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Abstract

We study the convergence rate of first-order methods for rectangular matrix factor-
ization, which is a canonical nonconvex optimization problem. Specifically, given
a rank-r matrix A ∈ Rm×n, we prove that gradient descent (GD) can find a pair
of ϵ-optimal solutions XT ∈ Rm×d and YT ∈ Rn×d, where d ≥ r, satisfying
∥XTY

⊤
T −A∥F ≤ ϵ∥A∥F in T = O(κ2 log 1

ϵ ) iterations with high probability,
where κ denotes the condition number of A. Furthermore, we prove that Nesterov’s
accelerated gradient (NAG) attains an iteration complexity of O(κ log 1

ϵ ), which is
the best-known bound of first-order methods for rectangular matrix factorization.
Different from small balanced random initialization in the existing literature, we
adopt an unbalanced initialization, where X0 is large and Y0 is 0. Moreover,
our initialization and analysis can be further extended to linear neural networks,
where we prove that NAG can also attain an accelerated linear convergence rate. In
particular, we only require the width of the network to be greater than or equal to
the rank of the output label matrix. In contrast, previous results achieving the same
rate require excessive widths that additionally depend on the condition number and
the rank of the input data matrix.

1 Introduction

Nonconvex optimization is pervasive in the training of modern machine learning models. Despite the
success of first-order methods in practice, theoretical understanding of their convergence properties
is limited even for simple nonconvex problems. Take the rectangular low-rank matrix factorization
problem as an example, which is a canonical nonconvex problem:

min
X∈Rm×d,Y∈Rn×d

f(X,Y) =
1

2

∥∥A−XY⊤∥∥2
F
, (1)

where we solve for two small matrices X ∈ Rm×d and Y ∈ Rn×d to approximate a big rank-r target
matrix A ∈ Rm×n with r ≪ min(m,n) and m,n not necessarily equal. Specifically, we consider
the over-parameterized regime where d ≥ r, so that the global minimum of (1) is zero. While various
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direct methods exist for solving (1), we focus on understanding the global convergence behaviors of
first-order methods applied to such a nonconvex problem, with the motivation of gathering insight
into the training dynamics of neural networks.

Most existing results study the simplest first-order method, gradient descent (GD), under different
initialization schemes. Note that the initialization scheme matters to convergence analysis1, due to
the fact that (1) is a nonconvex and nonsmooth2 optimization problem. Thus, proper initialization
is important for the fast convergence rates of first-order methods. Ye and Du [2021] show that
with small Gaussian random initialization, GD can find XT and YT such that f(XT ,YT ) ≤ ϵ in
T = O(d4(m+ n)2κ4 log 1

ϵ ) iterations with high probability, where κ denotes the condition number.
Jiang et al. [2023] improve this result to O(κ3 log 1

ϵ ) which has no explicit dimensional dependence
on m and n. These analyses rely on balanced initialization where entries of X0 and Y0 have the
same variance so that the iterates are guaranteed to stay in a smooth region.

Moreover, we remark that to the best of our knowledge, we are not aware of any existing theoretical
results on rectangular matrix factorization analyzing the global convergence rate of more advanced
first-order methods such as Nesterov’s accelerated gradient (NAG), which has been proved to achieve
faster rates for smooth convex optimization problems [Nesterov, 2013].

Recently, Ward and Kolda [2023] showed that by using an unbalanced random initialization where
X0 is larger than Y0, alternating gradient descent (AltGD) that alternatingly optimizes Xt and Yt via
gradient steps can achieve O(d2(d− r+1)−2κ2 log 1

ϵ ) iteration complexity. However, their analysis
is specifically designed for AltGD and not applicable to GD, let alone more advanced methods such
as NAG which are nevertheless widely used in machine learning practice. Two questions naturally
arise here:

Q1: Can GD achieve the same convergence rate as AltGD for (1)?

Q2: Can more advanced first-order methods (e.g., NAG) achieve faster convergence rate for (1)?

• Main Results. We answer the two questions above affirmatively by developing a new theory on
first-order methods for (1). Specifically, we consider an unbalanced initialization scheme X0 = cAΦ
and Y0 = 0, where c > 0 is a large constant and Φ is a Gaussian random matrix. Note that our
initialization of X0 is the same as that in Ward and Kolda [2023], but they initialized Y0 using a small
Gaussian random matrix. This modification is mainly for simpler analysis and makes little difference
in practice. Under our new initialization scheme, we first prove an O(d2(d − r + 1)−2κ2 log 1

ϵ )
iteration complexity for GD (Theorem 1), matching that of AltGD in Ward and Kolda [2023]. Our
analysis is based on a new theoretical framework different from Ward and Kolda [2023] and can
be further extended to analyzing NAG. We then show that NAG can attain a provable acceleration
with an O(d(d− r+ 1)−1κ log 1

ϵ ) iteration complexity (Theorem 2). We discuss the tightness of our
results (Remark 2) and conduct numerical experiments for validation (Section 5). Empirically, we
observe that NAG exhibits a much faster rate than GD and our bounds are quite tight.

Our analysis technique can also be applied to linear neural networks. We consider unbalanced
initialization similar to the one for (1). We show that NAG can achieve an accelerated convergence rate
for each overparameterization level (Corollaries 1 to 3), under the commonly adopted interpolation
assumption (Assumption 1, see e.g. Du and Hu 2019). In particular, we only require the network
width to be greater than the rank of the output matrix.

• Additional Related Work. For matrix factorization, there is a large body of works focusing on
the symmetric case, where A is positive semidefinite and A = XX⊤ [Bhojanapalli et al., 2016, Li
et al., 2018]. However, these analyses are difficult to generalize to the rectangular case (1) due to the
additional unbalanced scaling issue3. To overcome this, additional balancing regularization is often
required [Tu et al., 2016, Park et al., 2017, Zhang et al., 2021, Bi et al., 2022], which changes the
objective function in (1). Du et al. [2018] show that GD can automatically balance the two factors
hence explicit regularization is not necessary, but they only establish linear convergence rate for rank-1
matrix and cannot generalize to rank-r case. Some other works remove this regularization for the

1There are some works [Wang et al., 2022, 2023] proving convergence of GD for general initialization under
large learning rate and similar objective functions, but nonasymptotic convergence analysis is very challenging
and highly dependent on initialization.

2Here, the nonsmoothness refers to the lack of uniform Lipschitz constant for the gradient in the full domain.
3In the symmetric case, the solution’s uniqueness is up to rotation, whereas in (1) it is also up to scaling.
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general matrix sensing problem and show linear convergence rate for general ranks [Ma et al., 2021,
Tong et al., 2021a,b]. These results do not directly apply to our setting as they require singular value
decomposition (SVD) at initialization, which consumes roughly the same amount of computation as
solving (1). Moreover, these works only consider exact parameterization (d = r), leaving out the
overparameterization regime (d > r). Overparameterization may heavily slow down convergence due
to the possible singularity of iterates [Stöger and Soltanolkotabi, 2021], thus some works consider
preconditioning for acceleration [Zhang et al., 2023, Xu et al., 2023]. These preconditioned methods
are specifically tailored to symmetric factorization and are not directly comparable with the first-order
methods we consider, as their algorithms not only use the gradient. For algorithmic acceleration,
Zhou et al. [2020] first propose a computationally tractable modified Nesterov’s method for general
loss function f that is L-smooth µ-strongly convex to the product XY⊤. However, their method still
requires balancing regularization when applied to rectangular matrices, and SVD-based initialization
that dominates the computation. Moreover, their acceleration pertains to the condition number L/µ
of the loss function rather than κ of the target matrix, on which their dependence is O(κ2).

For linear neural networks, Du and Hu [2019] and Hu et al. [2020] show linear convergence of GD
with Gaussian and orthogonal initialization respectively, and Min et al. [2021] studies convergence
rate of gradient flow (GF) for unbalanced initialization. Wang et al. [2021] show that Polyak’s heavy
ball (HB) method [Polyak, 1964] attains accelerated convergence rate with orthogonal initialization.
Liu et al. [2022] further investigate NAG and show a similar accelerated rate for Gaussian initialization.
All these previous works consider sufficiently wide networks that depend on the output dimension,
the rank, and the condition number of input. The results are summarized in Table 1.

Table 1: Results for linear neural networks. All results in table are based on the assumption L = AD
for some A with cond(A) = O(1), where D denotes the input data, L denotes the output data,
dout denotes the output dimension, δ denote the failure probability, r = rank(D), r = rank(L),
r̃ = ∥D∥2F / ∥D∥2, κ = cond2(D), κ1 = O(κ2), κ2 = O(κ).

Algorithm Initialization Width Rate

GD [Du and Hu, 2019] Gaussian Ω
(
rκ3(dout + log r

δ )
)

(1− 3
4κ )

t

GD [Hu et al., 2020] Orthogonal Ω
(
r̃κ2(dout + log r

δ )
)

(1− 1
4κ )

t

HB [Wang et al., 2021] Orthogonal Ω
(

κ5

∥D∥2 (dout + log r
δ )
)

(1− 1
4
√
κ
)t

NAG [Liu et al., 2022] Gaussian Ω
(
rκ5(dout + log r

δ )
)

(1− 1
2
√
κ
)t

NAG (ours, Corollary 1) Unbalanced (12) ≥ r +Ω(log 1
δ ) (1− 1

2
√
κ1
)t

NAG (ours, Corollary 2) Unbalanced+Orth (13) ≥ r (1− 1
2
√
κ
)t

NAG (ours, Corollary 3) Unbalanced (14) ≥ dout +Ω(log 1
δ ) (1− 1

2
√
κ2
)t

• Notations. Throughout this paper, ∥·∥ denotes the Euclidean norm of a vector or the spectral
norm of a matrix, and ∥·∥F denotes the Frobenius norm of a matrix. For any matrix, σi(·) denotes
its i-th largest singular value. For a square matrix, λi(·) denotes its i-th largest eigenvalue. For a
nonzero positive semidefinite matrix, λmax(·) and λmin(·) denote its largest and smallest nonzero
eigenvalues respectively. For a matrix X, we use col(X) to denote its column space, ker(X) to denote
its kernel space and define cond(X) := ∥X∥

∥∥X†
∥∥ as its condition number, where X† denotes the

pseudoinverse of X. For any positive integer n, In denotes the identity matrix of size n. We use ⊗ to
denote the Kronecker product between matrices, ⊕ to denote the direct sum of vector spaces, and
vec(·) to denote the column-first vectorization of a matrix. We use N (µ, σ2) to denote Gaussian
distribution with mean µ and variance σ2.

2 Results for Matrix Factorization

We start with formalizing our initialization scheme for matrix factorization problem (1). Let Φ ∈
Rn×d be a Gaussian random matrix with i.i.d. entries [Φ]i,j ∼ N (0, 1/d). We initialize

X0 = cAΦ, Y0 = 0, (2)

where c > 0 is a constant to be specified later. Typically, we require c to be larger than a certain
threshold, which depends on the dimensions, the extreme singular values of A, and possibly the
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condition number of X0. We note that changing c would not affect cond(X0), hence there is no
recursive definition. As we mentioned, (2) is a modified version of the initialization in Ward and Kolda
[2023], where we replace the small random Gaussian matrix Y0 by 0 and choose c independently
of the step size. We set Y0 = 0 mainly for simplicity, and our analysis can be extended to the case
where Y0 is a sufficiently small Gaussian random matrix. While the initialization of X0 differs from
standard Gaussian initialization, it has the following interpretation: Suppose we start from t = −1
and let X−1 = c′Φ′ and Y−1 = c′′Φ for some 0 < c′ ≪ c′′ ≪ 1 and Gaussian random matrix Φ′,
then by taking a gradient step with step size c/c′′ we get X0 ≈ cAΦ and Y0 ≈ 0. This initialization
of X0 also coincides with the first step of randomized singular value decomposition, which is also
referred to as sketching (see e.g. [Halko et al., 2011]).

2.1 Gradient Descent

With initialization (1), we can analyze the global convergence rates of various first-order methods.
Consider gradient descent (GD) first. The gradient of the squared Frobenius error in (1) is given by

∇Xf(X,Y) = (XY⊤ −A)Y, ∇Y f(X,Y) = (XY⊤ −A)⊤X.

For t ≥ 0, the GD update with constant step size η > 0 is written as(
Xt+1

Yt+1

)
=

(
Xt − η(XtY

⊤
t −A)Yt

Yt − η(XtY
⊤
t −A)⊤Xt

)
. (3)

Let Rt := XtY
⊤
t − A denote the residual, then f(Xt,Yt) = 1

2 ∥Rt∥2F. We have the following
convergence rate for GD.

Theorem 1 (GD convergence rate). For 0 < τ < c1, denote δ = 3e−(d−r+1)·min{log 1
c1τ ,c2,

1
2},

where c1 and c2 are universal constants. Denote L = σ2
1(X0), µ = σ2

r(X0). Let η = 2
L+µ ,

c ≥ c :=
√
dσr(A)

12τ(
√
d−

√
r−1)

√
cond4(X0)∥A∥F

cond2(X0)−1
be a sufficiently large constant. Then with c plugged in

initialization (2), GD returns Xt and Yt with probability at least 1− δ such that

∥Rt∥F ≤ 3c2σ2
1(A)

64

(
1− µ

L

)t
.

In particular, if c = c, then GD finds ∥RT ∥F ≤ ϵ ∥A∥F in

T = O

(
d2κ2

τ2(d− r + 1)2
· log C

ϵ

)
iterations, where C = 27τ2(d−r+1)2

16d2

cond4(X0)κ
2

cond2(X0)−1
.

Theorem 1 shows that GD converges in O(d2(d − r + 1)−2κ2 log 1
ϵ ) iterations with initialization

(2), and the constant prefactor does not have dependence on the ambient dimension m and n. This
matches the convergence rate for AltGD derived in Ward and Kolda [2023]. The step size 2

L+µ is
commonly used in optimization literature and leads to optimal convergence rate [Nesterov, 2013].
While the bound on ∥Rt∥F in Theorem 1 does not explicitly depend on ∥A∥F, the norm still affects
the convergence rate through the choice of c defined in (2). When c = c = O(

√
∥A∥F), the bound

linearly depends on ∥A∥F. When c > c, the bound linearly depends on c2, which dominates ∥A∥F.

2.2 Nesterov’s Accelerated Gradient

We then consider Nesterov’s accelerated gradient (NAG) method [Nesterov, 2013] applied to (1). We
take the form of NAG that is originally designed for smooth strongly convex loss function ℓ:

zt+1 = z̃t − η∇ℓ(z̃t), z̃t+1 = zt+1 + β(zt+1 − zt),

where η is the step size, β is the momentum parameter, and z or z̃ in our case consists of both X and
Y. If we focus on the {z̃t} sequence with z̃t = (Xt,Yt) and plug in the objective function in (1),
then with X−1 = X0 and Y−1 = Y0, the NAG update is given by(

Xt+1

Yt+1

)
=

(
(1 + β)(Xt − ηRtYt)− β(Xt−1 − ηRt−1Yt−1)
(1 + β)(Yt − ηR⊤

t Xt)− β(Yt−1 − ηR⊤
t−1Xt−1)

)
. (4)

We have the following convergence rate for NAG.
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Theorem 2 (NAG convergence rate). For 0 < τ < c1, define δ as in Theorem 1. Denote L = σ2
1(X0),

µ = σ2
r(X0). Let η = 1

L , β =
√
L−√

µ√
L+

√
µ

, c ≥ c := 29

√
d(2

√
d+

√
r)∥A∥F·κ

τ3(
√
d−

√
r−1)3σ2

r(A)
be a constant. Then with

c plugged in initialization (2), NAG returns Xt and Yt with probability at least 1− δ such that

∥Rt∥F ≤ c2σ2
1(A)

64 cond(X0)

(
1−

√
µ

2
√
L

)t

.

In particular, if c = c then NAG finds ∥RT ∥F ≤ ϵ ∥A∥F in

T = O

(
dκ

τ(d− r + 1)
· log C

ϵ

)
iterations, where C = 841d(2

√
d+

√
r)

64τ3(
√
d−

√
r−1)3

· κ3

cond(X0)
.

Theorem 2 shows that NAG can achieve O(d(d− r + 1)−1κ log 1
ϵ ) iteration complexity with high

probability. The dependence on the condition number κ is improved from being quadratic to linear.
Moreover, the dependence on the dimension is also improved. As shown in Theorem 1, the GD
iteration number has an O(d2) dependence in the worst case (d = r). Here, NAG has at most
O(d) dependence. The level of overparameterization d will affect both the convergence rate and the
probability of success. To ensure a small fail probability δ, it requires d = r − 1 + Ω(log 1

δ ). Again,

the step size 1
L and momentum

√
L−√

µ√
L+

√
µ

are commonly used in the literature [Nesterov, 2013].

3 Proof Sketch for Convergence Rates

We now provide the proof sketch for Theorems 1 and 2. Our proof is based on induction. We start
with the assumptions that Xt and Yt are not too far from X0 and Y0 respectively and the initial
residual is bounded by some constant, which are guaranteed at time t = 0. Given the induction
assumptions, we then track the dynamics of residual Rt and decompose it into linear and higher-order
parts. We can show that the linear part is contracted and the higher-order part shrinks exponentially,
together implying that ∥Rt+1∥F = O(θt) for some θ ∈ (0, 1) and Xt+1 and Yt+1 is still within a
bounded region around initialization. This shows the induction assumptions for the next iterate, thus
by invoking the induction we complete the proof.

The key to our proof is to show the contraction and its rate. Firstly, the linear part of the dynamics is
not a contraction over the whole space, thus we need to identify in which subspace it is a contraction.
Secondly, we need to quantify the rate of contraction to get global convergence rates. These necessitate
the following proposition about the properties of X0 with initialization (2).

Proposition 1. For any τ, c > 0, A ∈ Rm×n being a rank-r matrix with condition number
κ := cond(A), Φ ∈ Rn×d being a random matrix with i.i.d. entries from N (0, 1/d), the following
holds for X0 = cAΦ with probability at least 1− δ:

τ(
√
d−

√
r − 1)√

d
c · σr(A) ≤ σr(X0) ≤ σ1(X0) ≤

2
√
d+

√
r√

d
c · σ1(A),

where δ = 3e−min{(d−r+1) log 1
c1τ ,c2d,

d
2 }, c1 and c2 are universal constants. When it holds, the

condition number of X0 is bounded:

cond(X0) ≤
2
√
d+

√
r

τ(
√
d−

√
r − 1)

· κ ≤ 6d

τ(d− r + 1)
· κ.

By Proposition 1, the top singular value of X0 is bounded from above by σ1(A), and the r-th singular
value of X0 is bounded from below by σr(A), hence we have cond(X0) = O(κ). Moreover, X0 has
rank r with probability 1 and thus it preserves the column space of A, i.e., col(X0) = col(A). This
subspace preservation property will be passed to subsequent iterations of first-order methods and is
critical to our analysis. In particular, we will show this space corresponds to the contraction subspace.
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3.1 Proof Sketch for GD Convergence Rate (Theorem 1)

As mentioned, we track the dynamics of Rt for GD to prove Theorem 1. Let rt = vec(Rt) denote
the vectorized residual, then the GD update (3) corresponds to the following dynamics:
Proposition 2 (GD dynamics). Let Pt = Xt+1 −Xt and Qt = Yt+1 −Yt denote the update steps
for t ≥ 0. Then GD (3) admits the following dynamics:

rt+1 = (Imn − ηH0)rt + ξt, (5)

where Ht = (YtY
⊤
t )⊗ Im + In ⊗ (XtX

⊤
t ) and ξt = η(H0 −Ht)rt + vec(PtQ

⊤
t ).

The linear part at time t is (Imn − ηHt)rt, which is approximately (Imn − ηH0)rt when Xt and Yt

are close to their initialization. The approximation error along with the higher-order term vec(PtQ
⊤
t )

is contained in ξt. It follows immediately from Proposition 2 that

rt+1 = (Imn − ηH0)
t+1r0 +

t∑
s=0

(Imn − ηH0)
t−sξs.

If TGD := Imn − ηH0 is a contraction map, i.e., it has all eigenvalues bounded |λi(TGD)| ≤ ρ
for some ρ ∈ [0, 1), and the nonlinear error ξt shrinks exponentially at rate θ ∈ (ρ, 1), then we
have ∥rt∥ = O(θt). However, for d < min(m,n)/2, TGD cannot be a contraction map for any
η, as the rank of H0 is at most (m + n)d < mn. In fact, if X0 is initialized as in (2), then
rank(H0) = nr < mn regardless of the choice of d. As H0 has no full rank, TGD must have a
non-trivial eigensubspace corresponding to eigenvalue 1. In the following lemma, we show that rt
and ξt are not in this “bad” subspace but rather in a contracted subspace as desired.
Lemma 1 (Eigensubspace). Let H ⊆ Rmn denote the linear subspace containing all eigenvectors of
H0 with positive eigenvalues. If X0 is initialized as in (2), then we have

H = (col(A))n and {rt, ξt}t≥0 ⊂ H,

where H0, rt and ξt are defined as in Proposition 2.

Given that rt and ξt are in the contracted subspace H throughout all iterations, the convergence rate
is determined by the contractivity of TGD over this subspace, which corresponds to the condition
number of X0 with initialization (2).
Lemma 2 (GD contractivity). Let L = σ2

1(X0), µ = σ2
r(X0), and H be defined as in Lemma 1. Let

η ∈ (0, 2
L ), then for any v ∈ H,

∥TGDv∥ ≤ max{|1− ηL| , |1− ηµ|} ∥v∥ .

In particular, if η = 2
L+µ , then ∥TGDv∥ ≤ L−µ

L+µ ∥v∥.

By Lemmas 1 and 2, the linear part of GD dynamics contracts rt and ξt, and the rate of contraction
is ρ = max{|1− ηL| , |1− ηµ|}. To complete the proof, it remains to bound the magnitude of error
ξt and show induction conditions for the next iteration. This is guaranteed by the following lemma.
Lemma 3 (Nonlinear error). If there exist θ ∈ (0, 1) and some constants C1 and C2 such that for
any s ≤ t, the GD dynamics (5) yields ∥rs∥ ≤ C1θ

s ∥r0∥, ∥Xs −X0∥F ≤ C2, ∥Ys −Y0∥F ≤ C2,
then we have ∥∥vec(PsQ

⊤
s )
∥∥ ≤ C3θ

2s ∥r0∥2 and ∥η(H0 −Hs)rs∥ ≤ C4θ
s ∥r0∥

for some constants C3 and C4 depending on C1 and C2. Moreover, if C1 and C2 satisfy

(max(∥X0∥ , ∥Y0∥) + C2) ηC1 ∥r0∥ ≤ (1− θ)C2, (6)

then we have ∥Xt+1 −X0∥F ≤ C2 and ∥Yt+1 −Y0∥F ≤ C2.

Lemma 3 shows that ∥ξt∥ = O(θt) if the residual shrinks exponentially and the iterates are not
too far from initialization, which in turn implies that Xt+1 and Yt+1 are also within the C2-balls
around their initialization. It turns out that there is a set of valid coefficients for the induction to go
through as long as the c in (2) is sufficiently large. Therefore, by choosing c properly and plugging
in ρ = L−µ

L+µ and θ = 1 − µ
L , we prove the convergence rate for GD, and the iteration complexity

follows immediately from Proposition 1. The complete proof is provided in Appendix B.6.
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Remark 1. In our proof, the unbalanced initialization guarantees the existence of induction constants
in Lemma 3. The amount of unbalance affects the constant factors but will not affect the convergence
rate (1 − µ

L )
t. To be explicit, suppose we initialize X0 = c1AΦ1 ∈ Rm×d, Y0 = c2Φ2 ∈ Rn×d,

where [Φ1]i,j ∼ N(0, 1/d) and [Φ2]i,j ∼ N(0, 1/n), then by replacing H0 in Proposition 2 with
H′

0 = In ⊗ (X0X
⊤
0 ), we can generalize the proof and obtain the same convergence rate when c1 is

sufficiently large and c1c2 = O(1). Meanwhile, we have ∥R0∥F ≤ (1 +O(c1c2)) ∥A∥F with high
probability [Ward and Kolda, 2023]. Therefore, when c1 is fixed, a smaller c2 yields a smaller initial
loss, resulting in a smaller constant factor. Meanwhile, the convergence rate remains the same as the
condition number of H′

0 is not affected, and the shift Ht −H′
0 is controlled for small c2.

3.2 Proof Sketch for NAG Convergence Rate (Theorem 2)

We now turn to prove Theorem 2. Similar to GD, we track the residual dynamics of NAG.
Proposition 3 (NAG dynamics). Let Pt = Xt+1 −Xt and Qt = Yt+1 −Yt denote the update
steps for t ≥ 0. Then NAG (4) admits the following dynamics:(

rt+1

rt

)
=

(
(1 + β)(Imn − ηH0) −β(Imn − ηH0)

Imn 0

)(
rt

rt−1

)
+

(
ξt
0

)
, (7)

where Ht = (YtY
⊤
t )⊗ Im + In ⊗ (XtX

⊤
t ), ξt = ζt + ιt,

ζt = vec(PtQ
⊤
t ) + β vec(Pt−1Q

⊤
t−1) + βη vec(Rt−1Yt−1Q

⊤
t−1 +Pt−1X

⊤
t−1Rt−1),

ιt = (1 + β)η(H0 −Ht)rt − βη(H0 −Ht−1)rt−1.

As Proposition 3 shows, NAG dynamics (7) has additional momentum terms involving Pt and Qt.
When β = 0, it reduces to the GD dynamics (5). The introduction of momentum terms allows the
linear part in (7) to contract rt and ξt faster. To be more explicit, let

TNAG :=

(
(1 + β)(Imn − ηH0) −β(Imn − ηH0)

Imn 0

)
(8)

denote the linear part of the system. The next lemma shows NAG improves the rate of contraction.

Lemma 4 (NAG contractivity). Let η = 1
L , β =

√
L−√

µ√
L+

√
µ

, then for all (u,v) ∈ H ×H,∥∥∥∥TNAG

(
u
v

)∥∥∥∥ ≤
(
1−

√
µ

L

)∥∥∥∥(uv
)∥∥∥∥ .

The price to pay for the faster rate of contraction is the additional perturbations. The ιt term
characterizes dynamics shift, which can be controlled as GD in Lemma 3. The ζt term characterizes
higher-order terms in the dynamics (7), which can be controlled by the updates Pt and Qt. In GD,
these terms correspond to the gradient so that they can be bounded if Rt shrinks and Xt and Yt are
not too far away from X0 and Y0. In NAG, we have

Pt = ηRtYt + η

t∑
s=1

βt−s+1RsYs,

and a similar equation holds for Qt. If Rt shrinks at rate θ > θ2 ≥ β, then we have an O(θt) upper
bound for ∥Pt∥F and ∥Qt∥F. We formalize the argument in the following induction lemma.
Lemma 5. Suppose 0 < β ≤ θ2 < θ < 1. If there exist some constants C1 and C2 such that for

any s ≤ t, the NAG dynamics (7) yields
∥∥∥∥( rs

rs−1

)∥∥∥∥ ≤ C1θ
s

∥∥∥∥( r0
r−1

)∥∥∥∥, ∥Xs −X0∥F ≤ C2, and

∥Ys −Y0∥F ≤ C2, then we have

∥ζt∥ ≤ C3θ
2t

∥∥∥∥( r0
r−1

)∥∥∥∥2 , and ∥ιt∥ ≤ C4θ
t

∥∥∥∥( r0
r−1

)∥∥∥∥
for some constants C3 and C4 depending on C1 and C2. Moreover, if C1 and C2 satisfy

(max(∥X0∥ , ∥Y0∥) + C2) ηC1

∥∥∥∥( r0
r−1

)∥∥∥∥ ≤ (1− θ)2C2, (9)

then we have ∥Xt+1 −X0∥F ≤ C2 and ∥Yt+1 −Y0∥F ≤ C2.
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Lemma 5 is similar to Lemma 3. Again by choosing a sufficiently large c to initialize X0, we can find
a set of feasible coefficients for the induction. In particular, we plug in ρ = 1−

√
µ√
L

, θ = 1−
√
µ

2
√
L

and β =
√
L−√

µ√
L+

√
µ

, then c defined in Theorem 2 ensures the success of induction, hence the accelerated
convergence rate of NAG is proved. The complete proof is provided in Appendix C.4.
Remark 2. Our analysis differs from that of Ward and Kolda [2023]. Their analysis is based on
the Polyak-Łojasiewicz (PL) inequality [Łojasiewicz, 1963]: f(Xt,Y) is approximately µ-PL and
L-smooth in Y, and the unbalanced initialization (large X0 small Y0) ensures that only Y matters
to the convergence rate, as X is not changing by much. Since the objective function in (1) is quadratic
in X, the problem has condition number κ̂ := L

µ = O(κ2). With these notations, the complexity in
Ward and Kolda [2023] reads as O(κ̂ log 1

ϵ ), which is standard for PL functions.

However, PL inequality cannot fully capture the properties of (1), and the analysis in Ward and
Kolda [2023] does not apply to the case where Xt and Yt are updated simultaneously rather than
alternatingly. In fact, if we fix X ≡ X0 and optimize Y only, then our initialization (2) makes the
problem quasi-strongly convex (QSC), which is strictly stronger than PL [Necoara et al., 2019]. For
QSC functions, NAG can achieve O(

√
κ̂ log 1

ϵ ) convergence rate Necoara et al. [2019], while for PL
functions the rate can only be Ω(κ̂ log 1

ϵ ) [Yue et al., 2023].

We note that simultaneously optimizing X and Y causes the nonconvexity issue and hence (1) does
not fit in the framework for QSC functions as it requires convexity. Our results in Theorems 1 and 2
match the ones for QSC functions and Theorem 2 further matches the lower bound for general smooth
strongly convex functions [Nemirovski and Yudin, 1983], which generally exhibit more favorable
properties than nonconvex optimization problems to which (1) belongs. Hence, we conjecture that
our rate bounds are tight for both GD and NAG. However, rigorous theory is yet to be constructed to
solidify our conjecture.

4 Extension to Linear Neural Network

Our analysis can be extended to the squared loss training of two-layer linear neural networks, which
is equivalent to the following optimization problem:

min
X∈Rm×d,Y∈Rn×d

f(X,Y) =
1

2

∥∥L−XY⊤D
∥∥2
F
. (10)

Here, D ∈ Rn×N corresponds to all input data concatenated together, L ∈ Rm×N denotes the labels,
N is the total number of training data samples, and d is the network width. We make the following
interpolation assumption, which is commonly adopted in the study of the convergence rate of linear
neural networks [Du and Hu, 2019, Hu et al., 2020, Wang et al., 2021].
Assumption 1 (Interpolation). There is A with cond(A) = O(1) such that L = AD, rank(L) = r.

Under Assumption 1, we can establish a linear convergence rate for NAG when the initialization is
sufficiently unbalanced and X0 contains the column space of L.

Theorem 3. Let L̃ = σ2
1(X0) · λmax(DD⊤), µ̃ = σ2

r(X0) · λmin(DD⊤). Suppose Y0 = 0, X0 is
initialized such that col(X0) ⊇ col(L) and it satisfies

µ̃p ≥ 4
√
2
∥∥LD⊤∥∥

F
(1 + p), (11)

where p =
√
µ̃

144
√

L̃
does not depend on the scaling of X0. If we choose η = 1

L̃
and β =

√
L̃−

√
µ̃√

L̃+
√
µ̃

,

then the t-th iterate of NAG (Xt and Yt) will correspond to residual Rt = XtY
⊤
t D− L satisfying

∥Rt∥F ≤ σ2
r(X0)σmin(D)

576

(
1−

√
µ̃

2
√
L̃

)t

.

Equivalently, let C =
σ2
r(X0)σmin(D)
576∥LD⊤∥F

, then the iteration complexity for ϵ relative error is

T = O

(
σ1(X0)

√
λmax(DD⊤)

σr(X0)
√

λmin(DD⊤)
log

(
C

ϵ

))
.

8



As Theorem 3 shows, if our initialization guarantees the column space of X0 contains columns of L,
then the residual shrinks at a linear rate. In the worst case, the columns of L span the whole space of
Rm, hence d should be at least m. However, when the data exhibits some low-dimensional properties,
e.g., D is low-rank, then r can be much smaller than m and N . In this case, an initialization similar
to (2) can meet the requirement of Theorem 3. Moreover, note that the convergence rate depends on
both D and X0, hence by orthonormalization we can make cond(X0) = 1 for a faster rate. When
r ≤ d ≪ min(m,N), such orthonormalization is affordable as it takes O(md2) time rather than
O(mN2) in the worst case. We summarize these initialization options:

d ≥ r, Φ ∈ RN×d, [Φ]i,j ∼ N (0, 1/d), X0 = c · LΦ, Y0 = 0; (12)

d ≥ r, Φ ∈ RN×d, [Φ]i,j ∼ N (0, 1/d), X0 = c · Orth(LΦ), Y0 = 0; (13)

d ≥ m, Φ ∈ Rm×d, [Φ]i,j ∼ N (0, 1/d), X0 = c ·Φ, Y0 = 0; (14)

Here, Orth(·) denotes the orthonormalization result whose columns are orthonormal. By applying
singular value bounds and invoking Theorem 3, we obtain the following corollaries.

Corollary 1. Suppose initialization (12) is applied with some sufficiently large c. For any 0 < τ < c1,
0 < δ < 1, if d ≥ r − 1 + Ω(log 1

δ ), then with probability at least 1 − δ, NAG finds XT and YT

such that f(XT ,YT ) ≤ ϵ
∥∥LD⊤

∥∥2
F

where

T = O

(
d · cond(L)
τ(d− r + 1)

√
λmax(DD⊤)√
λmin(DD⊤)

log
1

ϵ

)
.

Corollary 2. Suppose initialization (13) is applied with some sufficiently large c. If d ≥ r, then with
probability 1, NAG finds XT and YT such that f(XT ,YT ) ≤ ϵ

∥∥LD⊤
∥∥2
F

where

T = O

(√
λmax(DD⊤)

λmin(DD⊤)
log

1

ϵ

)
.

Corollary 3. Suppose initialization (14) is applied with some sufficiently large c. For any 0 < τ < c1,
0 < δ < 1, if d ≥ m− 1 + Ω(log 1

δ ), then with probability at least 1− δ, NAG finds XT and YT

such that f(XT ,YT ) ≤ ϵ
∥∥LD⊤

∥∥2
F

where

T = O

(
d

τ(d−m+ 1)

√
λmax(DD⊤)√
λmin(DD⊤)

log
1

ϵ

)
.

Remark 3. While we only consider NAG in this section, our analysis can be directly applied to GD
and obtain O

(
σ2
1(X0)λmax(DD⊤)

σ2
r(X0)λmin(DD⊤)

log 1
ϵ

)
convergence rate with initializations (12) to (14).

Corollaries 2 and 3 show accelerated convergence rate of NAG, as their dependence on the condition
number κ := λmax(DD⊤)

λmin(DD⊤)
= cond2(D) is O(

√
κ) rather than O(κ), matching the results in Wang et al.

[2021] for HB and Liu et al. [2022] for NAG. Meanwhile, Corollary 1 has an additional dependence
on cond(L). Under Assumption 1, cond(L) = O(

√
κ) and hence the overall dependence is O(κ).

Although this is slower than NAG with initialization (13) or (14), it still outperforms GD with
initialization (12), which has O(κ2) dependence. Compared to previous results listed in Table 1, we
only require the network width to be Ω(r+log 1

δ ) or Ω(m+log 1
δ ) depending on the initialization and

there is no additional dependence on the input rank or condition number. When the data is low-rank,
NAG with initialization (12) enables the sublinear-width (w.r.t. output dimension and sample size)
network to converge linearly. It can be further accelerated if orthonormalization is adopted (13),
which echos the orthogonal initialization in Hu et al. [2020], Wang et al. [2021]. In the general case,
our analysis still provides a tighter result, as (14) only requires the width to be Ω(m+ log 1

δ ).

5 Numerical Experiment

We validate our results via numerical experiments. For matrix factorization (1), we construct
A = UΣV⊤ ∈ R100×80, where Σ ∈ R5×5 is diagonal with σ1(Σ) = 1 and σ5(Σ) = 0.2, and
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U and V are orthonormal matrices. We set different levels of overparameterization (d ≥ 5) and
initialize X0 and Y0 according to (2) with c = 50

√
d. For linear neural network (10), we construct

the input data matrix D = UΣV⊤ ∈ R80×120, where Σ ∈ R5×5 is diagonal with σ1(Σ) = 1 and
σ5(Σ) = 0.5, U is orthonormal and V is Gaussian. We use a Gaussian matrix A ∈ R100×80 to
construct the label matrix L = AD. We keep c = 50

√
d and initialize X0 and Y0 according to (12).

We run all experiments with 10 different initialization seeds and take the average.

0 100 200
iteration

10 9

10 6

10 3

100

103

lo
ss

matrix factorization

0 100 200
iteration

linear network

GD,d=5
AltGD,d=5
GD(1/L),d=5
GD,d=20
AltGD,d=20
GD(1/L),d=20
GD,d=80
AltGD,d=80
GD(1/L),d=80

Figure 1: GD and AltGD achieve similar performance.
The left plot is for (1), and the right plot is for (10).

We first compare GD and AltGD. For matrix
factorization, We use the same initialization and
the same step size η = 2/(L + µ), where L
and µ are computed as defined in Theorems 1
and 2. For linear neural networks, L and µ are
replaced by L̃ and µ̃ in Theorem 3. As shown
in Figure 1, they perform very similarly and the
loss curves are overlapped. To better illustrate,
we additionally use η = 1/L for GD, and it
performs differently from GD/AltGD with η =
2/(L+ µ).

0 100 200
iteration

10 25

10 20

10 15

10 10

10 5

100

105

lo
ss

matrix factorization

0 100 200
iteration

linear network

GD,d=5
NAG,d=5
GD,d=20
NAG,d=20
GD,d=80
NAG,d=80

Figure 2: NAG converges faster than GD. The left plot
is for (1), and the right plot is for (10).

We then compare GD and NAG. For matrix fac-
torization, we use η = 2/(L+µ) for GD and use
η = 1/L and β = (

√
L−√

µ)/(
√
L+

√
µ) for

NAG, where L and µ are computed as defined
in Theorem 2. For linear neural networks, we re-
place L and µ by L̃ and µ̃ defined in Theorem 3.
The results are shown in Figure 2. As illustrated,
NAG exhibits much faster convergence than GD.
Moreover, a higher overparameterization level
helps accelerate convergence, as predicted by
the prefactor O(poly(d(d − r + 1)−1)) in our
iteration complexity.
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=100
GD,d=5
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NAG(T),d=20
GD,d=80
GD(T),d=80
NAG,d=80
NAG(T),d=80

Figure 3: Comparison of predicted loss and numerical
loss for matrix factorization. The left plot is for GD
where κ = 10, and the right plot is for GD and NAG
where κ = 100. (T) denotes theory prediction.

To further illustrate the tightness of our the-
ory, we compare our theoretical predictions
with the actual loss in matrix factorization, as
shown in Figure 3. We set c = 200

√
d and

σ5(Σ) ∈ {0.1, 0.01}, keeping other settings un-
changed. The theoretical prediction at step t is
computed as (1 − µ/L)2t · f(X0,Y0) for GD
and (1 −√

µ/(2
√
L))2t · f(X0,Y0) for NAG.

We observe that the slope of the predicted loss
closely matches the actual loss, supporting the
tightness of our theory, especially for GD. Addi-
tional experiments are provided in Appendix E.

6 Conclusion and Future Work

We establish the convergence rate of GD and NAG for rectangular matrix factorization (1) under
an unbalanced initialization and show the provable acceleration of NAG. We further extend our
analysis to linear neural networks (10) and show the acceleration of NAG without excessive width
requirements in previous work. Numerical experiments are provided to support our theory.

We believe our analysis can be extended to initialization where X0 ≈ cAΦ and Y0 ≈ 0 rather
than exact equalities. Relaxing the exact rank-r condition to approximately rank-r is also a possible
generalization. The linear neural network model considered in this paper cannot fully capture the
practical settings. We leave the extension to nonlinear activations for future work.
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A Singular Value Bounds

A.1 Singular Value Bounds for Random Matrix

Proposition 4 (Rudelson and Vershynin [2009]). Let A be an N × n random matrix, N ≥ n, whose
elements are i.i.d. zero mean sub-Gaussian random variables with unit variance. Then for τ ≥ 0, we
have

P
(
σn(A) ≤ τ(

√
N −

√
n− 1)

)
≤ (c1τ)

N−n+1 + e−c2N

where c1, c2 > 0 depend (polynomially) only on the sub-Gaussian moment.
Proposition 5 (Vershynin [2010]). Let A be an N × n random matrix, N ≥ n, whose elements are
i.i.d. zero mean Gaussian random variables with unit variance. Then for t ≥ 0, we have

P
(
σ1(A) ≥

√
N +

√
n+ t

)
≤ e−

t2

2 .

A.2 Proof of Proposition 1

Proof of Proposition 1. Singular value decompose A as A = UΣV⊤, then X0 = cUΣV⊤Φ.
Since V⊤V = Ir, the columns of V⊤Φ ∈ Rr×d are independent Gaussian vectors with distribution
N (0, 1

dV
⊤V) = N (0, 1

dIr). By Proposition 4 in Appendix A, we have

P
(
σr(V

⊤Φ) ≤ τ

(
1−

√
r − 1√
d

))
≤ e−(d−r+1) log 1

c1τ + e−c2d

for some universal constants c1 and c2 and any τ ≥ 0. On the other hand, by Proposition 5 in
Appendix A, we have

P
(
σ1(V

⊤Φ) ≥
√
d+

√
r +

√
s√

d

)
≤ e−

s
2 .

Plugging in s = d and applying the union bound yield

P
(
τ(
√
d−

√
r − 1)√

d
≤ σr(V

⊤Φ) ≤ σ1(V
⊤Φ) ≤ 2

√
d+

√
r√

d

)
≥ 1− δ,

where δ = 3e−min{(d−r+1) log 1
c1τ ,c2d,

d
2 }. The proposition follows immediately from the fact that

c · σr(V
⊤Φ)σr(A) ≤ σr(X0) ≤ σ1(X0) ≤ c · σ1(V

⊤Φ)σ1(A).

B Missing Proofs for GD

B.1 Auxiliary Lemma

Lemma 6. Suppose {at}t≥0 and {bt}t≥0 are two non-negative sequences satisfying

at+1 ≤ ρ · at + bt, bt ≤ θt · c0,
where 0 ≤ ρ < θ < 1, c0 ≥ 0, then the following holds for all t ≥ 0:

at ≤ θt ·
(
a0 +

c0
θ − ρ

)
.

Proof. The inequality holds trivially for t = 0. For t ≥ 0, we have

at+1 = ρt+1 · a0 +
t∑

s=0

ρt−sθs · c0

= ρt+1 · a0 +
θt+1 − ρt+1

θ − ρ
· c0

= θt+1 ·
(
a0 +

1

θ − ρ
· c0
)
.
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B.2 Proof of Proposition 2

Proof of Proposition 2. According to (3), we have

Rt+1 = Xt+1Y
⊤
t+1 −A

= (Xt +Pt)(Yt +Qt)
⊤ −A

= Rt − η
(
RtYtY

⊤
t +XtX

⊤
t Rt

)
+PtQ

⊤
t .

Applying vectorization on both sides yields

rt+1 = rt − ηHtrt + β(rt − rt−1) + vec(PtQ
⊤
t )

= (Imn − ηHt)rt + vec(PtQ
⊤
t ).

Hence we have the result.

B.3 Proof of Lemma 1

Proof of Lemma 1. By Proposition 1, the symmetric matrix H0 = In ⊗ (X0X
⊤
0 ) has nr positive

eigenvalues, and the eigensubspace of these positive eigenvalues is

H =

n∏
i=1

col(X0) =

n∏
i=1

col(A).

According to the GD update (3),

col(Xt+1) ⊆ col(Xt) + col(XtY
⊤
t Yt) + col(AYt) ⊆ col(Xt) + col(A),

hence by induction we conclude col(Xt) ⊆ col(A) for all t ≥ 0. As a result, we have

rt = vec(XtY
⊤
t −A) ∈ H.

For ξt, notice that

col(RtYtY
⊤
t +XtX

⊤
t Rt) ⊆ col(Rt) + col(Xt) ⊆ col(A)

and

col(PtQ
⊤
t ) = col((Xt+1 −Xt)(Yt+1 −Yt)

⊤) ⊆ col(Xt+1) + col(Xt) ⊆ col(A),

thus we have

ξt = η · vec(RtY0Y
⊤
0 +X0X

⊤
0 Rt −RtYtY

⊤
t −XtX

⊤
t Rt) + vec(PtQ

⊤
t ) ∈ H.

B.4 Proof of Lemma 2

Proof of Lemma 2. Since Imn commutes with symmetric matrix H0, we can simultaneously diago-
nalize the two matrices and get

λi(TGD) = 1− ηλmn−i(H0), ∀i = 1, 2, . . . ,mn.

When η ∈ (0, 2
L ), λi(TGD) = 1 for i = 1, 2, . . . , (m− r)n. Let {vi}mn

i=1 be orthonormal eigenvec-
tors, vi corresponds to λi(TGD), then we have Span({vi}(m−r)n

i=1 ) = ker(H0) ⊥ H. Consequently,

∥TGDv∥ =

∥∥∥∥∥TGD

(
mn∑
i=1

⟨v,vi⟩vi

)∥∥∥∥∥
=

√√√√ mn∑
i=(m−r)n+1

⟨v,vi⟩2 λ2
i (TGD)

≤ max
(m−r)n+1≤i≤mn

|λi(TGD)| ∥v∥

= max{|1− ηL| , |1− ηµ|} ∥v∥ ,
where the second identity is from v ∈ H ⊥ ker(H0). Plugging in the step size yields the second
result.
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B.5 Proof of Lemma 3

Proof of Lemma 3. For all s ≤ t, by assumption we have

∥Ps∥F = η ∥RsYs∥F
≤ η ∥Ys∥ ∥Rs∥F
≤ η(∥Y0∥+ ∥Ys −Y0∥) ∥Rs∥F
≤ η(∥Y0∥+ ∥Ys −Y0∥F) ∥Rs∥F
≤ η(∥Y0∥+ C2) ∥Rs∥F
≤ η(∥Y0∥+ C2)C1θ

s ∥r0∥ .
Similarly, we have

∥Qs∥F ≤ η(∥X0∥+ C2)C1θ
s ∥r0∥ .

Combining the two bounds yields∥∥vec(PsQ
⊤
s )
∥∥ =

∥∥PsQ
⊤
s

∥∥
F
≤ ∥Ps∥F ∥Qs∥F ≤ C3θ

2t ∥r0∥2 ,

where C3 = η2C2
1 (∥X0∥+ C2)(∥Y0∥+ C2).

For the second part, we have

∥(H0 −Hs)rs∥ =
∥∥Rs(Y0Y

⊤
0 −YsY

⊤
s ) + (X0X

⊤
0 −XsX

⊤
s )Rs

∥∥
F

≤
∥∥Rs(Y0Y

⊤
0 −YsY

⊤
s )
∥∥
F
+
∥∥(X0X

⊤
0 −XsX

⊤
s )Rs

∥∥
F

≤
∥∥Y0Y

⊤
0 −YsY

⊤
s

∥∥ ∥Rs∥F +
∥∥X0X

⊤
0 −XsX

⊤
s

∥∥ ∥Rs∥F
≤ (2 ∥Y0∥+ ∥Ys −Y0∥F) ∥Ys −Y0∥F ∥Rs∥F
+ (2 ∥X0∥+ ∥Xs −X0∥F) ∥Xs −X0∥F ∥Rs∥F

≤ 2(∥X0∥+ ∥Y0∥+ C2)C2 ∥Rs∥F
≤ C4θ

s ∥r0∥ ,
where C4 = 2η(∥X0∥+ ∥Y0∥+ C2)C1C2.

Finally, when (6) holds, we have

∥Xt+1 −X0∥F ≤
t∑

s=0

∥Ps∥F ≤ η(∥Y0∥+ C2)C1

1− θ
∥r0∥ ≤ C2.

Similarly, we have ∥Yt+1 −Y0∥F ≤ C2.

B.6 Proof of Theorem 1

Proof of Theorem 1. Let C1 to C4 be constants defined in Lemma 3. Define ρ = L−µ
L+µ , θ = 1− µ

L ,
at = C1 ∥rt∥, and bt = C1 ∥ξt∥ for t ≥ 0. By Proposition 2 and lemmas 1 and 2 we have

at+1 ≤ ρ · at + bt

for all t ≥ 0. It remains to show that bt ≤ θt · c0. By initialization (2), a0 = C1 ∥r0∥ = C1 ∥A∥F,
b0 = 0. Let C1 = µ(L+µ)p

2∥A∥FL(1+p) and C2 = p
√
L where p = µ(L−µ)

24L2 ∈ (0, 1). Plugging η = 2
L+µ ,

∥X0∥ =
√
L and ∥Y0∥ = 0 into C3 and C4 yields

C3 =
µ2p3

∥A∥2F L(1 + p)
, C4 =

2µp2

∥A∥F
.

Let

c0 = C1(C3 ∥r0∥+ C4) ∥r0∥ ,
then we can show the following relations:

a0 +
c0

θ − ρ
≤ C2

1 ∥A∥F , C1 ≥ 1. (15)
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Indeed, by Proposition 1, with probability at least 1− δ, our choice of c guarantees

µ ≥
144 cond4(X0) ∥A∥F
(cond2(X0)− 1)

=
144L2 ∥A∥F
µ(L− µ)

. (16)

Our goal is to show

a0 +
c0

θ − ρ
= C1 ∥A∥F + C1(C3 ∥A∥F + C4) ∥A∥F · L(L+ µ)

µ(L− µ)
≤ C2

1 ∥A∥F ,

which is equivalent to

∥A∥F +

(
µp3

L(1 + p)
+ 2p2

)
· L(L+ µ)

L− µ
≤ µ(L+ µ)p

2L(1 + p)
.

The above inequality holds when:

∥A∥F ≤ µ(L+ µ)p

6L(1 + p)
, (17)

p2

L− µ
≤ 1

6L
, (18)

2pL

L− µ
≤ µ

6L(1 + p)
. (19)

Let p = µ(L−µ)
24L2 , then we have p < 1, pL < µ and

p2

L− µ
≤ p

L− µ
=

µ

24L2
≤ 1

6L
,

2pL

L− µ
≤ µ

12L
≤ µ

6L(1 + p)
,

thus (18) and (19) hold. Finally, (17) holds in view of (16):

µ(L+ µ)p

6L(1 + p)
≥ µp

6
=

µ2(L− µ)

144L2
≥ ∥A∥F .

Combining the results proves the (15).

Now we can proceed with the induction in Lemma 3. Firstly, ∥r0∥ ≤ C1 ∥r0∥ as C1 ≥ 1 by (15),
and ∥X0 −X0∥F = ∥Y0 −Y0∥F = 0 ≤ C2. Suppose the induction conditions in Lemma 2 holds
for s ≤ t, then we have

bs = C1 ∥ξs∥ ≤ C1(C3θ
2s ∥r0∥2 + C4θ

s ∥r0∥) ≤ c0 · θs.

Consequently, by Lemma 6 and (15) we have

at+1 ≤ θt+1 ·
(
a0 +

c0
θ − ρ

)
≤ C2

1 · θt+1 ∥A∥F ,

thus ∥rt+1∥ ≤ C1θ
t+1 ∥r0∥. Moreover, by our construction of C1 and C2, (6) always holds, thus

we also have ∥Xt+1 −X0∥F ≤ C2 and ∥Yt+1 −Y0∥F ≤ C2. All conditions for the t+ 1 step are
satisfied, hence the proof is completed by induction. Plugging in C1 and the choice of c yields the
results.
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C Missing Proofs for NAG

C.1 Proof of Proposition 3

Proof of Proposition 3. According to the NAG update rule, we have

Rt+1 = Xt+1Y
⊤
t+1 −A

= (Xt +Pt)(Yt +Qt)
⊤ −A

= Rt +PtY
⊤
t +XtQ

⊤
t +PtQ

⊤
t

= Rt + (β(Xt −Xt−1)− (1 + β)ηRtYt + βηRt−1Yt−1)Y
⊤
t

+Xt

(
β(Y⊤

t −Y⊤
t−1)− (1 + β)ηX⊤

t Rt + βηX⊤
t−1Rt−1

)
+PtQ

⊤
t

= Rt − (1 + β)η
(
RtYtY

⊤
t +XtX

⊤
t Rt

)
+ β(XtY

⊤
t −Xt−1Y

⊤
t−1)

+ βη
(
Rt−1Yt−1Y

⊤
t−1 +Xt−1X

⊤
t−1Rt−1

)
+ β(XtY

⊤
t +Xt−1Y

⊤
t−1)− β

(
Xt−1Y

⊤
t +XtY

⊤
t−1

)
+ βη

(
Rt−1Yt−1Y

⊤
t +XtX

⊤
t−1Rt−1 −Rt−1Yt−1Y

⊤
t−1 −Xt−1X

⊤
t−1Rt−1

)
+PtQ

⊤
t

= Rt − (1 + β)η
(
RtYtY

⊤
t +XtX

⊤
t Rt

)
+ β(Rt −Rt−1)

+ βη
(
Rt−1Yt−1Y

⊤
t−1 +Xt−1X

⊤
t−1Rt−1

)
+ β(XtY

⊤
t +Xt−1Y

⊤
t−1 −Xt−1Y

⊤
t −XtY

⊤
t−1)

+ βη
(
Rt−1Yt−1Y

⊤
t +XtX

⊤
t−1Rt−1 −Rt−1Yt−1Y

⊤
t−1 −Xt−1X

⊤
t−1Rt−1

)
+PtQ

⊤
t .

Applying vectorization on both sides yields

rt+1 = rt − (1 + β)ηHtrt + β(rt − rt−1) + βηHt−1rt−1

+ β vec(XtY
⊤
t +Xt−1Y

⊤
t−1 −Xt−1Y

⊤
t −XtY

⊤
t−1)

+ βη vec(Rt−1Yt−1Y
⊤
t +XtX

⊤
t−1Rt−1 −Rt−1Yt−1Y

⊤
t−1 −Xt−1X

⊤
t−1Rt−1) + vec(PtQ

⊤
t )

= (1 + β)(Imn − ηHt)rt − β(Imn − ηHt−1)rt−1 +ψt + ϕt.

Hence we have(
rt+1

rt

)
=

(
(1 + β)(Imn − ηH0) −β(Imn − ηH0)

Imn 0

)(
rt

rt−1

)
+

(
ξt
0

)
.

C.2 Proof of Lemma 4

Proof of Lemma 4. Suppose λ is an eigenvalue of TNAG, then we have

det(TNAG − λI2mn) = det((β + λ2 − (1 + β)λ)Imn + (η(1 + β)λ− ηβ)H0).

Since H0 is symmetric, it can be simultaneously diagonalized with I, hence the above equation
becomes

λ2 − (1 + β)λ+ β + η(1 + β)λi(H0)λ− ηβλi(H0) = 0

for some 1 ≤ i ≤ mn. Solving the equation yields

λ =
1

2

(
(1 + β)(1− ηλi(H0))±

√
(1− ηλi(H0)) (−4β + (1 + β)2(1− ηλi(H0)))

)
.

For i > nr, λi(H0) = 0, hence λ = 1 or λ = β. The corresponding eigen subspaces are

H1 =
{
(u⊤,v⊤)⊤ | u = v ∈ ker(H0)

}
,

Hβ =
{
(u⊤,v⊤)⊤ | u = βv ∈ ker(H0)

}
.

The dimensions are dim(H1) = dim(Hβ) = (m− r)n. It is easy to verify that whenever 0 < β < 1,

H1 ⊕Hβ = ker(H0)× ker(H0).

The complement space of H1 ⊕Hβ corresponds to the eigen subspace for non-trivial eigenvalues.
By checking the dimension and orthogonality, we have

(H1 ⊕Hβ)
⊥ = H×H.
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For i ≤ nr, the subspace is H×H and the contraction condition requires

0 < η <
2(1 + β)

(1 + 2β)σ2
1(X0)

=
2(1 + β)

(1 + 2β)L
.

By checking the monotonicity of |λ| with respect to 1− ηλi(H0) ∈ [1− ηL, 1− ηµ], we have

|λ| ≤ max

{
1

2

(
(1 + β)(1− ηµ) +

√
(1− ηµ) (−4β + (1 + β)2(1− ηµ)

)
,

1

2

(
−(1 + β)(1− ηL) +

√
(1− ηL) (−4β + (1 + β)2(1− ηL)

)}
.

If we choose step size η = 1
L , momentum β =

√
L−√

µ√
L+

√
µ

, then we have |λ| ≤ 1−
√

µ
L .

C.3 Proof of Lemma 5

Proof of Lemma 5. According to Lemma 3,

ξt = ζt + ιt,

ζt = vec(PtQ
⊤
t ) + β vec(ηRt−1Yt−1Q

⊤
t−1 + ηPt−1X

⊤
t−1Rt−1 +Pt−1Q

⊤
t−1)

ιt = (1 + β)η(H0 −Ht)rt − βη(H0 −Ht−1)rt−1.

We first bound ∥Pt∥F and ∥Qt∥F. For every 0 ≤ s ≤ t, we have

∥RsYs∥F ≤ ∥Ys∥ ∥Rs∥F
≤ (∥Y0∥+ ∥Ys −Y0∥) ∥Rs∥F
≤ (∥Y0∥+ ∥Ys −Y0∥F) ∥Rs∥F
≤ (∥Y0∥+ C2) ∥Rs∥F .

Similarly, ∥∥R⊤
s Xs

∥∥
F
≤ (∥X0∥+ C2) ∥Rs∥F .

By assumption, we have

∥Rs∥F ≤
∥∥∥∥( rs

rs−1

)∥∥∥∥ ≤ C1θ
s

∥∥∥∥( r0
r−1

)∥∥∥∥ .
As a result, the momentum terms can be bounded:

∥Pt∥F =

∥∥∥∥∥ηRtYt + η

t∑
s=1

βt−s+1RsYs

∥∥∥∥∥
F

≤ η ∥RtYt∥F + η

t∑
s=1

βt−s+1 ∥RsYs∥F

≤ η(∥Y0∥+ C2)

(
∥Rt∥F +

t∑
s=1

βt−s+1 ∥Rs∥F

)

≤ ηC1(∥Y0∥+ C2)

(
θt +

t∑
s=1

βt−s+1θs

)∥∥∥∥( r0
r−1

)∥∥∥∥
≤ ηC1(∥Y0∥+ C2)

1

1− θ
· θt
∥∥∥∥( r0

r−1

)∥∥∥∥ , (20)

and

∥Qt∥F ≤ ηC1(∥X0∥+ C2)
1

1− θ
· θt
∥∥∥∥( r0

r−1

)∥∥∥∥ , (21)

where we use β ≤ θ2 < θ in the last steps.
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Next, we bound ∥ζt∥. Using the triangle inequality, we get

∥ζt∥ ≤
∥∥PtQ

⊤
t

∥∥
F
+ β

∥∥ηRt−1Yt−1Q
⊤
t−1 + ηPt−1X

⊤
t−1Rt−1 +Pt−1Q

⊤
t−1

∥∥
F
.

For the first term, we have∥∥PtQ
⊤
t

∥∥
F
≤ ∥Pt∥F ∥Qt∥F ≤ η2C2

1 (∥X0∥+ C2)(∥Y0∥+ C2)

(1− θ)2
θ2t
∥∥∥∥( r0

r−1

)∥∥∥∥2 .
For the second term, we have

β
∥∥ηRt−1Yt−1Q

⊤
t−1 + ηPt−1X

⊤
t−1Rt−1 +Pt−1Q

⊤
t−1

∥∥
F

≤β (η ∥Rt−1∥F (∥Yt−1∥ ∥Qt−1∥F + ∥Xt−1∥ ∥Pt−1∥F) + ∥Pt−1∥F ∥Qt−1∥F)

≤η2C2
1 (∥X0∥+ C2)(∥Y0∥+ C2)(3− 2θ)

(1− θ)2
θ2t
∥∥∥∥( r0

r−1

)∥∥∥∥2 .
As a result, we have

∥ζt∥ ≤ C3θ
2t

∥∥∥∥( r0
r−1

)∥∥∥∥2 ,
where C3 =

η2C2
1 (∥X0∥+C2)(∥Y0∥+C2)(4−2θ)

(1−θ)2 .

We then show upper bound for ∥ιt∥. Using the triangle inequality, we get

∥ιt∥ ≤ (1 + β)η ∥(H0 −Ht)rt∥+ βη ∥(H0 −Ht−1)rt−1∥ . (22)

For any s ≤ t, we have

∥(H0 −Hs)rs∥ =
∥∥Rs(Y0Y

⊤
0 −YsY

⊤
s ) + (X0X

⊤
0 −XsX

⊤
s )Rs

∥∥
F

≤
∥∥Rs(Y0Y

⊤
0 −YsY

⊤
s )
∥∥
F
+
∥∥(X0X

⊤
0 −XsX

⊤
s )Rs

∥∥
F

≤
∥∥Y0Y

⊤
0 −YsY

⊤
s

∥∥ ∥Rs∥F +
∥∥X0X

⊤
0 −XsX

⊤
s

∥∥ ∥Rs∥F
≤ (2 ∥Y0∥+ ∥Ys −Y0∥F) ∥Ys −Y0∥F ∥Rs∥F
+ (2 ∥X0∥+ ∥Xs −X0∥F) ∥Xs −X0∥F ∥Rs∥F

≤ 2(∥X0∥+ ∥Y0∥+ C2)C2 ∥Rs∥F

≤ 2(∥X0∥+ ∥Y0∥+ C2)C1C2θ
s

∥∥∥∥( r0
r−1

)∥∥∥∥ .
Plugging it into (22) yields

∥ιt∥ ≤ 2(∥X0∥+ ∥Y0∥+ C2)C1C2((1 + β)ηθt + βηθt−1)

∥∥∥∥( r0
r−1

)∥∥∥∥
≤ C4θ

t

∥∥∥∥( r0
r−1

)∥∥∥∥ ,
where C4 = 2η(∥X0∥+ ∥Y0∥+ C2)C1C2(1 + 2θ).

Finally, given (9) and (20), we have

∥Xt+1 −X0∥F ≤
t∑

s=0

∥Ps∥F ≤ ηC1(∥Y0∥+ C2)

(1− θ)2

∥∥∥∥( r0
r−1

)∥∥∥∥ ≤ C2,

where the last inequality is from our assumption on C2. Similarly, by (21), we have

∥Yt+1 −Y0∥F ≤
t∑

s=0

∥Qs∥F ≤ ηC1(∥X0∥+ C2)

(1− θ)2

∥∥∥∥( r0
r−1

)∥∥∥∥ ≤ C2.
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C.4 Proof of Theorem 2

Proof of Theorem 2. By initialization, we have ∥r0∥ = ∥r−1∥ = ∥A∥F. Let C1 to C4 be constants
defined in Lemma 5. Define ρ = 1−

√
µ√
L

, θ = 1−
√
µ

2
√
L

, at = C1

∥∥(r⊤t , r⊤t−1)
∥∥, and bt = C1 ∥ξt∥

for t ≥ 0. It is easy to verify that β ≤ θ2 < θ < 1 and ρ < θ < 1. By Proposition 3 and lemmas 1
and 4 we have

at+1 ≤ ρ · at + bt

for all t ≥ 0. It remains to show that bt ≤ θt · c0. For the initial step, a0 =
√
2C1 ∥A∥F, b0 = 0. Let

C1 = µp

4
√
2∥A∥F(1+p)

and C2 = p
√
L where p =

√
µ

144
√
L
≤ 1

144 < 1, then we have

C3 =
µp3(2 +

√
µ
L )

8 ∥A∥2F (1 + p)
, C4 =

µp2(3−
√

µ
L )

2
√
2 ∥A∥F

.

Let c0 =
√
2C1(

√
2C3 ∥A∥F + C4) ∥A∥F, then we can show the following relations:

a0 +
c0

θ − ρ
≤

√
2C2

1 ∥A∥F and C1 ≥ 1. (23)

Indeed, by Proposition 1, with probability at least 1− δ, our choice of c guarantees

µ = σ2
r(X0) ≥

τ2(
√
d−

√
r − 1)2c2σ2

r(A)

d
≥

4
√
2 ∥A∥F (1 + p)

p
, (24)

thus C1 ≥ 1. Here, we use the bound p ≤ 1
144 < 1 to verify the numerical constant. It remains to

show

a0 +
c0

θ − ρ
≤

√
2C2

1 ∥A∥F ,

which is equivalent to

∥A∥F +
p3
√
µL(2 +

√
µ
L )

2
√
2(1 + p)

+
p2
√
µL(3−

√
µ
L )√

2
≤ µp

4
√
2(1 + p)

,

Since we set p =
√
µ

144
√
L

< 1, each one of the three terms on the left hand side is upper bounded
by µp

12
√
2(1+p)

, hence the inequality holds. The relations (23) guarantee the induction conditions in
Lemma 5, thus we have

∥rt+1∥ ≤
√
2C1θ

t+1 ∥A∥F ≤ c2σ2
1(A)

64 ∥A∥F cond(X0)
θt+1 ∥A∥F ,

where the last inequality uses p > 0 and Proposition 1.

D Missing Proofs for NAG in Section 4

Let r̃t = vec(R̃t), then we have the following dynamics.

Lemma 7. Let Pt = Xt+1−Xt and Qt = Yt+1−Yt denote the momentum. Let Rt = XtY
⊤
t D−L

denote the residual, R̃t = XtY
⊤
t DD⊤−LD⊤ denote the projected residual, r̃t = vec(R̃t) ∈ Rmn.

Then NAG has the following dynamics:(
r̃t+1

r̃t

)
=

(
(1 + β)(Imn − ηH0) −β(Imn − ηH0)

Imn 0

)(
r̃t

r̃t−1

)
+

(
ξt
0

)
, (25)

where

Ht = (DD⊤YtY
⊤
t )⊗ Im + (DD⊤)⊗ (XtX

⊤
t ),

ξt = ζt + ιt,

ζt = vec(PtQ
⊤
t DD⊤) + β vec(Pt−1Q

⊤
t−1DD⊤)

+ βη vec((R̃t−1Yt−1Q
⊤
t−1 +Pt−1X

⊤
t−1R̃t−1)DD⊤),

ιt = (1 + β)η(H0 −Ht)r̃t − βη(H0 −Ht−1)r̃t−1.
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Proof of Lemma 7. We denote Rt = XtY
⊤
t D − L as the residual, R̃t = RtD

⊤ as the projected
residual, then the NAG update for (10) can be written as(

Xt+1

Yt+1

)
=

(
(1 + β)(Xt − ηR̃tYt)− β(Xt−1 − ηR̃t−1Yt−1)

(1 + β)(Yt − ηR̃⊤
t Xt)− β(Yt−1 − ηR̃⊤

t−1Xt−1)

)
. (26)

The result follows from (26) by direct computation.

Lemma 8. Let H ⊆ Rmn denote the linear subspace containing all eigenvectors of H0 = (DD⊤)⊗
(X0X

⊤
0 ) with positive eigenvalues. If col(X0) = col(L) and Y0 = 0, then we have

H = col(D⊗ L) and {r̃t, ξt}t≥0 ⊂ H,

where H0, r̃t and ξt are defined as in Lemma 7.

Proof. By Theorem 4.2.15 in Horn and Johnson [1994], we have the following eigenvalue decompo-
sition for Kronecker product:

H0 = (UD ⊗U0)(Σ
2
D ⊗Σ2

0)(UD ⊗U0)
⊤,

where D = UDΣDV⊤
D and X0 = U0Σ0V

⊤
0 are singular value decompositions of D and X0.

Therefore, we have

H = col(UD ⊗U0) = col(D⊗X0) = col(D⊗ L).

In particular, the eigenvalues (not ordered) are

λ(i−1)m+j(H0) = λi(DD⊤)λj(X0X
⊤
0 ) = σ2

i (D)σ2
j (X0), i ∈ [n], j ∈ [m],

where σj(X0) > 0 for 1 ≤ j ≤ r, σj(X0) = 0 for r + 1 ≤ j ≤ d. By Assumption 1, L = AD,
thus we have

vec(LD⊤) = vec(LIND⊤) = (D⊗ L)IN ∈ col(D⊗ L) = H.

Meanwhile,

vec(XtY
⊤
t DD⊤) = (D⊗Xt) vec(Y

⊤
t D) ∈ col(D⊗Xt) ⊆ col(D⊗X0) = H,

thus we have r̃t ∈ H. Similarly, we have ξt ∈ H.

Lemma 9 (NAG contraction). If we choose step size η = 1
L̃

and momentum β =

√
L̃−

√
µ̃√

L̃+
√
µ̃

where

L̃ = σ2
1(X0) · λmax(DD⊤), µ̃ = σ2

r(X0) · λmin(DD⊤), then for all (u,v) ∈ H×H, H defined in
Lemma 8, ∥∥∥∥TNAG

(
u
v

)∥∥∥∥ ≤

(
1−

√
µ̃

L̃

)∥∥∥∥(uv
)∥∥∥∥ .

Proof. Following the same line of proof for Lemma 4 in Appendix C.2 and substituting the eigenval-
ues in Lemma 8, we obtain the result.

Lemma 10. Suppose 0 < β ≤ θ2 < θ < 1. If there exist some constants C1 and C2 such that for

any s ≤ t, the NAG dynamics (7) yields
∥∥∥∥( r̃s

r̃s−1

)∥∥∥∥ ≤ C1θ
s

∥∥∥∥( r̃0
r̃−1

)∥∥∥∥, ∥Xs −X0∥F ≤ C2, and

∥Ys −Y0∥F ≤ C2, then we have

∥ζt∥ ≤ C3θ
2t

∥∥∥∥( r̃0
r̃−1

)∥∥∥∥2 , and ∥ιt∥ ≤ C4θ
t

∥∥∥∥( r̃0
r̃−1

)∥∥∥∥
for some constants C3 and C4 depending on C1 and C2. Moreover, if C1 and C2 satisfy

(max(∥X0∥ , ∥Y0∥) + C2) ηC1

∥∥∥∥( r̃0
r̃−1

)∥∥∥∥ ≤ (1− θ)2C2,

then we have

∥Xt+1 −X0∥F ≤ C2, ∥Yt+1 −Y0∥F ≤ C2.
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Proof of Lemma 10. Following the same line of proof for Lemma 5 in Appendix C.3, we have

∥Pt∥F ≤ ηC1(∥Y0∥+ C2)
1

1− θ
· θt
∥∥∥∥( r̃0

r̃−1

)∥∥∥∥ , (27)

and

∥Qt∥F ≤ ηC1(∥X0∥+ C2)
1

1− θ
· θt
∥∥∥∥( r̃0

r̃−1

)∥∥∥∥ . (28)

As a result, we have∥∥PtQ
⊤
t DD⊤∥∥

F
≤ λ1(DD⊤) ∥Pt∥F ∥Qt∥F ≤ η2C2

1 (∥X0∥+ C2)(∥Y0∥+ C2)λ1(DD⊤)

(1− θ)2
θ2t
∥∥∥∥( r̃0

r̃−1

)∥∥∥∥2 ,
and

β
∥∥∥(ηR̃t−1Yt−1Q

⊤
t−1 + ηPt−1X

⊤
t−1R̃t−1 +Pt−1Q

⊤
t−1)DD⊤

∥∥∥
F

≤βλ1(DD⊤)
(
η
∥∥∥R̃t−1

∥∥∥
F
(∥Yt−1∥ ∥Qt−1∥F + ∥Xt−1∥ ∥Pt−1∥F) + ∥Pt−1∥F ∥Qt−1∥F

)
≤η2C2

1 (∥X0∥+ C2)(∥Y0∥+ C2)(3− 2θ)λ1(DD⊤)

(1− θ)2
θ2t
∥∥∥∥( r̃0

r̃−1

)∥∥∥∥2 ,
Combining the inequalities, we get

∥ζt∥ ≤ C3θ
2t

∥∥∥∥( r̃0
r̃−1

)∥∥∥∥2 ,
where C3 =

η2C2
1 (∥X0∥+C2)(∥Y0∥+C2)(4−2θ)λ1(DD⊤)

(1−θ)2 .

Similarly, we have

∥ιt∥ ≤ 2(∥X0∥+ ∥Y0∥+ C2)C1C2λ1(DD⊤)((1 + β)ηθt + βηθt−1)

∥∥∥∥( r̃0
r̃−1

)∥∥∥∥
≤ C4θ

t

∥∥∥∥( r̃0
r̃−1

)∥∥∥∥ ,
where C4 = 2η(∥X0∥+ ∥Y0∥+ C2)C1C2(1 + 2θ)λ1(DD⊤).

Finally, by (27), we have

∥Xt+1 −X0∥F ≤
t∑

s=0

∥Ps∥F ≤ ηC1(∥Y0∥+ C2)

(1− θ)2

∥∥∥∥( r̃0
r̃−1

)∥∥∥∥ ≤ C2,

where the last inequality is from our assumption on C2. Similarly, by (28), we have

∥Yt+1 −Y0∥F ≤
t∑

s=0

∥Qs∥F ≤ ηC1(∥X0∥+ C2)

(1− θ)2

∥∥∥∥( r̃0
r̃−1

)∥∥∥∥ ≤ C2.

D.1 Proof of Theorem 3

Proof of Theorem 3. By initialization, we have ∥r̃0∥ = ∥r̃−1∥ =
∥∥LD⊤

∥∥
F

. Let C1 to C4 be

constants defined in Lemma 10. Define ρ = 1−
√
µ̃√
L̃

, θ = 1−
√
µ̃

2
√

L̃
, at = C1

∥∥(R̃t R̃−1

)∥∥
F

, and

bt = C1 ∥ξt∥ for t ≥ 0. It is easy to verify that β ≤ θ2 < θ < 1 and ρ < θ < 1. By Lemmas 7 to 9
we have

at+1 ≤ ρ · at + bt
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for all t ≥ 0. It remains to show that bt ≤ θt · c0. For the initial step, a0 =
√
2C1

∥∥LD⊤
∥∥
F

, b0 = 0.

Let C1 = µ̃p

4
√
2∥LD⊤∥F(1+p)

and C2 = p
√
L where p =

√
µ̃

144
√

L̃
≤ 1

144 < 1, then we have

C3 =
µ̃p3

8 ∥LD⊤∥2F (1 + p)

(
2 +

√
µ̃

L̃

)
, C4 =

µ̃p2

2
√
2 ∥LD⊤∥F

(
3−

√
µ̃

L̃

)
.

Let c0 =
√
2C1(

√
2C3

∥∥LD⊤
∥∥
F
+ C4)

∥∥LD⊤
∥∥
F

, then we can show the following relations: Given
our choice of constants, there hold

a0 +
c0

θ − ρ
≤

√
2C2

1 ∥A∥F and C1 ≥ 1. (29)

Indeed, by (11), we have C1 ≥ 1. It remains to show

a0 +
c0

θ − ρ
≤

√
2C2

1

∥∥LD⊤∥∥
F
,

which is equivalent to

∥∥LD⊤∥∥
F
+

√
µ̃L̃p3

2
√
2(1 + p)

(
2 +

√
µ̃

L̃

)
+

√
µ̃L̃p2
√
2

(
3−

√
µ̃

L̃

)
≤ µ̃p

4
√
2(1 + p)

.

By (11) and p =
√
µ̃

144
√

L̃
< 1, each one of the three terms on the left hand side is upper bounded by

µp

12
√
2(1+p)

, hence the inequality holds. (29) guarantees the induction conditions in Lemma 10, thus
we have

∥r̃t+1∥ ≤
√
2C1θ

t+1
∥∥LD⊤∥∥

F
≤ µ̃

576 ∥LD⊤∥F

(
1−

√
µ̃

2
√
L̃

)t+1 ∥∥LD⊤∥∥
F
.

By Assumption 1, we have row(L) ∈ row(D) = col(D⊤), thus we have

∥Rt∥F =
∥∥XtY

⊤
t D− L

∥∥
F

≤ σ−1
min(D)

∥∥(XtY
⊤
t D− L)D⊤∥∥

F

≤ σ2
r(X0)σmin(D)

576

(
1− σr(X0)

√
λmin(DD⊤)

2σ1(X0)
√

λmax(DD⊤)

)t

.

D.2 Proof of Corollaries

Proof of Corollary 1. By Proposition 1, cond(X0) = O( d·cond(L)
τ(d−r+1) ) with probability at least 1− δ,

where δ = 3e−min{(d−r+1) log 1
c1τ ,c2d,

d
2 }. Plugging it in Theorem 3 yields the result.

Proof of Corollary 2. After orthonormalization, we have cond(X0) = 1. The result follows immedi-
ately from Theorem 3.

Proof of Corollary 3. By Propositions 4 and 5, cond(X0) = O( d
τ(d−m+1) ) with probability at least

1− δ, where δ = 3e−min{(d−m+1) log 1
c1τ ,c2d,

d
2 }. Plugging it in Theorem 3 yields the result.

E Additional Experiments

This section provides additional experiments. Firstly, we investigate larger-sized problems by setting
(m,n) = (1200, 1000) for matrix factorization and (m,n,N) = (500, 400, 600) for linear neural
networks. We keep other settings the same as for Figure 2 and compare the performances of GD and
NAG. The results are provided in Figure 4. As illustrated, the conclusion that NAG performs better
than GD and overparameterization accelerates convergence remains valid for large matrices.
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Figure 4: GD and NAG on large matrices exhibit similar behavior to small matrices in Figure 2. Left: matrix
factorization with m = 1200 and n = 1000. Right: linear neural networks with m = 500, n = 400, N = 600.
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Figure 5: GD and NAG with different values of c. When c is sufficiently large, changing its value would not
significantly affect the convergence rate.

0 100 200
iteration

10 22

10 17

10 12

10 7

10 2

103

108

lo
ss

matrix factorization

0 100 200
iteration

linear network
MF,c2=0.02,GD
MF,c2=0.02,NAG
MF,c2=0.2,GD
MF,c2=0.2,NAG
MF,c2=2,GD
MF,c2=2,NAG
LNN,c2=0.02,GD
LNN,c2=0.02,NAG
LNN,c2=0.2,GD
LNN,c2=0.2,NAG
LNN,c2=2,GD
LNN,c2=2,NAG

Figure 6: GD and NAG with initialization X0 = c1AΦ1, Y0 = c2Φ2, c1 = 50. The initial loss (intercept)
increases as c2 increases within a range, while the convergence rate (slope) does not change significantly.

Secondly, we conduct additional experiments on GD and NAG with different values of c and plot the
results in Figure 5. We set d = 20, while other settings remain the same as in Figure 2. As illustrated,
when c is sufficiently large, further increasing c has little effect on the convergence rate, which is
consistent with our theory.

We also investigate general unbalanced initialization X0 = c1AΦ1 ∈ Rm×d, Y0 = c2Φ2 ∈ Rn×d,
where [Φ1]i,j ∼ N (0, 1/d) and [Φ2]i,j ∼ N (0, 1/n). We set d = 20, while other settings remain the
same as in Figure 2. We keep c1 = 50 and set different values of c2. The results are plotted in Figure 6.
As illustrated, changing c2 within a range only results in different initial losses (intercept), while the
convergence rates (slope) are not significantly affected. This supports our claim in Remark 1.

NeurIPS Paper Checklist

1. Claims
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction (Section 1) accurately
reflect the paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We state all settings and assumptions required for our results and discuss
limitations (e.g. exact rank-r A, Y0 = 0, etc.) in Sections 1, 2, 4 and 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We clearly state all sets of assumptions (Sections 1, 2 and 4) and proof sketches
in the main part of the paper (Section 3), and provide complete and verified proof in the
appendix (Appendix A to D). Theorems and Lemmas are properly referenced.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We state all main configurations of our experiments in Section 5 that allows
one to reproduce our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

26



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide anonymized code in the zip file for experiments in Section 5 as
supplement materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all important experiment details in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our experiments do not require error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Our experiments have no special requirements on compute resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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