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ABSTRACT

Searching for novel and diverse molecular candidates is a critical undertaking in
drug and material discovery. Existing approaches have successfully adapted the
diffusion model, the most effective generative model in image generation, to cre-
ate 1D SMILES strings, 2D chemical graphs, or 3D molecular conformers. How-
ever, these methods are not efficient and flexible enough to generate 3D molecules
with multiple desired properties, as they require additional training for the models
for each new property or even a new combination of existing properties. More-
over, some properties may potentially conflict, making it impossible to find a
molecule that satisfies all of them simultaneously. To address these challenges,
we present a training-free conditional 3D molecular generation algorithm based
on off-the-shelf unconditional diffusion models and property prediction models.
The key techniques include modeling the loss of property prediction models as en-
ergy functions, considering the property relation between multiple conditions as a
probabilistic graph, and developing a stable posterior estimation for computing the
conditional score function. We conducted experiments on both single-objective
and multi-objective 3D molecule generation, focusing on quantum properties, and
compared our approach with the trained or fine-tuned diffusion models. Our pro-
posed model achieves superior performance in generating molecules that meet the
conditions, without any additional training cost.

1 INTRODUCTION

Diffusion models have emerged as a powerful family of deep generative models across various
domains, including image generation, audio synthesis, etc. Due to their ability to generate novel and
diverse molecule structures, they help accelerate the process of drug discovery by reducing the need
for expensive and time-consuming wet experiments (Schwalbe-Koda & Gómez-Bombarelli, 2020).

Here we focus on 3D molecules, as 3D structures provide a more accurate representation of the
spatial arrangement of atoms and molecule’s geometric symmetry in comparison to 2D graph rep-
resentation. This enhanced accuracy results in a better generalization (Thomas et al., 2018; Fuchs
et al., 2020; Finzi et al., 2020). Moreover, 3D molecule design enables the identification of promis-
ing drug candidates with a range of characteristics, such as quantum properties (Ramakrishnan et al.,
2014), chirality (Adams et al., 2021), binding affinity with specific proteins (Lin et al., 2022), etc.

Given its practical importance, there have been some pioneering works on conditional 3D molecule
generation (Hoogeboom et al., 2022; Xu et al., 2023; Bao et al., 2022). For instance, EDM (Hooge-
boom et al., 2022) is the first proposed diffusion model for 3D molecules, which learns an equiv-
ariant neural network that jointly operates on both atom coordinates and atom types. Despite good
performance in generating molecules with a single desired property, the flexibility and efficiency
are limited. First, additional training is required to incorporate conditional guidance. EDM and
GEOLDM (Xu et al., 2023) directly retrain a new diffusion model conditioned on a particular prop-
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erty. EEGSDE (Bao et al., 2022) trains a time-dependent energy function to perform the guidance.
Substantial efforts should be paid to collect the dataset and train models, which is non-negligible.
Additionally, training a time-dependent energy function is a difficult task, as the molecules at the
early stages of diffusion are noisy and even invalid. Second, to accommodate multiple conditions,
all previous works need to retrain the model for every combination of conditions, resulting in un-
affordable costs. Third, the given properties might conflict, making it hard to find a molecule that
meets all conditions. Under such circumstances, existing methods also lack sufficient flexibility to
achieve the best balance among multiple properties, further limiting their effectiveness.

To address the above challenges, we propose MUDM, a training-free multi-objective 3D molecule
generation based on off-the-shelf pre-trained diffusion model and property prediction functions.
Considering the intermediate molecules zt are noisy, we map it to the expected final molecule ẑ0 by
posterior approximation, use Monte Carlo sampling to compute the gradient of the property func-
tions with low variance, and map back to update zt−1 by chain rule (Chung et al., 2022; Song et al.,
2023). To tackle the multiple conditions, we utilize the probabilistic graph to model the complex
relationships of properties, and adjust the expected final molecule ẑ0 based on the dependency of
properties in the graph. The overall conditional guidance is then calculated as the weighted sum of
the gradient of each property with respect to the expected revised final molecule z′0. The revised
z′0 and gradient weights potentially identify the importance of properties and mitigate the conflict
among given conditions.

We conducted the experiments on both single-objective and multi-objective tasks, aiming to generate
3D molecules with specific quantum properties. Compared with training-required methods, our
proposed training-free MUDM achieves superior performance in all cases for single-objective tasks.
Furthermore, MUDM is capable of generating 3D molecules with any combination of properties,
resulting in an average reduction of ∼ 30% in mean square error for each property.

Our contributions can be summarized as follows:

1. By incorporating posterior approximation and MC sampling, MUDM can provide accurate
guidance that depends solely on off-the-shelf time-independent property functions.

2. MUDM is capable of managing complex relationships among properties as a probabilistic
graph, and then deriving the effective approximation for the multi-objective guidance.

3. Experimental results reveal that MUDM is an effective and efficient method to design 3D
molecules with desired properties, offering great flexibility in exploring the chemical space.

2 RELATED WORK

Diffusion Models. Diffusion models (Ho et al., 2020; Song et al., 2020) generate samples by mod-
eling the generative process as the reverse of the noising process. Specifically, the noising process
injects the noise into the ground truth data. The generative process learns the score functions, which
is the gradient of the ground truth data distribution’s log-density, to reverse the noising process.

Conditional diffusion models enable the generative process with constraints, where the score func-
tion should be learned not only from the ground truth data distribution but also from the given
constraints. They can be broadly categorized into two types: training-required and training-free. A
well-known example of training-required methods is Stable Diffusion (Rombach et al., 2022) for
text-guided image generations. However, the extra training cost can be significant, particularly in
scenarios that require complex control with multiple conditions. Consequently, our paper focuses
on exploring training-free methods for their efficiency and flexibility in handling diverse constraints.

Molecule Generation with Desired Properties. To the best of our knowledge, current approaches
for conditional 3D molecule generation mostly utilize the condition diffusion models. EDM (Hooge-
boom et al., 2022) and GEOLDM (Xu et al., 2023) trained a specific diffusion model for each prop-
erty. EEGSDE (Bao et al., 2022) is more efficient to train a time-dependent property function instead
of re-training a new diffusion model, and then guide the generative process. In contrast, our pro-
posed method is training-free, which only requires the off-the-shelf pre-trained diffusion model and
time-independent prediction functions, making it the most efficient option. Furthermore, the quality
of generated 3D molecules is also confirmed by the experiments.
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Other traditional techniques, such as reinforcement learning (De Cao & Kipf, 2018; You et al.,
2018; Popova et al., 2018; Shi et al., 2020) and genetic algorithms (Jensen, 2019; Ahn et al., 2020;
Nigam et al., 2019), have been applied to generate molecules with specific properties. Additionally,
recent studies have also tackled multi-objective molecule problems, as seen in (Jin et al., 2020; Xie
et al., 2021). However, they all consider 2D graphs rather than 3D conformers, posing challenges in
directly applying their techniques to 3D molecule generation.

3 BACKGROUND

3D Molecule Representation. Let us consider a molecule consisting of N atoms. For the ith atom,
its coordinate can be represented as xi ∈ R3, denoting the three-dimensional space. Collectively,
the coordinates for all atoms can be represented as x = (x1, . . . ,xN ) ∈ RN×3, which encapsulates
the molecule’s conformation. Beyond the spatial coordinates, every atom also has specific features,
such as atomic type. Let hi ∈ Rd symbolize the feature vector for the ith atom. Aggregating the
features for all atoms, we obtain h = (h1, . . . ,hN ) ∈ RN×d. Consequently, a molecule can be
represented as G = [x,h], integrating both its three-dimensional geometry and atomic features.

Invariance. Two fundamental properties associated with 3D molecules are invariance and equiv-
ariance. Given a transformation R, a distribution p(x,h) is said to be invariant to R if: p(x,h) =
p(Rx,h) for all x and h. Here Rx = (Rx1, ..., RxM ) denotes the transformation applied to each
coordinate. Further, a function f(x,h) is invariant to R if: f(Rx,h) = f(x,h) for all x and h.
Invariance implies that the transformation R does not affect the outcome.

Equivariance. Consider a function f with outputs ax and ah, i.e., (ax, ah) = f(x,h). This
function is said to be equivariant to R if: f(Rx,h) = (Rax, ah) for all x and h. Equivariance
means that changing the order of f and R does not affect the outcome.

Equivariant diffusion Model (EDM) and Geometric Latent Diffusion Models (GEOLDM).
They are both diffusion models for 3D molecules, which are built upon the principles proposed
by (Ho et al., 2020; Kingma et al., 2021), but with different spaces to conduct the noising and gen-
erative process. The nosing process of EDM is defined in the original molecule space G = [x,h]:

q(G1:T |G) =
T∏
t=1

q(Gt|Gt−1), q(Gt|Gt−1) = Nxh(Gt;
√
αtGt−1, βtI)

where Nxh(Gt;
√
αtGt−1, βtI) = NX(xt;

√
αtxt−1, βtI)N (ht;

√
αtht−1, βtI). EDM adds the

noise into atom coordinates and atom features separately, where αt + βt = 1 and they both control
the noise scale. NX is the Gaussian distribution of the coordinates in the zero CoM subspace to
guarantee the translational invariance. Accordingly, the reverse generative process of EDM is:

p(G1:T |G) = p(GT )
T∏
t=1

p(Gt−1|Gt), p(Gt−1|Gt) = NX(xt−1;µθ1(xt), β̃tI)N (ht−1;µθ2(ht), β̃tI).

Different from EDM, GEOLDM is to capture the 3D molecule’s equivariance and invariance con-
straints in the latent space. GEOLDM learns the encoder z = [zx, zh] = Eϕ(x,h) and the decoder
x,h = Dξ(z), where Eϕ and Dξ are both equivariant graph neural networks (EGNNs, Satorras et al.
(2021)). For all the rotations R and translations t, they satisfy

Rzx + t, zh = Eϕ(Rx+ t,h), Rx+ t,h = Dξ(Rzx + t, zh), p(zx, zh) = p(Rzx, zh). (1)

The diffusion process of GEOLDM is also defined on the latent space. Its noising process and
reverse generative process are similar to EDM, where zt = [zx,t, zh,t]:

q(zt|zt−1) = N (zt;αtzt−1, βtI), pθ(zt−1|zt) = N (zt−1;µθ(zt, t), σ
2
t I).

The optimization objective of GEOLDM is:

µθ(zt, t) =
1

√
αt

(zt −
βt√
1− ᾱt

ϵθ(zt, t)), EE(G),ϵ∼N (0,I),t[||ϵ− ϵθ(zt, t)||2].

Inverse problems. Conditional diffusion models have shown great potential in solving inverse
problems. Suppose we have a measurement y ∈ R from the forward measurement operator A(.),
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Figure 1: Overview: MUDM generates a molecule from the time T to 0 using a pre-trained diffusion
model, guided by multiple property functions. The relationship of multiple properties is modeled by
a given probabilistic graph. At some time step, the guidance is computed as the weighted sum of the
gradient of each property with respect to the latent variable considering the property dependencies.

which satisfies y = A(x) + n where n represents gaussian noise. Given the observed measurement
y, diffusion models can be used to retrieve x by replacing the score function ∇xt

log pt(xt) with the
conditional score function ∇xt

log pt(xt|y). However, the absence of an analytical formulation for
log pt(y|xt) poses a significant challenge, leading to many studies (Chung et al., 2022; Song et al.,
2022) proposing various approximations to address this issue.

4 METHODOLOGY

In this section, we treat conditional 3D molecule generation as an inverse problem and develop a
feasible solution shown in Fig. 1. Traditionally, molecular design has been a forward process, where
researchers synthesize and test molecules to observe their properties. Inverse molecular design, in
contrast, reverses the process by starting with the desired properties and property functions, and
working backward to identify molecules that exhibit those characteristics. We will first discuss how
to generate a molecule with a single property, and delve into multi-objective tasks in the next section.

4.1 SINGLE-CONDITION GUIDANCE

Suppose we have a property predictor Aψ(.) : G → R, the target property value y ∈ R, and a loss
function ℓ : R× R → R. We define the likelihood function as

p(y|G = D(z0)) ∝ exp(−ℓ(Aψ(G), y)). (2)

To recover the molecules’ prior distribution starting from the tractable distribution, the generative
process of diffusion models can be also expressed as a reverse SDE:

dz =
[
− βt

2
z− βt∇zt log pt(zt)

]
dt+

√
βtdw̄. (3)

Now we will discuss how to incorporate the desired property into the molecule generation process.
The mapping from the property to the molecule y → G is one-to-many, which is an ill-posed inverse
problem. From the Bayesian point, we treat p(z0) as the prior, and samples from the posterior
p(z0|y). Based on Bayes’ rule, we know the fact:

∇zt
log pt(zt|y) = ∇zt

log pt(zt) +∇zt
log pt(y|zt). (4)

Then Equation (3) can be modified as:

dz =
[
− βt

2
z− βt(∇zt

log pt(zt) +∇zt
log pt(y|zt))

]
dt+

√
βtdw̄. (5)
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Figure 2: Demonstration of expected final molecules G = D(ẑ0(zt)) at different stages

Unfortunately, the second term pt(y|zt) is intractable in practice. In the previous work for 3D
molecule generation, there are two main methods to overcome this. EDM (Hoogeboom et al., 2022)
and GEOLDM (Xu et al., 2023) trained denoising model jointly with condition ∇zt

log pt(zt, y).
Alternatively, EEGSDE (Bao et al., 2022) trained a model to predict the property directly from the
noised latent variables log pt(y|zt). As we said before, they are not efficient and flexible.

Instead, we propose an effective plug-and-play framework for controllable 3D molecule generation
without any extra training. We demonstrate that only with a pre-trained diffusion model on the
dataset ∇zt

log pt(zt) and the measurement operator A(G), we can generate molecules with high-
quality and the desired property. We first rewrite the second term pt(y|zt) as:

pt(y|zt) =
∫

pt(y|z0, zt)pt(z0|zt)dz0 =

∫
pt(y|z0)pt(z0|zt)dz0 = Ez0∼p(z0|zt)[p(y|G = D(z0))]

(6)
Here p(z0|zt) is still intractable. Diffusion Posterior Sampling (DPS, Chung et al. (2022)) is pro-
posed to approximate Equation (6) as:

pt(y|zt) ≃ p(y|G = D(ẑ0)) where ẑ0 := Ez0∼p(z0|zt)[z0] =
1√
ᾱt

(zt + (1− ᾱt)∇zt
log pt(zt)).

(7)
DPS used Tweedies’ formula (Efron, 2011; Kim & Ye, 2021) to compute the posterior mean ẑ0,
which is useful when the amount of paired data (G, y) is limited.

However, we cannot generate good molecules with the desired property due to the limitation of
DPS. DPS replaces pt(z0|zt) with a delta distribution around ẑ0. The work (Song et al., 2023)
indicates such “point estimation” could be highly inaccurate. This issue is even more serious in
the 3D molecule generation due to inaccurate prediction of ẑ0 in the early steps. Unlike other data
formats such as images, molecule property is very sensitive to the atom’s positions. We show the
entire process of expected final molecules ẑ0 in Figure 2. There are two obvious phases: the chaotic
stage, where the samples are far from valid molecules, and the semantic stage, where they can be
modified as valid molecules. The atoms of G = D(ẑ0) in the chaotic stage are not reliable, and the
measurement A(.) can not handle such invalid molecules, leading to unreasonable guidance.

The boundary between the chaotic stage and the semantic stage is decided in two ways. Initially, we
visualize the expected final molecules and find the time the molecules become widely distributed
and have certain shapes. Secondly, we investigate the performance change in Appendix A.4.1 and
determine that starting from 400 steps is efficient for the task. Therefore, we skip guidance in
[1000, 400], which is in the chaotic stage.

In addition to stage division, we implement three strategies to further ensure the stability of guidance:
Monte-Carlo sampling, property checker and time-travel. Unlike DPS using delta distribution to
approximate pt(y|zt), we choose q(z0|zt) = N (ẑ0, r

2
t I), which is a Gaussian with mean being the

MMSE estimate ẑ0 and the convariance is a hyperparameter rt. Previous work (Song et al., 2022)
also adopts MC sampling, but other problem settings are different. With this new approximation,
we estimate:
∇ log pt(y|zt) = ∇ logEz0∼p(z0|zt)[p(y|G = D(z0)]

≈ ∇ logEz0∼q(z0|zt)[p(y|G = D(z0)] = ∇ log

(
1

m

m∑
i=1

exp
(
−ℓ
(
A
(
D(zi0)

)
, y
)))
(8)
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Figure 3: Different relationships of properties

where zi0 is the i.i.d. sample from the distribution q(z0|zt), and m is the number of samples.

The property checker is to identify whether the guidance can be applied at the current step. We could
first compute the range of the targeted property [ymin, ymax] from the training dataset. At each step,
we check if the estimation for the property is in this range A(D(zi0)) ∈ [ymin, ymax]. Considering
the invalid molecule can cause a very large estimation and hence influence the guidance direction,
we opt not to apply any guidance at this step.

We employ a “time-travel” technique (Wang et al., 2022) to enhance the estimation of z0. This
technique iteratively revisits prior steps in the denoising process, allowing for repeated refinement
of the molecule generation. Specifically, after each denoising step that progresses the estimation
from zt to zt−1, we periodically revert to a previous step (e.g., from zt−1 back to zt) and reapply
the denoising operation. This repeated denoising process serves to refine the estimation, ensuring a
more accurate and stable convergence towards the desired z0.

We prove that our computed conditional score function is orthogonal equivariant if the loss function
of the property is orthogonal invariant. The detailed proof is provided in Appendix A.2.2.

Proposition 1. Suppose the loss function of the property f = ℓ(A(D(·)), y) is invariant, i.e.,
f(Rzx,t, zh,t) = f(zx,t, zh,t), where the decoder D is equivariant and the property predictor A
is invariant. Defining ax,t, ah,t = ∇ log pt(y|zx,t, zh,t) and a′x,t, a

′
h,t = ∇ log pt(y|Rzx,t, zh,t),

then the conditional score function is orthogonal equiavariant such that Rax,t, ah,t = a′x,t, a
′
h,t.

Then, building upon the conclusion drawn by previous work (Bao et al., 2022), we can also demon-
strate that our SDE is an equivariant guided SDE.

4.2 MULTI-CONDITION GUIDANCE

We start to analyze the multiple-property situation depicted in Fig. 3(a), which involves two desired
properties, y1 and y2, with y2 being dependent on y1. We aim to compute

∇ log pt(zt|y1, y2) = ∇ log pt(zt) +∇ log pt(y1, y2|zt). (9)

when we only have the time-independent property functions for clean data: p(y1|z0) = ℓ1(z0, y1)
and p(y2|z0) = ℓ2(z0, y2). Thus, we need to factorize pt(y1, y2|zt) to exploit property functions:

pt(y1, y2|zt) =
∫
z0

p(y1, y2, z0|zt)dz0 =

∫
z0

p(y1, y2|z0, zt)p(z0|zt)dz0

=

∫
z0

p(y1, y2|z0)p(z0|zt)dz0 =

∫
z0

p(y1|z0)p(y2|z0, y1)p(z0|zt)dz0

≈ p(y1|ẑ0)p(y2|ẑ0, y1)

(10)

where ẑ0 = Ez0∼p(z0|zt)[z0]. We employ the property function ℓ1(ẑ0, y1) to compute p(y1|ẑ0),
which is the same as the single objective. But we do not have a property function ℓ2((ẑ0, y1), y2)
that can input z0 and y1 simultaneously.

To address this challenge, we try to combine the information in (ẑ0, y1) to remap a new distribu-
tion of samples z′0, in order to transfer pt(y2|ẑ0, y1) into pt(y2|z′0). Specifically, we compute the
expectation of z′0 with the following proposition and the proof is provided in Appendix A.2.1:

Proposition 2. Suppose the prior distribution p(ẑ0|z′0, y1) ∼ N (z′0, r
2
t I) and first-order expansion

of the loss function p(y1|z′0) = exp(−ℓ1(ẑ0, y1)− (z′0 − ẑ0)
T∇ℓ1(ẑ0, y1)), we have

Ez0∼p(z0|ẑ0,y1)[z0] = ẑ0 − r2t∇ℓ1(ẑ0, y1)

6
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Table 1: The mean absolute error (MAE) in single-objective 3D molecule generation tasks
Method MAE↓ Method MAE↓ Method MAE↓

Cv ( cal
molK) µ (D) α (Bohr3)

U-bound 6.879±0.015 U-bound 1.613±0.003 U-bound 8.98±0.02
#Atoms 1.971 #Atoms 1.053 #Atoms 3.86
Cond. EDM 1.065±0.010 Cond. EDM 1.123±0.013 Cond. EDM 2.78±0.04
Cond. GeoLDM 1.025 Cond. GeoLDM 1.108 Cond. GeoLDM 2.37
EEGSDE (s=10) 0.941±0.005 EEGSDE (s=2) 0.777±0.007 EEGSDE (s=3) 2.50±0.02
MuDM 0.290±0.024 MuDM 0.333±0.015 MuDM 0.43±0.07
L-bound 0.040 L-bound 0.043 L-bound 0.09

∆ε (meV) εHOMO (meV) εLUMO (meV)

U-bound 1464±4 U-bound 645±41 U-bound 1457±5
#Atoms 866 #Atoms 426 #Atoms 813
Cond. EDM 671±5 Cond. EDM 371±2 Cond. EDM 601±7
Cond. GeoLDM 587 Cond. GeoLDM 340 Cond. GeoLDM 522
EEGSDE (s=3) 487±3 EEGSDE (s=1) 302±2 EEGSDE (s=3) 447±6
MuDM 85±6 MuDM 72±4 MuDM 133±11
L-bound 65 L-bound 39 L-bound 36

Figure 4: Generated molecules conditioned on the single objective (polarizability α)

In summary, we arrive at the approximation ∇ log pt(y1, y2|zt) ≈ ∇ log p(y1|ẑ0) +∇ log p(y2|z′0),
where ẑ0 = 1√

ᾱt
(zt + (1− ᾱt)∇zt

log pt(zt)) and z′0 = ẑ0 − r2t∇ℓ1(ẑ0, y1).

The same procedure can be extended to analyze more than two properties or other types of property
relations, when the probabilistic graph of properties is determined:

In Fig. 3(b), we have p(y1, y2|zt) ≈ p(y1|ẑ0)p(y2|ẑ0) when y1 and y2 are independent. Thus, we
can simply use the gradients of the linear combination of the two property functions to guide.

In Fig. 3(c), we consider three properties y1, y2 and y3, with y3 being dependent on y1 and y2. We ex-
press p(y1, y2, y3|zt) ≈ p(y1|ẑ0)p(y2|ẑ0)p(y3|ẑ0, y1, y2). Here p(y3|ẑ0, y1, y2) is approximated by
Proposition 2, and we compute z′0(y3) = ẑ0 − r2t [∇ℓ1(ẑ0, y1) +∇ℓ2(ẑ0, y2)] for y3. Subsequently,
the final conditional score function is computed by ∇ℓ1(ẑ0, y1) +∇ℓ2(ẑ0, y2) +∇ℓ3(z

′
0(y3), y3).

In Fig. 3(d), we also have three properties y1, y2 and y3, with y3 being dependent on y2, and y2 being
dependent on y1. The term p(y1, y2, y3|zt) is approximated by p(y1|ẑ0)p(y2|ẑ0, y1)p(y3|ẑ0, y2).
We can apply Proposition 2 to calculate z′0(y2) and z′0(y3) separately, where z′0(y2) = ẑ0 −
r2t∇ℓ1(ẑ0, y1), and z′0(y3) = ẑ0 − r2t∇ℓ2(ẑ0, y2). The final conditional score function is com-
puted by ∇ℓ1(ẑ0, y1) +∇ℓ2(z

′
0(y2), y2) +∇ℓ3(z

′
0(y3), y3).

Currently, we can handle any direct acyclic probabilistic graphs. In addition, MC sampling is used
to improve multi-condition guidance. By sampling multiple ẑ0, we obtain a more accurate estima-
tion of the gradients for each property. Moreover, we also adapt the weighted sum of gradients in
practice. These weights are hyperparameters and remain fixed during the generative process.

5 EXPERIMENTS

In this section, we conduct comprehensive experiments on single and multiple-conditioned molecule
generation tasks to evaluate our proposed method MUDM. The pseudo-code and hyperparameters
are provided in Appendix A.1 and A.3, and the code will be published later.
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Table 2: The mean absolute error (MAE) in multi-objective 3D molecule generation tasks.
Multi-objective Tasks Metrics Baselines

Property 1 Property 2 Correlation MAE ↓ Conditional EDM EEGSDE MuDM

Cv ( cal
molK) µ (D) 0.42 MAE 1 1.079 0.981 1.466

MAE 2 1.156 0.912 0.687

∆ε (meV) µ (D) -0.34 MAE 1 683 563 554
MAE 2 1.130 0.866 0.578

α (Bohr3) µ (D) -0.24 MAE 1 2.760 2.610 1.326
MAE 2 1.158 0.855 0.519

εHOMO (meV) εLUMO (meV) 0.22 MAE 1 372 335 317
MAE 2 594 517 455

εLUMO (meV) µ (D) -0.40 MAE 1 610 526 575

MAE 2 1.143 0.860 0.497

εLUMO (meV) ∆ε (meV) 0.89 MAE 1 1097 546 361
MAE 2 712 589 228

εHOMO (meV) ∆ε (meV) -0.24 MAE 1 578 567 262
MAE 2 655 323 489

5.1 SETUP

Dataset: We perform conditional molecule generation on QM9 (Ramakrishnan et al., 2014), a
dataset of over 130K molecules and 6 corresponding quantum properties. Following previous re-
search, we split the dataset into training, valid, and test sets, each including 100K, 18K, and 13K
samples respectively. The training set is further separated into 2 equal halves, Da and Db, to avoid
information leak in the training phase. The half Da is used to train the ground-truth property pre-
diction network while Db is for the training of the diffusion model.

Metrics: We use the mean absolute error (MAE) to evaluate the difference between the given con-
dition and the property of generated molecules.

Baselines: In this study, we compare MUDM with several competitive previous works. The con-
ditional EDM trains the diffusion model on Db, given the molecule and its property ([x, h], c). In
this case, the conditional EDM needs to train separate diffusion models for each property. Simi-
larly, the conditional GEOLDM is also required to train six diffusion models. EEGSDE trains one
diffusion model and six time-dependent property functions on Db for each property to guide the
sampling phase. Occasionally, EEGSDE fine-tunes the diffusion model based on property functions
to enhance performance. Moreover, our proposed method MUDM trains one diffusion model and
six time-independent property functions on Db without the need for fine-tuning.

Additionally, EDM reported “#Atoms”, as well as the upper-bound and lower-bound as baselines.
The “L-bound” baseline refers to the MAE of the ground-truth property function on Db, while the
“U-bound” baseline shuffles the labels and calculates the MAE on Db. The “#Atoms” baseline
predicts the property based on the number of atoms in a molecule.

5.2 SINGLE-CONDITIONED MOLECULE GENERATION

We examine six quantum properties in QM9 as our single objective: heat capacity Cv , dipole mo-
ment µ, polarizability α, highest occupied molecular orbital energy εHOMO, lowest unoccupied
molecular orbital energy εLUMO, and HOMO-LUMO gap ∆ε. As shown in Table 1, our method
MUDM achieved the best performance on each quantum property compared to conditional EDM,
GeoLDM and EEGSDE. This result highlights the potential of using time-independent property
functions to directly guide the generative process. Additionally, we also confirm the effectiveness of
both DPS and MC sampling in providing accurate guidance for property prediction.

In terms of efficiency, training a diffusion model for a new property using conditional EDM and
GeoLDM takes ∼ 2 days on a single A100 GPU. Meanwhile, obtaining a specialized time-dependent
property function using EEGSDE also takes several days. In contrast, our method MUDM directly
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Figure 5: Impact of the number of MC samples Figure 6: MAE during the
generative process

utilized the off-the-shelf property function without requiring extra training. This approach allows
for faster predictions, providing researchers in the area of drug discovery with a quick and flexible
way to search for new molecules with desired properties.

Finally, we present a visualization of generated molecules with varying α as the condition in Fig. 4.
The polarizability α is defined as the ratio of its induced dipole moment to the local electric field.
Generally, molecules with less isometric shapes have larger α values. We set α ∈ [60, 100] to ob-
serve that the generated molecules become less isometric, which is consistent with the expectation.

5.3 MULTIPLE-CONDITIONED MOLECULE GENERATION

We investigate seven combinations of quantum properties. We first compute the correlation between
each pair on Db. We discovered that all of these combinations were correlated, so we used the
situation depicted in Fig. 3(a) to model the variables y1 and y2, with y2 being dependent on y1.
Our proposed method MUDM outperformed conditional EDM and EEGSDE in most cases, which
demonstrates the effectiveness of the proposed multiple-objective guidance.

As for efficiency, our multi-objective guidance essentially does not increase the computation time
and cost compared to single-objective tasks. In contrast, conditional EDM and EEGSDE require
retraining the diffusion model for each combination, which needs a huge computation resource.

Two visualizations of generated molecules with multiple objectives are shown in Appendix A.7.

5.4 ABLATION STUDY

We present two ablation studies in this section and provide more ablation studies in Appendix A.4.
The first one is the impact of the number of Monte Carlo (MC) samples. Fig. 5 shows the perfor-
mance of multi-objective tasks with different #samples. With the increased #samples, the perfor-
mance becomes better. However, this improvement came at the cost of increased time consumption.
Analyzing the trend in Fig. 5, we found that #samples = 10 is the balanced choice between perfor-
mance and time efficiency.

We also observed the difference |y − A(D(ẑ0(zt)))| during the generative process in Fig. 6. We
found that the difference initially dramatically increases in [1000, 500] and then subsequently de-
creases gradually in [500, 0]. This observation aligns with the finding presented in Fig. 2, which in-
dicates the presence of two distinct stages. Consequently, calculating property values in the chaotic
stage yields inaccurate results. We should only provide guidance during the semantic stage.

6 CONCLUSION

In this paper, we proposed MUDM, a more flexible and efficient approach for generating 3D
molecules with desired properties. MUDM is capable of handling both single and multiple property
objectives for molecule generation. The experiments further validate the effectiveness of MUDM.
As a future direction, MUDM can be applied to more realistic properties, such as chirality and bind-
ing affinity with protein targets, expanding its potential applications in drug and material discovery.
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A APPENDIX

A.1 PSEUDO-CODE

The algorithm below illustrates the sampling process of MuDM conditioned on the single property,
and two properties.

Algorithm 1 Sampling Algorithm of MuDM for single condition
1: Input: decoder network Dξ, denoising network ϵθ, condition y, property predictor A
2: zx,T , zh,T ∼ N (0, I)
3: for t in T, T − 1, · · · , 1 do
4: ϵ ∼ N (0, I) {Single Condition Guided Latent Denoising Loop}
5: Subtract center of gravity from ϵx in ϵ = [ϵx, ϵh]

6: z′t−1 = 1√
1−βt

(zt − βt√
1−α2

t

ϵθ(zt, t)) + ρtϵ

7: ẑ0 = 1
αt
(zt +

√
1− α2

t ϵθ(zt, t))

8: zt−1 = z′t−1 +∇zt log(
1
n

∑n
i=1 exp(−ℓ(A(zi0), y)), z

i
0 ∼ N (ẑ0, r

2
t I)

9: end for
10: x,h ∼ pξ(x,h|zx,0, zh,0) {Decoding}
11: return x,h

Algorithm 2 Sampling Algorithm of MuDM for two conditions
1: Input: decoder network Dξ, denoising network ϵθ, first condition y1, first property predictor

A1, second condition y2, second property predictor A2

2: zx,T , zh,T ∼ N (0, I)
3: for t in T, T − 1, · · · , 1 do
4: ϵ ∼ N (0, I) {Two Conditions Guided Latent Denoising Loop}
5: Subtract center of gravity from ϵx in ϵ = [ϵx, ϵh]

6: z′t−1 = 1√
1−βt

(zt − βt√
1−α2

t

ϵθ(zt, t)) + ρtϵ

7: ẑ0 = 1
αt
(zt +

√
1− α2

t ϵθ(zt, t))

8: ∇ℓ1(ẑ0, y1) = ∇zt
log( 1n

∑n
i=1 exp(−ℓ(A1(z

i
0), y1)), z

i
0 ∼ N (ẑ0, r

2
t I)

9: ẑ′0 = ẑ0 +
1−α2

t

αt
∇ℓ1(ẑ0, y1)

10: ∇ℓ2(ẑ
′
0, y2) = ∇zt log(

1
n

∑n
i=1 exp(−ℓ(A2(z

i
0), y2)), z

i
0 ∼ N (ẑ′0, r

2
t I)

11: zt−1 = z′t−1 +∇ℓ1(ẑ0, y1) +∇ℓ2(ẑ
′
0, y2)

12: end for
13: x,h ∼ pξ(x,h|zx,0, zh,0) {Decoding}
14: return x,h

A.2 PROOFS

A.2.1 PROOF OF PROPOSITION 2

Proposition 3. Suppose the prior distribution p(ẑ0|z′0, y1) ∼ N (z′0, r
2
t I) and first-order expansion

of the loss function p(y1|z′0) = exp(ℓ1(ẑ0, y1) + (z′0 − ẑ0)
T∇ℓ1(ẑ0, y1)), we have

Ez0∼p(z0|ẑ0,y1)[z0] = ẑ0 − r2t∇ℓ1(ẑ0, y1)

Proof. We have that

p(z′0|ẑ0, y1) =
p(ẑ0|z′0, y1)p(z′0|y1)p(y1)

p(y1, ẑ0)
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where both p(y1) and p(y1, ẑ0) are normalizing constants. Then we have

p(z′0 = k|ẑ0, y1) ∝ p(ẑ0|z′0 = k, y1)p(y1|z′0 = k)p(z′0 = k)

∝ exp

(
− (k− ẑ0)

2

r2t

)
· exp(−ℓ1(ẑ0, y1)− (k− ẑ0)

T∇ℓ1(ẑ0, y1))

∝ exp

(
− (k− ẑ0)

2

r2t
− (k− ẑ0)

T∇ℓ1(ẑ0, y1)

)
.

As the term within exp is a quadratic function, the expectation is achieved at the maximum point,
i.e.,

Ez0∼p(z0|ẑ0,y1)[z0] = argmax
k

− (k− ẑ0)
2

r2t
− (k− ẑ0)

T∇ℓ1(ẑ0, y1) = ẑ0 − r2t∇ℓ1(ẑ0, y1)

A.2.2 PROOF OF PROPOSITION 1

Proposition 4. Suppose the loss function of the property f = ℓ(A(D(·)), y) is invariant such that
f(Rzx,t, zh,t) = f(zx,t, zh,t), where the decoder D is equivariant and the property predictor A is
invariant. Defining ax,t, ah,t = ∇ log pt(y|zx,t, zh,t) and a′x,t, a

′
h,t = ∇ log pt(y|Rzx,t, zh,t), then

the conditional score function is orthogonal equiavariant such that Rax,t, ah,t = a′x,t, a
′
h,t.

Proof. For the decoder D, we have Rx, h = D(Rzx, zh). When the loss function of the property
f = ℓ(A(·), y) is invariant, we have f(Rx, h, y) = f(x, h, y). We take the gradient w.r.t x to both
sides and obtain

∇xf(x, h, y) = ∇xx
′ · ∇x′f(x′, h, y) where x′ = Rx,

∇xf(x, h, y) = RT∇x′f(x′, h, y) where x′ = Rx.

Multiplying R to both sides where RRT = 1, we get

R∇xf(x, h, y) = ∇x′f(x′, h, y)|x′=Rx.

Thus, ∇xf(·) is equivariant to R. The proposition is proved.

A.3 DETAILS FOR EXPERIMENTAL SETUPS

We didn’t train any new model for the 3D molecule generation task. The pre-trained model was
directly from GEOLDM and we kept the same hyperparameter settings without any additional fine-
tuning. For any property guidance, we used the same diffusion model ϵθ(Gt, t), with the correspond-
ing property predictor A(.) : G → R. This property predictor is not time-dependent.

We found it is important to set reasonable guidance weights for multi-condition guidance. We
computed the gradients as follows:

∇ log pt(y1, y2|zt) = w1∇ log p(y1|ẑ0) + w2∇ log p(y2|z′0)

We listed the main sampling settings in Table 3. r is the variance level used for mc sampling
N (ẑ0, r

2
t I). We fixed it during the sampling process.

Table 3: Hyperparameters for two conditions sampling
Conditioned properties Guide from w1 w2 r MC sample size

Cv ( cal
mol

K), µ (D) 400 3 1 0.6 10
∆ε (meV), µ (D) 400 1 1 0.3 10
α (Bohr3), µ (D) 400 2 1 0.3 10

εHOMO (meV), εLUMO (meV) 400 1 1 0.3 10
εLUMO (meV), µ (D) 400 1 1 0.3 10
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A.4 OTHER ABLATION STUDIES

Comprehensive ablation studies are included in this section to demonstrate the effectiveness of each
design. We kept all settings the same as the main paper and only changed one setting to check the
performance change.

A.4.1 INFLUENCE OF GUIDANCE STEP

Table 4 shows how the guidance steps influence the task with two conditions. The result indicates
that there is no significant change when we guided the diffusion model from 400 steps or 1000 steps.
This is because, during the chaotic stage, the property predictor cannot provide accurate predictions
and thus can not provide useful information for guidance. It proves that starting from 400 steps is
efficient for the guidance process and can help save inference time.

Table 4: Influence of guidance steps
Conditioned properties Guide from MAE 1 MAE 2

εHOMO (meV), ∆ε (meV) 400 262 489

1000 271 465

A.4.2 COMPARISON OF DPS AND MC SAMPLING

We show the result for two different sampling methods DPS and MC sampling in Table 5. It indicates
the MC sampling method has a better performance. The previous work Song et al. (2023) proved
that MC sampling method is a more closed estimation for Ez0∼p(z0|zt)[p(y|G = D(z0)].

Table 5: Influence of MC sampling
Conditioned properties Sampling method MAE 1 MAE 2

εLUMO (meV), ∆ε (meV) DPS 472 396

MC sampling 361 228

A.4.3 INFLUENCE OF CONDITION WEIGHTS

We tested how different weight settings influence the performance in Table 6. It shows that different
weights have impacts on the final results. But in most cases, we can simply set all weights as 1.

Table 6: Influence of condition weights
Conditioned properties w1 w2 MAE 1 MAE 2

εLUMO (meV), ∆ε (meV)
1 1 361 228

1 2 540 456

2 1 393 342

1 3 687 545

3 1 613 526

A.4.4 INDEPENDENT SAMPLING FOR MULTIPLE-CONDITIONED MOLECULE GENERATION

Finally, we ignore the dependency between properties and believe they are independent. Thus, the
multiple-objective guidance is just a linear combination of gradients of each property. The results
are shown in Table 7. We found that the performance of all the properties dramatically declined.
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It verifies the effectiveness of our proposed multiple-objective guidance, which is calculated as the
weighted sum of the gradient of each property with respect to the latent variable, taking into account
the property dependency.

Table 7: Results of a linear combination of multi-objective guidance
Property 1 MAE 1 Desc. Property 2 MAE 2 Desc.

Cv ( cal
molK) 1.461 0.3% µ (D) 0.942 -37.1%

∆ε (eV) 0.851 -53.6% µ (D) 0.591 -2.2%
α (Bohr3) 3.012 -127.1% µ (D) 0.952 -83.4%

εHOMO (eV) 0.446 -40.7% εLUMO (eV) 0.522 -14.7%
εLUMO (eV) 0.755 -31.3% µ (D) 0.930 -87.1%

A.5 THREE-CONDITIONED MOLECULE GENERATION

In our extended analysis, we introduced an additional experiment to evaluate the performance of
MUDM in scenarios involving three properties, as illustrated in Table 8 and reflected in Figure 3
(c). This experiment was designed to compare scenarios with potential conflicts among properties
against those without such conflicts. In the first scenario (denoted by ✗), the properties εHOMO,
εLUMO, and ∆ε = εLUMO − εHOMO were independently sampled, introducing the possibility of
conflicting requirements. Consequently, no molecule could perfectly satisfy the targeted properties,
yet MUDM still demonstrated commendable performance. In contrast, the second scenario (denoted
by ✓) did not present any inherent conflict among the three properties since ∆ε is computed from
the other two properties. As expected, the performance in this conflict-free setting was superior,
as indicated by the lower mean absolute errors (MAEs). These results not only underscore the
robustness of MUDM in handling multi-objective tasks with complex inter-property relationships
but also highlight its capability to generate feasible molecular structures even in the presence of
potential property conflicts.

Table 8: The mean absolute error (MAE) for three objective 3D molecule generation tasks
Conflict Property 1 Property 2 Property 3 MAE 1 MAE 2 MAE 3

✓ εHOMO(meV) εLUMO(meV) ∆ε (meV) 479 545 678
✗ εHOMO(meV) εLUMO(meV) ∆ε (meV) 283 392 255

A.6 DESCRIPTION OF THE QM9 DATASET

The QM9 dataset includes 134k stable small molecules, consisting of atoms C, H, O, N and F.
The statistic of the number of atoms is provided in Table 9. We can obtain atom coordinates and
corresponding quantum properties for each molecule. These quantum properties are calculated at the
B3LYP/6-31G(2df,p) level of quantum chemistry. Previously, QM9 was a benchmarking dataset to
evaluate whether the machine learning-based method can predict accurately the quantum properties
based on the molecule structure. Now it is also employed in molecular generation tasks.

Table 9: Statistic of QM9 Dataset
Mean STD Maximum

Number of atoms 18.0 3.0 29
Number of heavy atoms 8.8 0.51 9

A.7 VISUALIZATION OF GENERATED MOLECULES WITH MULTIPLE OBJECTIVES

We provide two visualizations of generated molecules with multiple objectives in Fig. 7. The dipole
moment µ is a measure of the separation of positive and negative electrical charges, so the molecules
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Figure 7: Generated molecules conditioned on the multiple objectives

with high dipole moment and polarizability are also asymmetrical. Besides, molecules with a high
energy gap between HOMO and LUMO are generally less reactive and more stable, indicating that
their constituent atoms are closely connected. These trends are observed in Fig. 7.

A.8 RESULTS ON NOVELTY AND ATOM STABILITY

Table 10: Other Properties
Conditioned properties Atom stability Novelty
Cv ( cal

molK), µ (D) 0.72 0.84
∆ε (meV), µ (D) 0.66 0.92
α (Bohr3), µ (D) 0.70 0.88
εHOMO (meV), εLUMO (meV) 0.67 0.93
εLUMO (meV), µ (D) 0.68 0.90

To provide a comprehensive evaluation, we include results on the metrics of novelty and atom sta-
bility. Novelty, as defined by (Simonovsky & Komodakis, 2018), measures the percentage of gener-
ated molecules that are not present in the training dataset. Atom stability, according to (Hoogeboom
et al., 2022), assesses the percentage of atoms within the molecules that exhibit correct valency.
Our approach achieves a similar level of novelty compared with EEGSDE. However, we observe a
detrimental effect on atom stability with the current guidance method. This issue is recognized as a
limitation and should be considered in future work.
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