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Abstract

Gene expression estimation from pathology images has the potential to reduce the
RNA sequencing cost. Point-wise loss functions have been widely used to minimize
the discrepancy between predicted and absolute gene expression values. However,
due to the complexity of the sequencing techniques and intrinsic variability across
cells, the observed gene expression contains stochastic noise and batch effects, and
estimating the absolute expression values accurately remains a significant chal-
lenge. To mitigate this, we propose a novel objective of learning relative expression
patterns rather than absolute levels. We assume that the relative expression levels
of genes exhibit consistent patterns across independent experiments, even when ab-
solute expression values are affected by batch effects and stochastic noise in tissue
samples. Based on the assumption, we model the relation and propose a novel loss
function called STRank that is robust to noise and batch effects. Experiments using
synthetic datasets and real datasets demonstrate the effectiveness of the proposed
method. The code is available at https://github.com/naivete5656/STRank.

1 Introduction

With the development of spatial transcriptomic techniques (ST), the comprehensive gene expression
profile can be captured on a small spot with a spatial location corresponding to the pathology image
[16]. Due to the high cost of acquiring spatial transcriptomics (ST) data, there is growing interest
in using computer vision techniques to estimate gene expression from pathology images as a more
affordable way [19, 30, 4, 7].

One of the main difficulties in estimating gene expression from pathology images is the batch effects
and stochastic fluctuations in observed data. As shown in Figure 1 (a), differences in reagent batches,
equipment, and other technical factors in the measurement process (i.e., batch effects) can cause
variations in data scaling across tissues [11, 18]. Additionally, due to cellular heterogeneity and
temporal dynamics, the observed gene expression level stochastically fluctuates even though the
appearance of the pathology image is the same as shown in Figure 1 (b).

Although mean squared error (MSE) is commonly used in the previous estimation methods [7, 19, 30,
4], it is hard to capture variations from the data containing batch effects and stochastic noise. MSE
loss focuses on predicting the absolute values of gene expression without correcting for batch effects.
Consequently, models trained with MSE loss may inadvertently learn patient-specific biases rather
than biologically relevant signals. Additionally, since MSE loss does not model stochastic noise
explicitly, it can not account for the significance of biological signals from expression count data.

In this paper, we aim to estimate the relative expression relation instead of directly estimating absolute
values of gene expression. The key hypothesis of this paper is that relative gene expression trends
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Figure 1: (a) Illustration of scaling bias due to batch effects, (b) stochastic noise, and (c) our
hypothesis: learning relative expression trends. Even in the presence of batch effects and stochastic
noise, the relative expression trends between patches are preserved.

between image patches are preserved, even when batch effects or stochastic noise are contained in
count values. For instance, as illustrated in Figure 1 (c), if we extract cancerous and non-cancerous
patches from several tissues, the expression of the cancer cell-specific gene is expected to exhibit
higher expression in cancerous patches for all the tissues. Although the absolute expression values
and their scales may vary across tissues, we posit that the relative relation of expression between
patches remains consistent. In addition, the relative expression relation has been widely used for
downstream analysis, such as differential expression analysis, which detects the relative expression
difference between clusters. Therefore, capturing relative expression differences between patches
within each tissue is more reasonable than directly estimating the absolute value of gene expression.

Learning to rank (i.e., ranking loss) is one of the solutions to learn the relationships between samples
[3, 22, 9, 10, 27]. This ranking loss learns which of a given pair of samples has a higher score, and
the pairwise learning approach can mitigate batch effects. However, because signal-to-noise ratios
of lowly expressed genes tend to be lower than those of highly expressed genes, stochastic noise
can alter the relative ranking between samples when gene expression levels are low. Therefore, it is
essential to model the relative relationships in a manner that reflects the probabilistic characteristics
of gene expression data.

To address the challenge of learning relative relationships in gene expression data affected by stochas-
tic noise, we propose a novel loss function that models gene expression as a discrete probabilistic
distribution conditioned on pairwise or listwise input. Specifically, we assume that the expression
counts of paired patches are the consequence of the counting process given relative frequencies
among the patches; we assume a binomial distribution for pairwise and a multinomial distribution for
listwise scenarios. This formulation enables the model to capture relative relationships in a manner
that is consistent with the probabilistic nature of observed count data.

To confirm the characteristics of our proposed loss function, we compared a previous loss function
with ours using a synthetic dataset. The experiments demonstrated the effectiveness of batch effects
and stochastic noise in the low signal situation. Moreover, experiments using real datasets show the
generability of our loss function.

Our contributions are highlighted as follows:

• We redefine the task setup of gene expression estimation from pathology images as a rank
score estimation setting. The setting is more practical and realistic for the downstream tasks
of using gene expression.

• We propose a noise-robust loss function designed to handle batch effects and probabilistic
noise, which dynamically adjusts its weighting based on the relative magnitude of expression
for spatial transcriptomic data (STRank). This allows the model to learn more effectively,
even when the expressions are sparse.

• We demonstrate the effectiveness of our loss function for batch effect and stochastic noise
using synthetic datasets. In addition, we validated the robustness of the proposed method
in expression estimation using real-world data, confirming its effectiveness under practical
conditions.
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2 Setup and Notation

Let X (n) = {xn,i}Np

i=1 denote a set of image patches in n-th tissue (n = 1, . . . , N (tissue)) and
E(n) = {en,i}Np

i=1 be a set of their corresponding gene expression levels at each patch, where Np

is the number of patches. The ei is an Ng-dimensional vector and indicates gene expression level
for each gene, where Ng is the number of genes. Unlike previous expression estimation setups
that directly estimate expression value en,i from xn,i without considering tissue n, we aim to learn
a function f : xn,i → rn,i that estimates the rank score [3] for each gene g, which reflects the
relative relation of gene expression between the given patches from the same tissue. The rn,ig is the
scale-invariant, it reflects relative relation among expression of tissue n, where if en,ig > en,jg , then
the rank score should be rn,ig > rn,jg . Since raw gene expression values have some scaling biases
introduced by the complexity of the observation technique and experimental conditions, our setup is
more intuitive and practical than directly estimating the raw expression value. For readability, we
omit the subscript n in, xn,i and en,i. These values are referred to as xi and ei, which are samples in
tissue n.

To motivate this approach, we first summarise the two losses most widely adopted in prior work —
MSE (pointwise) and Rank (pairwise) — and clarify why they remain vulnerable to either batch
effects or stochastic noise.

A mean squared error loss between raw expression value ei and the estimated expression has been
widely used for gene expression estimation from pathology image [7, 19, 30]. The mean squared
error (MSE) loss for a sample xi is defined as:

LMSE(e
i, r̂i) =

1

Ng

∣∣∣∣ei − r̂i
∣∣∣∣2 , (1)

where || · || is the L2 norm, and r̂i is the output of a function f that estimates the expression value,
such as a neural network, r̂i = f(xi).

The loss function is calculated based on one patch (i.e., pointwise input). If there are batch effects
between E(n) and E(m), the loss function can be influenced by scaling bias due to batch effects
because the loss does not consider relations between samples obtained from different tissues. When
patient data is imbalanced, the model may disproportionately rely on data from certain individuals.
This can cause the model to learn spurious patterns, resulting in experimental bias.

To deal with the batch effects in the target data, the pairwise loss, such as Rank loss [3] or listwise
loss, such as PCC loss [25, 2] that learn relative relations from multiple inputs, is one of the
countermeasures. Ranking loss is designed to capture the relative ordering between pairwise samples.
Given pairwise samples from the same tissue n, xi and xj , such that their gene expression satisfies
ei > ej , the loss is computed for each pairwise sample in the batch as follows:

LRank(r̂
i, r̂j) = max

(
0, r̂ig − r̂jg + ε

)
, (2)

where ε is a margin value.

While we could learn pairwise relations in tissue by introducing the Rank loss, since the Rank loss
does not consider stochastic fluctuation, it is difficult to capture the signal in low signal conditions.
The gene expression profile captured by spatial transcriptomics is very sparse and noisy. Therefore,
to capture the signal from such a sparse dataset, we should consider the probabilistic model for the
loss function.

3 Spatial Transcriptomics Ranking Loss

The motivation of our Spatial Transcriptomics Ranking Loss (STRank) is to learn the relative
relationships of gene expression by considering the stochastic noise effect using the distribution of
count data by modeling gene expression counts at multiple spots. Similar to the learning to rank
setting, we consider two setups: pairwise and listwise loss functions.

3.1 Pairwise STRank Loss

Let us consider the pairwise situation similar to learning to rank [3]. Given a pair of patches i, j
obtained from a single tissue, we train the model f to predict the rank score ri, which reflects
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the relation of gene expression ei, ej between the samples from patch images xi, xj . In contrast
to the conventional rank loss function [3] that focuses only on learning ordinal relationships (i.e.,
which sample is larger), our proposed loss function captures relative differences by incorporating the
magnitude of gene expression level.

We assume that the expression count ei on the spot i, given the pairwise patches xi, xj and total
expression ti,j , follows a Binomial distribution.

Pr(ei|xi, xj , ti,j) =

Ng∏
g=1

Pr(eig|xi, xj , ti,jg ), Pr(eig|xi, xj , ti,jg ) = Binomial(ti,jg , pig), (3)

where Ng is the number of genes, pig is the frequency parameter of Bionomial distribution, which
quantify how frequently the gene g is observed at spot i given the expression count is derived from
either spot i or j, and ti,jg is the total expression level of gene g across these two spots: ti,jg =

eig + ejg. This modeling approach accounts for the unique statistical characteristics of count data. It
enables adaptive weighting of inter-sample relationships based on the observed count levels, thereby
improving the ability to learn from count data distributions which has stochastic fluctuations.

Given pairwise patches, xi and xj , the model f output scores, r̂i and r̂j , where r̂i, r̂j ∈ RNg

. A
softmax function is then applied between r̂i and r̂j .

p̂ig =
exp(r̂ig)

exp(r̂ig) + exp(r̂jg)
, p̂jg =

exp(r̂jg)

exp(r̂jg) + exp(r̂ig)
, p̂jg = 1− p̂ig. (4)

Our loss function models the predicted probabilities pig and pjg as parameters of a binomial distribution,
and the model is trained by minimizing the negative log-likelihood of the binomial distribution,
thereby aligning the predicted distributions with the observed count-based outcomes. The negative
log-likelihood can be decomposed into the following form:

− log Pr(ei|xi, xj , ti,j) = − log

(
Ng∏
g=1

(
ti,jg
eig

)
pig

eigpjg
ejg

)
(5)

= −
Ng∑
g=1

(
eig log p

i
g + ejg log p

j
g + log

(
ti,jg
eig

))
. (6)

Since log
(T i,j

g

eig

)
is constant value, our final loss function Lpair

STRank is as follows:

Lpair
STRank(x

i, xj , ei, ej) = −
Ng∑
g=1

(
eig log p̂

i
g + ejg log p̂

j
g

)
. (7)

To construct sample pairs, we randomly select a sample from within the same tissue for each reference
sample. Patch pairs are generated per tissue using grouped permutation, and the total loss for a
mini-batch M , randomly sampled reference without considering patients, is defined to integrate
relative signals across tissues as follows:

Lpair
STRank(M) =

1

N b

Nb∑
s=1

Lpair
STRank(x

i, xπ(i), ei, eπ(i)), (8)

where π denotes a permutation index obtained by randomly shuffling the sequential sample indices
within each tissue n and xπ(i) corresponds to a randomly selected sample from the same tissue as xi.
After training, the r̂ serves as a rank score indicating the relative expression levels across individual
spots.

Relation with Ranking Loss Function. Our proposed pairwise loss function can be interpreted as a
relaxed variant of a traditional ranking loss, enabling flexible optimization by considering count value
while preserving the core objective of learning relative sample orderings. The previous ranking loss
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functions focus solely on the relative ordering between pairs of samples, determining whether one is
larger than the other. This implicitly assumes that the difference in rank scores is sufficiently large to
make the ordering unambiguous. Under this assumption, r̂i is sufficiently larger than r̂j , r̂i ≫ r̂j and

the pairwise probabilities are treated as follows: pig =
exp(r̂ig)

exp(r̂ig)+exp(r̂jg)
≈ 1, pjg =

exp(r̂jg)

exp(r̂ig)+exp(r̂jg)
≈

exp(r̂jg)

exp(r̂ig)
. Then, our loss function can be transformed as follows:

LPair
STRank(x

i, xj , ei, ej) = −
Ng∑
g=1

(
eig log

exp(r̂jg)

exp(r̂ig)

)
= −

Ng∑
g=1

(
eig
(
r̂jg − r̂ig

))
∝ r̂jg − r̂ig. (9)

Introducing a margin term and a max operation to the difference in rank scores recovers the form of
conventional ranking loss functions, such as the hinge-based pairwise ranking loss.

3.2 Listwise STRank Loss

Similar to the pairwise approach, listwise estimation over multiple Nk samples can be formulated
by modeling the expression level associated with each sample. This allows the model to handle
group-wise comparisons within a unified probabilistic framework.

We assume that the relationship between the list of patch images, X(n) = [x1, ..., xNk

], extracted
from the same tissue and their associated gene expression values, E(n) = [e1, ..., eN

k

], follows a
multinomial distribution. This probabilistic formulation enables modeling the joint contribution of
individual patches to the overall expression profile in a listwise manner.

Pr(E(n)|X(n),T(n)) =

Ng∏
g=1

Pr(E(n)
g |X(n), T (n)

g ),Pr(E(n)
g |X(n), T (n)

g ) = Multinomial(T (n)
g , pig),

(10)
where T

(n)
g =

∑Nk

i=1 e
i
g is the total number of gene expression count, and E

(n)
g = [e1g, ..., e

Nk

g ] . The
probabilities for the multinomial distribution pig are obtained using the softmax operation, similar to

the pairwise case: pig =
exp(r̂ig)∑Nk

j=1 exp(r̂jg)
.

The negative log likelihood of the multinomial distribution is transformed

− log Pr(E(n)|X(n), T ) = − log

(
Ng∏
g=1

Pr(E(n)
g |X(n), Tg)

)
(11)

= −
Ng∑
g

Nk∑
i

(
eig log p

i
g + log

Tg!

e1g!e
2
g! · · · eN

b

g !

)
. (12)

Since the second term is independent of the model parameters, it can be omitted during optimization.
The resulting listwise rank loss for spatial transcriptomics, referred to as ListWiseSTRank, is defined
as follows:

LList
STRank(X

(n),E(n)) = −
Ng∑
g

Nk∑
i

eig log p
i
g. (13)

Similarly to the pairwise loss, we define the total loss for a mini-batch M , which is randomly sampled
without considering patients, as follows:

LList
STRank(M) =

N(tissuse)∑
n=1

LList
STRank(X

(n)(M),E(n)(M)) (14)

where X(n)(M) and E(n)(M) are the lists of x and e derived from tissue n in mini-batch M .

Correction Using Expression for Each Spot. Gene expression levels can vary in detectability across
spatial spots, so the total count per spot often normalizes expression data. However, such normaliza-
tion converts the inherently discrete count data into continuous values, which may compromise loss
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functions that rely on count-based statistical properties. To mitigate this, we introduce a correction
based on the total expression level li at each spot, enabling the model to account for inter-spot

variability while preserving the count data structure. pig =
exp(r̂ig)l

i∑Nk

j=1 exp(r̂jg)lj
, where li =

∑
g e

i
g .

4 Experiments

We evaluated our methods using two types of datasets: synthetic datasets to confirm the hypothesis
and characteristics of the proposed loss function, and real datasets to confirm practicality.

Comparisons. We compared our loss function with five loss functions: 1) Mean Squared Error
loss (MSE) measures the squared difference between the predicted value and the ground truth on
a per-sample basis (widely used on gene expression estimation), 2) Poisson loss (Poisson) models
the output as a Poisson-distributed count and minimizes the corresponding negative log-likelihood
for each sample, 3) Negative Binomial loss (NB) extends Poisson loss by incorporating a dispersion
parameter to handle overdispersed count data at the individual sample level, 4) Rank loss (Rank)
operates on pairs of samples and penalizes incorrect relative ordering, encouraging proper ranking, 5)
Pearson Correlation Coefficient loss (PCC) is a listwise loss that maximizes the linear correlation
between predicted and true values across the full batch. To examine the effectiveness of our proposed
learning relative expression trends strategies, we compare the loss functions of PairSTRank (Section
3.1) and ListSTRank (Section 3.2), which are based on pairwise and listwise learning, respectively.

The Spearman Correlation Coefficient (SCC) was used as a metric to evaluate the performance.

4.1 Hypothesis Analysis on Synthetic Dataset.

We simulated 1D synthetic data to evaluate the effects of batch effects and stochastic noise. The
reason for using synthetic data is that it is difficult to obtain ground truth from raw gene expression
datasets since the observed data already contains bias and noise.

In these experiments, each input variable xi was defined as a one-dimensional scalar constrained to
the interval [0, 1]. The corresponding gene expression level ei was modeled using a negative binomial
distribution, consistent with prior work in transcriptomic data analysis [11]. Specifically, ei is also 1D
data and was sampled from the distribution NB

(
αµ(xi) + β, r

)
, where µ(xi) is the mean response

function of the input, r is the dispersion parameter, α is scaling parameter, β is bias parameter.

The objective of the experiments is to accurately estimate the mean function µ(xi) from a given dataset
D = {X (n), E(n)},X (n) = {xi}Nn

i=1, E(n) = {ei}Nn

i=1. It corresponds to finding the meaningful
signal from observed data. The µ(xi) is a nonlinear function: µ(xi) = a sin(cxi)+b sin(dxi)+a+b,
which is the same with [21]. We prepared four types of functions with different parameters (cf.
Supplementary material A). The mean SCC for the four types of functions is calculated.

We assumed a training dataset comprising two patients (n = 2), and each patient’s gene expression
is affected by experimental batch effects, which stem from sources such as differences in imaging
protocols or acquisition equipment. We assumed that gene expression measurements for each patient
are affected by distinct batch parameters α (scaling) and β (offset). For simplicity, we set α = 1 and
β = 0 for the first patient, α = 10 and β = 10, for the second patient (Other conditions are shown
in supplementary material A). For training, 50,000 samples were independently sampled from each
patient. The validation and test sets, each consisting of 10,000 samples, are sampled from a uniform
distribution over the interval [0,1] in both setups. We compared a uniform situation, where input
samples are sampled from a uniform distribution (Figure 2 (a)), and an imbalanced situation, where
the sample of tissue 2 is sampled in the specific section (Figure 2 (b)). Figure 2 shows an example of
synthetic data. The color indicates tissue, the dotted line indicates the mean function, and each plot
represents an observed value ei, which is sampled with the negative binomial distribution.

A simple MLP (multi-layer perceptron) with 3 linear layers ([1× 128], [128× 128], [128× 1]) with
ReLU was used for the model. The epoch was 2000 using AdamW [13] with a learning rate 1e− 3
with mini batch size = 256. For the scheduler, we used CosineAnnealing [12]. Details regarding
computational resources and related settings are provided in the supplementary material B.

Table 1 shows the comparative performance of various loss functions used for gene expression
estimation. Traditional pointwise losses, including widely used Mean Squared Error (MSE), optimize
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Figure 2: Example of synthetic data for validat-
ing the batch effect. Colors indicate patients; the
dashed line represents the mean function to be
learned; and the dots show observations. (a) Uni-
form setting: Each patient’s data is drawn from
a uniform distribution. (b) Imbalanced setting:
Observed data is skewed.

Table 1: Performance comparison across multiple
patient conditions. Results are based on synthetic
data. Bold faces indicate the best performance in
each setting, while underlined values denote the
second-best.

Uniform Imbalanced

Po
in

t MSE 0.748 0.583
Po 0.777 0.603
NB 0.788 0.601

Pa
ir Rank 0.835 0.738

PairSTRank 0.907 0.818

L
is

t PCC 0.858 0.560
ListSTRank 0.945 0.828

prediction accuracy by minimizing the absolute difference in expression levels across individual
samples. In contrast, loss functions based on pairwise and listwise learning paradigms, which capture
relative expression relationships between genes or samples, demonstrate superior performance overall.
These results demonstrate that learning relative expression is effective in situations where batch
effects are present. Notably, the proposed methods—PairSTRank and ListSTRank—consistently
outperform both conventional pairwise and listwise approaches, indicating their enhanced capacity to
model the structured dependencies inherent in gene expression data in both uniform and imbalanced
situations. Empirical results show that ListSTRank outperforms its pairwise counterpart. We attribute
this improvement to ListSTRank’s ability to capture global expression patterns across entire batches,
as opposed to the localized comparisons used in pairwise learning. This suggests that leveraging
broader relational context is advantageous under batch-affected conditions.

4.2 Evaluation on Real Datasets

Dataset. To evaluate the effectiveness of our proposed method, we performed experiments using
seven datasets from the benchmark of the HEST-1k dataset [8]: IDC, PRAD, PAAD, COAD, READ,
ccRCC, and IDC-LymphNode. SKCM and LUAD datasets were excluded from the analysis because
they contain only two patients and do not align with the assumptions of our study. Each dataset
contains samples from three individual patients. The IDC, PAAD, and COAD datasets were acquired
using the Xenium platform, whereas other datasets were obtained via the Visium platform. To avoid
train/test patient-level data leakage, we used patient-stratified splits and one patient for validation and
testing data, respectively, and the other patients were used for training data. The motivation for the
experiment is not to compare models, but to compare loss functions. Therefore, we do not use PCC
or regularization, and simply train a regression model with each loss function.

We used 50 genes with highly variable genes. To assess the influence of the loss function, we kept
the feature extractor fixed and trained only a single fully connected (fc) layer, as shown in Figure
3. The feature extractor was CONCH [14], which is a vision and language foundation model for
pathology. Model optimization employed the AdamW optimizer with a learning rate of 5e− 5 and
a batch size of 256. We trained the model for up to 1000 epochs, with early stopping implemented
using a patience threshold of 30 epochs.

Table 2 summarizes the performance comparison across all datasets. Overall, the proposed method
outperforms conventional loss functions on average. Although STRank demonstrated superior
performance on synthetic data, STRank did not consistently outperform alternatives across all
conditions in real datasets. Because real data evaluations are based on observations that inherently
include stochastic and measurement noise, it remains essential to assess whether the evaluations
reliably reflect true model performance. Even under such conditions, STRank remained relatively
stable and was able to demonstrate superior performance on average.
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Table 2: Real dataset which is obtained from HEST-1k [8]. Bold faces indicate the best performance
in each setting, while underlined values denote the second-best. Ave. is average performance.

Loss IDC PRAD PAAD COAD READ ccRCC IDC-L Ave.

Po
in

t MSE 0.393 0.484 0.307 0.556 0.140 0.093 0.168 0.306
Po 0.314 0.485 0.336 0.524 0.172 0.091 0.134 0.293
NB 0.199 0.491 0.119 0.538 0.160 0.075 0.126 0.244

Pa
ir Rank 0.317 0.317 0.181 0.566 0.047 0.059 0.110 0.228

PairSTRank 0.494 0.458 0.346 0.613 0.136 0.127 0.228 0.343

L
is

t PCC 0.472 0.459 0.307 0.640 0.105 0.102 0.198 0.326
ListSTRank 0.510 0.459 0.343 0.597 0.140 0.125 0.238 0.345
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Figure 3: Illustration of our framework for
the real dataset. To assess the loss function,
we only update the classifier head for this
evaluation.

SC
C

Down sampling rate
0.01 0.1 1

Rank
PairSTRank

ListSTRank
PCC

Figure 4: Effectiveness for sparsity. The x-
axis is on a log scale.

4.3 Effectiveness for Sparcity

To further assess the robustness of STRank for the sparsity, we conducted performance variability
for varying sparsities in a modified real dataset. One way to assess robustness for the sparsity is by
assessing the performance on low-expressed genes. However, as discussed in [17], sparsity evaluation
becomes challenging in low-expression data due to the lack of known ground-truth signals. To
address this, we simulated the sparsity-enhanced expression data for genes with the top 50 highest
mean expression levels. For a count of each gene in each cell, we conducted binomial sampling using
a specified down-sampling rate to acquire down-sampled count data. We varied levels of expression
by downsampling each gene expression count using probabilities p = 0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 1.

Figure 4 shows the performance of the pairwise and listwise loss functions on each downsampling
rate. Our Pair and List STRank loss outperforms Rank and PCC on each down-sampling rate. The
difference becomes significant when the rate is 0.01, effectiveness on highly sparse and weak signals.
Since gene expression is inherently sparse, these results suggest that the STRank is well-suited for
capturing gene expression signals.

4.4 Effect for Parameter Nk of Our Loss Function

We varied Nk and assessed the effect of Nk, which is the number of samples to calculate our
ListSTRank. A larger Nk is expected to be generally preferable, as it facilitates the capture of global
trends. However, in the presence of noise or distortion in the global structure, pairwise learning may
offer improved performance.

Table 3 shows the performance on each Nk. The results indicate that increasing k beyond 4 leads to
improved performance. However, in practice, increasing Nk is not always beneficial due to numerical
instability and computational overhead in both situations. For k ≥ 4, the model demonstrates
robustness, with stable performance observed at k = 8 and k = 16.
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Table 3: Performance of STRank for Nk on three conditions.
Nk Uniform Imbalanced B Xenium
2 0.907 0.818 0.447
4 0.938 0.837 0.462
8 0.958 0.839 0.455

16 0.943 0.833 0.458
32 0.938 0.818 0.463
64 0.926 0.827 0.462
128 0.941 0.845 0.457
256 0.945 0.828 0.459

5 Related work

Gene expression estimation from pathological image. Estimating gene expression from pathology
images has the potential to reduce sequencing costs and help understand diseases. Deep learning
has been introduced in this field, and the deep learning models are trained with patch and gene
expression pairs captured by spatial transcriptomics. ST-Net [7] has introduced a transfer learning
approach and estimates gene expression by a convolutional neural network pre-trained on ImageNet
[5]. To utilize global information of patches, graph convolution neural networks and transformers
have been introduced in Hist2gene [19] and Hist2st [30]. To effectively combine local and global
information, M2OST [24] and TRIPLEX [4] effectively combined multiple features that are extracted
from multiple resolutions. By focusing on the difficulty of directly estimating multiple-dimensional
gene expression, exemplar-guided estimation [26, 28, 29], which utilizes retrieved gene expression,
has been proposed. BLEEP [26] has trained a model with image and gene expression in a contrastive
learning manner and retrieves gene expression based on the image. EGN [29] has refined the retrieved
gene expression with a transformer block.

MSE loss has been mainly used as the loss function for these methods. In contrast, we focus on the
relative relation among tissues and propose a novel noise-robust loss function with pairwise learning.

Learning to rank. Learning to rank is the field that learns the ranking function from ground-truth
rankings [3]. Sculley has adapted the Stochastic Gradient Descent method for learning to rank [22],
allowing models to be trained on large datasets. The ranking loss has been integrated with neural
networks, which have been widely utilized in applications including Image Quality Assessment [9]
and crowd counting [27, 10].

In contrast to these works, which only consider ranking, our loss function considers the size of
the count value and adaptively weights depending on the relation of input samples. Since the gene
expression is sparse and has a low signal, taking into account the count value helps to learn the
relation in the low signal situation.

6 Conclusion

In this paper, we tackled gene expression estimation from pathology images by reconsidering the
objective. In contrast to the previous method, which estimates the absolute expression value, we
aim to learn the relative gene expression relation. In addition, we propose a novel loss function
(STRank) designed to capture the relative gene expression across spatial patches by modeling the
relative expression relation. Through comprehensive experiments on both synthetic and real-world
datasets, we demonstrated that our method achieves more stable and reliable performance compared
to traditional point-wise approaches. These results suggest that exploiting relative gene expression
patterns is a promising strategy for enhancing robustness in gene expression prediction.

7 Limitations

We hypothesized that STRank would perform well under sparse conditions, and we evaluated its
performance by varying the number of target genes from 50 to all possible genes. As shown in
Supplementary D, we could not confirm the effectiveness of STRank in a sparse situation of a real
dataset. Furthermore, as shown in Table 2, rigorous evaluation on real data remains an open challenge,
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and the fundamental reasons why STRank fails to outperform conventional loss functions in some
datasets have yet to be elucidated.

Although STRank shows effectiveness across multiple patients, it converges more slowly than PCC
when evaluated on data from a single patient. This behavior is likely due to STRank’s conservative
weight updates under low-sample conditions. As a result, PCC may offer better convergence
performance on simpler datasets with limited observations.

Another challenge is performance in multi-cohort settings, where the sample is obtained from different
experimental conditions (e.g., different hospitals and procedures). As detailed in Supplementary D,
our proposed loss functions exhibit limitations when applied to such multi-cohort datasets with a
large number of genes. In such cases, batch effects in gene expression are amplified, and pathology
images are likewise influenced by experimental batch effects due to variations in imaging conditions.
While addressing this issue is beyond the scope of our study, it represents an open question for this
field. Future research should aim to develop more robust and generalizable approaches to mitigate
these effects.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly described our claims of learning to relative gene expression, and
the experiments validated our assumptions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The manuscript includes a dedicated section discussing the limitations of the
study, which are addressed in an appropriate and transparent manner.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: Our result does not contain theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We will release the source code upon publication. The details of the experiment
conditions were described in the experiment session.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the source code upon publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We described the details of the implementation detail in our paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our figure contains error bars, and the variance of the main result is shown in
the Supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The details of computer resources are described in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We used publicly available dataset: Hest 1k with CC BY-NC-SA 4.0 LICENSE
and
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The work was conducted on fully anonymized data and focuses on method-
ological development. It does not raise any immediate ethical, legal, or social concerns, and
no direct societal impact—positive or negative—is expected at this stage.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not use such types of data and models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All methods employed in this study are appropriately cited. Additional details,
including licensing information, are provided in the supplementary material.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release the source code upon publication.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our experiments used only publicly available datasets.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We used LLMs for only writing, editing, and coding.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Details of Experiments on Synthetic Dataset
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Figure 5: Visualization of µ(x).

Figure 5 shows four types of mean functions for our synthetic data. A nonlinear function was chosen
to generate waveforms characterized by varying frequencies and slope gradients. This property
allows the function to model complex, non-uniform signal behavior, which is relevant in representing
heterogeneous patterns observed in the gene expression data.

Figure 6 shows the performance of each loss function under various parameters in the synthetic
dataset. We changed scale α, bias β, dispersion parameter r, scale for tissue 2 α, bias for tissue 2 β.
Overall, our loss function outperforms all comparisons on each condition. The proposed loss function
demonstrates robustness under low-scale conditions. Furthermore, its effectiveness improves as the
variability in intensity scales across patients increases.
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Figure 6: Visualization of µ(x).

B Computer Resources

We used the Cloud Environment [23] for the experiment on synthetic data, and an internal desktop
computer for Experiment 2.

Experiment 1 (Cloud environment)

• CPU: 16 assigned physical CPU cores
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Table 4: Performance on HER2ST dataset with 50–9385 gene sets.
Method 50 250 1000 5000 9385

MSE 0.193 0.181 0.172 0.162 0.132
NB 0.020 0.154 0.098 0.083 0.074
Po 0.009 0.150 0.095 0.076 0.069
Rank 0.095 0.052 0.041 0.042 0.018
PairSTRank 0.244 0.194 0.176 0.177 0.173
PCC 0.189 0.173 0.165 0.171 0.152
ListSTRank 0.260 0.175 0.110 0.085 0.087

Table 5: Performance on COAD Visium dataset with 50–2000 gene sets.
Method 50 250 1000 2000

MSE 0.2712 0.2090 0.2125 0.2084
NB 0.3043 0.1682 0.0899 0.0868
Po 0.2572 0.1440 0.0858 0.0829
Rank 0.1118 0.0714 0.0260 0.0599
PairSTRank 0.3456 0.1957 0.1383 0.1319
PCC 0.2615 0.2000 0.2035 0.1951
ListSTRank 0.3398 0.1973 0.1404 0.1375

• GPU: None

• Memory: 320 GB

Experiment 2 (Internal desktop environment)

• CPU: 12th Gen Intel(R) Core(TM) i9-12900KS, Physical Cores: 16

• GPU: NVIDIA RTX A6000

• Memory: 128 GB

C Licenses for Existing Assets

We implemented our method with Pytorch [20] with modified BSD LICENSE, PytorchLightning
[6] with Apache-2.0 LICENSE. For the feature extraction from whole slide images, we modified the
CLAM implementation [15]. We used Hest 1k [8] with CC BY-NC-SA 4.0 for the real datasets.

D Experiments on More Realistic Scenarios

We conducted experiments using the HER2ST datasets [1] and the COAD Visium (multi-cohort)
with large gene sets to evaluate the robustness of our loss function on more realistic gene expression
estimation scenarios. For HER2ST, we used gene sets of size 50, 250, 1000, 5000, and the full set
of 9,385 genes. For COAD, we evaluated the loss functions on gene sets of size 50, 250, 1000, and
2000.

The results are shown in Tables 4 and 5. Our loss function demonstrated robustness on the HER2ST
dataset, which is a highly sparse spatial transcriptomics dataset, outperforming other loss functions.
This suggests that the proposed loss function is effective for sparse real-world data and for mit-
igating batch effects within the same cohort. However, for the COAD dataset, our loss function
underperformed MSE and PCC when using multi-cohort data with large gene sets (250–2000 genes).

In multi-cohort settings (e.g., COAD setting in Table 5) with many target genes, we assume that the
distribution of stochastic noise varies substantially across cohorts; therefore, for low-signal genes
where the noise component is dominant, further extensions that account for cohort-specific noise
characteristics are needed. To effectively handle multi-cohort data, additional factors beyond batch
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Table 6: Results of different methods on Hest2gene
Method Hest2gene
MSE 0.039
NB 0.005
Po -0.014
Rank 0.042
PairSTrank 0.052
PCC 0.039
ListSTrank 0.046

effects should be considered, including potential differences in biological signals and domain shifts
in image features. This is one of the open problems and is essential for the practical application of
gene expression prediction.

E Integration with Previous Method

To evaluate the generalizability of the proposed loss function, we examined its performance when
integrated into existing gene expression estimation methods. We evaluated the Spearman correlation
coefficient (SCC) for predicting 250 genes using the HER2ST dataset [1]. In contrast to the original
study, we adopted a patient-level data split to evaluate generalizability. We then assessed the
performance of HisToGene [19] trained with various loss functions. As summarized in the Table 6,
the proposed PairSTrank loss achieved the highest performance. In conclusion, our loss functions
demonstrated effectiveness on this setup.

F Exploring the Impact of Mini-Batch Sampling Strategies

To investigate the effect of a mini-batch sampling strategy, we compared three settings: the original
implementation (Default), a setting where the mini-batch contains samples from only one tissue
(Intra-tissue), and a setting where samples are evenly sampled from all tissues (Inter-tissue).

Table 7 shows the results of these experiments on the 250 and 1000 gene sets. Even when we use
different mini-batch strategies, the performance of ListSTRank is not improved. PairSTRank loss
also does not consider the intra-tissue and inter-tissue, but it still outperforms ListSTRank loss. This
suggests that the performance degradation of ListSTRank is not due to the mini-batch setting. Based
on these results, we suspect that the performance degradation of ListSTRank may be due to numerical
effects.

Table 7: Effect of mini-batch sampling on 250 and 1000. We compare three settings: Default,
Intra-tissue (mini-batch contains samples from only one tissue), and Inter-tissue (samples are evenly
sampled from all tissues).

Method 250 1000

Default 0.175 0.110
Intra-tissue 0.177 0.105
Inter-tissue 0.173 0.105
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