© ® N O o A~ W N =

24
25
26
27

28
29
30
31
32
33

34
35
36

Posterior Inference in Latent Space
for Scalable Constrained Black-box Optimization

Anonymous Author(s)
Affiliation
Address

email

Abstract

Optimizing high-dimensional black-box functions under black-box constraints is
a pervasive task in a wide range of scientific and engineering problems. These
problems are typically harder than unconstrained problems due to hard-to-find
feasible regions. While Bayesian optimization (BO) methods have been developed
to solve such problems, they often struggle with the curse of dimensionality. Re-
cently, generative model-based approaches have emerged as a promising alternative
for constrained optimization. However, they suffer from poor scalability and are
vulnerable to mode collapse, particularly when the target distribution is highly
multi-modal. In this paper, we propose a new framework to overcome these chal-
lenges. Our method iterates through two stages. First, we train flow-based models
to capture the data distribution and surrogate models that predict both function
values and constraint violations with uncertainty quantification. Second, we cast
the candidate selection problem as a posterior inference problem to effectively
search for promising candidates that have high objective values while not violating
the constraints. During posterior inference, we find that the posterior distribution
is highly multi-modal and has a large plateau due to constraints, especially when
constraint feedback is given as binary indicators of feasibility. To mitigate this
issue, we amortize the sampling from the posterior distribution in the latent space
of flow-based models, which is much smoother than that in the data space. We
empirically demonstrate that our method achieves superior performance on various
synthetic and real-world constrained black-box optimization tasks. Our code is
publicly available here.

1 Introduction

Optimizing high-dimensional black-box functions under black-box constraints is a fundamental task
across numerous scientific and engineering problems, including machine learning [[1], drug discovery
[2, 3], control [4], 15]], and industrial design [0, [7]. In most cases, these problems are much harder than
unconstrained problems due to analytically undefined and hard-to-find feasible regions [8].

Bayesian Optimization (BO) has been widely used to solve black-box optimization problems in
a sample-efficient manner [9, [10]. While most BO methods focus on unconstrained optimization
problems, some works address problems with black-box constraints by developing new acquisition
functions [1}[11] or relaxing the constraints [12}[13]]. However, even without constraints, BO methods
scale poorly to high dimensionality [14]. Moreover, incorporating constraints makes the function
landscape highly complex, hindering accurate estimation of surrogate models.

Recently, generative models have emerged as an alternative solution for black-box optimization
problems with constraints [[15, (16} 17]. For example, we can leverage generative models to sample
protein sequences that maximize the binding affinity while preserving the naturalness of the design.
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Figure 1: Motivating figure. In a high-dimensional setting, sampling from the posterior distribution is
beneficial for selecting candidates. However, the posterior distribution is highly multi-modal and has
a large plateau due to the constraints . We can mitigate this issue by sampling latents
from the posterior distribution (purple one) of the latent space and projecting them into the data space.
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However, existing methods rely on MCMC-based approaches [[15]], which limit scalability in high-
dimensional spaces. While one can fine-tune pretrained generative models with reward functions
[L8L 119, 120], naive application of fine-tuning methods is vulnerable to mode collapse when the target
distribution is highly multi-modal [21], which leads to a convergence on sub-optimal solutions.

In this paper, we propose a novel generative model-based framework for constrained black-box
optimization to overcome the aforementioned limitations. To efficiently explore high-dimensional
spaces, we first frame the candidate selection problem as sampling from the posterior distribution,
which can be constructed by multiplying the prior distribution with a Lagrangian-relaxed objective.
To sample candidates from the posterior distribution, our key idea is to amortize inference in the latent
space of a flow-based model using an outsourced diffusion sampler [21]], as illustrated in Figure|[T]
Since the posterior distribution in the latent space is much smoother than that in the data space, we
can approximate the distribution more accurately and alleviate the mode collapse problem [22].

Our method iterates through two stages. First, we train a flow-based model to capture the current
data distribution and surrogate models to predict the objective value and constraints, respectively.
For the surrogate models, we use an ensemble to quantify the uncertainty of the prediction, as we
have only a small amount of data that covers a tiny fraction of the whole search space. We treat a
trained flow-based model as a prior, and Lagrangian relaxation of the objective as a reward function.
Second, we sample candidates from the posterior distribution. As the posterior distribution is highly
multi-modal and has a large plateau due to constraints, especially when constraint feedback is given
as binary indicators of feasibility, we train a diffusion sampler that amortizes the posterior distribution
in the latent space of flow models. Then, we sample latents from the diffusion sampler and project
them into data space using a deterministic mapping derived from the trained flow model. By repeating
these two stages, we can effectively capture high-scoring regions that satisfy the constraints.

We conduct extensive experiments on three synthetic and three real-world benchmarks to validate the
superiority of our method on scalable constrained black-box optimization problems. We also consider
a more challenging scenario where the feedback from the constraints is given as a binary value. We
empirically show that our method outperforms several competitive baselines across different tasks.

2 Related Works

2.1 Constrained Black-box Optimization

Most scientific and engineering optimization problems involve black-box constraints, such as the
synthesizability of molecules in chemical design [2] and safety constraints in robot control policies
[4]. Existing BO methods solve this problem by either integrating the constraints directly into the
acquisition function (cEI [23]], LogcEI [24]]) or by employing trust region approaches for scalability
(SCBO [8]], PCAGP-SCBO [[7]). Another line of work utilizes evolutionary algorithms like CMA-
ES [25!26] with an augmented Lagrangian method to navigate constrained spaces. However, the
performance of these methods often degrades as dimensionality and the number of evaluations
increase, which motivates the need for a more scalable approach.
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2.2 Generative Model-based Optimization

There are several attempts to utilize generative models for black-box optimization. In an offline
setting, DDOM [27]] trains a conditional diffusion model with classifier-free guidance and applies a
loss-reweighting to emphasize samples with high objective values. DiffOPT [15]] solves a constrained
optimization problem. It applies diffusion to capture data distribution, followed by an iterative
importance-sampling procedure. In an online setting, DiffBBO [28] and DiBO [29] both leverage
diffusion models and incorporate uncertainty estimation during candidate selection. DiBO treats
candidate selection as posterior inference to guide sampling toward regions of high reward and uncer-
tainty, while DiffBBO selects conditioning targets by employing an uncertainty-based acquisition
function. Unfortunately, constrained black-box optimization in the online setting remains unexplored.

2.3 Amortized Inference in Flow-based and Diffusion Models

Given a diffusion or flow prior py(x) trained on a dataset and a reward function r(x), sampling from
the posterior ppos(x) o pg(x)r(x) has numerous applications in downstream tasks 30} [18} 31 32}
19, 21]]. However, direct sampling from the unnormalized posterior pg(x)r(x) is intractable [[18] [33]].

To address this problem, some approaches train classifiers directly within intermediate noised spaces
[30L 34]] while others approximate posterior sampling via Markov Chain Monte Carlo (MCMC)
procedures [22,132|[35136]. However, training classifiers in noisy data spaces and employing MCMC
methods scale poorly to high dimensionality. On the other hand, several methods utilize reinforcement
learning [37,138] or stochastic optimal control [19] to fine-tune the pretrained model and amortize the
posterior sampling. Meanwhile, naive implementations of fine-tuning methods can be prone to mode
collapse when the target distribution is highly multi-modal and has a large plateau region [21].

To mitigate this issue, we adopt the outsourced diffusion sampler method proposed by Venkatraman
et al. [21]. Matching the distribution within the latent space significantly simplifies the alignment
task when the distribution is highly multi-modal and has a large flat region in the original data space.

3 Preliminaries

3.1 Constrained Black-box Optimization
In constrained black-box optimization, our problem is:
find x* = arg max f(x) st gWPx)<0,---,9™M(x) <0
with R rounds of B batch of queries €))]

The objective function f : X — R and constraints g(*),--- , g : X — R are black-box functions.
We also consider a more challenging scenario, only access to information on whether we violate
constraints or not, i.e., h(™) (x) = I[g(™)(x) > 0]. We refer to this as an indicator constraint.

3.2 Flow-based Models

Flow-based models [39,140, 4 1] are a class of generative models for approximating a target distribution
q(x). Flow-based models are defined via the deterministic ordinary differential equation (ODE):

dx; = vg(xy,t) dt 2)
where vg (x4, t) : R? x [0,1] — R is a parametric velocity field.

For each given velocity field, the corresponding flow 1 (x0,t) : R? x [0, 1] — R satisfies:

%W(Xo,t) = vg(Yg(x0,1),t), Ya(%0,0) = Xo. (3)

The velocity field vy (x;,t) defines a continuous probability path p; induced by the flow:
x; = Pp(Xo,t) ~ pi, Where xo ~ po. “

Training Flow-based Models. We use Flow Matching [39] to learn the velocity field vy that generates
a path interpolating smoothly between an initial distribution pg = p and a target distribution p; = q.
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Figure 2: Overview of our method. Phase 1: Train flow-based models and proxies for the objective
and constraints. Phase 2: Sample candidates from the posterior distribution using an outsourced
diffusion sampler. After sampling, we utilize filtering to enhance sample efficiency. Then, we evaluate
samples, update the dataset, and repeat the process until the evaluation budget is exhausted.

We employ the simplest linear interpolation path x; = (1 —t)x(+tx1, with derivative % = X1 —Xo,
following [39]]. The Flow Matching loss is expressed as:
Lim(0) = By oA (0,1), 31 ~a(x), t~Unif(0,1) [1V6 (X2, 1) — (x1 = %0)][3] - )

3.3 Posterior Inference in Flow-based and Diffusion Models

Given a pretrained flow-based prior py(x), and a reward function r(x), we consistently encounter a
situation where we need to sample from the posterior distribution, ppos (%) o pg(x)r(x). To sample
from this intractable [33] distribution, we utilize the outsourced diffusion sampling [21].

We can interpret the sampling process of flow-based models into a noise generation z ~ p(z), followed
by a deterministic transformation x = fy(z), where p(z) is standard normal and fy represents the
learned mapping derived by prior. Under this formulation, by Proposition 3.1 of [21], we can sample
from the posterior distribution by substituting noise generation as z ~ pposi(2z) o p(2)r(fo(2)).

To approximate the target distribution py(z) & ppost(2), we can learn the parameters of diffusion
sampler v with the trajectory balance (TB) objective [42, 143]:

Zyp(20) [T1—0' PF(Zs1)ar|Zine ) ) ’
p(z1)r(fo(20)) TT1—1 pB(Z6-1)adlZind) |

where Z,; is the parameterized partition estimator, (zg — za, — ---z1 = z) is the discrete
time Markov chain of reverse-time stochastic differential equation (SDE) [44]] with time increment
At = % pr and pp are transition kernels of the discretized reverse and forward SDE.

(6

Ltp(z0:1;9) = <1og

4 Method

In this section, we introduce CiBO, a new framework for scalable constrained black-box optimization
by leveraging generative models. Our method consists of two iterative stages. First, we train a
flow-based model to capture the data distribution and surrogate models to predict objective values
and constraints with uncertainty quantification. Next, we sample candidates from the posterior
distribution. To accomplish this, we train a diffusion sampler that draws samples from the posterior
distribution in the latent space. After sampling, we evaluate candidates, update the dataset, and repeat
the process until the evaluation budget is exhausted. Figure [2]illustrates the overview of our method.

4.1 Phase 1. Training Models

In each round 7, we have a pre-collected dataset D, = {x;,v;,c;}/_,, where y; = f(x;), ¢; =
{emer = g™ (x;), Ym =1,..., M}, and I is the number of data points collected so far.
Training Prior. We first train a prior model pg to capture the current data distribution. As the search

space is too high-dimensional, it is better to implicitly constrain the search space close to the current
data distribution. We use flow-based models to learn this distribution using Equation (5).

Training Surrogates. We also train surrogate models to predict both objective values and constraints.
As we are only able to access a small number of data points in the vast search space, we need to
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properly quantify the uncertainty of the prediction. To this end, we train an ensemble of proxies to
estimate objective values with uncertainty quantification [45]]. Specifically, we train an ensemble of
K proxies fg,,..., fs, for objective values, and individual proxy g((;), cee gé,M) for each constraint.
Reweighted Training. During training, we introduce a reweighted training scheme [27 146} 47] to
focus on promising data points with high objective values while not violating constraints. Specifically,
the weight for each data point is computed as follows:

M
. exp (1 (3. )
l 5 =y—A 07 ) ) ’DT = ’ 7
o) =y =2 ) w0, ™). wle D) = e ey

Then, our training objective for flow-based models and proxies can be described as follows:

L(8) = Exyun(0,1), (x,,¢) €D, t~Unif(0,1) [W(Y, €, Dy)||vg (x4, ) — (x — x0)||§] , (8)
K ) M )
o= T wren) Y s+ 3 (i) ] o
(%,y,€)€Dy k=1 m—1

4.2 Phase 2. Sampling Candidates

After training models, we proceed to select candidates for evaluation in the current round. As the
search space is high-dimensional, the prediction of surrogate models is likely to be inaccurate in
regions that are too far away from the dataset collected so far. Therefore, it is advantageous to sample
candidates from the distribution that satisfies the two desiderata: (1) promote exploration towards
high-scoring and feasible regions, and (2) prevent sampling candidates that deviate too far from the
current data distribution. To accomplish these objectives, we cast the candidate selection problem as
sampling from the target distribution pp. defined as follows:

1
Ppost(X) = arg max Exp [1(%)] — 5 Dxw (p I po) (10)

where P is the space of all probability distributions over the domain X, and

M
ro(x) = pip(x) + 7 - 0p(x) = A > max(0, 45" (x)). (1)
m=1

te(x) and o4 (x) represent the mean and standard deviation from the ensemble of surrogate models
for the objective. y controls exploration-exploitation trade-off, 3 is an inverse temperature, and \ is a
Lagrange multiplier. Based on derivation from [48]], our target distribution analytically derived as:

pposl(x) X Po (X) exp (6 : [’I“¢ (X)]) : (12)
If we treat the flow-based model py(x) as a prior and the exponential term exp (S - [r4(x)]) as a
reward r(x), then our objective is to sample from the posterior distribution ppost(X) o pg(x)7(x).

Amortized Inference in Latent Space. However, directly sampling from this posterior is in-
tractable [33]]. Also, the target posterior is highly multi-modal and has a large plateau due to the
constraint penalties in (TT]), making finetuning-based methods [18] 37]] susceptible to mode collapse.
To this end, we utilize an amortized sampler in the latent space suggested by Venkatraman et al [21]].

As introduced in Section[3.3] we can view the sampling procedure of flow-based models as drawing
samples from the standard normal distribution z ~ p(z), followed by the deterministic transformation
x = fy(z). Within this framework, we can generate samples from the posterior distribution ppos(x)
by modifying the noise generation distribution as follows:

z ~ pposi(2) < p(2)7(fo(2))- (13)
To sample latents z from the posterior distribution in the latent space ppost(z), we train a diffusion
model py,(z) to amortize pyos(2z) with the following Trajectory Balance (TB) objective:

Zyp(zo) Hz:ol PF(Z(it1)AL |Zine; ) ) ’
L ;%)= |1 .
{023 ) (Og () (fo(20) [1my 5 (2—1yaclzine)

By training an amortized sampler in the latent space of flow-based models, we can more accurately
sample candidates from the target distribution as the posterior distribution in the latent space is
smoother than that in the data space. We also adopt off-policy training, detailed in Appendix

(14)
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Figure 3: Comparison between our method and baselines in synthetic tasks. Experiments are
conducted with four random seeds, and the mean and one standard deviation are reported. A dashed
line means that no feasible solutions were found.

4.3 Filtering, Evaluation and Moving Dataset

Filtering. After sampling from the posterior distribution, we need to carefully select candidates for
the sample efficiency of the algorithm. To do so, we generate N - B samples from the amortized
sampler and select the top-B samples in terms of Lagrangian relaxation of objectives as candidates.

Evaluation and Moving Dataset. We evaluate the values of the objective function and constraint
functions for each selected candidate, then update the dataset with new observations. During the
update, we empirically find that taking only a subset of total observations is beneficial in terms of
computational complexity. We remove the samples with the lowest Lagrangian-relaxed objective if
the dataset size is larger than the buffer size L. The pseudocode of our method is in Algorithm [I]

S Experiments

In this section, we report experimental results for scalable constrained black-box optimization tasks.
First, we perform experiments on three 200-dimensional synthetic functions, which are the standard
benchmarks in Bayesian Optimization (BO) studies [14]. Furthermore, we assess the performance of
our method on a more challenging scenario, where the feedback from constraints is given as binary
indicators of feasibility. We refer to this setting as the indicator constraint setting. Finally, we conduct
experiments on three real-world optimization tasks: Rover Planning 60D [8| 149], Mopta 124D [6]],
and Lasso DNA 180D [50]. The detailed description of each task can be found in Appendix [A]

For evaluation, we report the minimum regret of feasible solutions over the course of the training,
and assign the largest regret found in all algorithms to the infeasible solutions, following [851].

5.1 Baselines

We compare our method with several constrained BO baselines, including cEI [23]], LogcEI [24],
SCBO [8], PCAGP-SCBO [7], and the evolutionary search algorithm CMA-ES [25]]. We also evaluate
generative model-based approaches specifically designed for constrained optimization: DiffOPT [135]],
as well as methods that can be extended to constrained optimization via the Lagrangian relaxation:
DDOM [27] and DiBO [29]. Detailed implementations of all baselines are provided in Appendix [B]
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Figure 4: Comparison between our method and baselines in real-world tasks. Experiments are
conducted with four random seeds, and the mean and one standard deviation are reported. A dashed
line means that no feasible solutions were found.

5.2 Synthetic Experiments

We first conduct experiments on three synthetic functions, Rastrigin-200D, Ackley-200D, and

Rosenbrock-200D. For each function, we utilize two inequality constraints proposed by SCBO [8]:

(21101 xg < 0and ||x||3 < 30. We conduct all experiments with an initial dataset size of | Dy| = 200,

using a batch size of B = 100 and a maximum evaluation limit of 10, 000. In the indicator constraints
scenarios, as it is too challenging to find an initial feasible solution across all baselines, we sample 10
points within feasible regions during initialization.

As shown in the Figure[3] our method outperforms all baselines across different synthetic tasks, both
in the standard and indicator constraints. Generative model-based methods, including DiffOPT and
DDOM, struggle to find a feasible solution and fail to improve on indicator constraints. While DiBO
achieves better feasibility, its finetuning-based approach suffers from mode collapse and tends to
converge to suboptimal solutions. These results show that employing an outsourced diffusion sampler
significantly enhances performance in constrained black-box optimization by effectively capturing
multi-modal and expansive flat target distributions.

Constrained BO methods (SCBO, PCAGP-SCBO, and LogcEI) successfully identify feasible points
but show limited sample efficiency compared to our method across all tasks. The evolutionary search
algorithm CMA-ES performs modestly in general but fails to find a feasible solution for some tasks.
These results underscore that our approach effectively captures both high-scoring and feasible regions
in a sample-efficient manner. Furthermore, compared to other baselines, our method consistently
finds feasible solutions throughout the optimization process, which is illustrated in Appendix [E. ]

5.3 Real World Experiments

To validate the robustness of our approach, we evaluate our method on three challenging real-world
benchmark problems: (1) Rover Planning in 60 dimensions with 15 infeasible square-shaped regions,
(2) Mopta in 124 dimensions with 68 constraints, and (3) Lasso DNA in 180 dimensions with 5
constraints. For all experiments, we initialize with |Dy| = 200 data points and limit evaluations to
2,000. We use a batch size of B = 50 for Rover Planning and Lasso DNA, and B = 20 for Mopta,
as no baseline methods could identify feasible solutions with B = 50.

As illustrated in Figure [d] our approach consistently identifies high-quality feasible solutions with
superior sample efficiency across all tasks. We observe that the performance gap between our method
and other baselines becomes larger on real-world problems and most baselines failed to find any
feasible solutions for the challenging Mopta-124D and DNA-180D tasks. While SCBO is the only
competing method to achieve feasibility alongside our approach, it exhibits lower sample efficiency.
This highlights the robustness of our approach for scalable constrained black-box optimization.

5.4 Additional Analysis

In this section, we conduct a comprehensive analysis of each component of our proposed method
through ablation experiments on Rastrigin 200D and Rover Planning 60D.
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Figure 5: Additional analysis for various components of CiBO. Experiments are conducted with four
random seeds, and the mean and one standard deviation are reported.

Reweighted Training. To investigate the effectiveness of our reweighted training approach suggested
in Equation (7), we conduct a comparative analysis of two variants: training without reweighting,
applying weights based on the objective values (Objective-prioritized). As shown in Figure [5a]
variants without reweighting or using objective-prioritized reweighting exhibit low sample efficiency.

Sampling Procedure. We analyze the effect of each component in candidate sampling. We conduct
experiments with two variants: removing filtering, and removing both filtering and the diffusion
sampler, thus sampling candidates directly from the prior pg. As depicted in Figure [5b] there is a
significant performance gap between our method and other variants, validating the effectiveness of
each proposed component. We also experiment with the filtering coefficient V' in Appendix [E.2]

Lagrangian Multiplier \. We introduce the Lagrangian multiplier A\. As shown in Figure|5c| setting
A = 0 (eliminating the constraint penalty) significantly degrades performance on both tasks, as it only
focuses on high objective values and neglects the feasibility of solutions. Conversely, excessively
high A values diminish the influence of the objective function, resulting in reduced sample efficiency.

the reward function r(x). We conduct experiments by varying 3 values. As shown in Figure[5d] using
a moderately high /3 generally helps to improve sample efficiency. However, if /3 is too high, the
performance is heavily dependent on the accuracy of surrogate models, leading to slow convergence.
This validates that incorporating prior distribution is crucial for scalability (Section .2)).

Inverse Temperature 5. The inverse temperature controls the balance between the prior pﬁx) and

Further Analysis. To further understand our method, we analyze the impact of the buffer size L
(Appendix [E.3), batch size B, and initial dataset size |Dy| (Appendix [E.5)). We also investigate the
effect of off-policy training (Appendix [E-4) and runtime scalability of our method (Appendix [F).

6 Conclusion

We introduced CiBO, a generative model-based framework for scalable constrained black-box
optimization. Our approach formulates candidate selection as posterior inference, leveraging flow-
based models to capture the data distribution and surrogate models to predict both objectives and
constraints. By amortizing posterior sampling in the latent space with outsourced diffusion samplers,
our method effectively addresses the challenges posed by highly multi-modal and flat posterior
distributions that arise from incorporating constraints. Extensive experiments across synthetic and
real-world benchmarks demonstrate the superiority of our proposed method.
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Appendix

A Task Details

A.1 Synthetic Functions

We evaluate three synthetic functions in our constrained black-box optimization experiments: Rastri-
gin, Ackley, and Rosenbrock. The Rastrigin and Ackley functions are highly multi-modal functions
with numerous local minima, whereas the Rosenbrock function features a narrow valley that makes
convergence to the global minimum notoriously difficult [52]. Following [53} 54], we define the
search domains as Rastrigin: [—5, 5|7, Ackley: [—5, 10]”, and Rosenbrock: [—5,10]P. All functions
are subject to two constraints:

200
> 2a<0 and |x|[5 < 30
d=1

Although prior work enforced the tighter bound ||x||3 < 5, we relax this constraint in our high-

dimensional setting. For the indicator constraint experiments, we sample initial feasible points by
hit-and-run MCMC [55]].

A.2 Rover Trajectory Planning

Rover Trajectory Planning is a trajectory optimization task in a 2D environment introduced by [49].
The objective is to optimize the rover’s trajectory, where its trajectory is represented by 30 points
defining a B-Spline. We place 15 impassable obstacles o; and impose collision-avoidance constraints
¢i(x) as in [8]:

—d(0i,7(x)) ify(x) No; = &,

max  min d(«,3) otherwise.
a€y(x)No; BEDo;

ci(x) =

where 7(x) denotes final trajectory, o; is the region of the obstacle and Jo; denotes the boundary of o;.
A trajectory is feasible if and only if it does not intersect any obstacle. We follow the implementation
from [49]], but since there is no released code for the constraints, we implement the violation metric
ourselves. Below is an example of the trajectory found by our method.

Figure 6: Trajectory found by CiBO, achieving regret of -4.59.
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A.3 Vehicle Design with 68 Constraints (MOPTA)

MOPTA is the high-dimensional real-world problem of large-scale multidisciplinary mass optimiza-
tion [6]. The objective is to minimize a vehicle’s mass, which incorporates decisions about materials,
gauges, and vehicle shape with 68 performance constraints. The best-known optimum mass is
approximately 222.74. We followed the implementation from [56]. E]

A.4 LassoBench

LassoBench [50] E]is a high-dimensional benchmark for hyperparameter optimization, specifically
designed to tune the hyperparameters of the Weighted LASSO (Least Absolute Shrinkage and
Selection Operator) regression model. It includes both synthetic tasks (simple, medium, high, and
hard) and real-world tasks (Breast cancer, Diabetes, Leukemia, DNA, and RCV1). In this work, we
focus on the DNA task, a microbiology classification problem. It computes the average validation
error across all cross-validation folds as an unconstrained objective. We reformulate the problem by
retaining the mean validation error as the objective while introducing constraints that the validation
error on each fold must not exceed 0.32.

B Baselines Details

In this section, we provide a thorough description of our baseline implementation details and specify
the hyperparameter settings used across all experiments.

DiBO [29]: We use the original cod and adapt DiBO to handle constrained optimization by
reformulating the objective as a Lagrangian, setting the same \ value as our methods for fair
comparison.

DiffOPT [15]: As there is no publicly available code, we re-implement this baseline on our own. To
approximate the data distribution, we use diffusion models with a similar architecture to our method.
To enable accurate sampling from the target distribution, we implement Langevin dynamics as the
energy function, which can be constructed by surrogate models in our setting, is differentiable.

DDOM [27]: Building on the original implementatiorﬂ we reconstruct this baseline with network
architecture matching our flow-based model. While maintaining the method’s specific parameters as
specified in the original work, we incorporate a Lagrangian framework and set the same A as ours.

SCBO [8]]: We follow the tutorial code for SCBO provided by botorchE]to reproduce the results.

PCAGP-SCBO [7]: To reproduce PCAGP-SCBO, we follow the code for SCBO and then apply
torch pcaE]to project high-dimensional data into a reduced latent space with dimension [ before
fitting GP surrogates for constraints. For all synthetic tasks, we use [ = 2 and for real-world tasks,
we conduct a hyperparameter search on [2, | D/2]] and report the best one.

cEI [23]: We implement cEI acquisition function by using gExpectedImprovement () in botorch
library. We train a GP surrogate model independently for the objective and each constraint.

LogcEI [24]: We implement logcEI acquisition function by using qLogExpectedImprovement () in
botorch library. We train a GP surrogate model independently for the objective and each constraint.

CMA-ES [25]]: We employ the pycmalz] library [S7]. For constraint handling, we formulate the
problem using the same Lagrangian approach with the same A value as ours for each task.

'https://github.com/LeoIV/BAXUS
"https://github.com/ksehic/LassoBench
*https://github.com/umkiyoung/DiB0
“https://github.com/siddarthk97/ddom
Shttps://botorch.org/docs/tutorials/scalable_constrained_bo/
®https://github.com/valentingol/torch_pca
"https://github.com/CMA-ES/pycma
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ss3 C  Algorithms

Algorithm 1 CiBO
1: Input: Initial dataset Dy; Max rounds R; Batch size B; Buffer size L; Number of constraints M

Flow model py; Diffusion sampler p,; Proxies fg,, -, fox, g((bl), e 7g((bM);
2: forr=0,...,R—1do
- 1 M
3: Inltlallzep07p’¢)’f¢17"'7f¢Kng¢)7"'7gg¢ )
4:
5. Phase 1. Training Models
6:  Compute weights w(y, ¢, D,.) with Equation
7: Train py with Equation (8)
8:  Train fy,, -, for, g((;), e ,g((i)M) with Equation @)

9:

10:  Phase 2. Sampling Candidates

11:  Train py, with Equation using prior pg and z ~ N (0, )

12:  Sample latent noise with {z; } Y5 ~ p, ()

13:  Projection to data space with learned mapping x; = fy(z;) Vi€ {1,--- ,NB}
14:

15:  Filtering

16:  Select top-B samples {x; }Z_, with respect to:

re(xi) — )\2%21 maX(O,g(m) (x;)) Vi={1,---,NB}

17:

18:  Evaluation and Moving Dataset

19:  Evaluate y, = f(xp), ¢ =g (xp) Ym={l,---M} Yb={l,---,B}
20: Update ’DT+1 «~ D, U {(Xb7 Yb, Cb)}bB:1
21:  if |D,41| > L then

22: Remove last |D,1| — L samples from D, with respect to: y — A ZTA;[:I max (0, ™)
23:  endif
24: end for
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D Implementation Details

In this section, we introduce the implementation details of our method CiBO. Specifically, model
architectures, the training processes employed, the hyperparameter configurations used, and the
computational resources required.

D.1 Training Models
D.1.1 Training Proxies

We employ an ensemble of five proxies to model the objective function and a single proxy for each
constraint. Each proxy is implemented as a MLP with three hidden layers of 1024 units, using GELU
[58]] activations. Proxies are trained with the Adam optimizer [59] for 100 epochs per round at a
learning rate of 1 x 10~2 and a batch size of 256. All hyperparameters related to the proxy are listed
in Table[Tl

Table 1: Hyperparameters for Training Proxy

| Parameters Values
Num Ensembles 5
Architecture | Number of Layers 3
Num Units 1024
Batch size 256
Trainin Optimizer Adam
£ | Learning Rate 1x1073
Training Epochs 100

D.1.2 Training Flow-based Models

We adopt the architecture of [60] for our flow model, comprising three hidden layers with 512
units each. Training is performed using Adam optimizer for 500 epochs per round, with a learning
rate of 1 x 1072 and a batch size of 256. For ODE integration during sampling, we employ the
Runge-Kutta 4 method with torchdiffeq [61], and set the integration steps as 250. All flow-model
hyperparameters are detailed in Table 2]

Table 2: Hyperparameters for Training Flow-based Model

| Parameters Values
. Number of Layers 3
Architecture Num Units 512
Batch size 256
Trainin Optimizer Adam
g Learning Rate 1x1073

Training Epochs 500

17



551

552

553
554
555
556
557
558

559

560

562
563
564
565

566
567
568
569
570
571

572
573
574
575

576
577
578

D.2 Sampling Candidates

D.2.1 Training Diffusion Sampler

Various approaches have been developed to draw samples from a distribution when only an unnor-
malized probability density or energy function is available. Traditional methods include Markov
Chain Monte Carlo (MCMC) techniques [62, 63} 164, 65| 66, 67]], though their computational cost
increases dramatically in high-dimensional spaces. More recently, amortized variational inference
methods, particularly those based on training diffusion samplers [68 169 70, [71 [72, 73| [74], have
gained widespread adoption as they offer improved scalability for high-dimensional problems.

Following the [21]], we adopt [42] to train diffusion sampler to sample from the target:

M
Ppost(#) o p(z) exp (B- [%(fe(Z)) ~ A max (o,g<m)<f9(z>>)D (15)
m=1

Here, the right-hand-side term serves as an unnormalized probability density, which the diffusion
sampler amortizes the sampling cost by approximating it.

Off-policy Training of Diffusion Sampler As mentioned in the Section 4.2 we use the Trajectory
Balance objective to train the diffusion sampler.

Zyp(20) [11—9 PF(Z(i1)ad|Zine; ) ) ’
p(z1)r(fo(z1)) 11—, PB(Z(i—1)At|Ziat)

L (20:157) = (log
The primary advantage of the TB loss is off-policy training [42} [75]. We can train our model not only
from the on-policy trajectories through the reverse SDE {zg,--- ,z1} = 7 ~ pp(7) but also from
the trajectories through the forward SDE conditioned on the generated samples 7 ~ pg(7|z1). This
proves its effectiveness on mode coverage and credit assignment [42].

Specifically, we repeat two processes. First, we sample trajectories on-policy 7 ~ pg(7), train
the model with Equation , and collect the samples z; into the buffer. Second, from the col-
lected samples z;, we generate off-policy trajectories through 7 ~ pp(7|z;), then train with
the Equation (I4). During the off-policy training, we prioritize the samples with low energy:
E(z1) = —log(p(z1)r(fo(z1))) following [42] to make our model focus on the low energy samples.
These techniques improve the overall performance of our framework (Appendix [E.4).

We use the original codeﬁ released from [42] for implementation. We also set method-specific
hyperparameters with Path Integral Sampler (PIS) [68] architecture, zero initialization, and t-scale
to 1 to make sure the initialized pz(z;) starts from the standard normal distribution. Detailed
hyperparameters for training the diffusion sampler can be found in Table 3]

Table 3: Hyperparameters for Training Diffusion Sampler

| Parameters Values
Number of Layers 2
Architecture | Num Units 256
Diffusion Time Steps 50
Batch size 256
Trainin Optimizer Adam
£ Learning Rate 1x1073
Training Epochs 50

Computational Resources. Our experiments were conducted using NVIDIA RTX 3090 and A6000
GPUs. These resources were sufficient to train our models within a reasonable time for all reported
experiments. Details of computational time can be found at Appendix [F|

$https://github.com/GFNOrg/gfn-diffusion

18


https://github.com/GFNOrg/gfn-diffusion

579

580

582
583
584
585

D.3 Hyperparameters

In our formulation of constrained black-box problems, we introduce A for Lagrangian augmentation.
We draw NV x B samples from the posterior distribution, then select B samples during filtering. After
evaluation, we update the training set by keeping the top L highest-scoring samples subject to the
Lagrangian objective. Table 4| summarizes all hyperparameter values used in candidate selection,
and we include additional analysis to assess how each parameter affects overall performance in
Section[5.4and Appendix [E}

Table 4: Hyperparameters during sampling candidates
Lambda A  Inverse Temperature 5 Buffer Size L  Filtering Coefficient N

Ackley 200D 10 10° 3000 10
Rastrigin 200D 10 10° 2000 10
Rosenbrock 200D 10 10° 2000 10
RoverPlanning 60D 3 10° 1000 10
Mopta 124D 3 103 500 10
DNA 180D 5 103 1000 15
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E Further Analysis

In this section, we provide further analysis on different components of our method that are not
included in the main manuscript due to the page limit.

E.1 Analysis on Feasibility Ratio
To further analyze our method’s ability to effectively handle constraints, we report the feasibility

ratio across optimization batches for the Rastrigin 200D task. Here, the feasibility ratio denotes the
number of feasible samples over queried samples.

Feasibility Ratio (Rastrigin-200D)
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Figure 7: Feasibility ratio over all baselines. Experiments are conducted with four random seeds, and
the mean and one standard deviation are reported.

As shown in Figure[7} CiBO demonstrates superior performance by rapidly achieving the highest
feasibility ratio within the first 5-10 batches, significantly faster than all competing methods. While
some baselines (SCBO, PCAGP-SCBO) eventually reach high feasibility ratios, they require approxi-
mately twice as many batches to achieve comparable performance. Other methods like DiBO and
DiffOPT take even longer (around 20 batches), and CMA-ES struggles substantially, only reaching
moderate feasibility ratios after 50 batches. Notably, CiBO not only reaches the high feasibility ratio
faster but also maintains it consistently throughout the optimization process, demonstrating its robust
constraint-handling capabilities in high-dimensional spaces.
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E.2 Analysis on Filtering coefficient N

To improve the sample efficiency of our method, we introduce filtering, where we sample N x B
candidates from the posterior distribution, then select the highest B samples with respect to the
Lagrangian-relaxed objective function. To analyze the impact of the filtering coefficient N, we
experiment with varying N values, including our default N = 100.

Rastrigin-200D RoverPlanning-60D
201
— N=1 — N=1
55004 — N=25 — N=25
—— N=100 (Ours) 154 —— N=100 (Ours)
— N=225 — N=225
2000
10
- -
g o
© 1500+ 5}
() [
-4 o 54
10001
o
500 -
—5
0 2000 4000 6000 8000 10000 0 500 1000 1500 2000
Number of Evaluations Number of Evaluations

Figure 8: Performance of CiBO in Rastrigin-200D and Rover Planning-60D with varying N. Experi-
ments are conducted with four random seeds, and the mean and one standard deviation are reported.

As shown in Figure[§] increasing the filtering coefficient improves sample efficiency by concentrating
candidate selection in both high objective values and feasible regions. If the coefficient is set too low,
we lose its exploitation capability, leading to slower convergence.

E.3 Analysis on Buffer Size L

In each round, we retain the L top-scoring samples with respect to the Lagrangian-relaxed objective
function for computational efficiency. To analyze the effect of the buffer size L, we conduct
experiments by varying L. As demonstrated in Figure 0] using too small L occasionally gets stuck in
a sub-optimal solution while using too large L exhibits a slow convergence rate.

Rastrigin-200D RoverPlanning-60D
— =500 201 — =300
— L[=1000 — [=500
25007 —— L=2000 (Ours) 15 —— L=1000 (Ours)
—— L=5000 —— L=2000
2000 4
101
o o
o S
21500 o
< o 5
1000
o
500
51
0 2000 4000 6000 8000 10000 0 500 1000 1500 2000
Number of Evaluations Number of Evaluations

Figure 9: Performance of CiBO in Rastrigin-200D and Rover Planning-60D with varying L. Experi-
ments are conducted with four random seeds, and the mean and one standard deviation are reported.
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E.4 Effect of Off-policy Training in Amortized Inference

We employ off-policy training with the TB loss to train the diffusion sampler as detailed in Section4.2]
To analyze the impact of off-policy training on performance, we conduct ablation studies on different
training schemes. As shown in Figure [T0} off-policy training consistently outperforms on-policy
methods, and the performance gap widens as the number of constraints grows (15 constraints in
Rover Planning versus only 2 in Rastrigin). It underlines that training with off-policy samples is
crucial for amortizing the posterior distribution with multiple modes and a large plateau.

Rastrigin-200D RoverPlanning-60D
20
—— Off-policy (Ours) —— Off-policy (Ours)
2500 1 —— On-policy = On-policy
154
2000
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0 2000 4000 6000 8000 10000 0 500 1000 1500 2000
Number of Evaluations Number of Evaluations

Figure 10: Comparison between off-policy and on-policy in Rastrigin-200D and Rover Planning-60D.
Experiments are conducted with four random seeds, and the mean and one standard deviation are
reported.

E.5 Analysis on Initial Dataset size | Dy| and Batch size B

The size of the initial dataset, |Dg|, and batch size B play a critical role in the performance of
black-box optimization algorithms. When | Dg| is small and B is large, the algorithm must optimize
using very limited information, making the search significantly more challenging. To this end, we
conduct experiments varying | Dy| and B to demonstrate the robustness of our method on initial data
configurations. As shown in Figure [T} our method demonstrates robustness regarding both the initial
dataset size |Dy| and the batch size B.

2000 Rastrigin-200D Rastrigin-200D
—— |Do|=50 — B=20
— |Do|=100 | —— B=50 (Ours)
25001 2500 _
—— |Do|=200 (Ours) B=100
—— |Do|=500 T B=p00
2000+ \Do|=1000 2000+
o o
g o
>15001 21500
o o
1000 - 10004
500 — 5004
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Number of Evaluations Number of Evaluations

Figure 11: Performance of CiBO in Rastrigin-200D with varying |Dy| and B. Experiments are
conducted with four random seeds, and the mean and one standard deviation are reported.
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F Runtimes

We report the running time of each method in Table 5] To measure the runtime, we conduct
experiments on a single NVIDIA RTX 3090 GPU and Intel Xeon Platinum CPU @ 2.90 GHz.
As shown in the table, the running time of our method is similar to other generative model-based
approaches, and mostly faster than BO-based methods.

Table 5: Average time (in seconds) for each round in each method.

‘ Rastrigin-200D Ackley-200D Rosenbrock-200D RoverPlanning-60D Mopta-124D DNA-180D
cEl 336.96 £ 47.48 133.12 £ 6.66 489.86 £ 81.38 111.13+5.83 205.66 £5.35 133.98 £9.16
LogcEl 720.45 £ 56.76 158.38 £ 10.13 593.39 £97.93 113.28 +3.97 324.27£9.91 161.08 £8.21
SCBO 322.81£47.38 117.81 £ 6.50 475.02 £80.11 87.83 £4.42 270.30 £5.19 147.83 £ 12.57
PCAGP-SCBO | 327.48 £51.20 122.67 £3.50 479.06 £ 82.41 17.55 £3.05 20.69 +0.39 81.34+£9.19
CMA-ES | 0.08%0.00 0.09 £ 0.00 0.10 £ 0.01 0.61 £0.00 5.33£0.15 46.58 £3.16
DDOM 26.87+0.28 27.00 +£0.32 26.96 £0.12 3.56 £0.02 8.63+0.37 50.99 +0.81
DiffOPT 91.00 +5.07 111.04 £ 1.51 89.37 £8.27 29.48 +£1.21 105.61 £2.71 60.64 +1.34
DiBO 73.97 £0.56 68.89 +0.98 7383 £ 1.11 2943 +1.51 66.61 £4.16 71.85+2.48
CiBO | 7339209 103.43 £4.84 82.24 £ 6.50 53.58+5.14 10543 £2.24 81.77 £2.37
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G Limitations and Future Work

We are interested in improving our method further. First, as we need to train all models with the
updated dataset in every round, presenting a framework that can efficiently reuse the trained models
from the previous rounds would be beneficial. Furthermore, there are several advancements in the
literature on flow-based model training [[76]] and diffusion samplers [[77} 78], which could potentially
yield substantial performance gains. We leave them as future work.

H Broader Impact

Advances in real-world design optimization have the potential to drive major innovations, but they
also come with potential risks and unintended consequences. For example, optimization techniques
in biochemical design may uncover novel compounds with therapeutic potential, but similar methods
could also be misused to discover harmful substances. It is essential for researchers to act responsibly
and ensure their work serves the public good.
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