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Abstract: In this work, we propose a novel sample-based approach for the manip-
ulation and whole body control problem. Our method reduces the search space by
explicitly accounting for control modes—namely when to apply them, how long
to apply them, and which mode to use. We demonstrate that our approach can
synthesize complex behaviors, ranging from in-hand manipulation to humanoid
locomotion, and achieves significantly better performance in terms of total cost
compared to existing methods. Finally, we validate our method on a physical Uni-
tree A1 platform, highlighting its sample efficiency and real-world applicability.
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1 Introduction

Modern robotic systems (e.g., legged robots, dexterous hands) often need to switch between discrete
modes, such as making and breaking contacts, to synthesize complex behaviors. Continuous control
methods often struggle to solve tasks due to abrupt mode switches and a non-smooth optimization
landscape. Hybrid mode control methods, on the other hand, address the non-smooth optimization
by coordinating discrete mode switches with continuous control inputs, making them ideal for sys-
tems that undergo mode transitions [1, 2, 3]. However, scaling hybrid control to high-dimensional
systems is challenging due to the exponential complexity of mode-switch optimization and the non-
convex optimization landscape [4, 5]. As such, existing approaches typically rely on simplified
models or exhaustive offline enumeration, limiting their applicability to real-world tasks [3, 6, 7].

In this work, we propose a sample-based approach to the whole-body control problem using hybrid
mode control. Our method samples two critical decision variables: (1) when to switch modes and
(2) how long to apply control. By focusing on these temporal control modes, we significantly reduce
the search space for sampling control. Our approach outperforms existing sample-based continuous
control methods [8, 9, 10] in terms of overall performance given limited samples, e.g., we achieve 85
% reduction of total cost in cube manipulation tasks. We validate our approach in real time on a phys-
ical robotic platform, showcasing its practical effectiveness for demanding tasks like quadrupedal
locomotion. In summary, our contributions are: (1) A novel sample-based control strategy inspired
by hybrid control theory; (2) Improved sample complexity and convergence rates against existing
sample-based controls in legged locomotion and manipulation tasks; (3) Demonstration of real-time
torque-level locomotion control of a Unitree A1 quadruped using our approach.

The rest of this paper is organized as follows: Section 2 provides related work for hybrid control
and sample-based control. Section 3 introduces the optimal control problem and the sample-based
control for the optimal control problem. Section 4 describes our sample-based hybrid mode control
method for the optimal control problem shown in Section 3. Section 5 demonstrates the effectiveness
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Figure 1: Examples of tasks completed using our method are illustrated through a series of time
series images. First row: Unitree A1 performing bipedal locomotion. Second row: Unitree Go2
quadruped climbing a box. Third row: Unitree H1 humanoid locomotion. Last row: In-hand
manipulation using the Allegro Hand.

of the proposed sample-based hybrid mode control through simulation and real-world experiments.
Finally, the conclusion and limitation are presented in Section 6.

2 Related Work

2.1 Hybrid Control

Hybrid control addresses robotic systems that dynamically switch between discrete modes, such as
making or breaking contacts in locomotion or transitioning between manipulation phases [3, 2, 1].
Hybrid control problems are typically solved by Linear Complementarity Programming [11, 12, 13]
or Mixed-Integer Programming [14]. However, they struggle to scale to high-dimensional systems
due to two key challenges: (1) the objective landscape is highly nonconvex [15, 3], and (2) the
computational burden becomes intractable due to an increasing number of contact modes [16].

To mitigate these issues, prior works consider simplified models for high-dimensional robot
systems[17, 18]. For example, a common, simple model for quadruped locomotion is the single-
rigid-body model. This model simplification approximates robot dynamics by focusing on the center
of mass and ground reaction force while ignoring joint-level states [19, 20, 21, 22]. However, using
a simplified model loses the possibility to fully exploit the whole-body capability. Other methods
predefine the order in which contacts are made and broken. In this case, the optimization problem
becomes easy to solve [23]. However, predefined contact modes constrain the robot’s behavior to a
predetermined trajectory.

In this work, we proposed a sampling-based approach for solving the hybrid control problem. Our
method does not rely on pre-specified modes or simplified models and can synthesize complex and
agile behaviors. Moreover, by actively sampling the hybrid mode, our method synthesizes contact-
rich behaviors and conducts computations online.
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2.2 Sample-based Control

Sample-based control methods [24, 25, 26] have recently emerged as a simple yet effective ap-
proach for solving high-dimensional robotics tasks such as legged locomotion [27, 28, 29, 30] and
manipulation [31, 32, 33, 34]. Rather than relying on explicit gradient-based techniques, sample-
based controls begin by sampling a control sequence from an initial distribution, executing a for-
ward rollout of that sequence, and then adjusting the sampling distribution based on the resulting
costs. This gradient-free nature makes sample-based control particularly well-suited for complex,
non-differentiable systems where traditional optimization methods may struggle.

Despite the effectiveness, sample-based control methods exhibit two limitations. First, they often
treat control at each timestep as an independent variable, ignoring the inherent hybrid structure
of robotic tasks [35]. Second, the number of samples required to adequately explore the control
space scales exponentially with the planning horizon. This exponential growth makes sample-based
methods computationally infeasible for long-horizon tasks.

Our work unifies the strengths of hybrid control and sample-based optimization. By reparameteriz-
ing the key decision variables, i.e., when and how long to apply control, our approach can discover
complex behaviors in contact-rich scenarios, such as in-hand manipulation with the Allegro hand.
Additionally, the number of decision variables in our formulation is independent of the time horizon,
effectively reducing the search space for long-horizon tasks like in-hand manipulation. As a result,
we effectively mitigate the exponential growth in sample requirements, making it feasible to handle
both high-dimensional and long-horizon robotic tasks.

3 Preliminaries

This section presents the formulation of the optimal control problem and an overview of sample-
based control.

3.1 Problem Formulation

Consider a discrete-time dynamical system:

xt+1 = f(xt,ut), t = 0, 1 . . . T − 1, (1)

where xt ∈ X ⊆ Rn is the state and ut ∈ U ⊆ Rm is the control at time step t. A trajectory
{X,U} contains the sequence of states X = [x0, · · · ,xT ] ∈ X 0:T , and the sequence of controls
U = [u0, · · · ,uT−1] ∈ U0:T−1 satisfying (1). Here, X 0:T = X × X × · · · (T times) × X and
U0:T−1 = U × U × · · · (T − 1 times)× U are the cartesian product of domains.

We define the total cost J to be

J (X,U) =

T−1∑
t=0

c
(
xt,ut

)
+ cf

(
xT

)
, (2)

where c : X ×U → R is the cumulative sum of the running cost and cf : X ×U → R is the terminal
cost. Since we can recover states X from integration using Eq.(1), we can simplify the total cost
J (x0,U) as functions of only initial condition x0 and sequence of controls U.

The goal of the optimal control problem is to find the control sequence such that the objective
J (x0, U) is minimized:

U⋆ = argmin
U∈U0:T−1

J (x0,U)

s.t. xt+1 = f(xt,ut), t = 0, 1 . . . T − 1,
(3)

3.2 Sample-based Predictive Control

Sampling-based methods, such as evolutionary algorithms [36] and the cross-entropy methods [37,
10], are widely used to address nonconvex optimization problems. These approaches iteratively
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perturb candidate solutions and selectively retain high-performing candidates based on a predefined
metric. In the context of optimal control, such a process can be formulated as follows:

∆U⋆ = argmin
∆U(i)∈D

J
(
x0,U

nom +∆U(i)
)

(4)

Unom ← Unom +∆U⋆. (5)

Here, Unom, the nominal control sequence, is the candidate solution to (3). The set

D = {∆U(1),∆U(2), . . .∆U(N)}, (6)

comprises N control perturbations. In this context, each perturbation ∆U(i), drawn
from the distribution ρ(∆U) over U0:T , is resampled at every iteration. A common
choice of ρ is a multivariate Gaussian distribution N (µ,Σ), where µ ∈ Rm×(T−1)

is mean perturbation sequence, and Σ ∈ Rm(T−1)×m(T−1) is the covariance matrix.
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Figure 2: Summary of differences between our
methods and existing sampling method The red
lines denote the decision variables. Existing meth-
ods sample the controls at each time step. In con-
trast, our method considers when, how long, and
how much to apply control for each mode.

More sophisticated algorithms, such as Model
Predictive Path Integral (MPPI) control [8],
also iteratively adapt µ and Σ during op-
timization to concentrate sampling in high-
performance regions of the control space. A
central challenge in sampling-based control is
the exponential growth of the search space U0:T

with respect to the horizon T . To remedy this,
a sampling-based approach is commonly em-
bedded into a predictive-control framework [9],
which iteratively solves shorter-horizon sub-
problems over a receding window [t0 : t0+H]:

U∗
[t0:t0+H] = argmin

U[t0:t0+H]

JH
(
x0,U[t0:t0+H]

)
, (7)

where H ≪ T and U[t0:t0+H] = [ut0 , . . . ,ut0+H ] is the short-horizon control sequence. The
truncated cost JH is defined as:

JH
(
xt0 ,U[t0:t0+H]

)
=

t0+H∑
t=t0

c(xt,ut) + cH(xt0+H+1). (8)

After solving the short-horizon subproblem (7), the first control input of the optimized sequence,
i.e., u∗

t0 , is applied. This process repeats as the system dynamics evolve.

The performance of the predictive-control framework is acutely sensitive to the selected short-
horizon length. If H is too small, the system may exhibit myopic behavior, becoming trapped
in local minima. Conversely, increasing H broadens the search space and introduces significant
computational challenges—a critical consideration for online deployments.

Essentially, we require a sampling scheme that remains computationally feasible even for longer
horizons—that is, the search space does not expand prohibitively as the horizon increases. Moreover,
it should leverage the hybrid nature of many problems to synthesize complex behavior.

4 Sample-based Hybrid Mode Control

Here, we introduce our sample-based hybrid mode control method. A key observation is that in
many optimal control problems, especially those involving hybrid dynamics, the control strategy
can be segmented. That is, the shift of control is only made when necessary (see [38, 39] or our toy
example in Figure 3). Consequently, rather than sampling a control perturbation at every time step
t, it may be more effective to sample control segments, i.e., the control modes.
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Specifically, we partition the control perturbation U[t0:t0+H] into K distinct modes denoted as Mk,
where k = 1, . . . ,K. Each mode is characterized by three decision variables: τk, the time at which
the mode begins; λk, the duration of the mode; and ∆ūk, the control perturbation being applied
during the mode. We define the collection of these K modes asM = {M1, . . . ,MK}.

Here, each mode Mk = {τk, λk,∆ūk} consists of a piecewise constant control perturbation ∆ūk

applied at discrete time t0 ≤ τk ≤ t0 +H for a duration λk ≤ H − τk.

At each iteration of our approach, we uniformly sample a set of K modes that hold these three
discrete values. Each mode augments the nominal control sequence Unom with ∆Uk

t0:t0+H where

∆Uk
t =

{
∆ūk for t ∈ [τk, τk + λk]

0, for t /∈ [τk, τk + λk]
, (9)

is the synthesized control. The sub-optimization problem for finding kth mode Mk can be described
as

M∗
k = {τ⋆k , λ⋆

k,∆ū⋆
k} = argmin

τ
(i)
k ,λ

(i)
k ,∆ū

(i)
k ∈Ek

J (xt0 ,U
nom
t0:t0+H +∆Uk

t0:t0+H),

where Ek = {M(1)
k , · · ·M(N)

k } is the set contains N samples of Mk. Here, each sample
M

(i)
k = {τ (i)k , λ

(i)
k ,∆ū(i)} is drawn independently from joint distribution ρ(τk, λk,∆ūk). In prac-

tice, we sample τk uniformly from [t0, t0 + H] and λk uniformly from [0, H − τk]. Additionally,
the perturbation ∆ū ∼ N (0,Σ) is sampled independent of both τk and λk.

Algorithm 1 Hybrid Mode Control
1: Initialize: nominal control plan Unom

t:t+H , sequence
of modes M with length K, horizon H , current
time t, final time T , number of samples N .

2: while t ≤ T do
3: Observe State xt

4: for k = 1, . . . , K do
5: for i = 1, · · · , N do
6: Sample M

(i)
k = {τ (i)k , λ

(i)
k ,∆ū

(i)
k }

7: Compute ∆U
k,(i)
[t:t+H] via Eq. (9)

8: Compute J (i)(x0,U
nom
t:t+H +∆U

k,(i)
t:t+H)

9: end for
10: Compute M∗

k and ∆Uk,∗
t:t+H via Eq. (10)

11: Update Unom
t:t+H ← Unom

t:t+H +∆Uk,∗
t:t+H

12: end for
13: Apply first control Unom

t to the robot.
14: Shift nominal control Unom

t:H−1 ← Unom
t+1:H

15: t ← t+ 1
16: end while

The optimal mode sequences M⋆ ←
∪M∗

k are computed sequentially by solv-
ing Eq. (10), that is, we first solve M⋆

k,
update the nominal control via Eq. (9),
and then solve for M⋆

k+1. We summa-
rize the key differences between our sam-
pling method and previous approaches in
Figure 2, while a detailed description of
our method within the predictive control
framework is provided in Algorithm 1.

The key advantage of our sampling
method is that the search space does not
grow with the predictive horizon H , as the
time horizon itself is treated as a decision
variable. To formalize this, consider dis-
cretizing the action space U into Nu con-
trol options, i.e., U = {ū(0), · · · , ū(Nu)}
where each ū ∈ Rm. In classi-
cal sampling-based methods, the sam-
pling complexity grows exponentially as
O(NH

u ). In contrast, our approach has a sampling complexity of O
(
(NuH

2)K
)
= O

(
NK

u H2K
)
,

where K denotes the number of mode switches and the factor H2 arises from the two additional
temporal variables τ and λ. Since K ≪ H ≪ Nu in practice, our method effectively reduces the
exponential growth in sampling complexity.

By eliminating the exponential dependence on H , our method enables planning over significantly
longer horizons with limited computational resources. We illustrate this advantage with a toy exam-
ple below and present more complex behaviors in Section 5.

Toy Example: Cartpole Swing Up

Here, we consider a cartpole swing-up task. We set the total horizon T = 100. The state is defined
as pole angle θ, cart position p, pole angular velocity θ̇, and cart linear velocity ṗ. The control
is the one-dimensional force applied to the cart. The pole is initialized in up-down θ = 1

2π, and
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Figure 4: Hardware Verification We verify our method in hardware experiments using the Unitree
A1 quadruped. From left to right, the Unitree A1 walks autonomously to avoid incoming obstacles.
We update the control sequence in real time on a single CPU with onboard sensing, demonstrating
the computation efficiency of our method.

the goal is to swing the pole upright and maintain balance. Hence, the stage cost is defined as
c(xt,ut) = 4.0(cos(θ) − 1)2 + 0.1p2 + 0.1(θ̇2 + ṗ2) + u2 and the terminal cost is defined as
cf (xT ) = 4.0(cos(θ)− 1)2

Figure 5 demonstrates the results for our method and other sampling approaches, both for
the receding-horizon sub-optimization problem and the overall performance under a predictive-
sampling framework. To ensure scale invariance across tasks, we normalize this gap by the
planning horizon length H . Here error bar denotes the standard deviation across 5 random
seeds. The performance of classical sampling methods deteriorates as the horizon length in-
creases, whereas our method consistently finds good minima, even with a limited sample size.

Planning Horizon (s)

C
on

tr
ol

s

Figure 3: Left: The optimal control sequences
found for the cartpole system are shown. The
blue curve represents the control generated by the
iLQR algorithm, a gradient-based approach that
guarantees convergence to a minimum. The or-
ange curve represents the control found using our
sample-based hybrid control method, where the
shaded areas denote distinct modes. Here, we use
K = 4 distinct modes. Right: The visualization
of the cartpole trajectory with controls found by
our method.

Both methods show a decrease in cumulative
cost as the horizon increases, as a longer hori-
zon reduces myopic decision-making. How-
ever, as the horizon continues to grow, classi-
cal methods experience an increase in total cost
due to their inability to effectively optimize the
sub-problem, whereas our method continues to
decrease the overall cost.

Our method consistently finds a good minimum
for the receding-horizon sub-problem by ac-
tively considering time as a decision variable.
In contrast, the classical sampling approach
fails to find a good optimum as the horizon in-
creases due to the expanding search space. As
for the overall performance under a predictive-
control framework, both methods show an improvement due to reduced myopia. However, the
performance of classical methods decreases with a further increased horizon, as they struggle to
solve the receding-horizon sub-problem effectively with a limited sample size, whereas our method
consistently improves performance. We also compare the control sequence found by our method
to the gradient-based iLQR method, which at least guarantees a local optimum, in Figure 3. The
control sequence found by our method closely resembles the optimal iLQR sequence, even with a
few modes.

5 Experiments and Results

We designed the experiments to answer the following three questions: (1) Does our method scale
up to high-dimensional tasks? (2) How does our method compare to other sample-based controls in
terms of cost reduction? (3) Can our method be deployed on physical robots with limited computa-
tional resources?

5.1 Scalability to High-dimensional Task

6



O
pt

im
al

ity
 G

ap

C
um

ul
at

iv
e 

C
os

t

Control Horizon Control Horizon

Figure 5: Top: Results for the short-horizon sub-
problem of the cartpole system. The Y-axis quan-
tifies the optimality gap, defined as the difference
between the objective value and a locally opti-
mal solution obtained via iterative LQR. Bottom:
Overall performance under a predictive control
framework.

Here, we start with simulation experiments
to demonstrate scalability to high-dimensional
tasks shown in Figure 1. We evaluate our
method against a set of robotic platforms and
tasks in simulations. The goal of this section is
to demonstrate that our method can work in var-
ious high-dimensional robotic systems. First,
we design quadruped locomotion tasks: bipedal
walking and box climbing. Second, we design
a humanoid jogging experiment, and the hu-
manoid is tasked to track a desired forward ve-
locity while maintaining an upright orientation.
Finally, we showcase in-hand manipulation ex-
periments, and the robot hand is tasked to reorient the cube to the target orientation shown on right
side. Each experiment can successfully track the target position and orientation while completing
the tasks without any predefined gait. The implementation details can be found in Table 1.

Quadruped Locomotion: The quadruped example uses the Unitree robot. Here, we consider two
tasks: bipedal walking and box climbing. The dimension for quadruped state space x ∈ R37 and
positional control inputs u ∈ R12. Here, state x contains the base position, base orientation, joint
angle, linear, angular velocity, and joint velocity. Control inputs u contain robot joint angles. For
bipedal walking, given the initial horizon trunk orientation, the goal is to reorient its body to an
upright position without falling with T = 200(4s) steps. The stage cost is defined as weighted sum
of state deviation and input: ||x − xref ||⊤Q + ||u − uref ||⊤R where Q and R are weights. We use
the number of samples N = 30, and prediction horizon H = 40 (0.8s). The bipedal locomotion
poses a unique challenge since the controller needs to quickly saturate the torque limit to push the
body upwards successfully. Additionally, we show that the quadruped can successfully jump on the
box given the terminal sitting position. Here, the stage cost is x − xref ||⊤Q + 0.1

∑
fcontact where

xref is the fixed terminal target pose, fcontact is the contact force at each foot. We use the number of
samples N = 100, and prediction horizon H = 50 (1.0s). It shows that our methods can generate a
climbing control sequence without a predefined gait.

Humanoid Jogging: In this humanoid example, we need to deal with a higher number of state and
control dimensions. Specifically, we use the Unitree H1 humanoid robot as an example where the
state space x ∈ R51 contains position, orientation, and velocity for hips, knees, torso, and shoul-
ders. Control space is u ∈ R19 We use the number of samples N = 1000, and prediction horizon
H = 50 (1.0s). The goal of the humanoid robot is to track the desired torso linear velocity 1.0m/s
without falling. Here, the stage cost is defined as 0.5

∑
||θtorso||2 + 0.5||htorso − 1.3||2 + ||vtorso −

1.0||2 + 0.01||u||22, where θtorso is the angle of torso measured from upright position, htorso is the
height of torso, and vtorso is the forward velocity of the torso. Without any predefined locomo-
tion gait, this example requires the controller to generate a periodic jogging gait while maintaining
whole-body stability. From Figure 1, we see that the hybrid mode control can successfully control
the humanoid jogging forward by periodically actuating either leg.

Allegro In-Hand Manipulation: In this example, we present Allegro in-hand manipulation of
a colored cube—a contact-rich, long-horizon task that requires all fingers to anticipate their
movements and maintain frequent contact with the cube. The goal is to grasp and reorient the
cube to the target orientation and position without falling. The state space x ∈ R52 includes
the finger poses and velocities of the Allegro hand as well as the pose of the cube. Control
space u ∈ R16 includes the positional angle of the fingers. Here, the stage cost is defined as
2.5||RT

targetRcube||22 + 5||vcube||22 + 0.05||u||22 + 1.25||qhand − qtarget||22 + 0.0005||vhand||22, where
||RT

targetRcube||22 represents rotation error between cube to target pose, vcube is the velocity of the
cube, ||qhand−qtarget||measures the joint deviation between hands postured to target and vhand is the
joint velocity of hands. Hybrid mode control samples finger positional angles that best minimize the
tracking loss. For the purpose of illustration, we add the floating cube, demonstrating the target cube
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orientation. From Figure 1, we see that the hybrid mode control can successfully control the hand
toward the target orientation of the cube, planning contact-rich interactions with the cube’s surface.

5.2 Comparison to Existing sample-based controls.

To demonstrate the advantage of our method, we compare the total performance in terms of cu-
mulative cost against existing sample-based methods. The baselines are MPPI [8], cross entropy
method [10], and predictive sampling [9]. We use the same number of samples, sampling co-
variance, and control horizon across the sampling-based methods to ensure fair comparisons. All
sample-based control methods share the same objectives and random seeds. We fix the temperature
coefficient of MPPI to be 0.1 across all three tasks. The detailed control parameters are shown in
Table 1. We report the simulation results in Table 2.

Table 1: Task Implementation Details for Examples Presented in This Work.

Task Name Samples Size N Horizon H Modes K
Bipedal Walking 30 40 (0.8s) 2
Crate Climbing 100 50 (1.0s) 2
Humanoid Jogging 1000 50 (1.0s) 10
In-hand Manipulation 1000 125 (5s) 5

For all three locomotion and manipulation tasks, our methods outperform existing sample-based
methods by 35 % in bipedal walking tasks, 67 % in box climbing, 41 % in humanoid jogging tasks,
and 85 % in hand manipulation tasks. Notice that only our methods can successfully balance the
quadruped in the bipedal walking task.

Table 2: Performance Comparison over three tasks.

Bipedal
Walking

Box
Climbing

Humanoid
Jogging

In-Hand Manipu-
lation

PS [9] 279 208 338 272
MPPI [8] 282 231 480 292
CEM [10] 265 216 456 280
Ours 173 70 198 40

5.3 Hardware Experiments

We further validate our method in real-world experiments using the quadrupedal robot Unitree A1.
As shown in Fig. 4, we successfully deploy our sample-based control for autonomous object avoid-
ance.

Specifically, we model a quadruped’s state x ∈ R37 as base position, orientation, joint angle, base
linear velocity, base angular velocity, and joint velocity. The control is the target joint angle, which
is tracked by a PD controller running at 1 kHz. We run the proposed method at 100 Hz on a single
Intel i7-12700H CPU with 32 GB of memory. During each loop, we sample N = 30 control
perturbations, where each sample is H = 40 control horizon and is synthesized by K = 2 control
modes. Additionally, we implement state estimation based on an extended Kalman filter using
onboard sensing [40]. In comparison with those existing sample-based control frameworks [27, 28]
relying on a highly accurate mocap system, our method only uses onboard sensing, demonstrating
robustness under noisy state measurements.

6 Conclusions

This work presents a sample-based hybrid mode control method inspired by hybrid control the-
ory. Our approach offers an alternative modeling scheme for sampling within a predictive-control
framework. By introducing time as a decision variable, our method can effectively be applied to
longer-horizon tasks. Moreover, by actively considering the hybrid nature of control, our method
can synthesize complex behavior for high-dimensional systems. There are several limitations and
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future directions to consider. Sample-based control typically requires an accurate model—one can
only simulate what is well-represented in that model. This reliance on a precise model constrains
real-world applications, particularly in unstructured environments or scenarios where obtaining a re-
liable model is challenging, such as turbulence control in fluid dynamics. Future research directions
include integrating our methods with data-driven approaches that do not require explicit modeling.
This integration can be achieved by either learning a residual dynamical model [41] or implementing
direct control in the learned latent space [42, 43].
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