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Abstract
This paper presents a study on the integration of
domain-specific knowledge in prompt engineer-
ing to enhance the performance of large language
models (LLMs) in scientific domains. A bench-
mark dataset is curated to encapsulate the intricate
physical-chemical properties of small molecules,
their drugability for pharmacology, alongside the
functional attributes of enzymes and crystal mate-
rials, underscoring the relevance and applicability
across biological and chemical domains.The pro-
posed domain-knowledge embedded prompt en-
gineering method outperforms traditional prompt
engineering strategies on various metrics, includ-
ing capability, accuracy, F1 score, and halluci-
nation drop. The effectiveness of the method is
demonstrated through case studies on complex
materials including the MacMillan catalyst, pacli-
taxel, and lithium cobalt oxide. The results sug-
gest that domain-knowledge prompts can guide
LLMs to generate more accurate and relevant re-
sponses, highlighting the potential of LLMs as
powerful tools for scientific discovery and innova-
tion when equipped with domain-specific prompts.
The study also discusses limitations and future di-
rections for domain-specific prompt engineering
development.

1. Introduction
The rapid advancement in artificial intelligence (AI) has
significantly propelled its integration into natural science,
specifically biology, chemistry and material science. Virtual
screening contains thresholds determination and properties
labeling, which can exhaust known design space [1] and
guide experimental explorations [2]. Designing thresholds
requires thorough domain insights but the rate-determining
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step in virtual screening is labeling the data. Early applica-
tions of AI in science were focused on properties predictions
(e.g. formation energy [3], selectivity & permeability of
membranes [4-6], protein structures [7-8] and drug delivery
[9-10]). As machine learning advances, more variants of
artificial neural networks enabled AI to handle information
in complex modal and solve more sophisticated problems in
computational chemistry and bioinformatics. For example,
MLP (multilayer perceptron) based machine learning po-
tentials for molecular dynamics [11-12], GCN based DFT
(density functional theory) for enzyme structural activity
[13-14], CNN based molecular electron microscope images
processing [15-16]. However, traditional high-throughput
virtual screening is limited to known molecules or materials.
The emergence of AI in inverse design emphasizes the need
for innovative models that can assist experts in discovering
new structures [17]. Models containing generating and pre-
dicting enable de novo design of molecules [18-19], drugs
[20] and proteins [21-22].

A key challenge in applying AI to science is the lack of ex-
perimental data, which is often costly and time-consuming
to gather. For instance, A significant drawback of using
physics-based computational methods to gather data is the
consumption of extensive computational resources and time.
On the other hand, Directed modification and expression of
enzyme genes also require several days to weeks of time.
As a result, the lack of sufficient effective training data
is always inadequate for training models effectively. [23].
Moreover, a trivial protein composed of 100 amino acid
residues, with 20100 possible amino acid sequences and a
corresponding vast space of potential configurations, makes
searching, optimizing, and directed evolution of enzymes
within the vast chemical space highly infeasible [24].

Overcoming the ‘small data’ challenge is basic but essential.
Among tremendous approaches towards improving learn-
ing efficiency, large language models (LLMs) open a new
channel for more efficient virtual screening apart from con-
ventional methods, such as high-throughput computational
methods [25-27], autonomous wet experiments [28-29], and
data efficient algorithms (e.g. Bayesian optimization [30-31]
and active learning [32]. LLMs are capable of processing
and analyzing vast data amounts, which have notably ad-
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vanced in addressing challenges like zero-shot reasoning,
enabling them to handle tasks they haven’t been explicitly
trained for. They also excel in incorporating domain knowl-
edge across various fields and providing explanations in
natural language, thereby enhancing their adaptability and
accessibility. The LLM based AI agents [33] and pre-trained
foundation models [34-35] are considered as the next gener-
ation of AI scientific assistants.

Prompt quality affects LLMs’ outputs significantly, many
studies focus on well-defined prompts for general purposes
(e.g., chain of thoughts reasoning [36], few shots learn-
ing [37]), known as prompt engineering [38-40]. Enhanc-
ing LLMs for specific fields typically involves fine-tuning,
which can be complex and costly for those outside AI com-
munity [41]. Although there are already some domain-
specific LLMs, they have not yet achieved the stability of
general-purpose models like ChatGPT, leading many to
focus on how to effectively utilize ChatGPT. Considering
LLMs’ remarkable learning abilities, strategic prompting
or directing the LLM with specific instructions could be an
effective alternative. However, current prompt engineering
is mostly focused on general conditions such as academic
writing [42] and science popularizing [43]. For experts in
non-AI disciplines, the true value of these models lies in
their domain-specific expertise, rather than their general
capabilities. The absence of prompt engineering for specific
areas makes LLMs user-unfriendly, especially for experi-
mental chemists and material scientists.

Our paper studies the overlooked gap in AI for biology,
chemistry and materials science, including small molecules,
crystal materials and protein enzymes, highlight the im-
portance of prompting to researchers off-the-shelve LLMs.
Our investigation shows the critical need for solutions that
combine AI’s generative capabilities with detailed materi-
als science insights, aiming to enhance model applicability
and to address domain-specific challenges across various
research areas.

In this article, we introduce “domain-knowledge embedded
prompt engineering” as a novel approach to enhance LLM
performance in specialized areas, as depicted in Fig. 1. First,
we have created a set of domain-specific datasets for the first
time, supplementing the existing public datasets. Second,
we have developed and tested specific prompts for various
tasks in three examples extracted from chemistry, materials
science, and biology. Third, we combined the general meth-
ods of the computer science community for comparison,
validating that the approach is correct. This approach aligns
with desired outcomes and involves developing appropri-
ate evaluation metrics. We also address the issue of LLMs
generating inaccurate or ’hallucinated’ responses and de-
signed strategies to mitigate this. Last, through a case study,
we demonstrate how our prompting strategies can address

specific challenges in these fields. Overall, we showed that
domain-knowledge embedded prompt engineering offers a
cost-effective and efficient way to leverage the potential of
LLMs.

Figure 1. The Whole Process of Prompt Engineering Framework

2. Methods
In this chapter, we first introduce the construction of tasks
from 3 domains: organic small molecules, enzymes and
crystal materials, and the answer evaluation scheme for
numerical and verbal tasks (See Section 2.1). We then
formulate these tasks of domain question answering to an
LLM question answering problem (See Section 2.2) and
introduce various existing prompt engineering methods to
address these tasks (See Section 2.3). Finally, we put for-
ward our domain-knowledge embedded prompt engineering
method (See Section 2.3).

2.1. Dataset Construction and Answer Evaluation
Scheme

In task construction process, each of the 3 material cate-
gories (small molecule, enzyme and crystal material), holds
significant relevance in academic research and practical ap-
plications. Organic small molecules are commonly utilized
in pharmacy [44], while enzymes play a critical role in bio-
catalysis [45-46], and crystalline materials are essential in
semiconductor technology and photovoltaic devices [47-48].
While mainstream benchmark datasets such as MMLU [49],
Big-Bench [50] and GSM8k [51] have been widely applied
to LLM performance evaluation, the composition of these
datasets are usually generic math or reasoning questions,
lacking a concentrated focus on some specific knowledge do-
mains or subjects. Compared to these datasets, our datasets
could provide a more comprehensive evaluation of LLM’s
performance (using different prompt engineering methods)
on specific chemistry domains.

We collect and curate a dataset of 1280 questions and cor-
responding solutions (See Table 1) for the evaluation of
LLM’s capability, as described below:

Organic Small Molecules: 40 molecules proven to have
significant drug properties or potentials are selected and
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Table 1. Prompt Engineering Prediction Tasks

Datasets Tasks Number
of
Molecules

Number
of
Tasks

Crystal
Mate-
rial

Space Group Number, Lat-
tice Angle (α,β,γ), Lat-
tice Vector (a,b,c), Den-
sity, Formation Energy, En-
ergy Above Hull, Stabil-
ity, Band Gap, Direct Gap,
Metallic, Total Magnetiza-
tion, Ordering

40 640

Organic
Small
Molecule

Molecular Formula, Melt-
ing Point, Density, Solubil-
ity, Molecular Weight, H-
bond Acceptors, H-bond
Donors, LogP, Drugability

40 360

Enzyme Category, Substrate, Prod-
uct, Active Site, Biolog-
ical Process, Number of
Amino Acids, Ligand

40 280

Total 32 120 1280

curated from Pubchem [52], each containing 9 crucial struc-
tural and physical-chemical properties.

Enzymes: 40 enzymes involved in significant metabolic
pathways in vivo are selected and curated from UniProt
database [53], each with 7 crucial sequence and functional
information.

Crystal Materials: 40 representative crystals derived from
the Materials Project database [54] are selected, each with
16 crucial structural and energy properties.

A detailed enumeration and classification of all task types
are contained in Appendix A. Due to the limitations in
API callings of proprietary LLMs, it is very hard to test
molecules on a larger scale (like for thousands of molecules),
but we believe that the selected molecules are already very
representative to demonstrate LLM’s performance, and
could pave the way for further applications in the future.

In evaluating the performance of LLM prompt engineer-
ing methods on different tasks, four significant metrics are
introduced:

Capability: To measure LLM’s capability to provide an
answer for a certain task, regardless of its correctness. Its
value takes 1 if the answer is effective otherwise 0.

Accuracy:To evaluate the extent to which LLM’s answer is
identical or close to the ground truth.

F1 Score: to measure LLM’s predictive performance on

multiple-choices questions, combining precision and recall.
F1 Score offers a more comprehensive evaluation compared
to Accuracy, especially in cases of imbalance where accu-
racy might be high but does not reflect the true performance
of LLM.

Hallucination Drop: A metric to quantify the discrepancy
between an LLM’s ability to answer questions (Capability)
and the accuracy of those answers (Accuracy). It takes 1
minus the ratio of Accuracy and Capability as the value.
This metric helps identify when LLM is trapped in severe
hallucinations on certain tasks.

Detailed implementations of these metrics are listed in Ap-
pendix B.

In our approach, we utilize an LLM plugged-in automatic
scheme to evaluate the metrics above. According to Table 2
in Appendix A, tasks can be divided into numerical and ver-
bal ones, each of which takes a different manner to evaluate,
respectively.

Numerical Tasks: All numerical tasks are transformed
to the form of multiple-choices questions, as straightfor-
ward error estimation of the answer from ground truth can
be strongly affected by unit and scale, and the form of
multiple-choices makes it easier and more reasonable in
evaluation across various tasks. Detailed implementation
of tasks’ transformation into multiple-choices questions are
described in Appendix B. Metrics involved in numerical
task evaluation are: Capability, Accuracy, F1 Score and
Hallucination Drop.

While Capability, F1 Score and Hallucination Drop are
evaluated in the normal form, the Accuracy of multiple
choices questions is specifically defined. Full mark (1) is
given if the option is exactly the ground truth. A partial score
(0.4) is given if the value or range of the chosen option is
adjacent to the ground truth. The complete scoring policy is
listed in Appendix B.

Verbal Tasks: For verbal answers, the LLM is guided by a
series of grading examples coordinated to the specific ques-
tion types and then required to give a grade to an answer.
Detailed prompts for LLM’s grading tasks are listed in Ap-
pendix D. Metrics involved in verbal task evaluation are:
Capability, Accuracy and Hallucination Drop.

While Capability and Hallucination Drop are evaluated in
the normal form, the Accuracy of verbal tasks take discrete
values among {0, 0.2, 0.4, 0.6, 0.8, 1}. Score 0 means
that the answer is completely irrelevant to the ground truth,
while the scores {0.2, 0.4, 0.6, 0.8} imply part of the answer
aligned with the ground truth, extent to which increases with
the value. Score 1 corresponds to answers intrinsically the
same as ground truth.

It is worth emphasizing that we believe the LLM plugged-in



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Integrating Chemistry Knowledge in Large Language Models via Prompt Engineering

automatic scheme above for evaluation could bear skepti-
cism on fairness and effectiveness, as LLM’s evaluation
process is independent from LLM’s predictive task perform-
ing in the last step, implying the LLM would not take past
memories of task performing or “know” the answers were
generated by itself, and thus is unlikely to “cheat” on the
grading process.

Fig. 2 shows the flow chart of question construction and
answer evaluation process. Data from 3 material categories
are extracted and combined to form proper questions (some
are in the form of multiple-choices questions). When the raw
answers are acquired, they need to be checked for validity,
and then aligned to proper answer forms. Ultimately the
answers are automatically graded.

Figure 2. Question Construction, Answer Alignment and Grading
Process

2.2. Scientific Prediction as a LLM Question Answering
Problem

In the LLM era, scientific prediction can be considered as a
question answering task leveraging the zero-shot/few-shot
reasoning power of LLM. It is demonstrated that by pro-
viding in-context hints to language model with size large
enough for emergence to happen, the model can excavate
knowledge learned from pre-trained data and well-perform
the question answering task [55]. As an approach to enhance
LLM’s capability on specific domains or tasks, prompt en-
gineering significantly reduces the need for extensive task-
specific datasets as required in LLM fine-tuning paradigm,
making it an effective in-context learning method for LLM
enhancement.

The process of prompt engineering could be mathematically
formalized [56]. Let Q be the question, P be the prompt,
A be the answer by LLM, prompt engineering process is
to determine the context of prompt words P such that the

answer A could be given effectively by LLM:

A = f(P,Q) (1)

where f is the LLM.

A prompt optimization objective is to find:

argmaxP g(f(P,Q), S) (2)

where S is the ground truth solution, and g is a evaluation
function which measures how much the LLM answer A is
in accordance with the ground truth solution S.

For our dataset D = {Qi, Si}ni , the general prompt op-
timization objective is to find the P that maximizes the
expectation over the dataset:

argmaxPEQ,S∈Dg(f(P,Q), S) (3)

2.3. Common Prompt Engineering Techniques and
Domain-Knowledge Embedded Prompt
Engineering

Figure 3. Illustration of the Mainstream Prompt Engineering Meth-
ods

The essence of prompt engineering is to harness the full
potential of LLMs in diverse applications by ensuring they
respond in a manner that is most aligned with the user’s
intent and the task at hand. We give a brief introduction to
several mainstream prompt engineering methods:

Zero-shot Prompting: Zero-shot Prompting requires LLM
to answer the given question directly without providing any
data or example questions in the context. (See Fig. 3 (a))

Few-shot Prompting: In Few-shot Prompting, an LLM
is presented with several demonstrations, (i.e. question-
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answer pairs within the prompt context), better equipping
the LLM to understand and replicate the response format and
content. The demonstrations in prompt can be formalized to:
P = {(Q1, A1), ..., (Qm, Am)}, where m is the number of
examples [55]. (See Fig. 3 (b))

Expert Prompting: Role-play instructions have demon-
strated their effectiveness in harnessing the potential of
LLMs [56]. By guiding LLMs step-by-step into assum-
ing the role of domain experts, they can generate responses
akin to those written by experts (See Fig. 3 (c)).

Zero-shot CoT (Chain-of-Thought) Prompting: By elic-
iting a sequential, step-by-step reasoning process to effec-
tively address complex tasks, CoT enables the model to
break down a task into its constituent parts, offering a clear
and logical pathway to the solution [36]. In particular, Zero-
shot CoT prompting involves adding Let’s think step by step
to the prompt as a trigger-sentence. (See Fig. 3 (d))

Few-shot CoT Prompting: In addition to adding Let’s think
step by step to the prompt like Zero-shot CoT, Few-shot
CoT provides several examples of Thought-Chain in solving
similar problems to assist LLM perform the current task in
a similar manner [57]. The demonstrations in prompt can
be formalized to: P = {(Q1, C1, A1), ..., (Qm, Cm, Am)}.
(See Fig. 3 (e))

A significant limitation of these prompt engineering meth-
ods is that they do not incorporate domain expertise as guid-
ance for problem-solving, which considerably restricts the
capabilities of LLMs in numerous domain-specific tasks.
Moreover, since addressing many domain-specific chal-
lenges involves intricate cognitive processes, it is imper-
ative to strategically combine various prompt engineering
techniques at different stages to achieve optimality.

Here we propose a domain-knowledge embedded prompt
engineering strategy that integrates chemistry knowledge
into language model. The prompting scheme takes the form
of multi-expert mixture. Each expert takes part in role
playing and are given a few shots of CoT demonstrations
integrated with expertise domain knowledge or instructions.

Here, incorporating domain knowledge essentially involves
integrating the thought processes of chemistry/biology ex-
perts. This contrasts with the conventional zero-shot CoT
approach, which merely prompts LLMs to engage in a chain
of thought. By doing so, it offers more precise background
knowledge and exemplifies more accurate human reasoning.
The full documentation of all domain-knowledge prompts
are listed in Appendix D. Then the experts’ answers would
be assembled through the principle of minority submission
to the majority. The detailed scheme of these strategies are
delineated in Fig. 3 and Fig. 4.

In the following chapters, we compare this prompt engi-

Figure 4. The Whole Process of Domain-Knowledge Prompt Engi-
neering Method

neering method proposed above to other generic prompt
engineering methods including zero-shot prompting, few-
shot prompting, expert prompting, and CoT prompting.

3. Results
In this chapter, we first present the overall benchmarks of
prompt engineering methods over all tasks. After that, we
make detailed comparisons over different task types, CoT
complexities and material types. In the last section, three
case studies on representative molecules are conducted us-
ing our tailored domain-knowledge embedded prompt en-
gineering method to illustrate the effectiveness of prompt
engineering in assisting crucial scientific research topics.

3.1. Summery of Overall Performance

In our study, we evaluated five different prompt engineering
strategies across three datasets (small molecule, enzyme,
and crystal material), each yielding three sets of answers
for robustness. The LLM model being evaluated is ‘gpt-3.5-
turbo-1106’ [58] through official API calling. The prompt
engineering strategies included zero-shot, few-shot, expert,
and zero-shot CoT, along with domain-knowledge method
(ours). The overall evaluation results on three datasets are
shown in Fig. 9 and Fig. 10 in Appendix C.

Our domain-knowledge embedded prompt engineering
method outperforms other conventional prompt engineering
techniques on most tasks and metrics. In nearly all tasks
on small molecules and crystal materials, and more than
50% of the tasks on enzymes, our method’s performance is
very significantly higher than other methods, while on tasks:
Molecular Density, Molecular Weight, Number of Amino
Acids and Active Sites, our method does not demonstrate
obvious advantages.

In the following sections, we make more detailed compar-
isons for different tasks and molecules. Due to space lim-
itation, we only present the key findings in the following
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sections. In Section 3.2, we compare these method’s per-
formance on different task types, while in Section 3.3, we
compare prompt engineering methods’ effectiveness on dif-
ferent types of materials.

3.2. Comparison by Task Types

In this section, we compare various prompt engineering
methods performance on different types of tasks, classifica-
tion of which can be referred to in Table 2 and Table 3 in
Appendix A. Each task type presents unique challenges and
necessitates different inference abilities from the LLM. Af-
ter aggregation, the performances of 5 prompt engineering
methods on different question groups are shown in Fig. 5
and Fig. 6:

Figure 5. Prompt Engineering Performances by Output Type

Figure 6. Prompt Engineering Performances by Reasoning
Paradigm

(1) Domain-knowledge embedded prompt engineering
method outperforms traditional prompt engineering

methods on all question types. Through a comprehensive
evaluation across various groups of prediction tasks, focus-
ing on four crucial indices - ”Capability”, ”Accuracy”, ”F1
Score” and ”Hallucination Drop”, our domain-knowledge
embedded prompt engineering method consistently outper-
forms traditional prompt engineering strategies. This su-
periority is evident in the substantial enhancement of both
capability and accuracy metrics, with the most notable im-
provements exceeding a 100% boost. Such findings un-
equivocally demonstrate that integrating domain-specific
knowledge into prompt engineering substantially elevates
the effectiveness of generic prompt engineering techniques.

(2) LLM performs better for answers derived from logi-
cal reasoning than answers based on experimental data.
This tendency is further amplified in our domain-specific
prompt engineering method, where a more tailored prompt
engineering strategy is applied. As shown in Fig. 5 (a), (b)
and (c), it consistently leads to more significant improve-
ments in tasks involving logical deduction compared to
other prompt engineering methods. This disparity in perfor-
mance can be attributed to the fact that LLMs, with refined
prompt engineering, can engage in a sophisticated Chain-of-
Thought process, enabling LLMs to excel in tasks that de-
mand intricate reasoning and problem-solving skills. How-
ever, despite being trained on various scientific databases,
LLMs do not excel in precisely replicating exact data values.
This brings about their ability to process and reason through
information well rather than serve as direct conduits for data
retrieval.

(3) LLM performs better on verbal tasks compared to
numerical tasks. When faced with tasks that require a nu-
merical response, (actually in formats involving multiple
choices), LLMs tend to exhibit weaker performance. This is
evident in both capability and accuracy metrics across vari-
ous prompt engineering methods, with numerical answers
derived from experimental data showing the least favorable
results (Fig. 5 (a), (b), (c)). When LLMs engage in numeri-
cal reasoning, their capability scores are notably higher (Fig.
5 (a)), but this advantage is tempered by significant issues
with hallucinations, which adversely affect the accuracy
of these responses. In fact, even when the most advanced
prompt engineering methods are applied, the accuracy of
logical numerical answers is surpassed by that of logical
answers. This trend underscores a recognized weakness
of LLMs in number-related tasks, as evidenced by several
research studies.

(4) Domain-knowledge embedded prompt engineering
method effectively reduces hallucination. The metric of
hallucination drop serves as a barometer for the average qual-
ity of answers produced by LLMs under different prompt
engineering strategies. As shown in Fig. 5 (d), the ques-
tion type of numerical answer by logic is the only category
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where an increase in hallucination is observed as the domain-
knowledge embedded prompt engineering is applied. In the
other three question types, the incorporation of domain-
specific knowledge into the prompt engineering process
effectively curtails the occurrence of hallucinations. No-
tably, the question types ’numerical answer by experimental
data’ and ’verbal answer by logic’ emerge as front-runners,
registering the top two lowest scores in hallucination drop.
This outcome underscores the precision and effectiveness of
domain-knowledge embedded prompt engineering methods
in enhancing the reliability and accuracy of LLM responses.

(5) Verbal reasoning tasks get largest boosting with
domain-knowledge embedded prompt engineering
method. In 5 question types classified by reasoning
paradigms, ”Domain Knowledge Literal Reasoning Tasks”
distinctly stand out, especially when enhanced by domain-
knowledge embedded prompt engineering methods. This
category of tasks not only achieves the highest capability
and accuracy scores overall but also maintains a relatively
low level of hallucinations.This demonstrates well-crafted
prompts can, in a remarkably efficient manner, stimulate
the latent capabilities of LLMs, enabling them to generate
answers with heightened confidence and precision.

3.3. Comparison by Material Differences

In this section, a detailed comparison of prompt engineer-
ing accuracy on three types of materials will be portrayed.
For clarity, we only focus on our tailored prompting method
(namely the domain-knowledge embedded prompting)’s per-
formance on small molecules, enzymes and crystal materials
with divergent material traits. The methodology employed
to quantify the differences among these materials will be
elaborated upon in the following paragraphs.

For small molecules, we propose two indica-
tors—molecular weight and elemental composition—to
differentiate the complexity of various molecules. This is
predicated on the rationale that more complex molecules
typically necessitate a higher level of analytical effort,
which could inversely affect accuracy. We aim to investigate
whether this assumption aligns with the empirical results
obtained from our study.

For enzymes, we also employ two indicators to discern the
difficulty in predicting properties among different enzymes:
enzyme scale, quantified by the number of amino acids,
and the current depth of research, denoted as the number
of reviewed publications recorded on Uniprot [53]. It is
hypothesized that more complex enzymes, characterized
by longer peptide chains and a lesser degree of compre-
hensive research, necessitate a higher analytical effort, po-
tentially reducing accuracy. We intend to explore whether
this hypothesis is consistent with the overall findings of our
analysis.

For crystalline materials, we utilize two indicators to gauge
complexity: formula complexity, which reflects the com-
plexity of a single unit cell, and unit cell symmetry, denoted
by the crystal system to which it belongs. The underlying
premise is that more complex crystalline materials demand
a more substantial analytical effort, which could, in turn,
diminish accuracy. We will investigate whether this premise
aligns with the collective results of our study.

Figure 7. Prompt Engineering Performances on Different Materials

(1) The prediction accuracy of LLMs deteriorates for
larger and more complex organic molecules. As the
molecular weight increases and the elemental composition
becomes more diverse, we observe a gradual decline in the
LLM’s prediction accuracy. Specifically, molecules com-
prising more than five distinct elements exhibit significantly
poorer performance compared to those with fewer compo-
nents. Moreover, when the molecular weight exceeds 300
g/mol, the overall accuracy for single molecule predictions
generally falls below 30%, as shown in Fig. 7 (a). Further-
more, large organic molecules are less commonly found in
literature compared to smaller molecules, exacerbating the
difficulty of LLM’s information retrieval.

(2) The accuracy of LLMs in predicting properties of
specific enzymes aligns closely with the depth of current
research on these enzymes but shows a weak correlation
with the enzymes’ size. The number of reviewed publi-
cations recorded on Uniprot, which signifies the academic
community’s past research focus on an enzyme, demon-
strates a strong correlation with the LLM’s prediction per-
formance. The more thoroughly an enzyme is researched
and understood, the higher the accuracy of LLM predictions.
Most enzymes with low prediction accuracy concentrate in
areas with low number of reviewed publications, as shown
in Fig. 7 (b). However, there appears to be no explicit rela-
tionship between the size of the enzyme, measured by the
number of amino acids, and the accuracy of LLM predic-
tions. This outcome suggests that the predictive ability of
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LLMs for enzymes primarily relies on information retrieval,
specifically from scientific literature reports, rather than on
the direct analysis of the enzyme’s structure.

(3) The prediction accuracy of LLMs decreases for crys-
talline materials with larger, more complex compositions.
As the prediction target’s gauge complexity increases, indi-
cated by formula complexity, there is a gradual decline in
the LLM’s prediction accuracy. Crystals comprising more
than four elements perform significantly worse than those
with fewer components. Additionally, when the number of
formula atoms exceeds 10, the overall accuracy for single
crystal predictions generally falls below 15%, as shown in
Fig. 7 (c). Apart from the intrinsic complexity of crystals to
bring difficulty in analysis,,since most prediction tasks for
crystalline materials in our datasets do not require inference
and mainly rely on data retrieval, the rarity of large crystals
in the literature compared to more common crystalline mate-
rials increases the difficulty of LLM’s information retrieval.

(4) The prediction accuracy of LLMs concerning crys-
talline materials demonstrates a notable correlation with
unit cell symmetry. Specifically, crystals belonging to the
Trigonal, Cubic, or Hexagonal lattice systems are more
likely to yield better predictions. The reason for this is
twofold: first, these structures are inherently more regular
and defined, making them easier subjects for inferential anal-
ysis. Secondly, these types of crystal structures are more
readily studied and characterized by modern crystallography
instruments and techniques, such as X-ray diffraction and
electron microscopy, leading to a richer presence in scien-
tific literature. This abundance of data enhances the LLM’s
ability to retrieve relevant information, thereby improving
prediction accuracy for crystals with these symmetries.

In conclusion, these empirical evidences presented sup-
ports the intuitive notion that domain-knowledge embed-
ded prompts enhance the performance of LLMs to dif-
ferent extents. Firstly, the prompts’ inferential capabilities
are closely tied to the complexity of the analytical subject
matter. Secondly, their proficiency in retrieval is correlated
with the depth of contemporary academic research, suggest-
ing that well-crafted prompts can effectively mine the latent
knowledge absorbed during the LLM’s pre-training phase.

Ultimately, to elucidate the efficacy of the domain-
knowledge embedded prompt engineering method in ad-
dressing highly domain-specific tasks, we have meticulously
designed three case studies focusing on MacMillan catalyst,
paclitaxel, and LiCoO2 to utilize our domain-knowledge
embedded prompt engineering method’s capability. Due to
space constraints, the details of the case studies are provided
in Appendix E for reference.

4. Conclusion and Future Directions
The integration of domain-specific knowledge into prompt
engineering has demonstrated its effectiveness in enhancing
the performance of LLMs across various tasks in chem-
istry, materials science, and biology. Our proposed domain-
knowledge embedded prompt engineering method outper-
forms traditional generic prompt engineering strategies on
metrics such as capability, accuracy, F1 score, and hallu-
cination drop. The incorporation of domain expertise into
prompts not only guides the LLM to synthesize more rel-
evant knowledge but also provides a clear reasoning path
for complex tasks. Our case studies further validate the
effectiveness of this approach in analyzing intricate mate-
rials like the MacMillan catalyst, paclitaxel, and LiCoO2,
demonstrating the potential of LLMs to assist experts in
molecular design and optimization when equipped with
domain-specific prompts.

Limitations and potential future directions of our work is
also concluded below:

Expansion of Domain Coverage: While our study has fo-
cused on chemistry, materials, and biology, the concept of
domain-knowledge embedded prompt engineering can be
extended to other scientific domains. Future work can ex-
plore the development of tailored prompts for fields such as
physics, geology, and medicine to unlock the full potential
of LLMs in diverse scientific applications.

Integration of Datasets and Tools: To further enhance
the reasoning capabilities of LLMs, future prompt engi-
neering can integrate external datasets and domain-specific
tools. Linking prompts to chemical databases, computa-
tional chemistry software, or biological sequence analysis
tools could enable the LLM to leverage additional informa-
tion for more accurate predictions.

Multi-Modal Prompting: Incorporating visual informa-
tion, such as molecular structures or crystal images, into
prompts can provide a more intuitive understanding for
LLMs. Multi-modal prompting techniques combining tex-
tual and visual cues can potentially lead to even stronger
performance gains.

Human-in-the-Loop Refinement: Iteratively refining
prompts with input from domain experts can help to un-
cover more effective prompting strategies. Human-in-the-
loop systems that leverage the complementary strengths
of LLMs and human experts have the potential to achieve
highly optimized prompts.

Prompt Engineering Benchmarking: To ensure compre-
hensive and fair evaluation of prompting strategies, it is
meaningful to establish standardized benchmarks across
multiple LLMs, especially the recently released ones. This
approach allows researchers to compare the performance
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of prompt engineering on different LLMs, thereby driving
innovation in the field. Creating diverse datasets with a wide
range of tasks and molecules will enable robust evaluation
and facilitate the development of more effective prompting
techniques for various LLMs.

In summary, domain-knowledge embedded prompt engi-
neering has shown great promise for unlocking the potential
of LLMs in scientific domains. By integrating domain ex-
pertise into prompts, LLMs can generate more accurate and
contextually relevant responses. As prompt engineering
techniques continue to evolve, LLMs have the potential to
become powerful allies for scientists, assisting in the ex-
ploration and discovery of new materials, molecules, and
biological entities.

Software and Data
Links to the source code, test datasets, and prompt engineer-
ing models are available here: https://github.com/
harrylaucngd/prompt-eng-master. The com-
plete predictive results of different models and full results
are also available in the link.
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A. Dataset Construction Details
We collect and curate a comprehensive dataset of 1280 ques-
tions and corresponding solutions for evaluation of LLM’s
performances. Our focus is centered on three distinct classes
of materials that are prevalently utilized in diverse chemical
engineering domains: organic small molecules, enzymes,
and crystal materials. These prediction tasks in the three
major fields are summarized in Table 1.

The selection of these three types of materials takes into
account both their spatial scale distribution and their signifi-
cance in scientific research. Organic small molecules, en-
zymes, and crystalline materials represent the three distinct
scales of micro-molecules, macro-molecules, and macro-
scopic materials, respectively. This diversity of scales en-
sures that our study encapsulates the complexities prevalent
in materials science.

Furthermore, each of these material categories holds signifi-
cant relevance in academic research and practical applica-
tions. Organic small molecules are commonly utilized in
pharmaceutical development and as molecular probes [44].
Enzymes play a critical role in biocatalysis and therapeutic
interventions [45-46], while crystalline materials are essen-
tial in semiconductor technology and photovoltaic devices
[47-48].

We have devised a series of prediction tasks for three types
of materials covering a wide range of properties and struc-
tural information.

• Organic small molecules. Derived from PubChem
[52], this material class contains 40 organic small
molecules proven to have significant drug properties
or potentials. We focus on elucidating the structural
and physical-chemical properties that are crucial in
determining the functionality and applicability of Or-
ganic small molecules, such as Molecular Formula,
Melting Point, Density, Solubility in Water, Molecu-
lar Weight, H-bond donor and acceptor, LogP, and
Drugability.

• Enzymes. We curate 40 proteins involved in significant
metabolic pathways in vivo from the UniProt database
[53], a high-quality and freely accessible database of
protein sequence and functional information from the
scientific literature and computational analysis. We
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tested enzymes’ efficiency, stability, and suitability for
industrial and therapeutic applications. The key per-
formance to be examined include, but are not limited
to: Category, Number of Amino Acids, Substrate,
Product, Active Site, Biological Process and Ligand.

• Crystal Materials. We curate 40 representative crys-
tals from the Materials Project database [54], an open-
access database providing information on material
properties and crystal structures powered by high-
throughout computational techniques. We are primar-
ily concerned with crystal materials’ structural and
energy properties, which are fundamental in determin-
ing their functionality and efficiency in practical ap-
plications, such as: Space Group Number, Lattice
Angle, Lattice Vector, Density, Formation Energy,
Energy Above Hull, Stability, Band Gap, Direct
Gap, Metallic, Total Magnetization, Ordering.

We categorize these 32 sorts of tasks (16 in crystal materials,
9 in small molecules, and 7 in enzymes) into groups based
on output type and reasoning paradigm.

Figure 8. Question Proportion by Output Type, Reasoning
Paradigm and CoT Complexity

Groups Based on Output Type

• Numerical Answer by Logic: Tasks where answers
are deduced through pure logical reasoning, with the
output taking the form of numerical values.

• Numerical Answer by Experimental Data: Tasks
that rely on external experimental data for answers
which take the form of numerical values.

• Verbal Answer by Logic: Tasks where answers are
descriptive and are derived from logical reasoning.

• Verbal Answer by Experimental Data: Tasks where
answers are descriptive and based on external experi-
mental data.

Groups Based on Reasoning Paradigm

• Arithmetic Tasks: Calculation-based tasks.

• Spatial Relationship Tasks: Tasks involving under-
standing of spatial arrangements or geometry.

Table 2. Question Classification Based on Output Type

Group Tasks Total

Numerical
Answer by
Logic

Molecular Weight, Number of H-
bond Acceptors, Number of H-bond
Donors

120

Numerical
Answer
by Exper-
imental
Data

Lattice Angle, Lattice Vector, Space
Group Number, Number of Amino
Acids, Melting Point, Density, Sol-
ubility, LogP, Crystal Density, For-
mation Energy, Energy Above Hull,
Band Gap, Total Magnetization

680

Verbal
Answer by
Logic

Category, Substrate, Product, Bio-
logical Process, Molecular Formula

200

Verbal
Answer
by Exper-
imental
Data

Active Site, Ligand, Drugability,
Stability, Direct Gap, Metallic, Or-
dering

280

• Domain Knowledge Literal Reasoning Tasks: Tasks
requiring specific domain knowledge for literal reason-
ing.

• Common Property Retrieval Tasks: Tasks involving
retrieval of common properties.

• Uncommon Property Retrieval Tasks: Tasks involv-
ing retrieval of less common or obscure information.

B. Answer Evaluation Metrics and Remarks
The detailed formulation of 4 metrics used in answer evalu-
ation are listed as below:

1.Capability

For some tasks that are complicated or heavily dependent
on accessing databases, it’s possible that LLM would fail
to even complete an answer but instead only announcing
its lack of capability in completing the specific tasks. We
propose ”Capability” index to measure LLM’s ability to
provide an answer, regardless of correctness, which we
believe will be a critical indicator to evaluate performance
of different prompt engineering methods.

To calculate capability, the following formula is applied:

C =
Σn

i=1I{successfully answered}

n
(4)

where I{successfully answered} is a characteristic function rep-
resenting whether each question is successfully answered,
and n is the total number of questions.
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Table 3. Question Classification Based on Reasoning Paradigm

Group Tasks Total

Arithmetic
Tasks

Molecular Weight, Molecular
Formula

80

Spatial Re-
lationship
Tasks

Number of H-bond Acceptors,
Number of H-bond Donors, Lat-
tice Angle

200

Domain
Knowledge
Literal Rea-
soning Tasks

Category, Substrate, Product, Bi-
ological Process, Stability, Dru-
gability

240

Common
Property
Retrieval
Tasks

Space Group Number, Number of
Amino Acids, Ligand, Ordering,
Melting Point, Density, Solubil-
ity

280

Uncommon
Property
Retrieval
Tasks

Lattice Vector, Active Site, Crys-
tal Density, Formation Energy,
Energy Above Hull, Band Gap,
Total Magnetization, LogP, Di-
rect Gap, Metallic

480

2.Accuracy

The ”Accuracy” metric measures the average correctness
of answers across different tasks. For each question, the
final score ranges from 0 to 1, where 0 indicates a failure to
provide an answer or an answer that is completely off the
mark, and 1 signifies a precise, fully correct answer.

Accuracy is calculated using the formula:

A =
Σn

i=1Ai

n
(5)

where Ai is the accuracy score for each question, and n is
the total number of questions.

3.F1 Score

Specifically for classification and multiple choices tasks, F1
score - a statistical measure that combines precision and
recall, is used to provide a balanced view of the LLM’s
performance [64].

As F1 Score is typically used to evaluate binary classifica-
tion performance:

precision =
TP

TP + FP
(6)

recall =
TP

TP + FN
(7)

F1 = 2× precision× recall

precision + recall
(8)

for multiple choices questions, F1 score for each choice is
evaluated respectively and assembled afterwards:

precision(choice = A) =
TP(choice = A)

TP(choice = A) + FP(choice = A)
(9)

recall(choice = A) =
TP(choice = A)

TP(choice = A) + FN(choice = A)
(10)

F1(choice = A) = 2×precision(choice = A)× recall(choice = A)

precision(choice = A) + recall(choice = A)
(11)

F1 =
1

5
Σchoice=A,B,C,D,EF1(choice) (12)

4.Hallucination Drop

The concept of ”Hallucination Drop” is introduced to quan-
tify the discrepancy between an LLM’s ability to answer
questions (Capability) and the accuracy of those answers
(Accuracy). It serves as an indicator of the LLM’s tendency
to provide unrealistic or incorrect responses, a phenomenon
commonly referred to as ”hallucination.”

Hallucination Drop H for a specific type of task or material
is calculated using the formula:

H = 1− A

C
(13)

The policy of how numerical tasks transform to multiple-
choices questions are listed as follows:

• ”Molecular Weight (unit: g/mol)”: [2, 10, ”(unit:
g/mol)”],

• ”Number of H-bond Acceptors”: [1, 2, ””],

• ”Number of H-bond Donors”: [1, 2, ””],

• ”a in Lattice Vector [a, b, c] (unit: Å)”: [2, 1, ”(unit:
Å)”],

• ”b in Lattice Vector [a, b, c] (unit: Å)”: [2, 1, ”(unit:
Å)”],

• ”c in Lattice Vector [a, b, c] (unit: Å)”: [2, 1, ”(unit:
Å)”],

• ”Lattice Angle α (among 3 angles as [α, β,
γ])”: [0, [”α≤90”, ”90≤=α≤100”, ”100≤=α≤110”,
”110≤=α≤120”, ”α≥120”], ””],
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• ”Lattice Angle β (among 3 angles as [α, β,
γ])”: [0, [”β≤90”, ”90≤=β≤100”, ”100≤=β≤110”,
”110≤=β≤120”, ”β≥120”], ””],

• ”Lattice Angle γ (among 3 angles as [α, β,
γ])”: [0, [”γ≤90”, ”90≤=γ≤100”, ”100≤=γ≤110”,
”110≤=γ≤120”, ”γ≥120”], ””],

• ”Space Group Number”: [1, 15, ””],

• ”Number of Amino Acids”: [2, 50, ””],

• ”Melting Point (unit: °C)”: [2, 20, ”(unit: °C)”],

• ”Density (unit: g/cm3)”: [2, 0.1, ”(unit: g/cm3)”],

• ”Solubility (in water, unit: mg/L)”: [0, [”≤1”, ”1-
10”, ”10-100”, ”100-1000”, ”≥1000”], ”(in water, unit:
mg/L)”],

• ”LogP”: [2, 0.5, ””],

• ”Crystal Density (unit: g/cm3)”: [2, 0.5, ”(unit:
g/cm3)”],

• ”Formation Energy (unit: eV/atom)”: [2, 0.5, ”(unit:
eV/atom)”],

• ”Energy Above Hull (unit: eV/atom)”: [2, 0.05, ”(unit:
eV/atom)”],

• ”Band Gap (unit: eV)”: [2, 0.5, ”(unit: eV)”],

• ”Total Magnetization (unit: µB/f.u.)”: [2, 1, ”(unit:
µB/f.u.)”]

Notice that for each key-value pair, the 3-tuple contains
complete policy for multiple-choices designs. The first ele-
ment indicate choices type: fixed (0), single-valued (1) or
interval-valued (2). The second element indicate the step
size between each choices. And the last element represent
the unit (if exists). For tuples with first element being 0,
the multiple choices would automatically be the second
element in the tuple, while for the rest of the tuples, the
multiple-choices generating program randomly choose 4
other values or intervals around ground truth based on the
step size provided, generating 5 choices in total. It’s guar-
anteed that adjacent choices will have adjacent values or
ranges corresponding to them.

The specific Accuracy evaluation policy for numerical tasks
is that full mark (1) is given if the option is exactly the
ground truth and a partial score (0.4) is given if the value or
range of the chosen option is adjacent to the ground truth.
The detailed rules are listed in Table 4:

The scoring policy considering different choices’ adjacency
is reasonable because adjacent choices also have adjacent
values or ranges, as guaranteed by the policy of numerical
tasks transforming to multiple-choices questions introduced
prior to this.

Table 4. Accuracy Grading Policy for Numerical Tasks

A B C D E

A 1 0.4 0 0 0
B 0.4 1 0.4 0 0
C 0 0.4 1 0.4 0
D 0 0 0.4 1 0.4
E 0 0 0 0.4 1

C. Prompt Engineering Methods Overall
Performances On All Tasks

we evaluated five different prompt engineering strategies
across three datasets (small molecule, enzyme, and crystal
material), each yielding three sets of answers for robustness.
The LLM model being evaluated is ‘gpt-3.5- turbo-1106’
[58] through official API calling. The prompt engineering
strategies included zero-shot, few-shot, expert, and zero-
shot CoT, along with domain-knowledge method (ours).
The overall evaluation results on three datasets are shown in
the form of histograms in Fig. 9 and Fig. 10.

Figure 9. Capability and Accuracy for All Tasks

D. Detailed Prompt Designs for Performance
Tasks and Answer Evaluation

For all scientific prediction tasks, the corresponding domain-
knowledge embedded Chain-of-Thought (CoT) prompts are
listed in below:

Organic Small Molecule

• ”Molecular Weight (unit: g/mol)”: ”Ques-
tion: For small molecule, given the Smiles:
CC(=O)Nc1ccc(O)cc1, what is the Molecular Weight
(unit: g/mol)? Answer: 1) First, decode the Smiles
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Figure 10. F1 Score and Hallucination Drop for All Tasks

notation to identify the number of each type of atom.
In the notation, ”C” represents carbon, ”O” represents
oxygen, ”N” represents nitrogen, and ”H” (though not
explicitly mentioned) represents hydrogen. From the
Smiles, we can count: 8 carbon atoms (C), 1 nitrogen
atom (N), and 2 oxygen atoms (O). The hydrogens
are implicit in the Smiles notation, but based on stan-
dard valences, we can deduce there are 9 hydrogens
(H). 2) Next, use the atomic weights: Carbon (C) is
approximately 12.01 g/mol, Hydrogen (H) is about
1.008 g/mol, Nitrogen (N) is roughly 14.01 g/mol, and
Oxygen (O) is around 16.00 g/mol. 3) Calculate the
contribution of each atom type: Carbon’s is 8 x 12.01
= 96.08 g/mol, Hydrogen’s is 9 x 1.008 = 9.072 g/mol,
Nitrogen’s is 1 x 14.01 = 14.01 g/mol, and Oxygen’s
is 2 x 16.00 = 32.00 g/mol. 4) Sum these values: 96.08
+ 9.072 + 14.01 + 32.00 = 151.162 g/mol. Thus, the
molecular weight of the molecule is approximately
151.162 g/mol.”,

• ”Number of H-bond Acceptors”: ”Question: For
small molecule, given the Molecular Formula:
C8H9NO2 and Smiles: CC(=O)Nc1ccc(O)cc1, what is
the Number of H-bond Acceptors? Answer: 1) we start
by understanding what constitutes an H-bond accep-
tor. Hydrogen bond acceptors are typically atoms with
lone pairs that can accept a hydrogen bond. Common
H-bond acceptors include oxygen (O) and nitrogen (N)
atoms. 2) Now, let’s analyze the given Smiles notation:
CC(=O)Nc1ccc(O)cc1. In this notation, the symbols
represent atoms and their connectivity. Looking at the
Smiles, we can identify the potential H-bond acceptors.
We see an oxygen atom in the carbonyl group (=O) and
another oxygen atom in the phenol group (O). Both of
these oxygen atoms can act as H-bond acceptors. 3)

Additionally, there’s a nitrogen atom (N) connected to
a carbon, which can also act as an H-bond acceptor. 4)
Therefore, based on the Smiles notation, the molecule
has 3 H-bond acceptors: two from the oxygen atoms
and one from the nitrogen atom.”,

• ”Number of H-bond Donors”: ”Question: For small
molecule, given the Molecular Formula: C8H9NO2
and Smiles: CC(=O)Nc1ccc(O)cc1, what is the Num-
ber of H-bond Donors? Answer: 1) H-bond donors
are typically hydrogen atoms that are attached to elec-
tronegative atoms like nitrogen (N) or oxygen (O) and
can donate a hydrogen bond. 2) Analyzing the given
Smiles notation, CC(=O)Nc1ccc(O)cc1, we need to
identify such hydrogens. The carbonyl group (=O)
does not have a hydrogen attached to the oxygen, so
it’s not an H-bond donor. However, the phenol group
(O) has a hydrogen attached to the oxygen, making it
an H-bond donor. 3) The nitrogen (N) in the molecule,
being connected to a carbon, likely has a hydrogen at-
tached to it (as the molecular formula suggests there’s
one more hydrogen than can be accounted for by the
carbons and the phenolic oxygen), making it another
H-bond donor. 4) Therefore, the molecule has 2 H-
bond donors: one from the phenolic oxygen and one
from the nitrogen.”,

• ”Molecular Formula”: ”Question: For small
molecule, given the Smiles: CC(=O)Nc1ccc(O)cc1,
what is the Molecular Formula? Answer: 1) Start by
decoding the Smiles notation to identify and count each
type of atom. In the notation, ”C” represents carbon,
”O” represents oxygen, ”N” represents nitrogen, and
”H” (though not explicitly mentioned) represents hydro-
gen. 2) From the Smiles, we can count: 8 carbon atoms
(C), 1 nitrogen atom (N), and 2 oxygen atoms (O). The
hydrogens are implicit in the Smiles notation, but based
on standard valences and the structure, we can deduce
there are 9 hydrogens (H). 3) Now, assemble these
counts into a molecular formula: C8H9NO2. Thus, the
molecular formula of the molecule is C8H9NO2.”,

• ”Melting Point (unit: °C)”: ”Question: For small
molecule, given the Name: Acetaminophen and Smiles:
CC(=O)Nc1ccc(O)cc1, what is the Melting Point (unit:
°C)? Answer: 1) Recognize that Acetaminophen is
a common over-the-counter pain reliever and fever
reducer, also known as Paracetamol in some regions.
The Smiles notation provided confirms the structure of
Acetaminophen. 2) Now, to find the melting point, one
would typically refer to a trusted chemical database or
literature source. 3) Based on existing knowledge up
to the last update in January 2022, Acetaminophen has
a melting point of approximately 169°C to 170.5°C.
4) Answer: The melting point of Acetaminophen is
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approximately 169°C to 170.5°C.”,

• ”Density (unit: g/cm3)”: ”Question: For small
molecule, given the Name: Acetaminophen and Smiles:
CC(=O)Nc1ccc(O)cc1, what is the Density (unit:
g/cm3)? Answer: 1) Recognize that Isopropanol, also
known as isopropyl alcohol or rubbing alcohol, is a
common solvent used in laboratories and households.
The Smiles notation CC(C)O confirms its molecu-
lar structure. 2) Density is a fundamental physical
property that is often documented in various chemi-
cal databases and literature because of its extensive
use in various applications, including as a solvent and
disinfectant. 3) Based on existing knowledge up to
the last update in January 2022, the density of Iso-
propanol at room temperature (25°C) is approximately
0.785 g/cm3. 4) Answer: The density of Isopropanol
is approximately 0.785 g/cm3.”,

• ”Solubility (in water, unit: mg/L)”: ”Question: For
small molecule, given the Name: Acetaminophen and
Smiles: CC(=O)Nc1ccc(O)cc1, what is the Solubility
(in water, unit: mg/L) (A:≤1mg/L, B:1-10mg/L, C:10-
100mg/L, D:100-1000mg/L, E≥1000mg/L)? Answer:
1) First, we need to analyze the SMILES notation,
which provides a linear representation of the chemi-
cal’s molecular structure. By examining the SMILES
notation, we can identify key structural features that in-
fluence solubility, such as the presence of polar groups,
the size and shape of the molecule, and the degree of
saturation. Polar groups like hydroxyl (-OH) and amine
(-NH2) tend to increase solubility in water, while large
hydrophobic regions or high molecular weight often
decrease solubility. 2) Next, we consider the chemi-
cal’s name, which can give additional clues about its
structure and functional groups. For instance, the suffix
’-ol’ in alcohols indicates the presence of a hydroxyl
group, which usually enhances solubility. Then, we
correlate these structural features with known solubil-
ity trends and principles from chemistry, such as ’like
dissolves like’ and the impact of hydrogen bonding.
By integrating this information, we can estimate the
solubility range. 3) For example, a small molecule with
several polar groups might fall into category C,D or E,
whereas a large, non-polar hydrocarbon is likely in cat-
egory A or B. 4) Answer: Acetaminophen have many
strong polar groups like (=O) and (N), so the solubility
of Acetaminophen in water at 25°C is ≥1000mg/L, so
the answer is E.”,

• ”LogP”: ”Question: For small molecule,
given the Name: Acetaminophen and Smiles:
CC(=O)Nc1ccc(O)cc1, what is the LogP? Answer:
1) Recognize that Acetaminophen, also known
as Paracetamol, is a well-known drug. The Smiles

notation confirms its structure. 2) LogP, or the partition
coefficient between octanol and water, is a measure
of a compound’s lipophilicity and plays a crucial
role in drug design because it can influence a drug’s
absorption, distribution, metabolism, and excretion.
A higher LogP indicates greater lipophilicity. 3)
To find the LogP, one would typically consult a
trusted chemical database, use computational tools,
or refer to specific literature sources that provide
this physicochemical property. 4) Based on existing
knowledge up to the last update in January 2022,
Acetaminophen has a LogP value of approximately
0.46. 5) Answer: The LogP of Acetaminophen is
approximately 0.46.”,

• ”Drugability (Yes or No)”: ”Question: For small
molecule, given the Molecular Weight (unit: g/mol):
151.162 g/mol, Number of H-bond Acceptors: 3, Num-
ber of H-bond Donors: 2, Solubility (in water, unit:
mg/L): 14,000 mg/L and LogP: 0.46, what is the Dru-
gability (Yes or No)? Answer: 1) Drugability is a
complex concept that evaluates the likelihood of a
molecule to become an orally active drug in humans.
2) The Lipinski’s Rule of Five is a commonly used
set of guidelines to predict drugability. According to
this rule, a molecule is likely to be drugable if it meets
the following criteria: Molecular Weight is less than
500 g/mol, Number of H-bond Acceptors is no more
than 10, Number of H-bond Donors is no more than 5,
LogP is less than 5, and the molecule is not excessively
insoluble. 3) Comparing the given properties to these
criteria: The Molecular Weight of 151.162 g/mol is
well below 500 g/mol, the Number of H-bond Accep-
tors is 3, which is below 10, the Number of H-bond
Donors is 2, which is below 5, the LogP of 0.46 is well
below 5, and a Solubility of 14,000 mg/L indicates the
molecule is not excessively insoluble. 4) Given that
the molecule meets all the criteria, it is likely to be
drugable. So answer is Yes.”

Enzyme

• ”Category (Among Oxidoreductases, Transferases,
Hydrolases, Lyases, Isomerases, Ligases, and
Translocases)”: ”Question: For enzyme, given the
Enzyme: D-Glucose-6P dehydrogenase and EC (En-
zyme Commission number): 1.1.1.363, what is the
Category? Answer: 1) Focus on the first number in
EC. If =1, then the enzyme belongs to Oxidoreduc-
tases; =2, Transferases; =3, Hydrolases; =4, Lyases;
=5, Isomerases; =6, Ligases; =7, Translocases. 2) For
D-Glucose-6P dehydrogenase, its EC=1.1.363, the first
number is 1. So it’s an Oxidoreductase. 3) Answer: So
Category = Oxidoreductases.”,
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• ”Number of Amino Acids”: ”Question: For enzyme,
given the Enzyme: D-Glucose-6P dehydrogenase and
EC (Enzyme Commission number): 1.1.1.363, what is
the Number of Amino Acids? Answer: 1) **Context
Analysis** The EC number is a numerical classifi-
cation scheme for enzymes, based on the chemical
reactions they catalyze. D-Glucose-6P dehydrogenase
is an enzyme that catalyzes the oxidation of glucose-
6-phosphate, primarily in the pentose phosphate path-
way. 2) **Specify Information** The number of amino
acids in an enzyme can be found by looking at its amino
acid sequence, which is determined by the gene encod-
ing the enzyme. For D-Glucose-6P dehydrogenase,
according to the the last update in January 2022, the
number of amino acid is 791. 3) Answer: So Number
of Amino Acid = 791.”,

• ”Substrate”: ”Question: For enzyme, given the En-
zyme: D-Glucose-6P dehydrogenase and EC (Enzyme
Commission number): 1.1.1.363, what is the Sub-
strate? Answer: 1) **Context Analysis** D-Glucose-
6P dehydrogenase is an enzyme that catalyzes the oxi-
dation of glucose-6-phosphate (first number in EC=1,
so it’s an oxidoreductase), primarily in the pentose
phosphate pathway. 2) The name and EC always pro-
vides so much to inference. EC-Numbers —≥ 1 —≥
Oxidoreductases —≥ 1.1—≥ Acting on the CH-OH
group of donors —≥ 1.1.1 — With NAD or NADP aw
acceptor. So naturally its substrate is D-Glucose-6P,
also known as D-glucose 6-phosphate. 3) Answer: So
Substrate = D-glucose 6-phosphate.”,

• ”Product”: ”Question: For enzyme, given the En-
zyme: D-Glucose-6P dehydrogenase and EC (Enzyme
Commission number): 1.1.1.363, what is the Product?
Answer: 1) **Context Analysis** D-Glucose-6P de-
hydrogenase is an enzyme that catalyzes the oxidation
of glucose-6-phosphate (first number in EC=1, so it’s
an oxidoreductase), primarily in the pentose phosphate
pathway. 2) The name and EC always provides so
much to inference. EC-Numbers —≥ 1 —≥ Oxidore-
ductases —≥ 1.1—≥ Acting on the CH-OH group of
donors —≥ 1.1.1 — With NAD or NADP aw acceptor.
So naturally its product is the dehydrogenase product
of D-Glucose-6P on CH-OH group of donors, which
is 6-phospho-D-glucono-1,5-lactone. 3) Answer: So
Product = 6-phospho-D-glucono-1,5-lactone.”,

• ”Active Site”: ”Question: For enzyme, given the En-
zyme: D-Glucose-6P dehydrogenase and EC (Enzyme
Commission number): 1.1.1.363, what is the Active
Site? Answer: 1) **Context Analysis** The EC num-
ber is a numerical classification scheme for enzymes,
based on the chemical reactions they catalyze. D-
Glucose-6P dehydrogenase is an enzyme that catalyzes

the oxidation of glucose-6-phosphate, primarily in the
pentose phosphate pathway. 2) **Specify Informa-
tion** Information about the active site of an enzyme
is typically obtained from its three-dimensional struc-
ture. Once the structure is available, the active site can
be identified based on the location where substrates
are known to bind. This often involves looking at the
enzyme in complex with its substrate or an inhibitor.
For D-Glucose-6P dehydrogenase, according to the the
last update in January 2022, the active site is H-267. 3)
Answer: So Active Site = H-267.”,

• ”Biological Process”: ”Question: For enzyme, given
the Enzyme: D-Glucose-6P dehydrogenase and EC
(Enzyme Commission number): 1.1.1.363, what is the
Biological Process? Answer: 1) **Context Analysis**
D-Glucose-6P dehydrogenase is an enzyme that cat-
alyzes the oxidation of glucose-6-phosphate (first num-
ber in EC=1, so it’s an oxidoreductase), primarily in the
pentose phosphate pathway. 2) The name and EC al-
ways provides so much to inference. EC-Numbers —≥
1 —≥ Oxidoreductases —≥ 1.1—≥ Acting on the CH-
OH group of donors —≥ 1.1.1 — With NAD or NADP
aw acceptor. So naturally its substrate is D-Glucose-
6P, and its product is the dehydrogenase product of
D-Glucose-6P on CH-OH group of donors, which is 6-
phospho-D-glucono-1,5-lactone. The dehydrogenation
of these two compounds are frequently seen in Pen-
tose phosphate pathway. 3) **Completeness** Pentose
pathway belongs to a part of Carbohydrate metabolism
in a more general view. 4) Answer: So Biological Pro-
cess = Carbohydrate metabolism/Pentose phosphate
pathway.”,

• ”Ligand”: ”Question: For enzyme, given the Enzyme:
D-Glucose-6P dehydrogenase and EC (Enzyme Com-
mission number): 1.1.1.363, what is the Ligand? An-
swer: 1) **Context Analysis** D-Glucose-6P dehy-
drogenase is an enzyme that catalyzes the oxidation
of glucose-6-phosphate (first number in EC=1, so it’s
an oxidoreductase), primarily in the pentose phosphate
pathway. 2) The name and EC always provides so
much to inference. EC-Numbers —≥ 1 —≥ Oxidore-
ductases —≥ 1.1—≥ Acting on the CH-OH group of
donors —≥ 1.1.1 — With NAD or NADP aw acceptor.
So naturally its ligand must be NAD/NADP. 3) Answer:
So Ligand = NAD/NADP.”

Crystal Material

• ”a in Lattice Vector [a, b, c] (unit: Å)”: ”Question:
For crystal material, given the MP-id mp-248, Formula
Fe2N and Lattice Angle α = 90°, β = 90°, and γ = 120°,
what is a in Lattice Vector [a, b, c] (unit: Å)? Answer:
1)**Lattice Vector Analysis** The lattice vectors a, b,
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and c describe the periodicity of the crystal lattice in
three dimensions. The lattice angles (α, β, γ) describe
the angles between these vectors. In a crystal system,
these parameters define the unit cell’s shape and size.
2)**Determining Lattice Vector** The scale of lattice
vector is usually around 3-10 Å. It’s very encouraged
to give a hypothesis between that range. Here in com-
pound Fe2N, according to existing knowledge up to
the last update in January 2022, the Lattice Vector is
a:4.75 Å,b:4.75 Å,c:4.32 Å, so a in Lattice Vector [a, b,
c] (unit: Å) is 4.75. 3)**Conclusion** so a in Lattice
Vector [a, b, c] (unit: Å) = 4.75.”,

• ”b in Lattice Vector [a, b, c] (unit: Å)”: ”Question:
For crystal material, given the MP-id mp-248, Formula
Fe2N and Lattice Angle α = 90°, β = 90°, and γ = 120°,
what is b in Lattice Vector [a, b, c] (unit: Å)? Answer:
1)**Lattice Vector Analysis** The lattice vectors a, b,
and c describe the periodicity of the crystal lattice in
three dimensions. The lattice angles (α, β, γ) describe
the angles between these vectors. In a crystal system,
these parameters define the unit cell’s shape and size.
2)**Determining Lattice Vector** The scale of lattice
vector is usually around 3-10 Å. It’s very encouraged
to give a hypothesis between that range. Here in com-
pound Fe2N, according to existing knowledge up to
the last update in January 2022, the Lattice Vector is
a:4.75 Å,b:4.75 Å,c:4.32 Å, so b in Lattice Vector [a, b,
c] (unit: Å) is 4.75. 3)**Conclusion** so b in Lattice
Vector [a, b, c] (unit: Å) = 4.75.”,

• ”c in Lattice Vector [a, b, c] (unit: Å)”: ”Question:
For crystal material, given the MP-id mp-248, Formula
Fe2N and Lattice Angle α = 90°, β = 90°, and γ = 120°,
what is c in Lattice Vector [a, b, c] (unit: Å)? Answer:
1)**Lattice Vector Analysis** The lattice vectors a, b,
and c describe the periodicity of the crystal lattice in
three dimensions. The lattice angles (α, β, γ) describe
the angles between these vectors. In a crystal system,
these parameters define the unit cell’s shape and size.
2)**Determining Lattice Vector** The scale of lattice
vector is usually around 3-10 Å. It’s very encouraged
to give a hypothesis between that range. Here in com-
pound Fe2N, according to existing knowledge up to
the last update in January 2022, the Lattice Vector is
a:4.75 Å,b:4.75 Å,c:4.32 Å, so c in Lattice Vector [a, b,
c] (unit: Å) is 4.32. 3)**Conclusion** so c in Lattice
Vector [a, b, c] (unit: Å) = 4.32.”,

• ”Lattice Angle α (among 3 angles as [α, β, γ])”:
”Question: For crystal material, given the MP-id: mp-
248 and Formula: Fe2N, what is the Lattice Angle α
(among 3 angles as [α, β, γ])? Answer: 1)**Question
Analysis** Determining the lattice angles for Fe2N in-
volves a theoretical analysis of its bonding, electronic

structure, and likely packing style, followed by an ed-
ucated guess of its crystal system and corresponding
lattice angles. 2)**Chemical Formula Analysis** Fe
(Iron) is a transition metal known for its metallic bond-
ing characteristics, while N (Nitrogen) typically forms
covalent or ionic bonds. In Fe2N, we expect a mix
of metallic and covalent bonding. 3)**Hypothesizing
Crystal System** In compounds like Fe2N, the metal-
lic nature of iron suggests a dense packing arrangement,
so given the metallic characteristics and potential co-
valent interactions, a reasonable guess for the crystal
system might be hexagonal, trigonal or tetragonal, as
these systems are common for compounds with mixed
bonding types. Let’s hypothesize that Fe2N crystal-
lizes in a trigonal system. 4)**Determining Lattice
Angles** In a trigonal crystal system, the lattice angles
are typically α = 90°, β = 90°, and γ = 120°. This is
because the hexagonal system is characterized by two
equal axes at right angles to each other, and a third
axis (of a different length) at a 120° angle to one of the
other axes. 5)**Conclusion** So the Lattice Angle α
(among 3 angles as [α, β, γ]) = 90°.”,

• ”Lattice Angle β (among 3 angles as [α, β, γ])”:
”Question: For crystal material, given the MP-id: mp-
248 and Formula: Fe2N, what is the Lattice Angle β
(among 3 angles as [α, β, γ])? Answer: 1)**Question
Analysis** Determining the lattice angles for Fe2N in-
volves a theoretical analysis of its bonding, electronic
structure, and likely packing style, followed by an ed-
ucated guess of its crystal system and corresponding
lattice angles. 2)**Chemical Formula Analysis** Fe
(Iron) is a transition metal known for its metallic bond-
ing characteristics, while N (Nitrogen) typically forms
covalent or ionic bonds. In Fe2N, we expect a mix
of metallic and covalent bonding. 3)**Hypothesizing
Crystal System** In compounds like Fe2N, the metal-
lic nature of iron suggests a dense packing arrangement,
so given the metallic characteristics and potential co-
valent interactions, a reasonable guess for the crystal
system might be hexagonal, trigonal or tetragonal, as
these systems are common for compounds with mixed
bonding types. Let’s hypothesize that Fe2N crystal-
lizes in a trigonal system. 4)**Determining Lattice
Angles** In a trigonal crystal system, the lattice angles
are typically α = 90°, β = 90°, and γ = 120°. This is
because the hexagonal system is characterized by two
equal axes at right angles to each other, and a third
axis (of a different length) at a 120° angle to one of the
other axes. 5)**Conclusion** So the Lattice Angle β
(among 3 angles as [α, β, γ]) = 90°.”,

• ”Lattice Angle γ (among 3 angles as [α, β, γ])”:
”Question: For crystal material, given the MP-id: mp-
248 and Formula: Fe2N, what is the Lattice Angle γ
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(among 3 angles as [α, β, γ])? Answer: 1)**Question
Analysis** Determining the lattice angles for Fe2N in-
volves a theoretical analysis of its bonding, electronic
structure, and likely packing style, followed by an ed-
ucated guess of its crystal system and corresponding
lattice angles. 2)**Chemical Formula Analysis** Fe
(Iron) is a transition metal known for its metallic bond-
ing characteristics, while N (Nitrogen) typically forms
covalent or ionic bonds. In Fe2N, we expect a mix
of metallic and covalent bonding. 3)**Hypothesizing
Crystal System** In compounds like Fe2N, the metal-
lic nature of iron suggests a dense packing arrangement,
so given the metallic characteristics and potential co-
valent interactions, a reasonable guess for the crystal
system might be hexagonal, trigonal or tetragonal, as
these systems are common for compounds with mixed
bonding types. Let’s hypothesize that Fe2N crystal-
lizes in a trigonal system. 4)**Determining Lattice
Angles** In a trigonal crystal system, the lattice angles
are typically α = 90°, β = 90°, and γ = 120°. This is
because the hexagonal system is characterized by two
equal axes at right angles to each other, and a third
axis (of a different length) at a 120° angle to one of the
other axes. 5)**Conclusion** So the Lattice Angle γ
(among 3 angles as [α, β, γ]) = 120°.”,

• ”Space Group Number”: ”Question: For crystal ma-
terial, given the MP-id mp-248 and Formula Fe2N,
what is the Space Group Number? Answer: 1)**Space
Group Number Analysis** The space group of a crys-
tal structure describes the symmetry of the structure.
It is a combination of translational and point symme-
tries and is a critical piece of information for under-
standing the crystal structure. Space groups are num-
bered from 1 to 230 in the International Tables for
Crystallography. 2)**Hypothesizing Crystal System**
In compounds like Fe2N, the metallic nature of iron
suggests a dense packing arrangement, so given the
metallic characteristics and potential covalent interac-
tions, a reasonable guess for the crystal system might
be hexagonal, trigonal or tetragonal, as these systems
are common for compounds with mixed bonding types.
Let’s hypothesize that Fe2N crystallizes in a trigonal
system. 3)**Determining Space Group Number** In
a trigonal crystal system, the Space Group Number is
in 142-167. For Fe2N, the Space Group Number is
162. 4)**Conclusion** So the Space Group Number =
162.”,

• ”Crystal Density (unit: g/cm3)”: ”Question: For
crystal material, given the Formula and Lattice vector,
what is the Density (unit: g/cm3)? Answer: 1)**Deter-
mine the formula weight** alculate the formula weight
(molar mass) of the crystal material by summing the
atomic weights of all the atoms in its formula unit.

2)**Calculate the Volume of the Unit Cell** Use the
lattice vectors to determine the volume of the unit cell.
For a unit cell with lattice vectors a, b, and c, the vol-
ume V is given by V = abc. 3)**Calculate the Number
of Formula Units per Unit Cell** Determine how many
formula units are in each unit cell. 4)**Calculate Den-
sity** The density ρ can be calculated using the for-
mula: ρ = Formula Weight*Number of Formula Units
per Unit Cell / (V*N A), where N A is Avogadro’s
number (approximately 6.02*102̂3 mol(̂-1). Ensure
that the units are consistent. For instance, if the for-
mula weight is in grams per mole and the volume in
cubic centimeters, the density will be in grams per cu-
bic centimeter. 5)**Example** Suppose you have a
crystal with a simple cubic structure (which has one
formula unit per unit cell), a lattice parameter a = 5
Å, and it’s composed of a hypothetical material XYZ
with a formula weight of 150 g/mol. The volume of
the unit cell is V=a3̂=(0.5*10(̂-9)m)3̂. The density will
be calculated as ρ = 150g/mol*1/(V*6.02*102̂3mol(̂-
1))=1.99g/cm3.”,

• ”Formation Energy (unit: eV/atom)”: ”Question:
For crystal material, given the MP-id: mp-248 and
Formula: Fe2N, what is the Formation Energy (unit:
eV/atom)? Answer: 1)**Formation Energy Analysis**
In materials science, Formation Energy is a measure
of the energy change when a material is formed from
its constituent elements in their standard states. It’s a
fundamental property that indicates the stability of the
material; a more negative formation energy typically
suggests a more stable compound. 2)**Determining
Formation Energy** Formation Energy for a crystal
material is usually under 0 eV/atom if it’s stable. The
absolute value is usually around -2-2 eV/atom. For
pure metal crystal materials, the value will be 0. It’s
very encouraged to give a hypothesis between that
range. Here, based on existing knowledge up to the
last update in January 2022, the Formation Energy of
Fe2N is -0.149 eV/atom. 3)**Conclusion** So the
Formation Energy (unit: eV/atom) = -0.149.”,

• ”Energy Above Hull (unit: eV/atom)”: ”Question:
For crystal material, given the MP-id: mp-248 and
Formula: Fe2N, what is the Energy Above Hull (unit:
eV/atom)? Answer: 1)**Energy Above Hull Analy-
sis** In materials science, the ”Energy Above Hull”
is a metric used to assess the stability of a crystal
structure. It represents how much energy per atom
a given compound is above the most stable phase (the
”hull”) of its respective phase diagram. 2)**Determin-
ing Energy Above Hull** Energy Above Hull for a
crystal material is always around 0-1.50 eV/atom. The
more likely this material is stable, the lower the En-
ergy Above Hull is. It’s very encouraged to give a
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hypothesis between that range. Here, based on exist-
ing knowledge up to the last update in January 2022,
the Energy Above Hull of Fe2N is 0.060 eV/atom.
3)**Conclusion** So the Energy Above Hull (unit:
eV/atom) = 0.060.”,

• ”Stability (Yes or No)”: ”Question: For crystal ma-
terial, given the MP-id mp-248, Formula Fe2N and
Energy Above Hull: 0.060 eV/atom, what is the Stabil-
ity (Yes or No) ? Answer: 1)**Determining Stability**
As long as Energy Above Hull = 0, it’s stable. Other-
wise it’s unstable. For Fe2N, its Energy Above Hull is
0.060 eV/atom, so it’s unstable. 2)**Conclusion** So
the Stability (Yes or No) = No.”,

• ”Band Gap (unit: eV)”: ”Question: For crystal ma-
terial, given the MP-id mp-248 and Formula Fe2N,
what is the Band Gap (unit: eV)? Answer: 1)**Band
Gap Analysis** In materials science, the band gap is
a fundamental property that describes the energy dif-
ference between the top of the valence band and the
bottom of the conduction band in a material. It de-
termines the material’s electrical conductivity, with a
larger band gap typically indicating a better insulator.
2)**Determining Formation Energy** Band Gap for a
good conductor is usually zero or negligible while for
insulator it’s usually high for about 0.5 2.5 eV. It’s very
encouraged to give a hypothesis between that range.
Here, based on existing knowledge up to the last up-
date in January 2022, the Band Gap for this metallic
conductor Fe2N is 0.00 eV. 3)**Conclusion** So the
Band Gap (unit: eV) = 0.”,

• ”Direct Gap (Yes or No)”: ”Question: For crystal
material, given the MP-id mp-248 and Formula Fe2N,
what is the Direct Gap (Yes or No)? Answer: 1)**Di-
rect Gap Analysis** A material is said to have a direct
band gap if the minimum of the conduction band and
the maximum of the valence band occur at the same
momentum (k-point) in the Brillouin zone. This con-
trasts with an indirect band gap, where these points
occur at different momenta. 2)**Determining Direct
Gap** Fe2N is an iron nitride compound. The elec-
tronic properties, including the nature of the band gap,
of such compounds are determined by their electronic
structure, which in turn is influenced by factors like
the arrangement of atoms and the nature of chemical
bonding. Here, based on existing knowledge up to the
last update in January 2022, the Direct Gap for Fe2N
is No. 3)**Conclusion** So the Direct Gap (Yes or
No) = No.”,

• ”Metallic (Yes or No)”: ”Question: For crystal ma-
terial, given the MP-id: mp-248, Formula: Fe2N and
Band Gap: 0.00 eV, what is the Metallic nature (Yes

or No) ? Answer: 1)**Band Gap Analysis** A ma-
terial with a very small band gap (close to 0 eV) or
no band gap is typically metallic, meaning it conducts
electricity well. Metals have overlapping valence and
conduction bands or a partially filled conduction band,
which allows for free movement of electrons, leading
to high electrical conductivity. Conversely, a material
with a significant band gap is generally a semiconduc-
tor or an insulator, not a metal. The larger the band
gap, the lesser the electrical conductivity, with insu-
lators having the largest band gaps. 2)**Determining
Metallic nature** If a material is known to be metallic
(Metallic: Yes), you can infer that its band gap is effec-
tively zero or negligible. If a material has a significant
band gap (say, ≥2 eV), you can infer it’s not metal-
lic (Metallic: No). Because the band gap of Fe2N is
0.00eV, it’s know to be metallic. 3)**Conclusion** So
the Metallic (Yes or No) = Yes.”,

• ”Total Magnetization (unit: µB/f.u.)”: ”Question:
For crystal material, given the MP-id mp-248 and
Formula Fe2N, what is the Total Magnetization (unit:
µB/f.u.)? Answer: 1)**Total Magnetization Analy-
sis** In materials science, Total Magnetization refers
to the magnetic moment per formula unit (f.u.), often
measured in Bohr magnetons (µB). This property is
crucial for understanding the magnetic properties of
a material, which can be influenced by factors like
the arrangement of atoms and the electronic structure.
2)**Determining Total Magnetization** Total Magne-
tization for Ferromagnetic or Ferrimagnetic crystal is
usually around 3 µB/f.u. while for Antiferromagnetic
or Non-magnetic crystal it’s usually 0. It’s very encour-
aged to give a hypothesis between that range. Here,
based on existing knowledge up to the last update in
January 2022, the Total Magnetization for this Ferro-
magnetic Fe2N is 3.00 µB/f.u.. 3)**Conclusion** So
the Total Magnetization (unit: µB/f.u.) = 3.00.”,

• ”Ordering (Ferromagnetic/Ferrimagnetic/Antiferromagnetic/Non-
magnetic)”: ”Question: For crystal material, given
the MP-id mp-248, Formula Fe2N and Total
Magnetization: 3.00 µB/f.u, what is the Ordering
(Ferromagnetic/Ferrimagnetic/Antiferromagnetic/Non-
magnetic)? Answer: 1)**Total Magnetization
Analysis** This refers to the net magnetic moment
of a material, expressed in units of Bohr magnetons
per formula unit. It represents the sum of all magnetic
moments in the material, taking into account both the
direction and magnitude of each magnetic moment.
2)**Magnetic Ordering Analysis** In ferromagnetic
materials, the magnetic moments of the atoms align
parallel to each other, resulting in a strong net magnetic
moment. A material with significant total magnetiza-
tion is likely ferromagnetic. Ferrimagnetic materials
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have magnetic moments that are aligned in opposite
directions but are unequal in magnitude, resulting in
a net magnetic moment. Therefore, a non-zero total
magnetization could indicate ferrimagnetic ordering.
Antiferromagnetic materials have magnetic moments
that are aligned in opposite directions and are equal
in magnitude, resulting in no net magnetization. A
material with zero or very low total magnetization
might be antiferromagnetic. Non-magnetic materials
do not have a net magnetic moment, indicating
zero or negligible total magnetization. 3)**Deter-
mining Ordering** If the total magnetization is
significantly high like ≥ 0.50 µB/f.u, the material
is likely ferromagnetic or ferrimagnetic. If the total
magnetization is zero or very low, the material could
be antiferromagnetic or non-magnetic. For Fe2N, Total
Magnetization: 3.00 µB/f.u is significantly high, so
it’s Ferromagnetic. 4)**Conclusion** So the Ordering
(Ferromagnetic/Ferrimagnetic/Antiferromagnetic/Non-
magnetic) = Ferromagnetic.”

Prompts for answer evaluation uniformly use the standard
grading example for Molecular Formula prediction:

• Here’re some fake examples of rating: [For small
molecule Molecular Formula, one person gave an an-
swer N/A. The ground truth is CH3OH. LLM: 0].
Here no information is ever given by examinee, so
the score is 0. [For small molecule Molecular For-
mula, one person gave an answer C. The ground
truth is CH3OH. LLM: 1]. Here the examinee gave
a meaningful answer (though seems ridiculous), so
the score is 1. [For small molecule Molecular For-
mula, one person gave an answer CHO. The ground
truth is CH3OH. LLM: 3]. Here the examinee gave
a meaningful answer and pointed out all the elements
(though the number is wrong), so the score is 3. [For
small molecule Molecular Formula, one person gave
an answer C(CCCCO)CCCCBr. The ground truth is
C(CCCCCO)CCCCCBr. LLM: 4]. Here the examinee
gave a meaningful answer very close to ground truth,
so so the score is 4. [For small molecule Molecular
Formula, one person gave an answer OCC (or C(O)C).
The ground truth is CCO. LLM: 5]. Here the examinee
gave an answer intrinsically the same to ground truth,
so the score is 5.”

E. Case Studies
To elucidate the efficacy of the domain-knowledge em-
bedded prompt engineering method in addressing highly
domain-specific tasks, we have meticulously designed three
case studies. These studies centerpiece the investigation
of three materials of profound chemical or biological im-

Figure 11. Prompt Engineering Case Study on MacMillan’s Imida-
zolidinone 2nd Generation Catalyst

portance, both in terms of academic research and indus-
trial applications, utilizing our bespoke prompt engineering
method that incorporates chemistry-specific domain knowl-
edge. To enhance clarity and conciseness, we illustrate a
single expert’s prompt engineering workflow, omitting the
assembly of contributions from multiple experts, as this
singular demonstration already effectively showcases how
our prompt engineering method significantly impacts the
performance of the LLM.

In the first case study, we direct our attention to the MacMil-
lan’s imidazolidinone 2nd generation catalyst, (2S,5S)-(-
)-2-tert-Butyl-3-methyl-5-benzyl-4-imidazolidinone. The
MacMillan catalyst, a groundbreaking advancement in the
field of chemistry, was distinguished by the Nobel Prize
in Chemistry in 2021 for its seminal contributions to the
development of organocatalysis [59-60]. This innovation
has had a transformative impact on both synthetic chemistry
and the broader chemical industry, enabling more efficient
and environmentally friendly catalytic processes that are
pivotal in the synthesis of complex molecules.

The first case study aims to assess the capability of LLMs
in assimilating the intricate details of this molecule and in
delineating its potential applications. By employing our
domain-knowledge embedded prompt engineering method,
we seek to uncover how LLMs can be leveraged to provide
insights into the reactivity, selectivity, and scope of appli-
cation of the MacMillan catalyst, thereby enhancing the
efficiency and productivity of chemical research in this area.
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Figure 12. Prompt Engineering Case Study on Paclitaxel

As shown in Fig. 11, by utilizing our tailored prompts, the
LLM effectively elucidated the fundamental attributes of
MacMillan’s second-generation imidazolidinone catalyst,
demonstrating its proficiency in the analysis of SMILES se-
quences and elementary arithmetic operations. Additionally,
armed with the catalyst’s mechanism and illustrative exam-
ples, the LLM was able to accurately anticipate the catalytic
products from specified substrates, thereby highlighting the
model’s capacity to inform and potentially guide practi-
cal and industrial applications of catalysts. In light of this
case study, it is evident that LLMs, embedded with domain-
knowledge prompts, have the potential to significantly fa-
cilitate the development and optimization of catalysts for
chemical reactions, thereby enhancing the efficiency and
selectivity of synthetic processes in the field of chemistry.
The complete interactive dialogue with LLM could be found
in Appendix F.

The next material under examination in our case study is
paclitaxel (PTX, C47H51NO14), a compound of profound
significance in the field of oncology and a critical compo-
nent in the treatment of various cancers. Paclitaxel’s dis-
covery and subsequent development mark a pivotal moment
in the history of cancer therapy, as it introduced a novel
mechanism of action that targets microtubules, thereby in-
hibiting the growth and division of cancer cells. Its efficacy
in the treatment of breast, ovarian, and other cancers has
established paclitaxel as a cornerstone in the chemotherapy
arsenal [61]. The importance of paclitaxel extends beyond
its direct clinical applications; it has also served as a tem-
plate for the development of other taxane derivatives and
has been a subject of extensive research in organic synthesis
[62]. The complex structure of paclitaxel presents a sig-
nificant challenge in the synthesis process, leading to the
development of various strategies to improve yield, reduce

cost, and enhance accessibility to this life-saving compound.

In this prompt engineering case study, we focus on a crucial
step in the synthesis of an active intermediate of paclitaxel.
Our objective is to assess the ability of LLMs to analyze
and provide insights into the pathway of organic synthesis.
By utilizing our domain-knowledge embedded prompt en-
gineering method, we aim to demonstrate the potential of
LLMs in assisting chemists in the design and optimization
of synthetic routes for complex molecules, such as paclitaxel
and its derivatives, thereby contributing to the advancement
of both chemical research and pharmaceutical development.

Figure 13. Prompt Engineering Case Study on Lithium Cobalt Ox-
ide

As shown in Fig. 12, by utilizing custom-designed prompts,
the LLM adeptly dissected a critical step in the synthesis of
paclitaxel. It not only identified the reactive groups within
the substrates that are capable of engaging in the chemical
transformation but also correctly discerned the type of re-
action and reconstructed the entire reaction scheme. This
accomplishment underscores the LLM’s potential in pro-
viding guidance for the synthesis of chemical compounds,
suggesting that such models could play a pivotal role in
streamlining the process of chemical synthesis, offering
insights into reaction of complex molecules. This has im-
plications for the advancement of medicinal chemistry and
the development of pharmaceuticals, where efficient syn-
thesis routes are of paramount importance. The complete
interactive dialogue with LLM could be found in Appendix
F.

In the concluding case study, we examine lithium cobalt
oxide (LiCoO2), a material of great importance in lithium-
ion battery technology. Recognized by the 2018 Nobel
Prize in Chemistry, LiCoO2’s contribution to energy storage
has been transformative, enabling the widespread use of
portable electronics and electric vehicles [63]. As a cathode
material, LiCoO2 offers high energy density and stability,
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although research continues to address its lifecycle, cost,
and environmental footprint.

In this prompt engineering case study, we delve into the
analysis of LiCoO2 crystals and their application advan-
tages. We aim to harness the capabilities of LLMs to pro-
vide detailed insights into the crystallographic properties,
electrochemical behavior, and optimization strategies for
LiCoO2. By employing our domain-knowledge embedded
prompt engineering method, we expect to demonstrate the
potential of LLMs in aiding researchers in the design and
refinement of battery materials, thereby contributing to the
progress of energy storage technologies and supporting the
global transition towards sustainable energy solutions.

In this case study, the LLM meticulously analyzed the fun-
damental properties of lithium cobalt oxide (LiCoO2), accu-
rately determining its lattice volume and stability, as shown
in Fig. 13. This achievement is of significant importance
in the field of crystallography and future development of
lithium-ion battery technologies. The complete interactive
dialogue with LLM could be found in Appendix F.

F. Detailed Interactive Case Study Dialogues
using Domain-Knowledge Embedded
Prompt Engineering Method
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Figure 14. Detailed Prompt Engineering Interactive Dialogue on
MacMillan’s Imidazolidinone 2nd Generation Catalyst
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Figure 15. Detailed Prompt Engineering Interactive Dialogue on
Paclitaxel

Figure 16. Detailed Prompt Engineering Interactive Dialogue on
Lithium Cobalt Oxide


