Net and DataFix on high-dimensional image datasets
(CIFAR10 and COIL-100); (4) an analysis of FSL-Net’s
runtime improvement over DataFix; (5) an evaluation of the
threshold-based variant of the SM-only baseline; and (6) a
qualitative evaluation of FSL-Net on the MNIST dataset.

5. Conclusions
Current feature shift localization methods involve a trade-
off between speed and accuracy when dealing with large
data volumes. In this work, we introduced FSL-Net, a novel
equivariant neural network that matches or surpasses ex-
isting state-of-the-art methods while offering a significant
reduction in processing times. FSL-Net leverages neural-
learned statistical descriptors, augmented with traditional
statistical measures, to effectively capture the input distribu-
tions. By contrasting these descriptors across different data
sources, the network accurately detects both univariate and
multivariate shifts. Most importantly, FSL-Net is designed
to manage datasets of varying sizes and to generalize across
new distributions without the need for model re-training
with each new estimation, providing significant speed and
scalability advantages over competing methods.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Benchmarking Methods
DataFix detects and localizes feature shifts using an iterative adversarial approach called DF-Locate. At each iteration, a
random forest classifier is trained to distinguish between samples from a reference and a query distribution. The predicted
class probabilities from this discriminator are used to compute the total variation distance (TVD), and its feature importance
scores, based on the mean decrease of impurity, are used to locate the features originating the shift. These features
are removed in successive rounds until the estimated divergence falls below a threshold or until half the features have
been eliminated. A final refinement step uses a knee-detection algorithm to choose the optimal stopping point in the
removal process. The selection of features is controlled by a dynamic threshold defined as the product of the TVD and a
hyperparameter τ .

Classical univariate statistical filters include Mutual Information statistics (MI) and selectKbest. These methods rank features
based on their statistical association with the target. MI measures entropy shared between each feature and the target, while
SelectKBest applies ANOVA-F for continuous features and Chi-squared for categorical ones. ANOVA-F tests variance for
mean differences in continuous features across target classes, while the Chi-square test evaluates categorical feature-target
dependency by comparing observed frequencies across target classes.

More advanced iterative selection methods include Minimum Redundancy Maximum Relevance (MRMR) and Fast
Conditional Mutual Information Maximization (FAST-CMIM). These methods attempt to balance feature relevance with
redundancy by considering mutual information conditioned on already selected features. MRMR iteratively selects relevant
features while minimizing redundancy with the selected features so far. FAST-CMIM iteratively selects features that
maximize MI, conditional to previously selected features. These methods, while more expressive than univariate tests, suffer
from poor scalability and cannot process large datasets within practical time constraints.

Other benchmarked methods include model-based and statistical testing techniques specifically designed for feature shift
localization. These include MB-SM (Multivariate Gaussian with Fisher-divergence test), MB-KS (Multivariate Gaussian
with KS test), KNN-KS (K-Nearest Neighbors with KS statistic), and Deep-SM (deep density neural models with Fisher-
divergence test). These approaches operate under stronger assumptions about data structure and require prior knowledge of
the number of corrupted features, which is rarely available in real-world applications.

B. Training and Validation Datasets
B.1. OpenML Datasets

We source a diverse collection of datasets from OpenML (Van Rijn et al., 2013), selecting only those in a tabular format
with at least 10 features and a minimum of 500 samples. To ensure data quality, we preprocess the datasets by removing
constant features and addressing missing values using two strategies. In the first strategy, we remove features with more
than 40% missing values, followed by the elimination of samples with missing data. In the second strategy, we remove
features with more than 70% missing values before discarding samples with missing data. If both strategies preserve the
required dimensions, we randomly select one for application. We also carefully remove any OpenML dataset that overlaps
with the test datasets. For efficiency, large datasets exceeding 40M cell values are partitioned into ten equal-sized sets to
accelerate processing. As a result, we obtain a total of 1,032 cleaned and partitioned datasets from OpenML.

B.2. Algebraic Simulated Datasets

We generate 184 simulated datasets using Polynomial, Sine, and Logarithmic functions, each containing 5,000 samples
and 1,000 features. Feature values from Polynomial functions are derived from f(x) = ax4 + bx3 + cx2 + dx+ e, with
parameters a, b, c, d, and e uniformly sampled from [−50, 50], and the degree randomly set to either 3 or 4. Sine functions
follow f(x) = a · cos(bx + c), where parameter a is sampled from [−50, 50], and b and c are sampled from [−π, π].
Logarithmic functions are defined as loga(x+6), with base a sampled from [2, 10]. The input values, x, are drawn from the
range [−5, 5]. Function parameters remain fixed across all samples.

B.3. Probabilistic Simulated Datasets

We generate 184 simulated datasets based on probabilistic distributions, including Gaussian, Bernoulli, and Beta mixture
models. Each dataset consists of 5,000 samples and 1,000 features. To construct these datasets, we begin by selecting a base
distribution D from {Gaussian, Bernoulli, Beta} and initializing parameters for a mixture model with a randomly determined
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number of components K, where 1 ≤ K ≤ 100. For the Gaussian distribution, the mean vector µk = (µk1, µk2, . . . , µkd)
is drawn from a standard normal distribution N (0, 1), while the variance vector σ2

k = (σ2
k1, σ

2
k2, . . . , σ

2
kd) is sampled

from a Uniform distribution U(0.1, 1.1) for each feature independently. For the Bernoulli distribution, the probability
vector pk = (pk1, pk2, . . . , pkd), which represents the probability of success for each feature, is sampled from a uniform
distribution U(0, 1). For the Beta distribution, the parameters αk = (αk1, αk2, . . . , αkd) and βk = (βk1, βk2, . . . , βkd) are
drawn from a uniform distribution U(1, 2). Samples are generated using the weighted sum of these mixture components,
defined as

∑K
k=1 πkD(θk), where πk represents the mixing coefficients, satisfying

∑K
k=1 πk = 1.

Each dataset has a 25% chance of undergoing multiple transformations, with the number of transformation steps I randomly
chosen between 1 and 5. These transformations include normalization (standard or min-max scaling), followed by a linear
transformation in which the dataset is multiplied by a randomly sampled matrix W ∈ Rd×d. The entries of W are drawn
from one of four distributions: U(0, 1), N (0, 1), Beta(1, 1), or Bernoulli(0.5). Additionally, a non-linear transformation is
applied, randomly chosen from the ReLU, GELU, sigmoid, hyperbolic tangent, or logarithmic transformation. To preserve
structural information, residual connections are sometimes applied, where the transformed data is combined with its previous
or initial state, either directly or after undergoing normalization.
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C. Testing Manipulation
Table 5 outlines the manipulation types used to induce shifts during evaluation. Some distort marginal distributions (E1,
E2, E4, E5, E6, and E7), with manipulation E4 leaving the mean approximately unchanged. Others shuffle feature values
across samples, altering feature correlations but not marginal distributions (E3 and E8). Manipulations E9 and E10 use
KNN predictions to replace corrupted continuous and categorical features, respectively. For a more detailed explanation, see
(Barrabés et al., 2023).

Table 5. Manipulation types applied to continuous and/or categorical features during benchmarking (Table from (Barrabés et al., 2023)).
Type Mapping Description Shift Data

E1 x ∼ Uniform(0, 1) Each value is substituted by a random number
between 0 and 1.

pi ̸= qi Cont.

E2 1 − x Each value is negated. pi ̸= qi,E[qi] = 1 − E[pi] Both
E3 PiXi Pi is a random permutation matrix applied to

feature i.
pi = qi, pC ̸= qC ,
qC =

∏
i∈C qi

Both

E4.1-4.3 clamp0,1(x + ασ)

σ ∼ Rademacher(0.5)
Add constant noise with a random sign. α ∈
{0.02, 0.05, 0.1} for 4.1-4.3 respectively.

pi ̸= qi,E[pi] ≈ E[qi] Cont.

E5 round(x) Values are binarized. pi ̸= qi Cont.
E61-6.3 b(1 − x) + (1 − b)x

b ∼ Bernoulli(ρ)
Values are negated with probability ρ ∈
{0.2, 0.4, 0.6} for 6.1-6.3 respectively.

pi ̸= qi,
E[qi] = ρ + (1 − 2ρ)E[pi]

Cat.

E7 MLP(x) Forward through an MLP with min-max normal-
ization or binarization.

pi ̸= qi Both

E8 PXi P is a random permutation matrix applied to all
features simultaneously.

pi = qi, pC = qC , p ̸= q Both

E9 KNN(x) Predict feature with KNN (Regressor). - Cont.
E10 KNN(x) Predict feature with KNN (Classifier). - Cat.
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D. Exploration of Attention Mechanisms
We investigated the integration of attention mechanisms across features within the residual blocks of both the Neural
Embedding Network and the Prediction Network to effectively capture diverse data patterns and feature correlations. Upon
incorporation, the attention mechanisms were coupled with MLPs implemented using convolutional layers with unit-sized
kernels.

D.1. Efficient EVA Attention Layers

Using full attention across features was infeasible for high-dimensional datasets due to its quadratic computational re-
quirements. Consequently, we investigated the use of EVA attention layers (Zheng et al., 2023). Attention layers without
positional embeddings are inherently equivariant; therefore, we did not include positional embeddings. However, efficient
(approximate) attention layers, such as EVA, can fail to preserve equivariance under certain conditions.

D.2. Sequence Handling and Window Size Adjustment

Key considerations involve ensuring that the input size to the EVA layer is not only smaller than the sequence length but
also divisible by it. Managing variable-length sequences requires meticulous data processing, achieved through padding
and the application of a key padding mask for efficient sequence handling. The window size w of the EVA attention
was dynamically adjusted based on the sequence length to optimize processing efficiency and effectiveness, specifically
determined as w = min

(
max

(
8,
⌊
d
4

⌋)
, 32

)
.

D.3. Limitations

Despite EVA attention layers being more efficient than traditional attention mechanisms (Liu et al., 2021), their integration
into both the Neural Embedding Network and the Prediction Network resulted in CUDA out-of-memory issues for certain
configurations. Consequently, we attempted to incorporate attention solely within the Prediction Network. While this
approach alleviated memory issues, the performance remained below that of our baseline configuration without any attention
mechanisms.
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E. Hyperparameter Tuning
E.1. Training Setup and Hardware Specifications

We conducted a random search across various hyperparameters of the FSL-Net architecture and its training strategy. Training
for each network was terminated if the validation loss did not improve for 50 consecutive evaluation intervals, with the
maximum training duration limited to three days. To expedite the training process, a single NVIDIA-SMI GPU with 32GB
of memory was used. The networks were validated on 50 validation datasets every 2,500 training iterations. The model
checkpoint achieving the highest validation accuracy was selected as the optimal network and subsequently trained for up to
seven days. This best-performing model was employed for inference and evaluation in the benchmarking experiments.

E.2. Alternative Statistical Measures

In addition to the statistical measures delineated in the main text, we investigated the following metrics: skewness (indicating
asymmetry), kurtosis (reflecting tail heaviness), index of dispersion (representing the variance-to-mean ratio), and trimmed
mean deviation (a robust estimator of central tendency that excludes outliers). The formulas for each measure are presented
in Table 6. These measures were ultimately excluded from the final analysis, as they did not confer any discernible advantage.

Table 6. Formulas for additional statistical measures of the Statistical Descriptor Network. N is the number of observations in X , xj

represents the ith dimension of the jth sample (we skip the subscript i for brevity), x(l) is the ith dimension of the lth sample after sorting
the samples from smallest to largest, r is the count of observations trimmed from each end in trimmed mean deviation, and x and σ are
the empirical mean and standard deviation of the ith dimension.

Statistical Measure Linear Equation µi,k

Skewness Yes 1
N

∑N
j=1

(
xj−x

σ

)3

Kurtosis Yes 1
N

∑N
j=1

(
xj−x

σ

)4

Index of Dispersion Yes σ2

x+ϵ

Trimmed Mean Deviation No 1
N−r

∑N−r
j=r+1 x(j)

E.3. Alternative Merging Operations

In addition to the normalized squared difference discussed in the main text, we examined several alternative merging
operations within the Prediction Network. The following methods were evaluated; however, none yielded performance
improvements over the existing approach: concatenation α(µp, µq) = [µp;µq]; element-wise difference α(µp, µq) =
µp − µq; and squared difference α(µp, µq) = (µp − µq)

2. Note that, for the concatenation method, the merged feature
vector has dimensions µp,q ∈ Rd×2t, whereas for the other merging operations, it has dimensions µp,q ∈ Rd×t.

E.4. Hyperparameter Search

E.4.1. NETWORK TUNING PARAMETERS

Table 7 provides an overview of the search spaces and the optimal values determined for each network-related hyperparameter
in FSL-Net. These parameters encompass configurations for the statistical measures, Moment Extraction Network, Neural
Embedding Network, and Prediction Network. For parameters not explicitly specified, default values were applied.

E.4.2. ATTENTION TUNING PARAMETERS

Table 8 presents the hyperparameters of the attention mechanism explored during the optimization process. These parameters
regulate the EVA attention layers within FSL-Net, including the number of heads, the number of landmarks, the window
factor, and dropout rates.

E.4.3. OPTIMIZATION TUNING PARAMETERS

Table 9 outlines the search space and optimal values for optimization hyperparameters in FSL-Net’s training strategy. This
includes the loss function and Adam optimizer settings.
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Table 7. Search space and optimal values for tuned network hyperparameters in FSL-Net.
Component Hyperparameter Possible Values Optimal Value

Statistical Measures Mean {True, False} True
Standard Deviation {True, False} True
Median {True, False} True
Mean Absolute Deviation {True, False} True
p-order Moments {True, False} True
p {2}, {3}, {2, 3} 2, 3
Histogram {True, False} True
Empirical CDF {True, False} True
# Bins {100}, {50, 100} 100
Skewness {True, False} False
Kurtosis {True, False} False
Index of Dispersion {True, False} False
Trimmed Mean Deviation {True, False} False
Trimmed Percentage {0.1} 0.1

Moment Extraction Network # Kernels {32, 64, 128} 64
Kernel Size {75, 125} 75
Dilation {1} 1
Activation {ReLU, Tanh} ReLU

Neural Embedding Network # Residual Layers {3, 5, 7} 5
# Kernels {32, 64} 64
Kernel Size {5, 7} 5
Dilation {1} 1
Activation {Tanh, GELU} Tanh

Prediction Network # Residual Layers {3, 5, 7} 7
# Kernels {32, 64} 64
Kernel Size {5, 7} 5
Dilation {1} 1
Activation {Tanh, GELU} Tanh
Combination {Concatenation, Element-wise difference,

Squared difference, Normalized squared dif-
ference}

Normalized squared
difference

Table 8. Search space and optimal values for tuned attention hyperparameters.
Component Hyperparameter Possible Values Optimal Value

Attention # Heads {4, 8} 4
# Landmarks {8} 8
Window factor {4} 4
Window size {7, 9} 7
Overlapping windows {True, False} False
Attention dropout {0, 0.3, 0.5} 0
Projection dropout {0} 0

Table 9. Search space and optimal values for optimization hyperparameters in the training strategy.
Component Hyperparameter Possible Values Optimal Value

Loss Function λ {0.0001, 0.001} 0.001

Adam Optimizer Learning Rate {0.0001, 0.001, 0.01} 0.001
Learning Rate Gamma {0.9, 0.999, 0.9995} 0.9995
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F. Extended Experimental Results
F.1. Median-based Feature Shift Localization Performance and Runtime Comparison

Figure 3 presents a median-based analysis of feature shift localization performance and runtime, complementing the
mean-based evaluation in the main text. For each method, F-1 scores and runtimes are first averaged across manipulation
types and fractions of manipulated features, then aggregated using the median across datasets. This approach eliminates the
need for imputation in cases where slower methods fail to complete for some datasets, enabling fairer comparisons across a
broader set of methods. However, the mean-based results remain more representative for consistently successful approaches
like FSL-Net and DataFix, which completed all evaluations. Figure 3a summarizes the resulting median F-1 scores, while
Figure 3b and Figure 3c visualize the trade-off between performance and computational cost, plotting median F-1 scores
against median and maximum runtime, respectively. In these plots, higher positions indicate better localization accuracy,
while positions further to the left denote lower runtime. These comparisons again confirm that FSL-Net matches DataFix
in localization accuracy while offering a substantial advantage in runtime efficiency. Despite being only slightly slower
than SelectKBest, FSL-Net far exceeds this method in accuracy. Meanwhile, methods such as MRMR and FAST-CMIM
continue to struggle with scalability and performance under median-based evaluation. MB-SM, MB-KS, KNN-KS, and
Deep-SM show higher F-1 scores when evaluated by the median rather than the mean, with KNN-KS performing the best
among them. However, all of these methods still lag behind FSL-Net, despite benefiting from access to the ground truth |C|
– a condition rarely met in practice – and suffer from extremely poor scalability on large datasets. Figure 3d plots the mean
runtime against the product of sample and feature sizes for each dataset. FSL-Net maintains a significantly lower mean
runtime than DataFix across datasets of varying dimensionality. Figure 3e presents median F-1 scores by manipulation type,
while Figure 3f shows mean F-1 scores by dataset. FSL-Net matches or surpasses the performance of competing methods
across nearly all manipulation types, with two exceptions: E9, where DataFix achieves higher performance, consistent with
mean-based results, and E4, where both DataFix and KNN-KS exhibit superior accuracy. Notably, FSL-Net demonstrates a
clear advantage on high-dimensional datasets such as Phenotypes, Founders, and Canine, outperforming all baselines and
highlighting its effectiveness in scenarios involving large feature sets.
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Figure 3. Performance and runtime comparison across feature shift localization methods: a) median F-1 scores across manipulation types,
fractions of manipulated features, and datasets; b) median F-1 scores vs. median runtime; c) median F-1 scores vs. maximum runtime; d)
mean runtime vs. sample-feature size product per dataset; e) median F-1 scores by manipulation type; f) mean F-1 scores by dataset.
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F.2. Performance and Computational Efficiency of FSL-Net and DataFix

Figure 4 displays the mean F-1 scores (top), mean runtimes (middle), and maximum runtimes (bottom) for both FSL-Net and
DataFix, computed across various manipulation types and fractions of manipulated features. FSL-Net exhibits comparable
feature shift localization performance to DataFix on the majority of datasets, with a notable advantage on large datasets
such as Phenotypes, Founders, and Canine, while also demonstrating significantly greater computational efficiency. The
pronounced disparity between the mean and maximum runtimes of DataFix on certain datasets suggests that its processing
time is highly sensitive to the complexity of the shifts, potentially necessitating multiple iterations to achieve convergence.
In contrast, FSL-Net executes only a single forward pass through the network, ensuring scalability to both high-dimensional
and large datasets.
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Figure 4. Mean F-1 scores (top), mean runtimes (middle), and maximum runtimes (bottom) of FSL-Net and DataFix by dataset.
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F.3. Extended Evaluation of FSL-Net and DataFix on CIFAR10 and COIL-100

Table 10 presents an extended evaluation of FSL-Net and DataFix on two image datasets: CIFAR10 (10k samples) and
COIL-100. We report the mean F-1 score in feature shift localization and the mean and maximum runtime (in hours),
computed across manipulation types and fractions of manipulated features. FSL-Net achieves higher F-1 scores on average
and consistently outperforms DataFix in terms of computational efficiency, exhibiting significantly lower runtimes in both
average and worst-case scenarios.

Table 10. Comparison of FSL-Net and DataFix averaged across manipulation types and fractions of manipulated features on two datasets:
CIFAR10 (10k) and COIL-100.

Dataset F-1 Score Mean Runtime (hours) Max Runtime (hours)

FSL-Net DataFix FSL-Net DataFix FSL-Net DataFix

CIFAR10 0.9565 0.8911 0.0319 0.2948 0.0336 0.8084
COIL-100 0.9720 0.9805 0.4906 2.9228 0.8406 9.1567
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F.4. Runtime Improvement of FSL-Net over DataFix

Figure 5 presents the mean runtime improvement of FSL-Net over DataFix across datasets, sorted by increasing dataset
size (measured as the product of the number of samples and the number of features). The speedup factor – defined as the
ratio of DataFix’s runtime to FSL-Net’s – measures the performance gain, with higher values indicating greater efficiency.
The results are averaged across manipulation types and fractions of manipulated features. On average, FSL-Net achieves a
substantial speedup of 35.8× (indicated by the dashed line), consistently outperforming DataFix across datasets. Among all
datasets, the high-dimensional Phenotypes dataset exhibits the greatest speedup, with FSL-Net outperforming DataFix by a
remarkable 136.3×.
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F.5. Performance of the Threshold-Based Variant of the SM-only Baseline

We evaluate a simplified (though constrained) configuration of FSL-Net that eliminates the Prediction Network and instead
relies solely on thresholding the combined statistical measures, computed as the normalized squared differences between the
reference and query. In this threshold-based approach, the statistical measures are reduced to a scalar score by taking either
the mean or the maximum of these differences. Figure 6 shows the mean F-1 scores for the SM-only variant of FSL-Net,
where feature shift localization is performed entirely through thresholding. The F-1 scores are averaged across datasets,
manipulation types, and fractions of manipulated features. The best performance is achieved using the mean-based method
with a threshold of 0.002, yielding an optimal F-1 score of 0.307.
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Figure 6. Mean F-1 scores of the SM-only variant of FSL-Net, where the Prediction Network is omitted and feature shift localization
relies solely on thresholding the statistical measures. The F-1 scores are averaged across datasets, manipulation types, and fractions of
manipulated features. Statistical measures are reduced to scalar values taking either the mean or maximum of the normalized squared
differences between the reference and the query.

25



Feature Shift Localization Network

F.6. Qualitative Evaluation of FSL-Net on the MNIST Dataset

Figure 7 provides a qualitative assessment of the performance of FSL-Net on the MNIST dataset under various manipulation
types. The first subfigure (Figure 7a) illustrates the ability of FSL-Net to identify manipulated features in five sample images.
Each row represents a distinct manipulation type applied to modify 5% of the image features (i.e., pixels), with the top row
corresponding to E5, the middle row to E8, and the bottom row to E1. Correctly detected manipulations are highlighted in
green, while undetected modifications (false negatives) and misclassified pixels (false positives) are colored red and orange,
respectively. The results indicate that FSL-Net effectively detects manipulation E1, while its performance is less consistent
for manipulations E5 and E8. The difficulty in detecting E5 comes from its binary rounding of pixel values to 0 or 1, often
blending seamlessly into the digit structure. Similarly, E8, which randomly permutes pixel values, disrupts spatial coherence
without necessarily creating visually distinct artifacts, making detection more challenging.

The second subfigure (Figure 7b) presents the Mean Squared Error (MSE) between the reference and query statistical func-
tional maps derived from statistical measures (including the mean and standard deviation), the Moment Extraction Network,
and the Neural Embedding Network. Each bar represents a distinct feature, with color coding indicating classification
outcomes: true positive (green), false negative (red), false positive (orange), and true negative (blue). Manipulation E1
(bottom row) is easily detectable, exhibiting high MSE values, particularly in the statistical functional maps derived from
the mean, the Moment Extraction Network, and the Neural Embedding Network. In contrast, more subtle manipulations,
such as E5 (top row) and E8 (middle row), display smaller MSE values between reference and query for certain features,
making their detection more challenging. Still, several features are correctly classified for these challenging manipulations,
with the Neural Embedding Network and the Moment Extraction Network producing the most distinguishable statistical
functional maps. The mean and standard deviation measures are ineffective in detecting manipulation E8, as it only affects
correlation, with low MSE values for these measures.
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Manipulation Type: E5

Manipulation Type: E8

Manipulation Type: E1

True Positives False Negatives False Positives

(a) Comparison of FSL-Net output for four examples from the MNIST dataset, with manipulation type E5 (top
row), E8 (middle row), and E1 (bottom row). In each case, 5% of the image features were manipulated. Green
rectangles indicate correctly predicted corrupted features, red rectangles denote false negatives, and orange
rectangles represent false positives.
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(b) Mean Squared Error (MSE) between reference and query statistical functional maps derived from statistical
measures, the Moment Extraction Network, and the Neural Embedding Network. Each bar represents a feature,
with colors indicating classification outcomes. The bottom row corresponds to manipulation type E1, while
the middle and top rows correspond to the more challenging manipulation types E8 and E5, respectively.

Figure 7. Qualitative evaluation of FSL-Net on the MNIST dataset.

27


