
Posterior Inference in Latent Space
for Scalable Constrained Black-box Optimization

Anonymous Author(s)
Affiliation
Address
email

Abstract

Optimizing high-dimensional black-box functions under black-box constraints is1

a pervasive task in a wide range of scientific and engineering problems. These2

problems are typically harder than unconstrained problems due to hard-to-find3

feasible regions. While Bayesian optimization (BO) methods have been developed4

to solve such problems, they often struggle with the curse of dimensionality. Re-5

cently, generative model-based approaches have emerged as a promising alternative6

for constrained optimization. However, they suffer from poor scalability and are7

vulnerable to mode collapse, particularly when the target distribution is highly8

multi-modal. In this paper, we propose a new framework to overcome these chal-9

lenges. Our method iterates through two stages. First, we train flow-based models10

to capture the data distribution and surrogate models that predict both function11

values and constraint violations with uncertainty quantification. Second, we cast12

the candidate selection problem as a posterior inference problem to effectively13

search for promising candidates that have high objective values while not violating14

the constraints. During posterior inference, we find that the posterior distribution15

is highly multi-modal and has a large plateau due to constraints, especially when16

constraint feedback is given as binary indicators of feasibility. To mitigate this17

issue, we amortize the sampling from the posterior distribution in the latent space18

of flow-based models, which is much smoother than that in the data space. We19

empirically demonstrate that our method achieves superior performance on various20

synthetic and real-world constrained black-box optimization tasks. Our code is21

publicly available here.22

1 Introduction23

Optimizing high-dimensional black-box functions under black-box constraints is a fundamental task24

across numerous scientific and engineering problems, including machine learning [1], drug discovery25

[2, 3], control [4, 5], and industrial design [6, 7]. In most cases, these problems are much harder than26

unconstrained problems due to analytically undefined and hard-to-find feasible regions [8].27

Bayesian Optimization (BO) has been widely used to solve black-box optimization problems in28

a sample-efficient manner [9, 10]. While most BO methods focus on unconstrained optimization29

problems, some works address problems with black-box constraints by developing new acquisition30

functions [1, 11] or relaxing the constraints [12, 13]. However, even without constraints, BO methods31

scale poorly to high dimensionality [14]. Moreover, incorporating constraints makes the function32

landscape highly complex, hindering accurate estimation of surrogate models.33

Recently, generative models have emerged as an alternative solution for black-box optimization34

problems with constraints [15, 16, 17]. For example, we can leverage generative models to sample35

protein sequences that maximize the binding affinity while preserving the naturalness of the design.36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://anonymous.4open.science/r/CiBO-3869/

Figure 1: Motivating figure. In a high-dimensional setting, sampling from the posterior distribution is
beneficial for selecting candidates. However, the posterior distribution is highly multi-modal and has
a large plateau due to the constraints (orange one). We can mitigate this issue by sampling latents
from the posterior distribution (purple one) of the latent space and projecting them into the data space.

However, existing methods rely on MCMC-based approaches [15], which limit scalability in high-37

dimensional spaces. While one can fine-tune pretrained generative models with reward functions38

[18, 19, 20], naive application of fine-tuning methods is vulnerable to mode collapse when the target39

distribution is highly multi-modal [21], which leads to a convergence on sub-optimal solutions.40

In this paper, we propose a novel generative model-based framework for constrained black-box41

optimization to overcome the aforementioned limitations. To efficiently explore high-dimensional42

spaces, we first frame the candidate selection problem as sampling from the posterior distribution,43

which can be constructed by multiplying the prior distribution with a Lagrangian-relaxed objective.44

To sample candidates from the posterior distribution, our key idea is to amortize inference in the latent45

space of a flow-based model using an outsourced diffusion sampler [21], as illustrated in Figure 1.46

Since the posterior distribution in the latent space is much smoother than that in the data space, we47

can approximate the distribution more accurately and alleviate the mode collapse problem [22].48

Our method iterates through two stages. First, we train a flow-based model to capture the current49

data distribution and surrogate models to predict the objective value and constraints, respectively.50

For the surrogate models, we use an ensemble to quantify the uncertainty of the prediction, as we51

have only a small amount of data that covers a tiny fraction of the whole search space. We treat a52

trained flow-based model as a prior, and Lagrangian relaxation of the objective as a reward function.53

Second, we sample candidates from the posterior distribution. As the posterior distribution is highly54

multi-modal and has a large plateau due to constraints, especially when constraint feedback is given55

as binary indicators of feasibility, we train a diffusion sampler that amortizes the posterior distribution56

in the latent space of flow models. Then, we sample latents from the diffusion sampler and project57

them into data space using a deterministic mapping derived from the trained flow model. By repeating58

these two stages, we can effectively capture high-scoring regions that satisfy the constraints.59

We conduct extensive experiments on three synthetic and three real-world benchmarks to validate the60

superiority of our method on scalable constrained black-box optimization problems. We also consider61

a more challenging scenario where the feedback from the constraints is given as a binary value. We62

empirically show that our method outperforms several competitive baselines across different tasks.63

2 Related Works64

2.1 Constrained Black-box Optimization65

Most scientific and engineering optimization problems involve black-box constraints, such as the66

synthesizability of molecules in chemical design [2] and safety constraints in robot control policies67

[4]. Existing BO methods solve this problem by either integrating the constraints directly into the68

acquisition function (cEI [23], LogcEI [24]) or by employing trust region approaches for scalability69

(SCBO [8], PCAGP-SCBO [7]). Another line of work utilizes evolutionary algorithms like CMA-70

ES [25, 26] with an augmented Lagrangian method to navigate constrained spaces. However, the71

performance of these methods often degrades as dimensionality and the number of evaluations72

increase, which motivates the need for a more scalable approach.73

2

2.2 Generative Model-based Optimization74

There are several attempts to utilize generative models for black-box optimization. In an offline75

setting, DDOM [27] trains a conditional diffusion model with classifier-free guidance and applies a76

loss-reweighting to emphasize samples with high objective values. DiffOPT [15] solves a constrained77

optimization problem. It applies diffusion to capture data distribution, followed by an iterative78

importance-sampling procedure. In an online setting, DiffBBO [28] and DiBO [29] both leverage79

diffusion models and incorporate uncertainty estimation during candidate selection. DiBO treats80

candidate selection as posterior inference to guide sampling toward regions of high reward and uncer-81

tainty, while DiffBBO selects conditioning targets by employing an uncertainty-based acquisition82

function. Unfortunately, constrained black-box optimization in the online setting remains unexplored.83

2.3 Amortized Inference in Flow-based and Diffusion Models84

Given a diffusion or flow prior pθ(x) trained on a dataset and a reward function r(x), sampling from85

the posterior ppost(x) ∝ pθ(x)r(x) has numerous applications in downstream tasks [30, 18, 31, 32,86

19, 21]. However, direct sampling from the unnormalized posterior pθ(x)r(x) is intractable [18, 33].87

To address this problem, some approaches train classifiers directly within intermediate noised spaces88

[30, 34] while others approximate posterior sampling via Markov Chain Monte Carlo (MCMC)89

procedures [22, 32, 35, 36]. However, training classifiers in noisy data spaces and employing MCMC90

methods scale poorly to high dimensionality. On the other hand, several methods utilize reinforcement91

learning [37, 38] or stochastic optimal control [19] to fine-tune the pretrained model and amortize the92

posterior sampling. Meanwhile, naive implementations of fine-tuning methods can be prone to mode93

collapse when the target distribution is highly multi-modal and has a large plateau region [21].94

To mitigate this issue, we adopt the outsourced diffusion sampler method proposed by Venkatraman95

et al. [21]. Matching the distribution within the latent space significantly simplifies the alignment96

task when the distribution is highly multi-modal and has a large flat region in the original data space.97

3 Preliminaries98

3.1 Constrained Black-box Optimization99

In constrained black-box optimization, our problem is:100

find x∗ = argmax
x∈X

f(x) s.t. g(1)(x) ≤ 0, · · · , g(M)(x) ≤ 0

with R rounds of B batch of queries (1)

The objective function f : X → R and constraints g(1), · · · , g(M) : X → R are black-box functions.101

We also consider a more challenging scenario, only access to information on whether we violate102

constraints or not, i.e., h(m)(x) = I[g(m)(x) > 0]. We refer to this as an indicator constraint.103

3.2 Flow-based Models104

Flow-based models [39, 40, 41] are a class of generative models for approximating a target distribution105

q(x). Flow-based models are defined via the deterministic ordinary differential equation (ODE):106

dxt = vθ(xt, t) dt (2)

where vθ(xt, t) : Rd × [0, 1]→ Rd is a parametric velocity field.107

For each given velocity field, the corresponding flow ψθ(x0, t) : Rd × [0, 1]→ Rd satisfies:108

d

dt
ψθ(x0, t) = vθ(ψθ(x0, t), t), ψθ(x0, 0) = x0. (3)

The velocity field vθ(xt, t) defines a continuous probability path pt induced by the flow:109

xt = ψθ(x0, t) ∼ pt, where x0 ∼ p0. (4)

Training Flow-based Models. We use Flow Matching [39] to learn the velocity field vθ that generates110

a path interpolating smoothly between an initial distribution p0 = p and a target distribution p1 = q.111

3

Figure 2: Overview of our method. Phase 1: Train flow-based models and proxies for the objective
and constraints. Phase 2: Sample candidates from the posterior distribution using an outsourced
diffusion sampler. After sampling, we utilize filtering to enhance sample efficiency. Then, we evaluate
samples, update the dataset, and repeat the process until the evaluation budget is exhausted.

We employ the simplest linear interpolation path xt = (1−t)x0+tx1,with derivative dxt

dt = x1−x0,112

following [39]. The Flow Matching loss is expressed as:113

LFM(θ) = Ex0∼N (0,I),x1∼q(x), t∼Unif(0,1)
[
∥vθ(xt, t)− (x1 − x0)∥22

]
. (5)

3.3 Posterior Inference in Flow-based and Diffusion Models114

Given a pretrained flow-based prior pθ(x), and a reward function r(x), we consistently encounter a115

situation where we need to sample from the posterior distribution, ppost(x) ∝ pθ(x)r(x). To sample116

from this intractable [33] distribution, we utilize the outsourced diffusion sampling [21].117

We can interpret the sampling process of flow-based models into a noise generation z ∼ p(z), followed118

by a deterministic transformation x = fθ(z), where p(z) is standard normal and fθ represents the119

learned mapping derived by prior. Under this formulation, by Proposition 3.1 of [21], we can sample120

from the posterior distribution by substituting noise generation as z ∼ ppost(z) ∝ p(z)r(fθ(z)).121

To approximate the target distribution pψ(z) ≈ ppost(z), we can learn the parameters of diffusion122

sampler ψ with the trajectory balance (TB) objective [42, 43]:123

LTB(z0:1;ψ) =

(
log

Zψp(z0)
∏T−1
i=0 pF (z(i+1)∆t|zi∆t;ψ)

p(z1)r(fθ(z1))
∏T
i=1 pB(z(i−1)∆t|zi∆t)

)2

, (6)

where Zψ is the parameterized partition estimator, (z0 → z∆t
→ · · · z1 = z) is the discrete124

time Markov chain of reverse-time stochastic differential equation (SDE) [44] with time increment125

∆t = 1
T . pF and pB are transition kernels of the discretized reverse and forward SDE.126

4 Method127

In this section, we introduce CiBO, a new framework for scalable constrained black-box optimization128

by leveraging generative models. Our method consists of two iterative stages. First, we train a129

flow-based model to capture the data distribution and surrogate models to predict objective values130

and constraints with uncertainty quantification. Next, we sample candidates from the posterior131

distribution. To accomplish this, we train a diffusion sampler that draws samples from the posterior132

distribution in the latent space. After sampling, we evaluate candidates, update the dataset, and repeat133

the process until the evaluation budget is exhausted. Figure 2 illustrates the overview of our method.134

4.1 Phase 1. Training Models135

In each round r, we have a pre-collected dataset Dr = {xi, yi, ci}Ii=1, where yi = f(xi), ci =136

{cmi |cmi = g(m)(xi), ∀m = 1, . . . ,M}, and I is the number of data points collected so far.137

Training Prior. We first train a prior model pθ to capture the current data distribution. As the search138

space is too high-dimensional, it is better to implicitly constrain the search space close to the current139

data distribution. We use flow-based models to learn this distribution using Equation (5).140

Training Surrogates. We also train surrogate models to predict both objective values and constraints.141

As we are only able to access a small number of data points in the vast search space, we need to142

4

properly quantify the uncertainty of the prediction. To this end, we train an ensemble of proxies to143

estimate objective values with uncertainty quantification [45]. Specifically, we train an ensemble of144

K proxies fϕ1
, . . . , fϕK

for objective values, and individual proxy g(1)ϕ , . . . , g
(M)
ϕ for each constraint.145

Reweighted Training. During training, we introduce a reweighted training scheme [27, 46, 47] to146

focus on promising data points with high objective values while not violating constraints. Specifically,147

the weight for each data point is computed as follows:148

l(y, c) = y − λ
M∑
m=1

max(0, cm), w (y, c,Dr) =
exp (l (y, c))∑

(y′,c′)∈Dr
exp (l (y′, c′))

. (7)

Then, our training objective for flow-based models and proxies can be described as follows:149

L(θ) = Ex0∼N (0,I), (x,y,c)∈Dr, t∼Unif(0,1)
[
w(y, c,Dr)∥vθ(xt, t)− (x− x0)∥22

]
, (8)

150

L(ϕ) =
∑

(x,y,c)∈Dr

w(y, c,Dr)

[
K∑
k=1

(y − fϕk
(x))

2
+

M∑
m=1

(
cm − g(m)

ϕ (x)
)2]

. (9)

4.2 Phase 2. Sampling Candidates151

After training models, we proceed to select candidates for evaluation in the current round. As the152

search space is high-dimensional, the prediction of surrogate models is likely to be inaccurate in153

regions that are too far away from the dataset collected so far. Therefore, it is advantageous to sample154

candidates from the distribution that satisfies the two desiderata: (1) promote exploration towards155

high-scoring and feasible regions, and (2) prevent sampling candidates that deviate too far from the156

current data distribution. To accomplish these objectives, we cast the candidate selection problem as157

sampling from the target distribution ppost defined as follows:158

ppost(x) = argmax
p∈P

Ex∼p [rϕ(x)]−
1

β
·DKL (p ∥ pθ) , (10)

where P is the space of all probability distributions over the domain X , and159

rϕ(x) = µϕ(x) + γ · σϕ(x)− λ
M∑
m=1

max(0, g
(m)
ϕ (x)). (11)

µϕ(x) and σϕ(x) represent the mean and standard deviation from the ensemble of surrogate models160

for the objective. γ controls exploration-exploitation trade-off, β is an inverse temperature, and λ is a161

Lagrange multiplier. Based on derivation from [48], our target distribution analytically derived as:162

ppost(x) ∝ pθ(x) exp (β · [rϕ(x)]) . (12)
If we treat the flow-based model pθ(x) as a prior and the exponential term exp(β · [rϕ(x)]) as a163

reward r(x), then our objective is to sample from the posterior distribution ppost(x) ∝ pθ(x)r(x).164

Amortized Inference in Latent Space. However, directly sampling from this posterior is in-165

tractable [33]. Also, the target posterior is highly multi-modal and has a large plateau due to the166

constraint penalties in (11), making finetuning-based methods [18, 37] susceptible to mode collapse.167

To this end, we utilize an amortized sampler in the latent space suggested by Venkatraman et al [21].168

As introduced in Section 3.3, we can view the sampling procedure of flow-based models as drawing169

samples from the standard normal distribution z ∼ p(z), followed by the deterministic transformation170

x = fθ(z). Within this framework, we can generate samples from the posterior distribution ppost(x)171

by modifying the noise generation distribution as follows:172

z ∼ ppost(z) ∝ p(z)r(fθ(z)). (13)
To sample latents z from the posterior distribution in the latent space ppost(z), we train a diffusion173

model pψ(z) to amortize ppost(z) with the following Trajectory Balance (TB) objective:174

LTB(z0:1;ψ) =

(
log

Zψp(z0)
∏T−1
i=0 pF (z(i+1)∆t|zi∆t;ψ)

p(z1)r(fθ(z1))
∏T
i=1 pB(z(i−1)∆t|zi∆t)

)2

. (14)

By training an amortized sampler in the latent space of flow-based models, we can more accurately175

sample candidates from the target distribution as the posterior distribution in the latent space is176

smoother than that in the data space. We also adopt off-policy training, detailed in Appendix D.2.1177

5

Figure 3: Comparison between our method and baselines in synthetic tasks. Experiments are
conducted with four random seeds, and the mean and one standard deviation are reported. A dashed
line means that no feasible solutions were found.

4.3 Filtering, Evaluation and Moving Dataset178

Filtering. After sampling from the posterior distribution, we need to carefully select candidates for179

the sample efficiency of the algorithm. To do so, we generate N · B samples from the amortized180

sampler and select the top-B samples in terms of Lagrangian relaxation of objectives as candidates.181

Evaluation and Moving Dataset. We evaluate the values of the objective function and constraint182

functions for each selected candidate, then update the dataset with new observations. During the183

update, we empirically find that taking only a subset of total observations is beneficial in terms of184

computational complexity. We remove the samples with the lowest Lagrangian-relaxed objective if185

the dataset size is larger than the buffer size L. The pseudocode of our method is in Algorithm 1.186

5 Experiments187

In this section, we report experimental results for scalable constrained black-box optimization tasks.188

First, we perform experiments on three 200-dimensional synthetic functions, which are the standard189

benchmarks in Bayesian Optimization (BO) studies [14]. Furthermore, we assess the performance of190

our method on a more challenging scenario, where the feedback from constraints is given as binary191

indicators of feasibility. We refer to this setting as the indicator constraint setting. Finally, we conduct192

experiments on three real-world optimization tasks: Rover Planning 60D [8, 49], Mopta 124D [6],193

and Lasso DNA 180D [50]. The detailed description of each task can be found in Appendix A.194

For evaluation, we report the minimum regret of feasible solutions over the course of the training,195

and assign the largest regret found in all algorithms to the infeasible solutions, following [8, 51].196

5.1 Baselines197

We compare our method with several constrained BO baselines, including cEI [23], LogcEI [24],198

SCBO [8], PCAGP-SCBO [7], and the evolutionary search algorithm CMA-ES [25]. We also evaluate199

generative model-based approaches specifically designed for constrained optimization: DiffOPT [15],200

as well as methods that can be extended to constrained optimization via the Lagrangian relaxation:201

DDOM [27] and DiBO [29]. Detailed implementations of all baselines are provided in Appendix B.202

6

Figure 4: Comparison between our method and baselines in real-world tasks. Experiments are
conducted with four random seeds, and the mean and one standard deviation are reported. A dashed
line means that no feasible solutions were found.

5.2 Synthetic Experiments203

We first conduct experiments on three synthetic functions, Rastrigin-200D, Ackley-200D, and204

Rosenbrock-200D. For each function, we utilize two inequality constraints proposed by SCBO [8]:205 ∑200
d=1 xd ≤ 0 and ||x||22 ≤ 30. We conduct all experiments with an initial dataset size of |D0| = 200,206

using a batch size ofB = 100 and a maximum evaluation limit of 10, 000. In the indicator constraints207

scenarios, as it is too challenging to find an initial feasible solution across all baselines, we sample 10208

points within feasible regions during initialization.209

As shown in the Figure 3, our method outperforms all baselines across different synthetic tasks, both210

in the standard and indicator constraints. Generative model-based methods, including DiffOPT and211

DDOM, struggle to find a feasible solution and fail to improve on indicator constraints. While DiBO212

achieves better feasibility, its finetuning-based approach suffers from mode collapse and tends to213

converge to suboptimal solutions. These results show that employing an outsourced diffusion sampler214

significantly enhances performance in constrained black-box optimization by effectively capturing215

multi-modal and expansive flat target distributions.216

Constrained BO methods (SCBO, PCAGP-SCBO, and LogcEI) successfully identify feasible points217

but show limited sample efficiency compared to our method across all tasks. The evolutionary search218

algorithm CMA-ES performs modestly in general but fails to find a feasible solution for some tasks.219

These results underscore that our approach effectively captures both high-scoring and feasible regions220

in a sample-efficient manner. Furthermore, compared to other baselines, our method consistently221

finds feasible solutions throughout the optimization process, which is illustrated in Appendix E.1.222

5.3 Real World Experiments223

To validate the robustness of our approach, we evaluate our method on three challenging real-world224

benchmark problems: (1) Rover Planning in 60 dimensions with 15 infeasible square-shaped regions,225

(2) Mopta in 124 dimensions with 68 constraints, and (3) Lasso DNA in 180 dimensions with 5226

constraints. For all experiments, we initialize with |D0| = 200 data points and limit evaluations to227

2, 000. We use a batch size of B = 50 for Rover Planning and Lasso DNA, and B = 20 for Mopta,228

as no baseline methods could identify feasible solutions with B = 50.229

As illustrated in Figure 4, our approach consistently identifies high-quality feasible solutions with230

superior sample efficiency across all tasks. We observe that the performance gap between our method231

and other baselines becomes larger on real-world problems and most baselines failed to find any232

feasible solutions for the challenging Mopta-124D and DNA-180D tasks. While SCBO is the only233

competing method to achieve feasibility alongside our approach, it exhibits lower sample efficiency.234

This highlights the robustness of our approach for scalable constrained black-box optimization.235

5.4 Additional Analysis236

In this section, we conduct a comprehensive analysis of each component of our proposed method237

through ablation experiments on Rastrigin 200D and Rover Planning 60D.238

7

(a) Reweighted Training (b) Sampling Procedure

(c) Analysis on λ (d) Analysis on β

Figure 5: Additional analysis for various components of CiBO. Experiments are conducted with four
random seeds, and the mean and one standard deviation are reported.

Reweighted Training. To investigate the effectiveness of our reweighted training approach suggested239

in Equation (7), we conduct a comparative analysis of two variants: training without reweighting,240

applying weights based on the objective values (Objective-prioritized). As shown in Figure 5a,241

variants without reweighting or using objective-prioritized reweighting exhibit low sample efficiency.242

Sampling Procedure. We analyze the effect of each component in candidate sampling. We conduct243

experiments with two variants: removing filtering, and removing both filtering and the diffusion244

sampler, thus sampling candidates directly from the prior pθ. As depicted in Figure 5b, there is a245

significant performance gap between our method and other variants, validating the effectiveness of246

each proposed component. We also experiment with the filtering coefficient N in Appendix E.2.247

Lagrangian Multiplier λ. We introduce the Lagrangian multiplier λ. As shown in Figure 5c, setting248

λ = 0 (eliminating the constraint penalty) significantly degrades performance on both tasks, as it only249

focuses on high objective values and neglects the feasibility of solutions. Conversely, excessively250

high λ values diminish the influence of the objective function, resulting in reduced sample efficiency.251

Inverse Temperature β. The inverse temperature controls the balance between the prior pθ(x) and252

the reward function r(x). We conduct experiments by varying β values. As shown in Figure 5d, using253

a moderately high β generally helps to improve sample efficiency. However, if β is too high, the254

performance is heavily dependent on the accuracy of surrogate models, leading to slow convergence.255

This validates that incorporating prior distribution is crucial for scalability (Section 4.2).256

Further Analysis. To further understand our method, we analyze the impact of the buffer size L257

(Appendix E.3), batch size B, and initial dataset size |D0| (Appendix E.5). We also investigate the258

effect of off-policy training (Appendix E.4) and runtime scalability of our method (Appendix F).259

6 Conclusion260

We introduced CiBO, a generative model-based framework for scalable constrained black-box261

optimization. Our approach formulates candidate selection as posterior inference, leveraging flow-262

based models to capture the data distribution and surrogate models to predict both objectives and263

constraints. By amortizing posterior sampling in the latent space with outsourced diffusion samplers,264

our method effectively addresses the challenges posed by highly multi-modal and flat posterior265

distributions that arise from incorporating constraints. Extensive experiments across synthetic and266

real-world benchmarks demonstrate the superiority of our proposed method.267

8

References268

[1] Jacob Gardner, Matt Kusner, Kilian Weinberger, John Cunningham, et al. Bayesian optimization269

with inequality constraints. In International Conference on Machine Learning, pages 937–945.270

PMLR, 2014.271

[2] Ryan-Rhys Griffiths and José Miguel Hernández-Lobato. Constrained bayesian optimization for272

automatic chemical design using variational autoencoders. Chemical science, 11(2):577–586,273

2020.274

[3] Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabas Poczos,275

Jeff Schneider, and Eric Xing. Chembo: Bayesian optimization of small organic molecules276

with synthesizable recommendations. In International Conference on Artificial Intelligence and277

Statistics, pages 3393–3403. PMLR, 2020.278

[4] Felix Berkenkamp, Angela P Schoellig, and Andreas Krause. Safe controller optimization for279

quadrotors with gaussian processes. In International conference on robotics and automation280

(ICRA), 2016.281

[5] Felix Berkenkamp, Andreas Krause, and Angela P Schoellig. Bayesian optimization with safety282

constraints: safe and automatic parameter tuning in robotics. Machine Learning, 112(10):3713–283

3747, 2023.284

[6] MF Anjos and DR Jones. Mopta 2008 benchmark. URL http://www. miguelanjos. com/jones-285

benchmark, 2009.286

[7] Hauke F Maathuis, Roeland De Breuker, and Saullo GP Castro. High-dimensional bayesian287

optimisation with large-scale constraints via latent space gaussian processes. arXiv preprint288

arXiv:2412.15679, 2024.289

[8] David Eriksson and Matthias Poloczek. Scalable constrained bayesian optimization. In Interna-290

tional conference on artificial intelligence and statistics, pages 730–738. PMLR, 2021.291

[9] Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.292

[10] Roman Garnett. Bayesian optimization. Cambridge University Press, 2023.293

[11] José Miguel Hernández-Lobato, Michael Gelbart, Matthew Hoffman, Ryan Adams, and Zoubin294

Ghahramani. Predictive entropy search for bayesian optimization with unknown constraints. In295

International conference on machine learning, pages 1699–1707. PMLR, 2015.296

[12] Victor Picheny, Robert B Gramacy, Stefan Wild, and Sebastien Le Digabel. Bayesian optimiza-297

tion under mixed constraints with a slack-variable augmented lagrangian. Advances in neural298

information processing systems, 29, 2016.299

[13] Setareh Ariafar, Jaume Coll-Font, Dana Brooks, and Jennifer Dy. Admmbo: Bayesian op-300

timization with unknown constraints using admm. Journal of Machine Learning Research,301

20(123):1–26, 2019.302

[14] David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek.303

Scalable global optimization via local bayesian optimization. In Advances in Neural Information304

Processing Systems (NeurIPS), 2019.305

[15] Lingkai Kong, Yuanqi Du, Wenhao Mu, Kirill Neklyudov, Valentin De Bortoli, Dongxia Wu,306

Haorui Wang, Aaron M Ferber, Yian Ma, Carla P Gomes, and Chao Zhang. Diffusion models307

as constrained samplers for optimization with unknown constraints. In The 28th International308

Conference on Artificial Intelligence and Statistics, 2025.309

[16] Wenqian Xing, JungHo Lee, Chong Liu, and Shixiang Zhu. Black-box optimization with310

implicit constraints for public policy. In Proceedings of the AAAI Conference on Artificial311

Intelligence, volume 39, pages 28511–28519, 2025.312

[17] Masatoshi Uehara, Xingyu Su, Yulai Zhao, Xiner Li, Aviv Regev, Shuiwang Ji, Sergey Levine,313

and Tommaso Biancalani. Reward-guided iterative refinement in diffusion models at test-time314

with applications to protein and dna design. arXiv preprint arXiv:2502.14944, 2025.315

9

[18] Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin316

Hasan, Luke Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, Alexandre Adam, Jarrid317

Rector-Brooks, Yoshua Bengio, Glen Berseth, and Nikolay Malkin. Amortizing intractable318

inference in diffusion models for vision, language, and control. In The Thirty-eighth Annual319

Conference on Neural Information Processing Systems, 2024.320

[19] Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky T. Q. Chen. Adjoint321

matching: Fine-tuning flow and diffusion generative models with memoryless stochastic optimal322

control. In The Thirteenth International Conference on Learning Representations, 2025.323

[20] Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia,324

Nathaniel Lee Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Fine-325

tuning of continuous-time diffusion models as entropy-regularized control. arXiv preprint326

arXiv:2402.15194, 2024.327

[21] Siddarth Venkatraman, Mohsin Hasan, Minsu Kim, Luca Scimeca, Marcin Sendera, Yoshua328

Bengio, Glen Berseth, and Nikolay Malkin. Outsourced diffusion sampling: Efficient posterior329

inference in latent spaces of generative models. In International Conference on Machine330

Learning (ICML), 2025.331

[22] Florentin Coeurdoux, Nicolas Dobigeon, and Pierre Chainais. Normalizing flow sampling with332

langevin dynamics in the latent space. arXiv preprint arXiv:2305.12149, 2023.333

[23] Matthias Schonlau, William J Welch, and Donald R Jones. Global versus local search in334

constrained optimization of computer models. Lecture notes-monograph series, pages 11–25,335

1998.336

[24] Sebastian Ament, Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy.337

Unexpected improvements to expected improvement for bayesian optimization. Advances in338

Neural Information Processing Systems, 36:20577–20612, 2023.339

[25] Nikolaus Hansen. The cma evolution strategy: a comparing review. Towards a new evolutionary340

computation: Advances in the estimation of distribution algorithms, pages 75–102, 2006.341

[26] Asma Atamna, Anne Auger, and Nikolaus Hansen. Augmented lagrangian constraint handling342

for cma-es—case of a single linear constraint. In International Conference on Parallel Problem343

Solving from Nature, pages 181–191. Springer, 2016.344

[27] Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Diffusion models for345

black-box optimization. In International Conference on Machine Learning (ICML), 2023.346

[28] Dongxia Wu, Nikki Lijing Kuang, Ruijia Niu, Yian Ma, and Rose Yu. Diff-BBO: Diffusion-347

based inverse modeling for black-box optimization. In NeurIPS 2024 Workshop on Bayesian348

Decision-making and Uncertainty, 2024.349

[29] Taeyoung Yun, Kiyoung Om, Jaewoo Lee, Sujin Yun, and Jinkyoo Park. Posterior inference with350

diffusion models for high-dimensional black-box optimization. In International Conference on351

Machine Learning (ICML), 2025.352

[30] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.353

Advances in neural information processing systems, 34:8780–8794, 2021.354

[31] Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medi-355

cal imaging with score-based generative models. In International Conference on Learning356

Representations, 2022.357

[32] Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul358

Ye. Diffusion posterior sampling for general noisy inverse problems. In The Eleventh Interna-359

tional Conference on Learning Representations, 2023.360

[33] Ruiqi Feng, Chenglei Yu, Wenhao Deng, Peiyan Hu, and Tailin Wu. On the guidance of flow361

matching. In Forty-second International Conference on Machine Learning, 2025.362

10

[34] Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive363

energy prediction for exact energy-guided diffusion sampling in offline reinforcement learning.364

In International Conference on Machine Learning, pages 22825–22855. PMLR, 2023.365

[35] Luhuan Wu, Brian Trippe, Christian Naesseth, David Blei, and John P Cunningham. Practi-366

cal and asymptotically exact conditional sampling in diffusion models. Advances in Neural367

Information Processing Systems, 36:31372–31403, 2023.368

[36] Gabriel Cardoso, Sylvain Le Corff, Eric Moulines, et al. Monte carlo guided denoising diffusion369

models for bayesian linear inverse problems. In The Twelfth International Conference on370

Learning Representations, 2024.371

[37] Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,372

Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning373

for fine-tuning text-to-image diffusion models. Advances in Neural Information Processing374

Systems, 36:79858–79885, 2023.375

[38] Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion376

models with reinforcement learning. In The Twelfth International Conference on Learning377

Representations, 2024.378

[39] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow379

matching for generative modeling. In The Eleventh International Conference on Learning380

Representations, 2023.381

[40] Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer382

data with rectified flow. In The Eleventh International Conference on Learning Representations,383

2023.384

[41] Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic385

interpolants. In The Eleventh International Conference on Learning Representations, 2023.386

[42] Marcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-Brooks,387

Alexandre Adam, Yoshua Bengio, and Nikolay Malkin. Improved off-policy training of diffusion388

samplers. Advances in Neural Information Processing Systems, 37:81016–81045, 2024.389

[43] Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory390

balance: Improved credit assignment in gflownets. Advances in Neural Information Processing391

Systems, 35:5955–5967, 2022.392

[44] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and393

Ben Poole. Score-based generative modeling through stochastic differential equations. In394

International Conference on Learning Representations, 2021.395

[45] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable396

predictive uncertainty estimation using deep ensembles. Advances in neural information397

processing systems, 30, 2017.398

[46] Minsu Kim, Federico Berto, Sungsoo Ahn, and Jinkyoo Park. Bootstrapped training of score-399

conditioned generator for offline design of biological sequences. In Advances in Neural400

Information Processing Systems (NeurIPS), 2023.401

[47] Aviral Kumar and Sergey Levine. Model inversion networks for model-based optimization. In402

Advances in Neural Information Processing Systems (NeurIPS), 2020.403

[48] Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online404

reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.405

[49] Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched large-scale bayesian406

optimization in high-dimensional spaces. In International Conference on Artificial Intelligence407

and Statistics, pages 745–754. PMLR, 2018.408

[50] Kenan Šehić, Alexandre Gramfort, Joseph Salmon, and Luigi Nardi. Lassobench: A high-409

dimensional hyperparameter optimization benchmark suite for lasso. In International Confer-410

ence on Automated Machine Learning, pages 2–1. PMLR, 2022.411

11

[51] José Miguel Hern, Michael A Gelbart, Ryan P Adams, Matthew W Hoffman, Zoubin Ghahra-412

mani, et al. A general framework for constrained bayesian optimization using information-based413

search. Journal of Machine Learning Research, 17(160):1–53, 2016.414

[52] Nicola Demo, Marco Tezzele, and Gianluigi Rozza. A supervised learning approach involving415

active subspaces for an efficient genetic algorithm in high-dimensional optimization problems.416

SIAM Journal on Scientific Computing, 43(3):B831–B853, 2021.417

[53] Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learning search space partition for black-418

box optimization using monte carlo tree search. Advances in Neural Information Processing419

Systems, 33:19511–19522, 2020.420

[54] Zeji Yi, Yunyue Wei, Chu Xin Cheng, Kaibo He, and Yanan Sui. Improving sample efficiency421

of high dimensional bayesian optimization with mcmc. In 6th Annual Learning for Dynamics422

& Control Conference, pages 813–824. PMLR, 2024.423

[55] Zelda B Zabinsky and Robert L Smith. Hit-and-run methods. Encyclopedia of Operations424

Research and Management Science, pages 721–729, 2013.425

[56] Leonard Papenmeier, Luigi Nardi, and Matthias Poloczek. Increasing the scope as you learn:426

Adaptive bayesian optimization in nested subspaces. Advances in Neural Information Processing427

Systems, 35:11586–11601, 2022.428

[57] Nikolaus Hansen, Youhei Akimoto, and Petr Baudis. CMA-ES/pycma on Github. Zenodo,429

DOI:10.5281/zenodo.2559634, February 2019.430

[58] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint431

arXiv:1606.08415, 2016.432

[59] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-433

tional Conference on Learning Representations (ICLR), 2015.434

[60] Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ435

Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv436

preprint arXiv:2412.06264, 2024.437

[61] Ricky T. Q. Chen. torchdiffeq, 2018.438

[62] Ulf Grenander and Michael I Miller. Representations of knowledge in complex systems. Journal439

of the Royal Statistical Society: Series B (Methodological), 56(4):549–581, 1994.440

[63] Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid monte441

carlo. Physics letters B, 195(2):216–222, 1987.442

[64] J. H. Halton. Sequential monte carlo. Mathematical Proceedings of the Cambridge Philosophical443

Society, 58(1):57–78, 1962.444

[65] Nicolas Chopin. A sequential particle filter method for static models. Biometrika, 89(3):539–445

552, 2002.446

[66] John Skilling. Nested sampling for general bayesian computation. 2006.447

[67] Pablo Lemos, Nikolay Malkin, Will Handley, Yoshua Bengio, Yashar Hezaveh, and Laurence448

Perreault-Levasseur. Improving gradient-guided nested sampling for posterior inference. In449

International Conference on Machine Learning, pages 27230–27253. PMLR, 2024.450

[68] Qinsheng Zhang and Yongxin Chen. Path integral sampler: A stochastic control approach for451

sampling. In International Conference on Learning Representations, 2022.452

[69] Francisco Vargas, Will Sussman Grathwohl, and Arnaud Doucet. Denoising diffusion samplers.453

In The Eleventh International Conference on Learning Representations, 2023.454

[70] Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-455

based generative modeling. Transactions on Machine Learning Research, 2024.456

12

[71] Lorenz Richter and Julius Berner. Improved sampling via learned diffusions. In The Twelfth457

International Conference on Learning Representations, 2024.458

[72] Francisco Vargas, Shreyas Padhy, Denis Blessing, and Nikolas Nüsken. Transport meets varia-459

tional inference: Controlled monte carlo diffusions. In The Twelfth International Conference on460

Learning Representations, 2024.461

[73] Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex462

Hernández-Garcıa, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of463

continuous generative flow networks. In International Conference on Machine Learning, pages464

18269–18300. PMLR, 2023.465

[74] Dinghuai Zhang, Ricky TQ Chen, Cheng-Hao Liu, Aaron Courville, and Yoshua Bengio.466

Diffusion generative flow samplers: Improving learning signals through partial trajectory467

optimization. In The Twelfth International Conference on Learning Representations, 2024.468

[75] Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward J Hu, Katie E Everett, Dinghuai469

Zhang, and Yoshua Bengio. GFlownets and variational inference. In The Eleventh International470

Conference on Learning Representations, 2023.471

[76] Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid472

Rector-Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based genera-473

tive models with minibatch optimal transport. Transactions on Machine Learning Research,474

2024.475

[77] Aaron J Havens, Benjamin Kurt Miller, Bing Yan, Carles Domingo-Enrich, Anuroop Sriram,476

Daniel S. Levine, Brandon M Wood, Bin Hu, Brandon Amos, Brian Karrer, Xiang Fu, Guan-477

Horng Liu, and Ricky T. Q. Chen. Adjoint sampling: Highly scalable diffusion samplers via478

adjoint matching. In Frontiers in Probabilistic Inference: Learning meets Sampling, 2025.479

[78] Minsu Kim, Sanghyeok Choi, Taeyoung Yun, Emmanuel Bengio, Leo Feng, Jarrid Rector-480

Brooks, Sungsoo Ahn, Jinkyoo Park, Nikolay Malkin, and Yoshua Bengio. Adaptive teachers for481

amortized samplers. In The Thirteenth International Conference on Learning Representations,482

2025.483

13

Appendix484

A Task Details485

A.1 Synthetic Functions486

We evaluate three synthetic functions in our constrained black-box optimization experiments: Rastri-
gin, Ackley, and Rosenbrock. The Rastrigin and Ackley functions are highly multi-modal functions
with numerous local minima, whereas the Rosenbrock function features a narrow valley that makes
convergence to the global minimum notoriously difficult [52]. Following [53, 54], we define the
search domains as Rastrigin: [−5, 5]D, Ackley: [−5, 10]D, and Rosenbrock: [−5, 10]D. All functions
are subject to two constraints:

200∑
d=1

xd ≤ 0 and ||x||22 ≤ 30

Although prior work enforced the tighter bound ||x||22 ≤ 5, we relax this constraint in our high-487

dimensional setting. For the indicator constraint experiments, we sample initial feasible points by488

hit-and-run MCMC [55].489

A.2 Rover Trajectory Planning490

Rover Trajectory Planning is a trajectory optimization task in a 2D environment introduced by [49].
The objective is to optimize the rover’s trajectory, where its trajectory is represented by 30 points
defining a B-Spline. We place 15 impassable obstacles oi and impose collision-avoidance constraints
ci(x) as in [8]:

ci(x) =


− d
(
oi, γ(x)

)
if γ(x) ∩ oi = ∅,

max
α∈γ(x)∩oi

min
β∈∂oi

d(α, β) otherwise.

where γ(x) denotes final trajectory, oi is the region of the obstacle and ∂oi denotes the boundary of oi.491

A trajectory is feasible if and only if it does not intersect any obstacle. We follow the implementation492

from [49], but since there is no released code for the constraints, we implement the violation metric493

ourselves. Below is an example of the trajectory found by our method.494

Figure 6: Trajectory found by CiBO, achieving regret of -4.59.

14

A.3 Vehicle Design with 68 Constraints (MOPTA)495

MOPTA is the high-dimensional real-world problem of large-scale multidisciplinary mass optimiza-496

tion [6]. The objective is to minimize a vehicle’s mass, which incorporates decisions about materials,497

gauges, and vehicle shape with 68 performance constraints. The best-known optimum mass is498

approximately 222.74. We followed the implementation from [56]. 1499

A.4 LassoBench500

LassoBench [50] 2 is a high-dimensional benchmark for hyperparameter optimization, specifically501

designed to tune the hyperparameters of the Weighted LASSO (Least Absolute Shrinkage and502

Selection Operator) regression model. It includes both synthetic tasks (simple, medium, high, and503

hard) and real-world tasks (Breast cancer, Diabetes, Leukemia, DNA, and RCV1). In this work, we504

focus on the DNA task, a microbiology classification problem. It computes the average validation505

error across all cross-validation folds as an unconstrained objective. We reformulate the problem by506

retaining the mean validation error as the objective while introducing constraints that the validation507

error on each fold must not exceed 0.32.508

B Baselines Details509

In this section, we provide a thorough description of our baseline implementation details and specify510

the hyperparameter settings used across all experiments.511

DiBO [29]: We use the original code3, and adapt DiBO to handle constrained optimization by512

reformulating the objective as a Lagrangian, setting the same λ value as our methods for fair513

comparison.514

DiffOPT [15]: As there is no publicly available code, we re-implement this baseline on our own. To515

approximate the data distribution, we use diffusion models with a similar architecture to our method.516

To enable accurate sampling from the target distribution, we implement Langevin dynamics as the517

energy function, which can be constructed by surrogate models in our setting, is differentiable.518

DDOM [27]: Building on the original implementation4, we reconstruct this baseline with network519

architecture matching our flow-based model. While maintaining the method’s specific parameters as520

specified in the original work, we incorporate a Lagrangian framework and set the same λ as ours.521

SCBO [8]: We follow the tutorial code for SCBO provided by botorch 5 to reproduce the results.522

PCAGP-SCBO [7]: To reproduce PCAGP-SCBO, we follow the code for SCBO and then apply523

torch pca6 to project high-dimensional data into a reduced latent space with dimension l before524

fitting GP surrogates for constraints. For all synthetic tasks, we use l = 2 and for real-world tasks,525

we conduct a hyperparameter search on [2, ⌊D/2⌋] and report the best one.526

cEI [23]: We implement cEI acquisition function by using qExpectedImprovement() in botorch527

library. We train a GP surrogate model independently for the objective and each constraint.528

LogcEI [24]: We implement logcEI acquisition function by using qLogExpectedImprovement() in529

botorch library. We train a GP surrogate model independently for the objective and each constraint.530

CMA-ES [25]: We employ the pycma7 library [57]. For constraint handling, we formulate the531

problem using the same Lagrangian approach with the same λ value as ours for each task.532

1https://github.com/LeoIV/BAxUS
2https://github.com/ksehic/LassoBench
3https://github.com/umkiyoung/DiBO
4https://github.com/siddarthk97/ddom
5https://botorch.org/docs/tutorials/scalable_constrained_bo/
6https://github.com/valentingol/torch_pca
7https://github.com/CMA-ES/pycma

15

https://github.com/LeoIV/BAxUS
https://github.com/ksehic/LassoBench
https://github.com/umkiyoung/DiBO
https://github.com/siddarthk97/ddom
https://botorch.org/docs/tutorials/scalable_constrained_bo/
https://github.com/valentingol/torch_pca
https://github.com/CMA-ES/pycma

C Algorithms533

Algorithm 1 CiBO

1: Input: Initial dataset D0; Max rounds R; Batch size B; Buffer size L; Number of constraints M ;
Flow model pθ; Diffusion sampler pψ; Proxies fϕ1

, · · · , fϕK
, g

(1)
ϕ , · · · , g(M)

ϕ ;
2: for r = 0, . . . , R− 1 do
3: Initialize pθ, pψ , fϕ1 , · · · , fϕK

, g
(1)
ϕ , · · · , g(M)

ϕ
4:
5: Phase 1. Training Models
6: Compute weights w(y, c,Dr) with Equation (7)
7: Train pθ with Equation (8)
8: Train fϕ1 , · · · , fϕK

, g
(1)
ϕ , · · · , g(M)

ϕ with Equation (9)
9:

10: Phase 2. Sampling Candidates
11: Train pψ with Equation (14) using prior pθ and z ∼ N(0, I)
12: Sample latent noise with {zi}NBi=1 ∼ pψ(z)
13: Projection to data space with learned mapping xi = fθ(zi) ∀i ∈ {1, · · · , NB}
14:
15: Filtering
16: Select top-B samples {xb}Bb=1 with respect to:

rϕ(xi)− λ
∑M
m=1 max(0, g

(m)
ϕ (xi)) ∀i = {1, · · · , NB}

17:
18: Evaluation and Moving Dataset
19: Evaluate yb = f(xb), cmb = g(m)(xb) ∀m = {1, · · ·M} ∀b = {1, · · · , B}
20: Update Dr+1 ← Dr ∪ {(xb, yb, cb)}Bb=1
21: if |Dr+1| > L then
22: Remove last |Dr+1| − L samples from Dr+1 with respect to: y − λ

∑M
m=1 max(0, cm)

23: end if
24: end for

16

D Implementation Details534

In this section, we introduce the implementation details of our method CiBO. Specifically, model535

architectures, the training processes employed, the hyperparameter configurations used, and the536

computational resources required.537

D.1 Training Models538

D.1.1 Training Proxies539

We employ an ensemble of five proxies to model the objective function and a single proxy for each540

constraint. Each proxy is implemented as a MLP with three hidden layers of 1024 units, using GELU541

[58] activations. Proxies are trained with the Adam optimizer [59] for 100 epochs per round at a542

learning rate of 1× 10−3 and a batch size of 256. All hyperparameters related to the proxy are listed543

in Table 1.544

Table 1: Hyperparameters for Training Proxy

Parameters Values

Architecture
Num Ensembles 5
Number of Layers 3
Num Units 1024

Training

Batch size 256
Optimizer Adam
Learning Rate 1× 10−3

Training Epochs 100

D.1.2 Training Flow-based Models545

We adopt the architecture of [60] for our flow model, comprising three hidden layers with 512546

units each. Training is performed using Adam optimizer for 500 epochs per round, with a learning547

rate of 1 × 10−3 and a batch size of 256. For ODE integration during sampling, we employ the548

Runge-Kutta 4 method with torchdiffeq [61], and set the integration steps as 250. All flow-model549

hyperparameters are detailed in Table 2.

Table 2: Hyperparameters for Training Flow-based Model

Parameters Values

Architecture Number of Layers 3
Num Units 512

Training

Batch size 256
Optimizer Adam
Learning Rate 1× 10−3

Training Epochs 500

550

17

D.2 Sampling Candidates551

D.2.1 Training Diffusion Sampler552

Various approaches have been developed to draw samples from a distribution when only an unnor-553

malized probability density or energy function is available. Traditional methods include Markov554

Chain Monte Carlo (MCMC) techniques [62, 63, 64, 65, 66, 67], though their computational cost555

increases dramatically in high-dimensional spaces. More recently, amortized variational inference556

methods, particularly those based on training diffusion samplers [68, 69, 70, 71, 72, 73, 74], have557

gained widespread adoption as they offer improved scalability for high-dimensional problems.558

Following the [21], we adopt [42] to train diffusion sampler to sample from the target:559

ppost(z) ∝ p(z) exp

(
β ·

[
rϕ(fθ(z))− λ

M∑
m=1

max
(
0, g

(m)
ϕ (fθ(z))

)])
(15)

Here, the right-hand-side term serves as an unnormalized probability density, which the diffusion560

sampler amortizes the sampling cost by approximating it.561

Off-policy Training of Diffusion Sampler As mentioned in the Section 4.2, we use the Trajectory
Balance objective to train the diffusion sampler.

LTB(z0:1;ψ) =

(
log

Zψp(z0)
∏T−1
i=0 pF (z(i+1)∆t|zi∆t;ψ)

p(z1)r(fθ(z1))
∏T
i=1 pB(z(i−1)∆t|zi∆t)

)2

The primary advantage of the TB loss is off-policy training [42, 75]. We can train our model not only562

from the on-policy trajectories through the reverse SDE {z0, · · · , z1} = τ ∼ pF (τ) but also from563

the trajectories through the forward SDE conditioned on the generated samples τ ∼ pB(τ |z1). This564

proves its effectiveness on mode coverage and credit assignment [42].565

Specifically, we repeat two processes. First, we sample trajectories on-policy τ ∼ pF (τ), train566

the model with Equation (14), and collect the samples z1 into the buffer. Second, from the col-567

lected samples z1, we generate off-policy trajectories through τ ∼ pB(τ |z1), then train with568

the Equation (14). During the off-policy training, we prioritize the samples with low energy:569

E(z1) = − log(p(z1)r(fθ(z1))) following [42] to make our model focus on the low energy samples.570

These techniques improve the overall performance of our framework (Appendix E.4).571

We use the original code8 released from [42] for implementation. We also set method-specific572

hyperparameters with Path Integral Sampler (PIS) [68] architecture, zero initialization, and t-scale573

to 1 to make sure the initialized pF (z1) starts from the standard normal distribution. Detailed574

hyperparameters for training the diffusion sampler can be found in Table 3.575

Table 3: Hyperparameters for Training Diffusion Sampler

Parameters Values

Architecture
Number of Layers 2
Num Units 256
Diffusion Time Steps 50

Training

Batch size 256
Optimizer Adam
Learning Rate 1× 10−3

Training Epochs 50

Computational Resources. Our experiments were conducted using NVIDIA RTX 3090 and A6000576

GPUs. These resources were sufficient to train our models within a reasonable time for all reported577

experiments. Details of computational time can be found at Appendix F.578

8https://github.com/GFNOrg/gfn-diffusion

18

https://github.com/GFNOrg/gfn-diffusion

D.3 Hyperparameters579

In our formulation of constrained black-box problems, we introduce λ for Lagrangian augmentation.580

We draw N ×B samples from the posterior distribution, then select B samples during filtering. After581

evaluation, we update the training set by keeping the top L highest-scoring samples subject to the582

Lagrangian objective. Table 4 summarizes all hyperparameter values used in candidate selection,583

and we include additional analysis to assess how each parameter affects overall performance in584

Section 5.4 and Appendix E.585

Table 4: Hyperparameters during sampling candidates
Lambda λ Inverse Temperature β Buffer Size L Filtering Coefficient N

Ackley 200D 10 105 3000 10
Rastrigin 200D 10 105 2000 10

Rosenbrock 200D 10 105 2000 10

RoverPlanning 60D 3 105 1000 10
Mopta 124D 3 103 500 10
DNA 180D 5 103 1000 15

19

E Further Analysis586

In this section, we provide further analysis on different components of our method that are not587

included in the main manuscript due to the page limit.588

E.1 Analysis on Feasibility Ratio589

To further analyze our method’s ability to effectively handle constraints, we report the feasibility590

ratio across optimization batches for the Rastrigin 200D task. Here, the feasibility ratio denotes the591

number of feasible samples over queried samples.592

Figure 7: Feasibility ratio over all baselines. Experiments are conducted with four random seeds, and
the mean and one standard deviation are reported.
As shown in Figure 7, CiBO demonstrates superior performance by rapidly achieving the highest593

feasibility ratio within the first 5-10 batches, significantly faster than all competing methods. While594

some baselines (SCBO, PCAGP-SCBO) eventually reach high feasibility ratios, they require approxi-595

mately twice as many batches to achieve comparable performance. Other methods like DiBO and596

DiffOPT take even longer (around 20 batches), and CMA-ES struggles substantially, only reaching597

moderate feasibility ratios after 50 batches. Notably, CiBO not only reaches the high feasibility ratio598

faster but also maintains it consistently throughout the optimization process, demonstrating its robust599

constraint-handling capabilities in high-dimensional spaces.600

20

E.2 Analysis on Filtering coefficient N601

To improve the sample efficiency of our method, we introduce filtering, where we sample N × B602

candidates from the posterior distribution, then select the highest B samples with respect to the603

Lagrangian-relaxed objective function. To analyze the impact of the filtering coefficient N , we604

experiment with varying N values, including our default N = 100.605

Figure 8: Performance of CiBO in Rastrigin-200D and Rover Planning-60D with varying N . Experi-
ments are conducted with four random seeds, and the mean and one standard deviation are reported.
As shown in Figure 8, increasing the filtering coefficient improves sample efficiency by concentrating606

candidate selection in both high objective values and feasible regions. If the coefficient is set too low,607

we lose its exploitation capability, leading to slower convergence.608

E.3 Analysis on Buffer Size L609

In each round, we retain the L top-scoring samples with respect to the Lagrangian-relaxed objective610

function for computational efficiency. To analyze the effect of the buffer size L, we conduct611

experiments by varying L. As demonstrated in Figure 9, using too small L occasionally gets stuck in612

a sub-optimal solution while using too large L exhibits a slow convergence rate.613

Figure 9: Performance of CiBO in Rastrigin-200D and Rover Planning-60D with varying L. Experi-
ments are conducted with four random seeds, and the mean and one standard deviation are reported.

21

E.4 Effect of Off-policy Training in Amortized Inference614

We employ off-policy training with the TB loss to train the diffusion sampler as detailed in Section 4.2.615

To analyze the impact of off-policy training on performance, we conduct ablation studies on different616

training schemes. As shown in Figure 10, off-policy training consistently outperforms on-policy617

methods, and the performance gap widens as the number of constraints grows (15 constraints in618

Rover Planning versus only 2 in Rastrigin). It underlines that training with off-policy samples is619

crucial for amortizing the posterior distribution with multiple modes and a large plateau.620

Figure 10: Comparison between off-policy and on-policy in Rastrigin-200D and Rover Planning-60D.
Experiments are conducted with four random seeds, and the mean and one standard deviation are
reported.

E.5 Analysis on Initial Dataset size |D0| and Batch size B621

The size of the initial dataset, |D0|, and batch size B play a critical role in the performance of622

black-box optimization algorithms. When |D0| is small and B is large, the algorithm must optimize623

using very limited information, making the search significantly more challenging. To this end, we624

conduct experiments varying |D0| and B to demonstrate the robustness of our method on initial data625

configurations. As shown in Figure 11, our method demonstrates robustness regarding both the initial626

dataset size |D0| and the batch size B.627

Figure 11: Performance of CiBO in Rastrigin-200D with varying |D0| and B. Experiments are
conducted with four random seeds, and the mean and one standard deviation are reported.

22

F Runtimes628

We report the running time of each method in Table 5. To measure the runtime, we conduct629

experiments on a single NVIDIA RTX 3090 GPU and Intel Xeon Platinum CPU @ 2.90 GHz.630

As shown in the table, the running time of our method is similar to other generative model-based631

approaches, and mostly faster than BO-based methods.

Table 5: Average time (in seconds) for each round in each method.
Rastrigin-200D Ackley-200D Rosenbrock-200D RoverPlanning-60D Mopta-124D DNA-180D

cEI 336.96 ± 47.48 133.12 ± 6.66 489.86 ± 81.38 111.13 ± 5.83 205.66 ± 5.35 133.98 ± 9.16
LogcEI 720.45 ± 56.76 158.38 ± 10.13 593.39 ± 97.93 113.28 ± 3.97 324.27 ± 9.91 161.08 ± 8.21
SCBO 322.81 ± 47.38 117.81 ± 6.50 475.02 ± 80.11 87.83 ± 4.42 270.30 ± 5.19 147.83 ± 12.57
PCAGP-SCBO 327.48 ± 51.20 122.67 ± 3.50 479.06 ± 82.41 17.55 ± 3.05 20.69 ± 0.39 81.34 ± 9.19

CMA-ES 0.08 ± 0.00 0.09 ± 0.00 0.10 ± 0.01 0.61 ± 0.00 5.33 ± 0.15 46.58 ± 3.16

DDOM 26.87 ± 0.28 27.00 ± 0.32 26.96 ± 0.12 3.56 ± 0.02 8.63 ± 0.37 50.99 ± 0.81
DiffOPT 91.00 ± 5.07 111.04 ± 1.51 89.37 ± 8.27 29.48 ± 1.21 105.61 ± 2.71 60.64 ± 1.34
DiBO 73.97 ± 0.56 68.89 ± 0.98 73.83 ± 1.11 29.43 ± 1.51 66.61 ± 4.16 71.85 ± 2.48

CiBO 73.39 ± 2.09 103.43 ± 4.84 82.24 ± 6.50 53.58 ± 5.14 105.43 ± 2.24 81.77 ± 2.37

632

23

G Limitations and Future Work633

We are interested in improving our method further. First, as we need to train all models with the634

updated dataset in every round, presenting a framework that can efficiently reuse the trained models635

from the previous rounds would be beneficial. Furthermore, there are several advancements in the636

literature on flow-based model training [76] and diffusion samplers [77, 78], which could potentially637

yield substantial performance gains. We leave them as future work.638

H Broader Impact639

Advances in real-world design optimization have the potential to drive major innovations, but they640

also come with potential risks and unintended consequences. For example, optimization techniques641

in biochemical design may uncover novel compounds with therapeutic potential, but similar methods642

could also be misused to discover harmful substances. It is essential for researchers to act responsibly643

and ensure their work serves the public good.644

24

	Introduction
	Related Works
	Constrained Black-box Optimization
	Generative Model-based Optimization
	Amortized Inference in Flow-based and Diffusion Models

	Preliminaries
	Constrained Black-box Optimization
	Flow-based Models
	Posterior Inference in Flow-based and Diffusion Models

	Method
	Phase 1. Training Models
	Phase 2. Sampling Candidates
	Filtering, Evaluation and Moving Dataset

	Experiments
	Baselines
	Synthetic Experiments
	Real World Experiments
	Additional Analysis

	Conclusion
	Task Details
	Synthetic Functions
	Rover Trajectory Planning
	Vehicle Design with 68 Constraints (MOPTA)
	LassoBench

	Baselines Details
	Algorithms
	Implementation Details
	Training Models
	Training Proxies
	Training Flow-based Models

	Sampling Candidates
	Training Diffusion Sampler

	Hyperparameters

	Further Analysis
	Analysis on Feasibility Ratio
	Analysis on Filtering coefficient N
	Analysis on Buffer Size L
	Effect of Off-policy Training in Amortized Inference
	Analysis on Initial Dataset size |D0| and Batch size B

	Runtimes
	Limitations and Future Work
	Broader Impact

