© ® N O o A~ W N =

24
25
26
27

28
29
30
31
32
33

34
35
36

Posterior Inference in Latent Space
for Scalable Constrained Black-box Optimization

Anonymous Author(s)
Affiliation
Address

email

Abstract

Optimizing high-dimensional black-box functions under black-box constraints is
a pervasive task in a wide range of scientific and engineering problems. These
problems are typically harder than unconstrained problems due to hard-to-find
feasible regions. While Bayesian optimization (BO) methods have been developed
to solve such problems, they often struggle with the curse of dimensionality. Re-
cently, generative model-based approaches have emerged as a promising alternative
for constrained optimization. However, they suffer from poor scalability and are
vulnerable to mode collapse, particularly when the target distribution is highly
multi-modal. In this paper, we propose a new framework to overcome these chal-
lenges. Our method iterates through two stages. First, we train flow-based models
to capture the data distribution and surrogate models that predict both function
values and constraint violations with uncertainty quantification. Second, we cast
the candidate selection problem as a posterior inference problem to effectively
search for promising candidates that have high objective values while not violating
the constraints. During posterior inference, we find that the posterior distribution
is highly multi-modal and has a large plateau due to constraints, especially when
constraint feedback is given as binary indicators of feasibility. To mitigate this
issue, we amortize the sampling from the posterior distribution in the latent space
of flow-based models, which is much smoother than that in the data space. We
empirically demonstrate that our method achieves superior performance on various
synthetic and real-world constrained black-box optimization tasks. Our code is
publicly available here.

1 Introduction

Optimizing high-dimensional black-box functions under black-box constraints is a fundamental task
across numerous scientific and engineering problems, including machine learning [[1], drug discovery
[2, 3], control [4], 15]], and industrial design [0, [7]. In most cases, these problems are much harder than
unconstrained problems due to analytically undefined and hard-to-find feasible regions [8].

Bayesian Optimization (BO) has been widely used to solve black-box optimization problems in
a sample-efficient manner [9, [10]. While most BO methods focus on unconstrained optimization
problems, some works address problems with black-box constraints by developing new acquisition
functions [1}[11] or relaxing the constraints [12}[13]]. However, even without constraints, BO methods
scale poorly to high dimensionality [14]. Moreover, incorporating constraints makes the function
landscape highly complex, hindering accurate estimation of surrogate models.

Recently, generative models have emerged as an alternative solution for black-box optimization
problems with constraints [[15, (16} 17]. For example, we can leverage generative models to sample
protein sequences that maximize the binding affinity while preserving the naturalness of the design.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://anonymous.4open.science/r/CiBO-3869/

37
38
39
40

41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59

60
61
62
63

64

65

66
67
68
69
70
71
72
73

Target Problem

Our Framework

(. . R
Objective Function

f(X)/\/\/\

Constraints
9O, -, g™)

Phase 1. Training Models

[

Phase 2. Sample Candidates from
Posterior Distribution

| (T
*H (i

XD, o0, xB) < p o (X) o Py (X) exp (ﬁ . np(x)) Posterior Dist. in Latent Space
e <

> I g Ppost(2) T(Z)exp (s "T¢(fa(2)))

Evaluate and Update Dataset i '
L na :

Figure 1: Motivating figure. In a high-dimensional setting, sampling from the posterior distribution is
beneficial for selecting candidates. However, the posterior distribution is highly multi-modal and has
a large plateau due to the constraints . We can mitigate this issue by sampling latents
from the posterior distribution (purple one) of the latent space and projecting them into the data space.

N e Ppost(Z) '

J

However, existing methods rely on MCMC-based approaches [[15]], which limit scalability in high-
dimensional spaces. While one can fine-tune pretrained generative models with reward functions
[L8L 119, 120], naive application of fine-tuning methods is vulnerable to mode collapse when the target
distribution is highly multi-modal [21], which leads to a convergence on sub-optimal solutions.

In this paper, we propose a novel generative model-based framework for constrained black-box
optimization to overcome the aforementioned limitations. To efficiently explore high-dimensional
spaces, we first frame the candidate selection problem as sampling from the posterior distribution,
which can be constructed by multiplying the prior distribution with a Lagrangian-relaxed objective.
To sample candidates from the posterior distribution, our key idea is to amortize inference in the latent
space of a flow-based model using an outsourced diffusion sampler [21]], as illustrated in Figure|[T]
Since the posterior distribution in the latent space is much smoother than that in the data space, we
can approximate the distribution more accurately and alleviate the mode collapse problem [22].

Our method iterates through two stages. First, we train a flow-based model to capture the current
data distribution and surrogate models to predict the objective value and constraints, respectively.
For the surrogate models, we use an ensemble to quantify the uncertainty of the prediction, as we
have only a small amount of data that covers a tiny fraction of the whole search space. We treat a
trained flow-based model as a prior, and Lagrangian relaxation of the objective as a reward function.
Second, we sample candidates from the posterior distribution. As the posterior distribution is highly
multi-modal and has a large plateau due to constraints, especially when constraint feedback is given
as binary indicators of feasibility, we train a diffusion sampler that amortizes the posterior distribution
in the latent space of flow models. Then, we sample latents from the diffusion sampler and project
them into data space using a deterministic mapping derived from the trained flow model. By repeating
these two stages, we can effectively capture high-scoring regions that satisfy the constraints.

We conduct extensive experiments on three synthetic and three real-world benchmarks to validate the
superiority of our method on scalable constrained black-box optimization problems. We also consider
a more challenging scenario where the feedback from the constraints is given as a binary value. We
empirically show that our method outperforms several competitive baselines across different tasks.

2 Related Works

2.1 Constrained Black-box Optimization

Most scientific and engineering optimization problems involve black-box constraints, such as the
synthesizability of molecules in chemical design [2] and safety constraints in robot control policies
[4]. Existing BO methods solve this problem by either integrating the constraints directly into the
acquisition function (cEI [23]], LogcEI [24]]) or by employing trust region approaches for scalability
(SCBO [8]], PCAGP-SCBO [[7]). Another line of work utilizes evolutionary algorithms like CMA-
ES [25!26] with an augmented Lagrangian method to navigate constrained spaces. However, the
performance of these methods often degrades as dimensionality and the number of evaluations
increase, which motivates the need for a more scalable approach.

74

75
76
77
78
79
80
81
82
83

84

85
86
87

88
89
90
91
92
93
94

95
96
97

98

99

100

101
102
103

104

105
106

107

108

109

110
111

2.2 Generative Model-based Optimization

There are several attempts to utilize generative models for black-box optimization. In an offline
setting, DDOM [27]] trains a conditional diffusion model with classifier-free guidance and applies a
loss-reweighting to emphasize samples with high objective values. DiffOPT [15]] solves a constrained
optimization problem. It applies diffusion to capture data distribution, followed by an iterative
importance-sampling procedure. In an online setting, DiffBBO [28] and DiBO [29] both leverage
diffusion models and incorporate uncertainty estimation during candidate selection. DiBO treats
candidate selection as posterior inference to guide sampling toward regions of high reward and uncer-
tainty, while DiffBBO selects conditioning targets by employing an uncertainty-based acquisition
function. Unfortunately, constrained black-box optimization in the online setting remains unexplored.

2.3 Amortized Inference in Flow-based and Diffusion Models

Given a diffusion or flow prior py(x) trained on a dataset and a reward function r(x), sampling from
the posterior ppos(x) o pg(x)r(x) has numerous applications in downstream tasks 30} [18} 31 32}
19, 21]]. However, direct sampling from the unnormalized posterior pg(x)r(x) is intractable [[18] [33]].

To address this problem, some approaches train classifiers directly within intermediate noised spaces
[30L 34]] while others approximate posterior sampling via Markov Chain Monte Carlo (MCMC)
procedures [22,132|[35136]. However, training classifiers in noisy data spaces and employing MCMC
methods scale poorly to high dimensionality. On the other hand, several methods utilize reinforcement
learning [37,138] or stochastic optimal control [19] to fine-tune the pretrained model and amortize the
posterior sampling. Meanwhile, naive implementations of fine-tuning methods can be prone to mode
collapse when the target distribution is highly multi-modal and has a large plateau region [21].

To mitigate this issue, we adopt the outsourced diffusion sampler method proposed by Venkatraman
et al. [21]. Matching the distribution within the latent space significantly simplifies the alignment
task when the distribution is highly multi-modal and has a large flat region in the original data space.

3 Preliminaries

3.1 Constrained Black-box Optimization
In constrained black-box optimization, our problem is:
find x* = arg max f(x) st gWPx)<0,---,9™M(x) <0
with R rounds of B batch of queries €))]

The objective function f : X — R and constraints g(*),--- , g : X — R are black-box functions.
We also consider a more challenging scenario, only access to information on whether we violate
constraints or not, i.e., h(™) (x) = I[g(™)(x) > 0]. We refer to this as an indicator constraint.

3.2 Flow-based Models

Flow-based models [39,140, 4 1] are a class of generative models for approximating a target distribution
q(x). Flow-based models are defined via the deterministic ordinary differential equation (ODE):

dx; = vg(xy,t) dt 2)
where vg (x4, t) : R? x [0,1] — R is a parametric velocity field.

For each given velocity field, the corresponding flow 1 (x0,t) : R? x [0, 1] — R satisfies:

%W(Xo,t) = vg(Yg(x0,1),t), Ya(%0,0) = Xo. (3)

The velocity field vy (x;,t) defines a continuous probability path p; induced by the flow:
x; = Pp(Xo,t) ~ pi, Where xo ~ po. “

Training Flow-based Models. We use Flow Matching [39] to learn the velocity field vy that generates
a path interpolating smoothly between an initial distribution pg = p and a target distribution p; = q.

112
113

114

115
116
17

118
119
120
121

122
123

124
125
126

127

128
129
130
131
132
133
134

135

Phase 1. Training Models Phase 2. Sampling Candidates

Flow-based model Training Diffusion Sampler ’

fo(2).2 ~ p(2) P(@) < p(@) - exp (B - (g (5 () +7 - 0 (fa(2)) = 1+ 89 (fo(2))))
Reweighting \ T

¥

w(y,¢,D,) (
Proxies Noise Sampling Projection Evaluation
U (%), 04 (%) gg(x) z ~ py(2) x = fp(2) Filtering| V" ¢l e

Moving Dataset |

Figure 2: Overview of our method. Phase 1: Train flow-based models and proxies for the objective
and constraints. Phase 2: Sample candidates from the posterior distribution using an outsourced
diffusion sampler. After sampling, we utilize filtering to enhance sample efficiency. Then, we evaluate
samples, update the dataset, and repeat the process until the evaluation budget is exhausted.

We employ the simplest linear interpolation path x; = (1 —t)x(+tx1, with derivative % = X1 —Xo,
following [39]]. The Flow Matching loss is expressed as:
Lim(0) = By oA (0,1), 31 ~a(x), t~Unif(0,1) [1V6 (X2, 1) — (x1 = %0)][3] -)

3.3 Posterior Inference in Flow-based and Diffusion Models

Given a pretrained flow-based prior py(x), and a reward function r(x), we consistently encounter a
situation where we need to sample from the posterior distribution, ppos (%) o pg(x)r(x). To sample
from this intractable [33] distribution, we utilize the outsourced diffusion sampling [21].

We can interpret the sampling process of flow-based models into a noise generation z ~ p(z), followed
by a deterministic transformation x = fy(z), where p(z) is standard normal and fy represents the
learned mapping derived by prior. Under this formulation, by Proposition 3.1 of [21], we can sample
from the posterior distribution by substituting noise generation as z ~ pposi(2z) o p(2)r(fo(2)).

To approximate the target distribution py(z) & ppost(2), we can learn the parameters of diffusion
sampler v with the trajectory balance (TB) objective [42, 143]:

Zyp(20) [T1—0' PF(Zs1)ar|Zine)) ’
p(z1)r(fo(20)) TT1—1 pB(Z6-1)adlZind) |

where Z,; is the parameterized partition estimator, (zg — za, — ---z1 = z) is the discrete
time Markov chain of reverse-time stochastic differential equation (SDE) [44]] with time increment
At = % pr and pp are transition kernels of the discretized reverse and forward SDE.

(6

Ltp(z0:1;9) = <1og

4 Method

In this section, we introduce CiBO, a new framework for scalable constrained black-box optimization
by leveraging generative models. Our method consists of two iterative stages. First, we train a
flow-based model to capture the data distribution and surrogate models to predict objective values
and constraints with uncertainty quantification. Next, we sample candidates from the posterior
distribution. To accomplish this, we train a diffusion sampler that draws samples from the posterior
distribution in the latent space. After sampling, we evaluate candidates, update the dataset, and repeat
the process until the evaluation budget is exhausted. Figure [2]illustrates the overview of our method.

4.1 Phase 1. Training Models

In each round 7, we have a pre-collected dataset D, = {x;,v;,c;}/_,, where y; = f(x;), ¢; =
{emer = g™ (x;), Ym =1,..., M}, and I is the number of data points collected so far.
Training Prior. We first train a prior model pg to capture the current data distribution. As the search

space is too high-dimensional, it is better to implicitly constrain the search space close to the current
data distribution. We use flow-based models to learn this distribution using Equation (5).

Training Surrogates. We also train surrogate models to predict both objective values and constraints.
As we are only able to access a small number of data points in the vast search space, we need to

143
144

145

146
147
148

149

150

151

152
153
154
155
156
157
158

159

160
161
162

163
164

165
166
167
168

169
170
171
172

173
174

175
176
177

properly quantify the uncertainty of the prediction. To this end, we train an ensemble of proxies to
estimate objective values with uncertainty quantification [45]]. Specifically, we train an ensemble of
K proxies fg,,..., fs, for objective values, and individual proxy g((;), cee gé,M) for each constraint.
Reweighted Training. During training, we introduce a reweighted training scheme [27 146} 47] to
focus on promising data points with high objective values while not violating constraints. Specifically,
the weight for each data point is computed as follows:

M
. exp (1 (3.)
l 5 =y—A 07)) ’DT = ’ 7
o) =y =2) w0, ™). wle D) = e ey

Then, our training objective for flow-based models and proxies can be described as follows:

L(8) = Exyun(0,1), (x,,¢) €D, t~Unif(0,1) [W(Y, €, Dy)||vg (x4,) — (x — x0)||§] , (8)
K) M)
o= T wren) Y s+ 3 (i)] o
(%,y,€)€Dy k=1 m—1

4.2 Phase 2. Sampling Candidates

After training models, we proceed to select candidates for evaluation in the current round. As the
search space is high-dimensional, the prediction of surrogate models is likely to be inaccurate in
regions that are too far away from the dataset collected so far. Therefore, it is advantageous to sample
candidates from the distribution that satisfies the two desiderata: (1) promote exploration towards
high-scoring and feasible regions, and (2) prevent sampling candidates that deviate too far from the
current data distribution. To accomplish these objectives, we cast the candidate selection problem as
sampling from the target distribution pp. defined as follows:

1
Ppost(X) = arg max Exp [1(%)] — 5 Dxw (p I po) (10)

where P is the space of all probability distributions over the domain X, and

M
ro(x) = pip(x) + 7 - 0p(x) = A > max(0, 45" (x)). (1)
m=1

te(x) and o4 (x) represent the mean and standard deviation from the ensemble of surrogate models
for the objective. y controls exploration-exploitation trade-off, 3 is an inverse temperature, and \ is a
Lagrange multiplier. Based on derivation from [48]], our target distribution analytically derived as:

pposl(x) X Po (X) exp (6 : [’I“¢ (X)]) : (12)
If we treat the flow-based model py(x) as a prior and the exponential term exp (S - [r4(x)]) as a
reward r(x), then our objective is to sample from the posterior distribution ppost(X) o pg(x)7(x).

Amortized Inference in Latent Space. However, directly sampling from this posterior is in-
tractable [33]]. Also, the target posterior is highly multi-modal and has a large plateau due to the
constraint penalties in (TT]), making finetuning-based methods [18] 37]] susceptible to mode collapse.
To this end, we utilize an amortized sampler in the latent space suggested by Venkatraman et al [21]].

As introduced in Section[3.3] we can view the sampling procedure of flow-based models as drawing
samples from the standard normal distribution z ~ p(z), followed by the deterministic transformation
x = fy(z). Within this framework, we can generate samples from the posterior distribution ppos(x)
by modifying the noise generation distribution as follows:

z ~ pposi(2) < p(2)7(fo(2))- (13)
To sample latents z from the posterior distribution in the latent space ppost(z), we train a diffusion
model py,(z) to amortize pyos(2z) with the following Trajectory Balance (TB) objective:

Zyp(zo) Hz:ol PF(Z(it1)AL |Zine;)) ’
L ;%)= |1 .
{023) (Og () (fo(20) [1my 5 (2—1yaclzine)

By training an amortized sampler in the latent space of flow-based models, we can more accurately
sample candidates from the target distribution as the posterior distribution in the latent space is
smoother than that in the data space. We also adopt off-policy training, detailed in Appendix

(14)

178

179

181

182
183
184
185
186

187

188
189
190
191
192
193
194

196

197

198
199

201
202

Rastrigin-200D Ackley-200D Rosenbrock-200D

=" 6
3000 10
5
2500
= 10°
6
B 2000 — 5 =)
=] & o
& 1500 1 & 4 5 10°
&
1000 4
2 103
500
0 2000 4000 6000 8000 10000 0 2000 4000 6000 80D 10000 0 2000 4000 6000 8000 10000
Number of Evaluations Number of Evaluations Number of Evaluations
Rastrigin-200D (Indicator) Ackley-200D (Indicatar) Rosenbrock-200D (Indicator)
6
3000 10
8
2500
B 10 4
o 4 67 k=)
2 2000 @ 1
o o E
g g, 5
1500 £ 10*
1000 2
103 4
500 r T T r r T T T T T T T T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Number of Evaluations Number of Evaluations Number of Evaluations
—— CiBO (Ours) —— DiBO DiffOPT —— DDOM SCBO —— PCAGP-SCBO ¢El = LogcEl —— CMA-ES

Figure 3: Comparison between our method and baselines in synthetic tasks. Experiments are
conducted with four random seeds, and the mean and one standard deviation are reported. A dashed
line means that no feasible solutions were found.

4.3 Filtering, Evaluation and Moving Dataset

Filtering. After sampling from the posterior distribution, we need to carefully select candidates for
the sample efficiency of the algorithm. To do so, we generate N - B samples from the amortized
sampler and select the top-B samples in terms of Lagrangian relaxation of objectives as candidates.

Evaluation and Moving Dataset. We evaluate the values of the objective function and constraint
functions for each selected candidate, then update the dataset with new observations. During the
update, we empirically find that taking only a subset of total observations is beneficial in terms of
computational complexity. We remove the samples with the lowest Lagrangian-relaxed objective if
the dataset size is larger than the buffer size L. The pseudocode of our method is in Algorithm [I]

S Experiments

In this section, we report experimental results for scalable constrained black-box optimization tasks.
First, we perform experiments on three 200-dimensional synthetic functions, which are the standard
benchmarks in Bayesian Optimization (BO) studies [14]. Furthermore, we assess the performance of
our method on a more challenging scenario, where the feedback from constraints is given as binary
indicators of feasibility. We refer to this setting as the indicator constraint setting. Finally, we conduct
experiments on three real-world optimization tasks: Rover Planning 60D [8| 149], Mopta 124D [6]],
and Lasso DNA 180D [50]. The detailed description of each task can be found in Appendix [A]

For evaluation, we report the minimum regret of feasible solutions over the course of the training,
and assign the largest regret found in all algorithms to the infeasible solutions, following [851].

5.1 Baselines

We compare our method with several constrained BO baselines, including cEI [23]], LogcEI [24],
SCBO [8], PCAGP-SCBO [7], and the evolutionary search algorithm CMA-ES [25]]. We also evaluate
generative model-based approaches specifically designed for constrained optimization: DiffOPT [135]],
as well as methods that can be extended to constrained optimization via the Lagrangian relaxation:
DDOM [27] and DiBO [29]. Detailed implementations of all baselines are provided in Appendix [B]

203

204
205

206
207
208
209

210
211
212
213
214
215
216

217
218
219
220
221
222

223

224
225
226
227
228
229

230
231
232
233
234
235

237
238

RoverPlanning-60D Mopta-124D DNA-180D

0.330

0.325

0.320

0.315

g g
o o 0.310 7
£ 54 &
0.305 1
04 0.300 1
0.295 4
5
T T T T T T T T T T 0.290 T T T T
0 500 1000 1500 2000 [} 500 1000 1500 2000 [} 500 1000 1500 2000
Number of Evaluations Number of Evaluations Number of Evaluations
—— CiBO (Qurs) —— DiBO DiffOPT ~ —— DDOM SCBO —— PCAGP-SCBO ¢cEl —— logcEl —— CMA-ES

Figure 4: Comparison between our method and baselines in real-world tasks. Experiments are
conducted with four random seeds, and the mean and one standard deviation are reported. A dashed
line means that no feasible solutions were found.

5.2 Synthetic Experiments

We first conduct experiments on three synthetic functions, Rastrigin-200D, Ackley-200D, and

Rosenbrock-200D. For each function, we utilize two inequality constraints proposed by SCBO [8]:

(21101 xg < 0and ||x||3 < 30. We conduct all experiments with an initial dataset size of | Dy| = 200,

using a batch size of B = 100 and a maximum evaluation limit of 10, 000. In the indicator constraints
scenarios, as it is too challenging to find an initial feasible solution across all baselines, we sample 10
points within feasible regions during initialization.

As shown in the Figure[3] our method outperforms all baselines across different synthetic tasks, both
in the standard and indicator constraints. Generative model-based methods, including DiffOPT and
DDOM, struggle to find a feasible solution and fail to improve on indicator constraints. While DiBO
achieves better feasibility, its finetuning-based approach suffers from mode collapse and tends to
converge to suboptimal solutions. These results show that employing an outsourced diffusion sampler
significantly enhances performance in constrained black-box optimization by effectively capturing
multi-modal and expansive flat target distributions.

Constrained BO methods (SCBO, PCAGP-SCBO, and LogcEI) successfully identify feasible points
but show limited sample efficiency compared to our method across all tasks. The evolutionary search
algorithm CMA-ES performs modestly in general but fails to find a feasible solution for some tasks.
These results underscore that our approach effectively captures both high-scoring and feasible regions
in a sample-efficient manner. Furthermore, compared to other baselines, our method consistently
finds feasible solutions throughout the optimization process, which is illustrated in Appendix [E.]

5.3 Real World Experiments

To validate the robustness of our approach, we evaluate our method on three challenging real-world
benchmark problems: (1) Rover Planning in 60 dimensions with 15 infeasible square-shaped regions,
(2) Mopta in 124 dimensions with 68 constraints, and (3) Lasso DNA in 180 dimensions with 5
constraints. For all experiments, we initialize with |Dy| = 200 data points and limit evaluations to
2,000. We use a batch size of B = 50 for Rover Planning and Lasso DNA, and B = 20 for Mopta,
as no baseline methods could identify feasible solutions with B = 50.

As illustrated in Figure [d] our approach consistently identifies high-quality feasible solutions with
superior sample efficiency across all tasks. We observe that the performance gap between our method
and other baselines becomes larger on real-world problems and most baselines failed to find any
feasible solutions for the challenging Mopta-124D and DNA-180D tasks. While SCBO is the only
competing method to achieve feasibility alongside our approach, it exhibits lower sample efficiency.
This highlights the robustness of our approach for scalable constrained black-box optimization.

5.4 Additional Analysis

In this section, we conduct a comprehensive analysis of each component of our proposed method
through ablation experiments on Rastrigin 200D and Rover Planning 60D.

240
241
242

243
244
245
246
247

248
249

251

252

254
255
256

257
258
259

261
262
263
264
265
266
267

Rastrigin-200D __RoverPlanning-60D Rastrigin-200D __RoverPlanning-60D

—— w/o reweighting —— w/o reweighting = w/o filtering — wj/o filtering

2500 —— Objective prioritized —— Objective prioritized| 2500 4 —— w/o filtering & py — w/o filtering & py
—— Lagrangian (Ours) 154 —— Lagrangian (Ours) —— Ours 154 —— ours
2000 20004

1500

Regret

1500

Regret
Regret
Regret

1000 4 1000 4

5004 5001

T T T T T T T T T T T T T T T T T T T T
0 2000 4000 6000 8000 10000 0 500 1000 1500 2000 0 2000 4000 6000 8000 10000 0 500 1000 1500 2000

Number of Evaluations Number of Evaluations Number of Evaluations Number of Evaluations
(a) Reweighted Training (b) Sampling Procedure
Rastrigin-200D RoverPlanning-60D Rastrigin-200D RoverPlanning-60D
3000 — =0 209 — =0 —B=1 20 —p=1
I — ! 2500 1 — =10 — p=10°
25007 —— A=10 (Ours) 15 —— A=3(Ours) —— B=107 (Ours) 15 B=107 (Ours)
—— A=20 — A=5
2000 A=100 N A=10 20007 —p=10’ ol — p=10°
= o = =
o o o o
2 1500 o 1500} =
-4 o 5 < < 5
1000 1000
01 0+
5001 500
T T T T T T -1 T T T T T T T T T T - T T T T
0 2000 4000 6000 8000 10000 0 500 1000 1500 2000 0 2000 4000 6000 8000 10000 0 500 1000 1500 2000
Number of Evaluations Number of Evaluations Number of Evaluations Number of Evaluations
(c) Analysis on A (d) Analysis on 3

Figure 5: Additional analysis for various components of CiBO. Experiments are conducted with four
random seeds, and the mean and one standard deviation are reported.

Reweighted Training. To investigate the effectiveness of our reweighted training approach suggested
in Equation (7), we conduct a comparative analysis of two variants: training without reweighting,
applying weights based on the objective values (Objective-prioritized). As shown in Figure [5a]
variants without reweighting or using objective-prioritized reweighting exhibit low sample efficiency.

Sampling Procedure. We analyze the effect of each component in candidate sampling. We conduct
experiments with two variants: removing filtering, and removing both filtering and the diffusion
sampler, thus sampling candidates directly from the prior pg. As depicted in Figure [5b] there is a
significant performance gap between our method and other variants, validating the effectiveness of
each proposed component. We also experiment with the filtering coefficient V' in Appendix [E.2]

Lagrangian Multiplier \. We introduce the Lagrangian multiplier A\. As shown in Figure|5c| setting
A = 0 (eliminating the constraint penalty) significantly degrades performance on both tasks, as it only
focuses on high objective values and neglects the feasibility of solutions. Conversely, excessively
high A values diminish the influence of the objective function, resulting in reduced sample efficiency.

the reward function r(x). We conduct experiments by varying 3 values. As shown in Figure[5d] using
a moderately high /3 generally helps to improve sample efficiency. However, if /3 is too high, the
performance is heavily dependent on the accuracy of surrogate models, leading to slow convergence.
This validates that incorporating prior distribution is crucial for scalability (Section .2)).

Inverse Temperature 5. The inverse temperature controls the balance between the prior pﬁx) and

Further Analysis. To further understand our method, we analyze the impact of the buffer size L
(Appendix [E.3), batch size B, and initial dataset size |Dy| (Appendix [E.5)). We also investigate the
effect of off-policy training (Appendix [E-4) and runtime scalability of our method (Appendix [F).

6 Conclusion

We introduced CiBO, a generative model-based framework for scalable constrained black-box
optimization. Our approach formulates candidate selection as posterior inference, leveraging flow-
based models to capture the data distribution and surrogate models to predict both objectives and
constraints. By amortizing posterior sampling in the latent space with outsourced diffusion samplers,
our method effectively addresses the challenges posed by highly multi-modal and flat posterior
distributions that arise from incorporating constraints. Extensive experiments across synthetic and
real-world benchmarks demonstrate the superiority of our proposed method.

268

269
270
271

272
273
274

275
276
277
278

279
280
281

282
283
284

285
286

287

289

290
291

292

293

294
295
296

297
298
299

300
301
302

303
304
305

306
307
308
309

310
311
312

314
315

References

(1]

(2]

(3]

(4]

(51

(6]

(7]

(8]

(9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

Jacob Gardner, Matt Kusner, Kilian Weinberger, John Cunningham, et al. Bayesian optimization
with inequality constraints. In International Conference on Machine Learning, pages 937-945.
PMLR, 2014.

Ryan-Rhys Griffiths and José Miguel Herndndez-Lobato. Constrained bayesian optimization for
automatic chemical design using variational autoencoders. Chemical science, 11(2):577-586,
2020.

Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabas Poczos,
Jeff Schneider, and Eric Xing. Chembo: Bayesian optimization of small organic molecules
with synthesizable recommendations. In International Conference on Artificial Intelligence and
Statistics, pages 3393-3403. PMLR, 2020.

Felix Berkenkamp, Angela P Schoellig, and Andreas Krause. Safe controller optimization for
quadrotors with gaussian processes. In International conference on robotics and automation
(ICRA), 2016.

Felix Berkenkamp, Andreas Krause, and Angela P Schoellig. Bayesian optimization with safety
constraints: safe and automatic parameter tuning in robotics. Machine Learning, 112(10):3713—
3747,2023.

MF Anjos and DR Jones. Mopta 2008 benchmark. URL http://www. miguelanjos. com/jones-
benchmark, 2009.

Hauke F Maathuis, Roeland De Breuker, and Saullo GP Castro. High-dimensional bayesian
optimisation with large-scale constraints via latent space gaussian processes. arXiv preprint
arXiv:2412.15679, 2024.

David Eriksson and Matthias Poloczek. Scalable constrained bayesian optimization. In Interna-
tional conference on artificial intelligence and statistics, pages 730-738. PMLR, 2021.

Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.
Roman Garnett. Bayesian optimization. Cambridge University Press, 2023.

José Miguel Hernandez-Lobato, Michael Gelbart, Matthew Hoffman, Ryan Adams, and Zoubin
Ghahramani. Predictive entropy search for bayesian optimization with unknown constraints. In
International conference on machine learning, pages 1699—1707. PMLR, 2015.

Victor Picheny, Robert B Gramacy, Stefan Wild, and Sebastien Le Digabel. Bayesian optimiza-
tion under mixed constraints with a slack-variable augmented lagrangian. Advances in neural
information processing systems, 29, 2016.

Setareh Ariafar, Jaume Coll-Font, Dana Brooks, and Jennifer Dy. Admmbo: Bayesian op-
timization with unknown constraints using admm. Journal of Machine Learning Research,
20(123):1-26, 2019.

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek.
Scalable global optimization via local bayesian optimization. In Advances in Neural Information
Processing Systems (NeurlPS), 2019.

Lingkai Kong, Yuanqi Du, Wenhao Mu, Kirill Neklyudov, Valentin De Bortoli, Dongxia Wu,
Haorui Wang, Aaron M Ferber, Yian Ma, Carla P Gomes, and Chao Zhang. Diffusion models
as constrained samplers for optimization with unknown constraints. In The 28th International
Conference on Artificial Intelligence and Statistics, 2025.

Wengian Xing, JungHo Lee, Chong Liu, and Shixiang Zhu. Black-box optimization with
implicit constraints for public policy. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pages 28511-28519, 2025.

Masatoshi Uehara, Xingyu Su, Yulai Zhao, Xiner Li, Aviv Regev, Shuiwang Ji, Sergey Levine,
and Tommaso Biancalani. Reward-guided iterative refinement in diffusion models at test-time
with applications to protein and dna design. arXiv preprint arXiv:2502.14944, 2025.

316
317
318
319
320

321
322
323

324
325
326
327

328
329
330
331

333

334
335
336

338
339

340
341

342
343
344

345
346

347
348
349

351
352

353
354

355
356
357

358
359
360

361
362

[18] Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin
Hasan, Luke Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, Alexandre Adam, Jarrid
Rector-Brooks, Yoshua Bengio, Glen Berseth, and Nikolay Malkin. Amortizing intractable
inference in diffusion models for vision, language, and control. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

[19] Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky T. Q. Chen. Adjoint
matching: Fine-tuning flow and diffusion generative models with memoryless stochastic optimal
control. In The Thirteenth International Conference on Learning Representations, 2025.

[20] Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia,
Nathaniel Lee Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Fine-
tuning of continuous-time diffusion models as entropy-regularized control. arXiv preprint
arXiv:2402.15194, 2024.

[21] Siddarth Venkatraman, Mohsin Hasan, Minsu Kim, Luca Scimeca, Marcin Sendera, Yoshua
Bengio, Glen Berseth, and Nikolay Malkin. Outsourced diffusion sampling: Efficient posterior
inference in latent spaces of generative models. In International Conference on Machine
Learning (ICML), 2025.

[22] Florentin Coeurdoux, Nicolas Dobigeon, and Pierre Chainais. Normalizing flow sampling with
langevin dynamics in the latent space. arXiv preprint arXiv:2305.12149, 2023.

[23] Matthias Schonlau, William J Welch, and Donald R Jones. Global versus local search in
constrained optimization of computer models. Lecture notes-monograph series, pages 11-25,
1998.

[24] Sebastian Ament, Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy.
Unexpected improvements to expected improvement for bayesian optimization. Advances in
Neural Information Processing Systems, 36:20577-20612, 2023.

[25] Nikolaus Hansen. The cma evolution strategy: a comparing review. Towards a new evolutionary
computation: Advances in the estimation of distribution algorithms, pages 75-102, 2006.

[26] Asma Atamna, Anne Auger, and Nikolaus Hansen. Augmented lagrangian constraint handling
for cma-es—case of a single linear constraint. In International Conference on Parallel Problem
Solving from Nature, pages 181-191. Springer, 2016.

[27] Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Diffusion models for
black-box optimization. In International Conference on Machine Learning (ICML), 2023.

[28] Dongxia Wu, Nikki Lijing Kuang, Ruijia Niu, Yian Ma, and Rose Yu. Diff-BBO: Diffusion-
based inverse modeling for black-box optimization. In NeurlPS 2024 Workshop on Bayesian
Decision-making and Uncertainty, 2024.

[29] Taeyoung Yun, Kiyoung Om, Jaewoo Lee, Sujin Yun, and Jinkyoo Park. Posterior inference with
diffusion models for high-dimensional black-box optimization. In International Conference on
Machine Learning (ICML), 2025.

[30] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in neural information processing systems, 34:8780-8794, 2021.

[31] Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medi-
cal imaging with score-based generative models. In International Conference on Learning
Representations, 2022.

[32] Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul
Ye. Diffusion posterior sampling for general noisy inverse problems. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

[33] Ruiqi Feng, Chenglei Yu, Wenhao Deng, Peiyan Hu, and Tailin Wu. On the guidance of flow
matching. In Forty-second International Conference on Machine Learning, 2025.

10

363
364
365

366
367
368

369
370
371

372
373
374
375

384

385
386

387
388
389

390
391

393
394
395

396
397
398

399
400
401

411

[34] Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive
energy prediction for exact energy-guided diffusion sampling in offline reinforcement learning.
In International Conference on Machine Learning, pages 22825-22855. PMLR, 2023.

[35] Luhuan Wu, Brian Trippe, Christian Naesseth, David Blei, and John P Cunningham. Practi-
cal and asymptotically exact conditional sampling in diffusion models. Advances in Neural
Information Processing Systems, 36:31372-31403, 2023.

[36] Gabriel Cardoso, Sylvain Le Corff, Eric Moulines, et al. Monte carlo guided denoising diffusion
models for bayesian linear inverse problems. In The Twelfth International Conference on
Learning Representations, 2024.

[37] Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning
for fine-tuning text-to-image diffusion models. Advances in Neural Information Processing
Systems, 36:79858-79885, 2023.

[38] Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. In The Twelfth International Conference on Learning
Representations, 2024.

[39] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning
Representations, 2023.

[40] Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer
data with rectified flow. In The Eleventh International Conference on Learning Representations,
2023.

[41] Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
interpolants. In The Eleventh International Conference on Learning Representations, 2023.

[42] Marcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-Brooks,
Alexandre Adam, Yoshua Bengio, and Nikolay Malkin. Improved off-policy training of diffusion
samplers. Advances in Neural Information Processing Systems, 37:81016-81045, 2024.

[43] Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory
balance: Improved credit assignment in gflownets. Advances in Neural Information Processing
Systems, 35:5955-5967, 2022.

[44] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2021.

[45] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. Advances in neural information
processing systems, 30, 2017.

[46] Minsu Kim, Federico Berto, Sungsoo Ahn, and Jinkyoo Park. Bootstrapped training of score-
conditioned generator for offline design of biological sequences. In Advances in Neural
Information Processing Systems (NeurlPS), 2023.

[47] Aviral Kumar and Sergey Levine. Model inversion networks for model-based optimization. In
Advances in Neural Information Processing Systems (NeurIPS), 2020.

[48] Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[49] Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched large-scale bayesian
optimization in high-dimensional spaces. In International Conference on Artificial Intelligence
and Statistics, pages 745-754. PMLR, 2018.

[50] Kenan gehié, Alexandre Gramfort, Joseph Salmon, and Luigi Nardi. Lassobench: A high-
dimensional hyperparameter optimization benchmark suite for lasso. In International Confer-
ence on Automated Machine Learning, pages 2—1. PMLR, 2022.

11

412
413
414

415
416
417

418
419
420

421
422
423

424
425

426
427
428

429
430

431
432

433
434

435
436
437

438

439
440

441
442

443
444

445
446

447

448
449
450

451
452

453
454

455
456

[51] José Miguel Hern, Michael A Gelbart, Ryan P Adams, Matthew W Hoffman, Zoubin Ghahra-
mani, et al. A general framework for constrained bayesian optimization using information-based
search. Journal of Machine Learning Research, 17(160):1-53, 2016.

[52] Nicola Demo, Marco Tezzele, and Gianluigi Rozza. A supervised learning approach involving
active subspaces for an efficient genetic algorithm in high-dimensional optimization problems.
SIAM Journal on Scientific Computing, 43(3):B831-B853, 2021.

[53] Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learning search space partition for black-
box optimization using monte carlo tree search. Advances in Neural Information Processing

Systems, 33:19511-19522, 2020.

[54] Zeji Yi, Yunyue Wei, Chu Xin Cheng, Kaibo He, and Yanan Sui. Improving sample efficiency
of high dimensional bayesian optimization with memc. In 6th Annual Learning for Dynamics
& Control Conference, pages 813—824. PMLR, 2024.

[55] Zelda B Zabinsky and Robert L Smith. Hit-and-run methods. Encyclopedia of Operations
Research and Management Science, pages 721-729, 2013.

[56] Leonard Papenmeier, Luigi Nardi, and Matthias Poloczek. Increasing the scope as you learn:
Adaptive bayesian optimization in nested subspaces. Advances in Neural Information Processing
Systems, 35:11586-11601, 2022.

[57] Nikolaus Hansen, Youhei Akimoto, and Petr Baudis. CMA-ES/pycma on Github. Zenodo,
DOI:10.5281/zenodo.2559634, February 2019.

[58] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[59] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations (ICLR), 2015.

[60] Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ
Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv
preprint arXiv:2412.06264, 2024.

[61] Ricky T. Q. Chen. torchdiffeq, 2018.

[62] UIf Grenander and Michael I Miller. Representations of knowledge in complex systems. Journal
of the Royal Statistical Society: Series B (Methodological), 56(4):549-581, 1994.

[63] Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid monte
carlo. Physics letters B, 195(2):216-222, 1987.

[64] J. H. Halton. Sequential monte carlo. Mathematical Proceedings of the Cambridge Philosophical
Society, 58(1):57-78, 1962.

[65] Nicolas Chopin. A sequential particle filter method for static models. Biometrika, 89(3):539—
552,2002.

[66] John Skilling. Nested sampling for general bayesian computation. 2006.

[67] Pablo Lemos, Nikolay Malkin, Will Handley, Yoshua Bengio, Yashar Hezaveh, and Laurence
Perreault-Levasseur. Improving gradient-guided nested sampling for posterior inference. In
International Conference on Machine Learning, pages 27230-27253. PMLR, 2024.

[68] Qinsheng Zhang and Yongxin Chen. Path integral sampler: A stochastic control approach for
sampling. In International Conference on Learning Representations, 2022.

[69] Francisco Vargas, Will Sussman Grathwohl, and Arnaud Doucet. Denoising diffusion samplers.
In The Eleventh International Conference on Learning Representations, 2023.

[70] Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-
based generative modeling. Transactions on Machine Learning Research, 2024.

12

457
458

459
460
461

462
463
464
465

466
467

469
470
471

472
473
474
475

476
477
478
479

481
482
483

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

Lorenz Richter and Julius Berner. Improved sampling via learned diffusions. In The Twelfth
International Conference on Learning Representations, 2024.

Francisco Vargas, Shreyas Padhy, Denis Blessing, and Nikolas Niisken. Transport meets varia-
tional inference: Controlled monte carlo diffusions. In The Tielfth International Conference on
Learning Representations, 2024.

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex
Hernandez-Garcia, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of
continuous generative flow networks. In International Conference on Machine Learning, pages
18269-18300. PMLR, 2023.

Dinghuai Zhang, Ricky TQ Chen, Cheng-Hao Liu, Aaron Courville, and Yoshua Bengio.
Diffusion generative flow samplers: Improving learning signals through partial trajectory
optimization. In The Twelfth International Conference on Learning Representations, 2024.

Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward J Hu, Katie E Everett, Dinghuai
Zhang, and Yoshua Bengio. GFlownets and variational inference. In The Eleventh International
Conference on Learning Representations, 2023.

Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid
Rector-Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based genera-
tive models with minibatch optimal transport. Transactions on Machine Learning Research,
2024.

Aaron J Havens, Benjamin Kurt Miller, Bing Yan, Carles Domingo-Enrich, Anuroop Sriram,
Daniel S. Levine, Brandon M Wood, Bin Hu, Brandon Amos, Brian Karrer, Xiang Fu, Guan-
Horng Liu, and Ricky T. Q. Chen. Adjoint sampling: Highly scalable diffusion samplers via
adjoint matching. In Frontiers in Probabilistic Inference: Learning meets Sampling, 2025.

Minsu Kim, Sanghyeok Choi, Taeyoung Yun, Emmanuel Bengio, Leo Feng, Jarrid Rector-
Brooks, Sungsoo Ahn, Jinkyoo Park, Nikolay Malkin, and Yoshua Bengio. Adaptive teachers for
amortized samplers. In The Thirteenth International Conference on Learning Representations,
2025.

13

484

485

486

487
488
489

490

491
492
493
494

Appendix

A Task Details

A.1 Synthetic Functions

We evaluate three synthetic functions in our constrained black-box optimization experiments: Rastri-
gin, Ackley, and Rosenbrock. The Rastrigin and Ackley functions are highly multi-modal functions
with numerous local minima, whereas the Rosenbrock function features a narrow valley that makes
convergence to the global minimum notoriously difficult [52]. Following [53} 54], we define the
search domains as Rastrigin: [—5, 5|7, Ackley: [—5, 10]”, and Rosenbrock: [—5,10]P. All functions
are subject to two constraints:

200
> 2a<0 and |x|[5 < 30
d=1

Although prior work enforced the tighter bound ||x||3 < 5, we relax this constraint in our high-

dimensional setting. For the indicator constraint experiments, we sample initial feasible points by
hit-and-run MCMC [55]].

A.2 Rover Trajectory Planning

Rover Trajectory Planning is a trajectory optimization task in a 2D environment introduced by [49].
The objective is to optimize the rover’s trajectory, where its trajectory is represented by 30 points
defining a B-Spline. We place 15 impassable obstacles o; and impose collision-avoidance constraints
¢i(x) as in [8]:

—d(0i,7(x)) ify(x) No; = &,

max min d(«,3) otherwise.
a€y(x)No; BEDo;

ci(x) =

where 7(x) denotes final trajectory, o; is the region of the obstacle and Jo; denotes the boundary of o;.
A trajectory is feasible if and only if it does not intersect any obstacle. We follow the implementation
from [49]], but since there is no released code for the constraints, we implement the violation metric
ourselves. Below is an example of the trajectory found by our method.

Figure 6: Trajectory found by CiBO, achieving regret of -4.59.

14

495

496
497
498
499

500

501
502
503
504
505
506

508

509

510

511

512
513
514

515
516
517
518

519

521

522

523

524

526

527
528

529
530

531
532

A.3 Vehicle Design with 68 Constraints (MOPTA)

MOPTA is the high-dimensional real-world problem of large-scale multidisciplinary mass optimiza-
tion [6]. The objective is to minimize a vehicle’s mass, which incorporates decisions about materials,
gauges, and vehicle shape with 68 performance constraints. The best-known optimum mass is
approximately 222.74. We followed the implementation from [56]. E]

A.4 LassoBench

LassoBench [50] E]is a high-dimensional benchmark for hyperparameter optimization, specifically
designed to tune the hyperparameters of the Weighted LASSO (Least Absolute Shrinkage and
Selection Operator) regression model. It includes both synthetic tasks (simple, medium, high, and
hard) and real-world tasks (Breast cancer, Diabetes, Leukemia, DNA, and RCV1). In this work, we
focus on the DNA task, a microbiology classification problem. It computes the average validation
error across all cross-validation folds as an unconstrained objective. We reformulate the problem by
retaining the mean validation error as the objective while introducing constraints that the validation
error on each fold must not exceed 0.32.

B Baselines Details

In this section, we provide a thorough description of our baseline implementation details and specify
the hyperparameter settings used across all experiments.

DiBO [29]: We use the original cod and adapt DiBO to handle constrained optimization by
reformulating the objective as a Lagrangian, setting the same \ value as our methods for fair
comparison.

DiffOPT [15]: As there is no publicly available code, we re-implement this baseline on our own. To
approximate the data distribution, we use diffusion models with a similar architecture to our method.
To enable accurate sampling from the target distribution, we implement Langevin dynamics as the
energy function, which can be constructed by surrogate models in our setting, is differentiable.

DDOM [27]: Building on the original implementatiorﬂ we reconstruct this baseline with network
architecture matching our flow-based model. While maintaining the method’s specific parameters as
specified in the original work, we incorporate a Lagrangian framework and set the same A as ours.

SCBO [8]]: We follow the tutorial code for SCBO provided by botorchE]to reproduce the results.

PCAGP-SCBO [7]: To reproduce PCAGP-SCBO, we follow the code for SCBO and then apply
torch pcaE]to project high-dimensional data into a reduced latent space with dimension [before
fitting GP surrogates for constraints. For all synthetic tasks, we use [= 2 and for real-world tasks,
we conduct a hyperparameter search on [2, | D/2]] and report the best one.

cEI [23]: We implement cEI acquisition function by using gExpectedImprovement () in botorch
library. We train a GP surrogate model independently for the objective and each constraint.

LogcEI [24]: We implement logcEI acquisition function by using qLogExpectedImprovement () in
botorch library. We train a GP surrogate model independently for the objective and each constraint.

CMA-ES [25]]: We employ the pycmalz] library [S7]. For constraint handling, we formulate the
problem using the same Lagrangian approach with the same A value as ours for each task.

'https://github.com/LeoIV/BAXUS
"https://github.com/ksehic/LassoBench
*https://github.com/umkiyoung/DiB0
“https://github.com/siddarthk97/ddom
Shttps://botorch.org/docs/tutorials/scalable_constrained_bo/
®https://github.com/valentingol/torch_pca
"https://github.com/CMA-ES/pycma

15

https://github.com/LeoIV/BAxUS
https://github.com/ksehic/LassoBench
https://github.com/umkiyoung/DiBO
https://github.com/siddarthk97/ddom
https://botorch.org/docs/tutorials/scalable_constrained_bo/
https://github.com/valentingol/torch_pca
https://github.com/CMA-ES/pycma

ss3 C Algorithms

Algorithm 1 CiBO
1: Input: Initial dataset Dy; Max rounds R; Batch size B; Buffer size L; Number of constraints M

Flow model py; Diffusion sampler p,; Proxies fg,, -, fox, g((bl), e 7g((bM);
2: forr=0,...,R—1do
- 1 M
3: Inltlallzep07p’¢)’f¢17"'7f¢Kng¢)7"'7gg¢)
4:
5. Phase 1. Training Models
6: Compute weights w(y, ¢, D,.) with Equation
7: Train py with Equation (8)
8: Train fy,, -, for, g((;), e ,g((i)M) with Equation @)

9:

10: Phase 2. Sampling Candidates

11: Train py, with Equation using prior pg and z ~ N (0,)

12: Sample latent noise with {z; } Y5 ~ p, ()

13: Projection to data space with learned mapping x; = fy(z;) Vi€ {1,--- ,NB}
14:

15: Filtering

16: Select top-B samples {x; }Z_, with respect to:

re(xi) —)\2%21 maX(O,g(m) (x;)) Vi={1,---,NB}

17:

18: Evaluation and Moving Dataset

19: Evaluate y, = f(xp), ¢ =g (xp) Ym={l,---M} Yb={l,---,B}
20: Update ’DT+1 «~ D, U {(Xb7 Yb, Cb)}bB:1
21: if |D,41| > L then

22: Remove last |D,1| — L samples from D, with respect to: y — A ZTA;[:I max (0, ™)
23: endif
24: end for

16

534

535
536
537

538

539

540
541
542
543
544

545

546
547
548
549

550

D Implementation Details

In this section, we introduce the implementation details of our method CiBO. Specifically, model
architectures, the training processes employed, the hyperparameter configurations used, and the
computational resources required.

D.1 Training Models
D.1.1 Training Proxies

We employ an ensemble of five proxies to model the objective function and a single proxy for each
constraint. Each proxy is implemented as a MLP with three hidden layers of 1024 units, using GELU
[58]] activations. Proxies are trained with the Adam optimizer [59] for 100 epochs per round at a
learning rate of 1 x 10~2 and a batch size of 256. All hyperparameters related to the proxy are listed
in Table[Tl

Table 1: Hyperparameters for Training Proxy

| Parameters Values
Num Ensembles 5
Architecture | Number of Layers 3
Num Units 1024
Batch size 256
Trainin Optimizer Adam
£ | Learning Rate 1x1073
Training Epochs 100

D.1.2 Training Flow-based Models

We adopt the architecture of [60] for our flow model, comprising three hidden layers with 512
units each. Training is performed using Adam optimizer for 500 epochs per round, with a learning
rate of 1 x 1072 and a batch size of 256. For ODE integration during sampling, we employ the
Runge-Kutta 4 method with torchdiffeq [61], and set the integration steps as 250. All flow-model
hyperparameters are detailed in Table 2]

Table 2: Hyperparameters for Training Flow-based Model

| Parameters Values
. Number of Layers 3
Architecture Num Units 512
Batch size 256
Trainin Optimizer Adam
g Learning Rate 1x1073

Training Epochs 500

17

551

552

553
554
555
556
557
558

559

560

562
563
564
565

566
567
568
569
570
571

572
573
574
575

576
577
578

D.2 Sampling Candidates

D.2.1 Training Diffusion Sampler

Various approaches have been developed to draw samples from a distribution when only an unnor-
malized probability density or energy function is available. Traditional methods include Markov
Chain Monte Carlo (MCMC) techniques [62, 63} 164, 65| 66, 67]], though their computational cost
increases dramatically in high-dimensional spaces. More recently, amortized variational inference
methods, particularly those based on training diffusion samplers [68 169 70, [71 [72, 73| [74], have
gained widespread adoption as they offer improved scalability for high-dimensional problems.

Following the [21]], we adopt [42] to train diffusion sampler to sample from the target:

M
Ppost(#) o p(z) exp (B- [%(fe(Z)) ~ A max (o,g<m)<f9(z>>)D (15)
m=1

Here, the right-hand-side term serves as an unnormalized probability density, which the diffusion
sampler amortizes the sampling cost by approximating it.

Off-policy Training of Diffusion Sampler As mentioned in the Section 4.2 we use the Trajectory
Balance objective to train the diffusion sampler.

Zyp(20) [11—9 PF(Z(i1)ad|Zine;)) ’
p(z1)r(fo(z1)) 11—, PB(Z(i—1)At|Ziat)

L (20:157) = (log
The primary advantage of the TB loss is off-policy training [42} [75]. We can train our model not only
from the on-policy trajectories through the reverse SDE {zg,--- ,z1} = 7 ~ pp(7) but also from
the trajectories through the forward SDE conditioned on the generated samples 7 ~ pg(7|z1). This
proves its effectiveness on mode coverage and credit assignment [42].

Specifically, we repeat two processes. First, we sample trajectories on-policy 7 ~ pg(7), train
the model with Equation , and collect the samples z; into the buffer. Second, from the col-
lected samples z;, we generate off-policy trajectories through 7 ~ pp(7|z;), then train with
the Equation (I4). During the off-policy training, we prioritize the samples with low energy:
E(z1) = —log(p(z1)r(fo(z1))) following [42] to make our model focus on the low energy samples.
These techniques improve the overall performance of our framework (Appendix [E.4).

We use the original codeﬁ released from [42] for implementation. We also set method-specific
hyperparameters with Path Integral Sampler (PIS) [68] architecture, zero initialization, and t-scale
to 1 to make sure the initialized pz(z;) starts from the standard normal distribution. Detailed
hyperparameters for training the diffusion sampler can be found in Table 3]

Table 3: Hyperparameters for Training Diffusion Sampler

| Parameters Values
Number of Layers 2
Architecture | Num Units 256
Diffusion Time Steps 50
Batch size 256
Trainin Optimizer Adam
£ Learning Rate 1x1073
Training Epochs 50

Computational Resources. Our experiments were conducted using NVIDIA RTX 3090 and A6000
GPUs. These resources were sufficient to train our models within a reasonable time for all reported
experiments. Details of computational time can be found at Appendix [F|

$https://github.com/GFNOrg/gfn-diffusion

18

https://github.com/GFNOrg/gfn-diffusion

579

580

582
583
584
585

D.3 Hyperparameters

In our formulation of constrained black-box problems, we introduce A for Lagrangian augmentation.
We draw NV x B samples from the posterior distribution, then select B samples during filtering. After
evaluation, we update the training set by keeping the top L highest-scoring samples subject to the
Lagrangian objective. Table 4| summarizes all hyperparameter values used in candidate selection,
and we include additional analysis to assess how each parameter affects overall performance in
Section[5.4and Appendix [E}

Table 4: Hyperparameters during sampling candidates
Lambda A Inverse Temperature 5 Buffer Size L Filtering Coefficient N

Ackley 200D 10 10° 3000 10
Rastrigin 200D 10 10° 2000 10
Rosenbrock 200D 10 10° 2000 10
RoverPlanning 60D 3 10° 1000 10
Mopta 124D 3 103 500 10
DNA 180D 5 103 1000 15

19

586

587
588

589

590
591
592

593
594
595
596
597
598
599
600

E Further Analysis

In this section, we provide further analysis on different components of our method that are not
included in the main manuscript due to the page limit.

E.1 Analysis on Feasibility Ratio
To further analyze our method’s ability to effectively handle constraints, we report the feasibility

ratio across optimization batches for the Rastrigin 200D task. Here, the feasibility ratio denotes the
number of feasible samples over queried samples.

Feasibility Ratio (Rastrigin-200D)

1.0+

X NIRRT
/‘/\VF\[/\VAVP \//\V*’\(;‘\\VVV AN
S|

0.8 4

o
ES
s

Feasibility Ratio

e
[N
.

0.04

4b Gb 8‘0 160
Number of Batches

—— CiBO (Ours) —— DIBO DiffOPT ~ —— DDOM SCBO —— PCAGP-SCBO cEl —— LlogcEl —— CMA-ES

Figure 7: Feasibility ratio over all baselines. Experiments are conducted with four random seeds, and
the mean and one standard deviation are reported.

As shown in Figure[7} CiBO demonstrates superior performance by rapidly achieving the highest
feasibility ratio within the first 5-10 batches, significantly faster than all competing methods. While
some baselines (SCBO, PCAGP-SCBO) eventually reach high feasibility ratios, they require approxi-
mately twice as many batches to achieve comparable performance. Other methods like DiBO and
DiffOPT take even longer (around 20 batches), and CMA-ES struggles substantially, only reaching
moderate feasibility ratios after 50 batches. Notably, CiBO not only reaches the high feasibility ratio
faster but also maintains it consistently throughout the optimization process, demonstrating its robust
constraint-handling capabilities in high-dimensional spaces.

20

601

602
603
604
605

606
607
608

609

610
611
612
613

E.2 Analysis on Filtering coefficient N

To improve the sample efficiency of our method, we introduce filtering, where we sample N x B
candidates from the posterior distribution, then select the highest B samples with respect to the
Lagrangian-relaxed objective function. To analyze the impact of the filtering coefficient N, we
experiment with varying N values, including our default N = 100.

Rastrigin-200D RoverPlanning-60D
201
— N=1 — N=1
55004 — N=25 — N=25
—— N=100 (Ours) 154 —— N=100 (Ours)
— N=225 — N=225
2000
10
- -
g o
© 1500+ 5}
() [
-4 o 54
10001
o
500 -
—5
0 2000 4000 6000 8000 10000 0 500 1000 1500 2000
Number of Evaluations Number of Evaluations

Figure 8: Performance of CiBO in Rastrigin-200D and Rover Planning-60D with varying N. Experi-
ments are conducted with four random seeds, and the mean and one standard deviation are reported.

As shown in Figure[§] increasing the filtering coefficient improves sample efficiency by concentrating
candidate selection in both high objective values and feasible regions. If the coefficient is set too low,
we lose its exploitation capability, leading to slower convergence.

E.3 Analysis on Buffer Size L

In each round, we retain the L top-scoring samples with respect to the Lagrangian-relaxed objective
function for computational efficiency. To analyze the effect of the buffer size L, we conduct
experiments by varying L. As demonstrated in Figure 0] using too small L occasionally gets stuck in
a sub-optimal solution while using too large L exhibits a slow convergence rate.

Rastrigin-200D RoverPlanning-60D
— =500 201 — =300
— L[=1000 — [=500
25007 —— L=2000 (Ours) 15 —— L=1000 (Ours)
—— L=5000 —— L=2000
2000 4
101
o o
o S
21500 o
< o 5
1000
o
500
51
0 2000 4000 6000 8000 10000 0 500 1000 1500 2000
Number of Evaluations Number of Evaluations

Figure 9: Performance of CiBO in Rastrigin-200D and Rover Planning-60D with varying L. Experi-
ments are conducted with four random seeds, and the mean and one standard deviation are reported.

21

614

615

617
618
619
620

621

622
623
624
625
626
627

E.4 Effect of Off-policy Training in Amortized Inference

We employ off-policy training with the TB loss to train the diffusion sampler as detailed in Section4.2]
To analyze the impact of off-policy training on performance, we conduct ablation studies on different
training schemes. As shown in Figure [T0} off-policy training consistently outperforms on-policy
methods, and the performance gap widens as the number of constraints grows (15 constraints in
Rover Planning versus only 2 in Rastrigin). It underlines that training with off-policy samples is
crucial for amortizing the posterior distribution with multiple modes and a large plateau.

Rastrigin-200D RoverPlanning-60D
20
—— Off-policy (Ours) —— Off-policy (Ours)
2500 1 —— On-policy = On-policy
154
2000
10+
4.: .
I o
21500 2
-4 5
10001
0-
500 4
T T T T T T _5 L T T T T
0 2000 4000 6000 8000 10000 0 500 1000 1500 2000
Number of Evaluations Number of Evaluations

Figure 10: Comparison between off-policy and on-policy in Rastrigin-200D and Rover Planning-60D.
Experiments are conducted with four random seeds, and the mean and one standard deviation are
reported.

E.5 Analysis on Initial Dataset size | Dy| and Batch size B

The size of the initial dataset, |Dg|, and batch size B play a critical role in the performance of
black-box optimization algorithms. When | Dg| is small and B is large, the algorithm must optimize
using very limited information, making the search significantly more challenging. To this end, we
conduct experiments varying | Dy| and B to demonstrate the robustness of our method on initial data
configurations. As shown in Figure [T} our method demonstrates robustness regarding both the initial
dataset size |Dy| and the batch size B.

2000 Rastrigin-200D Rastrigin-200D
—— |Do|=50 — B=20
— |Do|=100 | —— B=50 (Ours)
25001 2500 _
—— |Do|=200 (Ours) B=100
—— |Do|=500 T B=p00
2000+ \Do|=1000 2000+
o o
g o
>15001 21500
o o
1000 - 10004
500 — 5004
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Number of Evaluations Number of Evaluations

Figure 11: Performance of CiBO in Rastrigin-200D with varying |Dy| and B. Experiments are
conducted with four random seeds, and the mean and one standard deviation are reported.

22

628

629
630
631

632

F Runtimes

We report the running time of each method in Table 5] To measure the runtime, we conduct
experiments on a single NVIDIA RTX 3090 GPU and Intel Xeon Platinum CPU @ 2.90 GHz.
As shown in the table, the running time of our method is similar to other generative model-based
approaches, and mostly faster than BO-based methods.

Table 5: Average time (in seconds) for each round in each method.

‘ Rastrigin-200D Ackley-200D Rosenbrock-200D RoverPlanning-60D Mopta-124D DNA-180D
cEl 336.96 £ 47.48 133.12 £ 6.66 489.86 £ 81.38 111.13+5.83 205.66 £5.35 133.98 £9.16
LogcEl 720.45 £ 56.76 158.38 £ 10.13 593.39 £97.93 113.28 +3.97 324.27£9.91 161.08 £8.21
SCBO 322.81£47.38 117.81 £ 6.50 475.02 £80.11 87.83 £4.42 270.30 £5.19 147.83 £ 12.57
PCAGP-SCBO | 327.48 £51.20 122.67 £3.50 479.06 £ 82.41 17.55 £3.05 20.69 +0.39 81.34+£9.19
CMA-ES | 0.08%0.00 0.09 £ 0.00 0.10 £ 0.01 0.61 £0.00 5.33£0.15 46.58 £3.16
DDOM 26.87+0.28 27.00 +£0.32 26.96 £0.12 3.56 £0.02 8.63+0.37 50.99 +0.81
DiffOPT 91.00 +5.07 111.04 £ 1.51 89.37 £8.27 29.48 +£1.21 105.61 £2.71 60.64 +1.34
DiBO 73.97 £0.56 68.89 +0.98 7383 £ 1.11 2943 +1.51 66.61 £4.16 71.85+2.48
CiBO | 7339209 103.43 £4.84 82.24 £ 6.50 53.58+5.14 10543 £2.24 81.77 £2.37

23

633

634
635
636
637
638

639

640
641
642
643
644

G Limitations and Future Work

We are interested in improving our method further. First, as we need to train all models with the
updated dataset in every round, presenting a framework that can efficiently reuse the trained models
from the previous rounds would be beneficial. Furthermore, there are several advancements in the
literature on flow-based model training [[76]] and diffusion samplers [[77} 78], which could potentially
yield substantial performance gains. We leave them as future work.

H Broader Impact

Advances in real-world design optimization have the potential to drive major innovations, but they
also come with potential risks and unintended consequences. For example, optimization techniques
in biochemical design may uncover novel compounds with therapeutic potential, but similar methods
could also be misused to discover harmful substances. It is essential for researchers to act responsibly
and ensure their work serves the public good.

24

	Introduction
	Related Works
	Constrained Black-box Optimization
	Generative Model-based Optimization
	Amortized Inference in Flow-based and Diffusion Models

	Preliminaries
	Constrained Black-box Optimization
	Flow-based Models
	Posterior Inference in Flow-based and Diffusion Models

	Method
	Phase 1. Training Models
	Phase 2. Sampling Candidates
	Filtering, Evaluation and Moving Dataset

	Experiments
	Baselines
	Synthetic Experiments
	Real World Experiments
	Additional Analysis

	Conclusion
	Task Details
	Synthetic Functions
	Rover Trajectory Planning
	Vehicle Design with 68 Constraints (MOPTA)
	LassoBench

	Baselines Details
	Algorithms
	Implementation Details
	Training Models
	Training Proxies
	Training Flow-based Models

	Sampling Candidates
	Training Diffusion Sampler

	Hyperparameters

	Further Analysis
	Analysis on Feasibility Ratio
	Analysis on Filtering coefficient N
	Analysis on Buffer Size L
	Effect of Off-policy Training in Amortized Inference
	Analysis on Initial Dataset size |D0| and Batch size B

	Runtimes
	Limitations and Future Work
	Broader Impact

