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ABSTRACT

To apply reinforcement learning (RL) to real-world applications, agents are re-
quired to adhere to the safety guidelines of their respective domains. Safe RL
can effectively handle the guidelines by converting them into constraints of the
RL problem. In this paper, we develop a safe distributional RL method based
on the trust region method, which can satisfy constraints consistently. However,
policies may not meet the safety guidelines due to the estimation bias of distribu-
tional critics, and importance sampling required for the trust region method can
hinder performance due to its significant variance. Hence, we enhance safety per-
formance through the following approaches. First, we train distributional critics to
have low estimation biases using proposed target distributions where bias-variance
can be traded off. Second, we propose novel surrogates for the trust region method
expressed with Q-functions using the reparameterization trick. Additionally, de-
pending on initial policy settings, there can be no policy satisfying constraints
within a trust region. To handle this infeasible issue, we propose a gradient inte-
gration method which guarantees to find a policy satisfying all constraints from
an unsafe initial policy. From extensive experiments, the proposed method with
risk-averse constraints shows minimal constraint violations while achieving high
returns compared to existing safe RL methods. Furthermore, we demonstrate the
benefit of safe RL for problems in which the reward cannot be easily specified.

1 INTRODUCTION

Deep reinforcement learning (RL) enables reliable control of complex robots (Merel et al., 2020;
Peng et al., 2021; Rudin et al., 2022). Miki et al. (2022) have shown that RL can control quadrupedal
robots more robustly than existing model-based optimal control methods, and Peng et al. (2022) have
performed complex natural motion tasks using physically simulated characters. In order to success-
fully apply RL to real-world systems, it is essential to design a proper reward function which reflects
safety guidelines, such as collision avoidance and limited energy consumption, as well as the goal
of the given task. However, finding the reward function that considers all of such factors involves a
cumbersome and time-consuming task since RL algorithms must be repeatedly performed to verify
the results of the designed reward function. Instead, safe RL, which handles safety guidelines as con-
straints, can be an appropriate solution. A safe RL problem can be formulated using a constrained
Markov decision process (Altman, 1999), where not only the reward but also cost functions, which
output the safety guideline signals, are defined. By defining constraints using risk measures, such as
condtional value at risk (CVaR), of the sum of costs, safe RL aims to maximize returns while satis-
fying the constraints. Under the safe RL framework, the training process becomes straightforward
since there is no need to search for a reward that reflects the safety guidelines.

The most crucial part of safe RL is to satisfy the safety constraints, and it requires two conditions.
First, constraints should be estimated with low biases. In general RL, the return is estimated using a
function estimator called a critic, and, in safe RL, additional critics are used to estimate the constraint
values. In our case, constraints are defined using risk measures, so it is essential to use distributional
critics (Dabney et al., 2018b). Then, the critics can be trained using the distributional Bellman
update (Bellemare et al., 2017). However, the Bellman update only considers the one-step temporal
difference, which can induce a large bias. The estimation bias makes it difficult for critics to judge
the policy, which can lead to the policy becoming overly conservative or risky, as shown in Section
5.3. Therefore, there is a need for a method that can train distributional critics with low biases.
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Second, a policy update method considering safety constraints, denoted by a safe policy update rule,
is required not only to maximize the reward sum but also to satisfy the constraints after updating the
policy. Existing safe policy update rules can be divided into the trust region-based and Lagrangian
methods. The trust region-based method calculates the update direction by approximating the safe
RL problem within a trust region and updates the policy through a line search (Yang et al., 2020;
Kim & Oh, 2022a). The Lagrangian method converts the safe RL problem into a dual problem and
updates the policy and Lagrange multipliers (Yang et al., 2021). However, the Lagrangian method
is difficult to guarantee satisfying constraints during training theoretically, and the training process
can be unstable due to the multipliers (Stooke et al., 2020). In contrast, trust region-based methods
can guarantee to improve returns while satisfying constraints under tabular settings (Achiam et al.,
2017). Still, trust region-based methods also have critical issues. There can be an infeasible starting
case, meaning that no policy satisfies constraints within the trust region due to initial policy settings.
Thus, proper handling of this case is required, but there is a lack of such handling methods when
there are multiple constraints. Furthermore, the trust region-based methods are known as not sample-
efficient, as observed in several RL benchmarks (Achiam, 2018; Raffin et al., 2021).

In this paper, we propose an efficient trust region-based safe RL algorithm with multiple constraints,
called a safe distributional actor-critic (SDAC). First, to train critics to estimate constraints with low
biases, we propose a TD(λ) target distribution combining multiple-step distributions, where bias-
variance can be traded off by adjusting the trace-decay λ. Then, under off-policy settings, we present
a memory-efficient method to approximate the TD(λ) target distribution using quantile distributions
(Dabney et al., 2018b), which parameterize a distribution as a sum of Dirac functions. Second, to
handle the infeasible starting case for multiple constraint settings, we propose a gradient integration
method, which recovers policies by reflecting all constraints simultaneously. It guarantees to obtain
a policy which satisfies the constraints within a finite time under mild technical assumptions. Also,
since all constraints are reflected at once, it can restore the policy more stably than existing handling
methods Xu et al. (2021), which consider only one constraint at a time. Finally, to improve the
efficiency of the trust region method as much as Soft Actor-Critic (SAC) (Haarnoja et al., 2018), we
propose novel SAC-style surrogates. We show that the surrogates have bounds within a trust region
and empirically confirm improved efficiency in Appendix B. In summary, the proposed algorithm
trains distributional critics with low biases using the TD(λ) target distributions and updates a policy
using safe policy update rules with the SAC-style surrogates. If the policy cannot satisfy constraints
within the trust region, the gradient integration method recovers the policy to a feasible policy set.

To evaluate the proposed method, we conduct extensive experiments with four tasks in the Safety
Gym environment (Ray et al., 2019) and show that the proposed method with risk-averse constraints
achieves high returns with minimal constraint violations during training compared to other safe RL
baselines. Also, we experiment with locomotion tasks using robots with different dynamic and
kinematic models to demonstrate the advantage of safe RL over traditional RL, such as no reward
engineering required. The proposed method has successfully trained locomotion policies with the
same straightforward reward and constraints for different robots with different configurations.

2 BACKGROUND

Constrained Markov Decision Processes. We formulate the safe RL problem using constrained
Markov decision processes (CMDPs) (Altman, 1999). A CMDP is defined as (S, A, P , R, C1,..,K ,
ρ, γ), where S is a state space, A is an action space, P : S × A× S 7→ [0, 1] is a transition model,
R : S × A × S 7→ R is a reward function, Ck∈{1,...,K} : S × A × S 7→ R≥0 are cost functions,
ρ : S 7→ [0, 1] is an initial state distribution, and γ ∈ (0, 1) is a discount factor. The state action
value, state value, and advantage functions are defined as follows:

QπR(s, a) := E
π,P

[
∞∑
t=0

γtR(st, at, st+1)

∣∣∣∣s0 = s, a0 = a

]
,

V πR (s) := E
π,P

[
∞∑
t=0

γtR(st, at, st+1)

∣∣∣∣s0 = s

]
, AπR(s, a) := QπR(s, a)− V πR (s).

(1)

By substituting the costs for the reward, the cost value functions V πCk(s), Q
π
Ck

(s, a), AπCk(s, a) are
defined. In the remainder of the paper, the cost parts will be omitted since they can be retrieved by
replacing the reward with the costs. Given a policy π from a stochastic policy set Π, the discounted
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state distribution is defined as dπ(s) := (1 − γ)
∑∞
t=0 γ

tPr(st = s|π), and the return is defined as
ZπR(s, a) :=

∑∞
t=0 γ

tR(st, at, st+1), where s0 = s, a0 = a, at ∼ π(·|st), and st+1 ∼ P (·|st, at).
Then, the safe RL problem is defined as follows with a safety measure F :

max
π

E [ZπR(s, a)|s ∼ ρ, a ∼ π(·|s)] s.t. F (ZπCk(s, a)|s ∼ ρ, a ∼ π(·|s)) ≤ dk ∀k, (2)

where dk is a limit value of the kth constraint.

Mean-Std Constraints. In our safe RL setting, we use mean-std as the safety measure: F (Z;α) =
E[Z] + (ϕ(Φ−1(α))/α) · Std[Z], where α ∈ (0, 1] adjusts conservativeness of constraints, Std[Z]
is the standard deviation of Z, ϕ is the probability density function, and Φ is the cumulative dis-
tribution function (CDF) of the standard normal distribution. The mean-std is identical to the
conditional value at risk (CVaR) if Z follows the Gaussian distribution, and the mean-std con-
straint can effectively reduce the number of constraint violations, as shown by Yang et al. (2021);
Kim & Oh (2022b;a). To estimate the mean-std of cost returns, Kim & Oh (2022b) define the
square value functions: SπCk(s) := E

π,P

[
ZπCk(s, a)

2|a ∼ π(·|s)
]
, SπCk(s, a) := E

π,P

[
ZπCk(s, a)

2
]
,

and AπSk(s, a) := SπCk(s, a) − SπCk(s). Additionally, dπ2 (s) := (1 − γ2)
∑∞
t=0 γ

2tPr(st = s|π)
denotes a doubly discounted state distribution. Then, the kth constraint can be written as follows:

Fk(π;α) = JCk (π) +
ϕ(Φ−1(α))

α

√
JSk (π)− JCk (π)

2 ≤ dk, (3)

where JCk(π) := E
s∼ρ

[
V πCk(s)

]
and JSk(π) := E

s∼ρ

[
SπCk(s)

]
.

Distributional Quantile Critic. To parameterize the distribution of the returns, Dabney et al.
(2018b) have proposed an approximation method to estimate the returns using the following quantile
distributions, called a distributional quantile critic: Pr(ZπR,θ(s, a) = z) :=

∑M
m=1 δθm(s,a)(z)/M ,

where M is the number of atoms, θ is a parametric model, and θm(s, a) is the mth atom. The per-
centile value of the mth atom is denoted by τm (τ0 = 0, τi = i/M ). In distributional RL, the returns
are directly estimated to get value functions, and the target distribution can be calculated from the
distributional Bellman operator (Bellemare et al., 2017): T πZR(s, a) :

D
= R(s, a, s′) + γZR(s

′, a′),
where s′ ∼ P (·|s, a) and a′ ∼ π(·|s′). The above one-step operator can be expanded to the n-step
one: T π

n ZR(s0, a0) :
D
=
∑n−1
t=0 γ

tR(st, at, st+1) + γnZR(sn, an). Then, the critic can be trained to
minimize the following quantile regression loss (Dabney et al., 2018b):

L(θ) =
M∑
m=1

EZ̄∼Z
[
ρτ̂m(Z̄ − θm)

]︸ ︷︷ ︸
=:Lτ̂mQR(θm)

, where ρτ (x) = x · (τ − 1x<0), τ̂m :=
τm−1 + τm

2
, (4)

and LτQR(θ) denotes the quantile regression loss for a single atom. The distributional quantile critic
can be plugged into existing actor-critic algorithms because only the critic modeling is changed.

3 PROPOSED METHOD

We propose the following three approaches to enhance the safety performance of trust region-based
safe RL methods. First, we introduce a TD(λ) target distribution combining n-step distributions,
which can trade off bias-variance. The target distribution enables training of the distributional critics
with low biases. Second, we propose novel surrogate functions for policy updates that empirically
improve the performance of the trust region method. Finally, we present a gradient integration
method under multiple constraint settings to handle the infeasible starting cases.

3.1 TD(λ) TARGET DISTRIBUTION

In this section, we propose a target distribution by capturing that the TD(λ) loss, which is obtained by
a weighted sum of several losses, and the quantile regression loss with a single distribution are equal.
A recursive method is then introduced so that the target distribution can be obtained practically.
First, the n-step targets are estimated as follows, after collecting trajectories (st, at, st+1, ...) with a
behavioral policy µ:

Ẑ
(n)
t :

D
= Rt + γRt+1 + γ2Rt+2 + · · ·+ γn−1Rt+n−1 + γnZπR,θ(st+n, a

′
t+n), (5)

3



Under review as a conference paper at ICLR 2023

Figure 1: Constructing procedure for target distribution. First, multiply the target at t + 1 step by
γ and add Rt. Next, weight-combine the shifted previous target and one-step target at t step and
restore the CDF of the combined target. The CDF can be restored by sorting the positions of the
atoms and then accumulating the weights at each atom position. Finally, the projected target can be
obtained by finding the positions of the atoms corresponding to M ′ quantiles in the CDF. Using the
projected target, the target at t− 1 step can be found recursively.

where Rt = R(st, at, st+1), a′t+n ∼ π(·|st+n), and π is the current policy. Note that the n-step
target controls the bias-variance tradeoff using n. If n is equal to 1, the n-step target is equivalent
to the temporal difference method that has low variance but high bias. On the contrary, if n goes
to infinity, it becomes a Monte-Carlo estimation that has high variance but low bias. However,
finding proper n is another cumbersome task. To alleviate this issue, TD(λ) (Sutton, 1988) method
considers the discounted sum of all n-step targets. Similar to TD(λ), we define the TD(λ) loss for
the distributional quantile critic as the discounted sum of all quantile regression losses with n-step
targets. Then, the TD(λ) loss for a single atom is approximated using importance sampling of the
sampled n-step targets in (5) as:

LτQR(θ)=(1−λ)
∞∑
i=0

λiEZ̄∼T πi Z
[
ρτ (Z̄−θ)

]
≈ 1−λ

M

∞∑
i=0

λi
i∏

j=1

π(at+j |st+j)
µ(at+j |st+j)

M∑
m=1

ρτ (Ẑ
(i+1)
t,m −θ), (6)

where λ is a trace-decay value, and Ẑ(i)
t,m is the mth atom of Ẑ(i)

t . Since Ẑ(i)
t

D
= Rt + γẐ

(i−1)
t+1 is

satisfied, (6) is the same as the quantile regression loss with the following single distribution Ẑtot
t ,

called a TD(λ) target distribution:

Pr(Ẑtot
t = z) :=

1

N
1− λ

M

∞∑
i=0

λi
i∏

j=1

π(at+j |st+j)
µ(at+j |st+j)

M∑
m=1

δ
Ẑ

(i+1)
t,m

(z)

=
1

N

(1− λ)

M∑
m=1

1

M
δ
Ẑ

(1)
t,m

(z)︸ ︷︷ ︸
One step TD target

+λ
π(at+1|st+1)

µ(at+1|st+1)
Pr(Rt + γẐtot

t+1 = z)︸ ︷︷ ︸
Previous TD(λ) target

 ,

(7)

where N is a normalization factor. We show that a distribution trained with the proposed target
converges to the distribution of Zπ in Appendix A.1. If the target for time step t+1 is obtained, the
target distribution for time step t becomes the weighted sum of the current one-step TD target and
the shifted previous target distribution, so it can be obtained recursively, as shown in (7). However,
to obtain the target distribution, we need to store all quantile positions and weights for all time
steps, which is not memory-efficient. Therefore, we propose to project the target distribution into a
quantile distribution with a specific number of atoms, M ′ (we set M ′ > M to reduce information
loss). The overall process to get the TD(λ) target distribution is illustrated in Figure 1, and the
pseudocode is given in Appendix A.2. After calculating the target distribution for all time steps, the
critic can be trained to reduce the quantile regression loss with the target distribution.

3.2 SAFE DISTRIBUTIONAL ACTOR-CRITIC

SAC-Style Surrogates. Here, we derive efficient surrogate functions for the trust region method.
While there are two main streams in trust region methods: trust region policy optimization (TRPO)
(Schulman et al., 2015) and proximal policy optimization (PPO) (Schulman et al., 2017), however,
we only consider TRPO since PPO is an approximation of TRPO by only considering the sum of
rewards and, hence, cannot reflect safety constraints. There are several variants of TRPO (Nachum
et al., 2018; Wang et al., 2017), among which off-policy TRPO (Meng et al., 2022) shows signifi-
cantly improved sample efficiency by using off-policy data. Still, the performance of SAC outper-
forms off-policy TRPO (Meng et al., 2022), so we extend the surrogate of off-policy TRPO similar
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to the policy loss of SAC. To this end, the surrogate should 1) have entropy regularization and 2)
be expressed with Q-functions. If we define the objective function with entropy regularization as:
J(π) := E [

∑∞
t=0 γ

t(R(st, at, st+1) + βH(π(·|st)))|ρ, π, P ], where H is the Shannon entropy, we
can defined the following surrogate function:

Jµ,π(π′) := Es0∼ρ [V
π(s0)] +

1

1− γ

(
E
dµ,µ

[
π′(a|s)
µ(a|s) A

π(s, a)

]
+ βEdπ

[
H(π′(·|s))

])
, (8)

where µ, π, π′ are behavioral, current, and next policies, respectively. Then, we can derive a bound
on the difference between the objective and surrogate functions.
Theorem 1. Let us assume that maxsH(π(·|s)) < ∞ for ∀π ∈ Π. The difference between the
objective and surrogate functions is bounded by a term consisting of KL divergence as:∣∣J(π′)− Jµ,π(π′)

∣∣ ≤ γ

(1− γ)2

√
Dmax

KL (π||π′)

(√
2βϵH + 2ϵR

√
Dmax

KL (µ||π′)

)
, (9)

where ϵH = max
s

|H(π′(·|s))|, ϵR = max
s,a

|Aπ(s, a)|, Dmax
KL (π||π′) = max

s
DKL(π(·|s)||π′(·|s)),

and the equality holds when π′ = π.

We provide the proof in Appendix A.3. Theorem 1 demonstrates that the surrogate function can
approximate the objective function with a small error if the KL divergence is kept small enough. We
then introduce a SAC-style surrogate by replacing the advantage in (8) with Q-function as follows:

Jµ,π(π′) =
1

1− γ

(
E

dµ,π′
[Qπ(s, a)] + βEdπ

[
H(π′(·|s))

])
+ C, (10)

whereC is a constant term for π′. The policy gradient can be calculated using the reparameterization
trick, as done in SAC (Haarnoja et al., 2018). We present the training results on continuous RL
tasks in Appendix B, where the entropy-regularized (8) and SAC-style (10) versions are compared.
Although (8) and (10) are mathematically equivalent, it can be observed that the performance of
the SAC-style version is superior to the regularized version. We can analyze this with two factors.
First, if using (8) in the off-policy setting, the importance ratios have significant variances, making
training unstable. Second, the advantage function only gives scalar information about whether the
sampled action is proper, whereas the Q-function directly gives the direction in which the action
should be updated, so more information can be obtained from (10).

Safe Policy Update. Now, we can apply the same reformulation to the surrogate functions for the
safety constraints, which are defined by Kim & Oh (2022a). The cost surrogate functions Fµ,πk can
be written in SAC-style form as follows:

Jµ,πCk
(π′) := Es∼ρ

[
V πCk (s)

]
+

1

1− γ
E

dµ,π′

[
QπCk (s, a)

]
− 1

1− γ
E
dµ

[
V πCk (s)

]
,

Jµ,πSk
(π′) := Es∼ρ

[
SπCk (s)

]
+

1

1− γ2
E

d
µ
2 ,π

′

[
SπCk (s, a)

]
− 1

1− γ2
E
d
µ
2

[
SπCk (s)

]
,

Fµ,πk (π′;α) := Jµ,πCk
(π′) +

ϕ(Φ−1(α))

α

√
Jµ,πSk

(π′)− (Jµ,πCk
(π′))2.

(11)

Remark that Kim & Oh (2022a) have shown that the cost surrogates are bounded in terms of KL
divergence between the current and next policy. Thus, we can construct the following practical, safe
policy update rule by adding a trust region constraint:

πnew = argmax
π′

Jµ,π(π′) s.t. Fµ,πk (π′;α) ≤ dk ∀k = 1, ...,K, DKL(π||π′) ≤ ϵ, (12)

where DKL(π||π′) := Es∼dµ [DKL(π(·|s)||π′(·|s))], and ϵ is a trust region size. As (12) is non-
linear, the objective and constraints are approximated linearly, while the KL divergence is approx-
imated quadratically in order to determine the update direction. After the direction is obtained, a
backtracking line search is performed. For more details, see Appendix A.5.

Approximations. In the distributional RL setting, the cost value and the cost square value functions
can be approximated using the quantile distribution critics as follows:

QπC(s, a) =

∫ ∞

−∞
zPr(ZπC(s, a) = z)dz ≈ 1

M

M∑
m=1

θm(s, a),

SπC(s, a) =

∫ ∞

−∞
z2Pr(ZπC(s, a) = z)dz ≈ 1

M

M∑
m=1

θm(s, a)2.

(13)

Finally, the proposed method is summarized in Algorithm 1.
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Algorithm 1: Safe Distributional Actor-Critic
Data: Policy network πψ , reward and cost critic networks ZπR,θ , ZπCk,θ , and replay buffer D.
Initialize network parameters ψ, θ, and replay buffer D.
for epochs=1, E do

for t=1, T do
Sample at ∼ πψ(·|st) and get st+1, rt = R(st, at, st+1), ck,t = Ck(st, at, st+1).
Store (st, at, πψ(at|st), rt, ck,t, st+1) in D.

end
Calculate the TD(λ) target distribution (Section 3.1) with D and update the critics to minimize (4).
Calculate the surrogate (10) and the cost surrogates (11) with D.
Update the policy by solving (12), but if (12) has no solution, take a recovery step (Section 3.3).

end

3.3 FEASIBILITY HANDLING FOR MULTIPLE CONSTRAINTS

Figure 2: Gradient Integration.

The proposed method updates a policy using (12), but the feasi-
ble set of (12) can be empty in the infeasible starting cases. To
address the feasibility issue in safe RL with multiple constraints,
one of the violated constraints can be selected, and the policy is
updated to minimize the constraint until the feasible region is not
empty (Xu et al., 2021), which is called a naive approach. How-
ever, it may not be easy to quickly reach the feasible condition
if only one constraint at each update step is used to update the
policy. Therefore, we propose a gradient integration method to
reflect all the constraints simultaneously. The main idea is to get
a gradient that reduces the value of violated constraints and keeps unviolated constraints. To find
such a gradient, the following quadratic program (QP) can be formulated by linearly approximating
the constraints:

g∗ = argmin
g

1

2
gTHg s.t. gTk g + ck ≤ 0, ∀k ∈ {1, ...,K}, (14)

whereH is the Hessian of KL divergence at the current policy parameters ψ, gk is the gradient of the
kth cost surrogate, ck = min(

√
2ϵgTkH

−1gk, Fk(πψ;α)− dk + ζ), ϵ is a trust region size, and ζ ∈
R>0 is a slack coefficient. Finally, we update the policy by ψ∗ = ψ + min(1,

√
2ϵ/(g∗THg∗))g∗.

Figure 2 illustrates the proposed gradient integration process. Each constraint is truncated by ck to be
tangent to the trust region, and the slanted lines show the feasible region of truncated constraints. The
solution of (14) is indicated in red, pointing to the nearest point in the intersection of the constraints.
If the solution crosses the trust region, parameters are updated by the clipped direction, shown in
blue. Then, the policy can reach the feasibility condition within finite time steps.
Theorem 2. Assume that the cost surrogates are differentiable and convex, gradients of the surro-
gates are L-Lipschitz continuous, eigenvalues of the Hessian are equal or greater than a positive
value R ∈ R>0, and {ψ|Fk(πψ;α) + ζ < dk, ∀k} ≠ ∅. Then, there exists E ∈ R>0 such that if
0 < ϵ ≤ E and a policy is updated by the proposed gradient integration method, all constraints are
satisfied within finite time steps.

We provide the proof and show the existence of a solution (14) in Appendix A.4. The provided proof
shows that the constantE is proportional to ζ and inversely proportional to the number of constraints
K. This means that the trust region size should be set smaller as K increases and ζ decreases. In
conclusion, if the policy update rule (12) is not feasible, a finite number of applications of the
proposed gradient integration method will make the policy feasible.

4 RELATED WORK

Safe Reinforcement Learning. There are various safe RL methods depending on how to update
policies to reflect safety constraints. First, trust region-based methods (Achiam et al., 2017; Yang
et al., 2020; Kim & Oh, 2022a) find policy update directions by approximating the safe RL problem
and update policies through a line search. Second, Lagrangian-based methods (Stooke et al., 2020;
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Yang et al., 2021; Liu et al., 2020) convert the safe RL problem to a dual problem and update the
policy and dual variables simultaneously. Last, expectation-maximization (EM) based methods (Liu
et al., 2022) find non-parametric policy distributions by solving the safe RL problem in E-steps and
fit parametric policies to the found non-parametric distributions in M-steps. Also, there are other
ways to reflect safety other than policy updates. Qin et al. (2021); Lee et al. (2022) find optimal state
or state-action distributions that satisfy constraints, and Bharadhwaj et al. (2021); Thananjeyan et al.
(2021) reflect safety during exploration by executing only safe action candidates. In the experiments,
only the safe RL methods of the policy update approach are compared with the proposed method.

Distributional TD(λ). TD(λ) (Precup et al., 2000) can be extended to the distributional critic to
trade off bias-variance. Gruslys et al. (2018) have proposed a method to obtain target distributions
by mixing n-step distributions, but the method is applicable only in discrete action spaces. Nam et al.
(2021) have proposed a method to obtain target distributions using sampling to apply to continuous
action spaces, but this is only for on-policy settings. A method proposed by Tang et al. (2022)
updates the critics using newly defined distributional TD errors rather than target distributions. This
method is applicable for off-policy settings but has the disadvantage that memory usage increases
linearly with the number of TD error steps. In contrast to these methods, the proposed method is
memory-efficient and applicable for continuous action spaces under off-policy settings.

Gradient Integration. The proposed feasibility handling method utilizes a gradient integration
method, which is widely used in multi-task learning (MTL). The gradient integration method finds
a single gradient to improve all tasks by using gradients of all tasks. Yu et al. (2020) have proposed
a projection-based gradient integration method, which is guaranteed to converge Pareto-stationary
sets. A method proposed by Liu et al. (2021) can reflect user preference, and Navon et al. (2022)
proposed a gradient-scale invariant method to prevent the training process from being biased by
a few tasks. The proposed method can be viewed as a mixture of projection and scale-invariant
methods as gradients are clipped and projected onto a trust region.

5 EXPERIMENTS

We evaluate the safety performance of the proposed method and answer whether safe RL actually
has the benefit of reducing the effort of reward engineering. For evaluation, agents are trained in the
Safety Gym (Ray et al., 2019) with several tasks and robots. To check the advantage of safe RL, we
construct locomotion tasks using legged robots with different models and different numbers of legs.

5.1 SAFETY GYM

Tasks. We employ two robots, point and car, to perform goal and button tasks in the Safety Gym.
The goal task is to control a robot toward a randomly spawned goal without passing through hazard
regions. The button task is to click a randomly designated button using a robot, where not only
hazard regions but also dynamic obstacles exist. Agents get a cost when touching undesignated
buttons and obstacles or entering hazard regions. There is only one constraint for all tasks, and it
is defined using (3) with the sum of costs. Constraint violations (CVs) are counted when a robot
contacts obstacles, unassigned buttons, or passes through hazard regions.

Baselines. Safe RL methods based on various types of policy updates are used as baselines. For the
trust region-based method, we use constrained policy optimization (CPO) (Achiam et al., 2017) and
off-policy trust-region CVaR (OffTRC) (Kim & Oh, 2022a), which extend the CPO to an off-policy
and mean-std constrained version. For the Lagrangian-based method, worst-case soft actor-critic
(WCSAC) (Yang et al., 2021) is used, and constrained variational policy optimization (CVPO) (Liu
et al., 2022) based on the EM method is used. Specifically, WCSAC, OffTRC, and the proposed
method, SDAC, use the mean-std constraints, so we experiment with those for α = 0.25, 0.5, and
1.0 (when α = 1.0, the constraint is identical to the mean constraint).

Results. The graph of the final score and the total number of CVs are shown in Figure 3, and the
training curves are provided in Appendix D.1. If points are located in the upper left corner of the
graph, the result can be interpreted as excellent since the score is high and the number of CVs is
low. The frontiers of SDAC, indicated by the blue dashed lines in Figure 3, are located in the upper
left corners for all tasks. Hence, SDAC shows outstanding safety performance compared to other
methods. In particular, SDAC with α = 0.25 shows comparable scores despite recording the lowest
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Figure 3: Graphs of final scores and the total number of CVs for the Safety Gym tasks. The number
after the algorithm name in the legend indicates α used for the constraint. The center and boundary
of ellipses are drawn using the mean and covariance of the five runs for each method. Dashed lines
connect results of the same method with different α.

number of CVs in all tasks. Although the frontier overlaps with WCSAC in the car goal and point
button tasks, WCSAC shows a high fluctuation of scores depending on the value of α. In addition,
it can be seen that the proposed method enhances the efficiency and the training stability of the trust
region method since SDAC shows high performance and small covariance compared to the other
trust region-based methods, OffTRC and CPO.

5.2 LOCOMOTION TASKS

Tasks. The locomotion tasks are to train robots to follow xy-directional linear and z-directional
angular velocity commands. Mini-Cheetah from MIT (Katz et al., 2019) and Laikago from Unitree
(Wang, 2018) are used for quadrupedal robots, and Cassie from Agility Robotics (Xie et al., 2018) is
used for a bipedal robot. In order to successfully perform the locomotion tasks, robots should keep
balancing, standing, and stamping their feet so that they can move in any direction. Therefore, we
define three constraints. The first constraint for balancing is to keep the body angle from deviating
from zero, and the second for standing is to keep the height of the CoM above a threshold. The
final constraint is to match the current foot contact state with a predefined foot contact timing.
Especially, the contact timing is defined as stepping off the left and right feet symmetrically. The
reward is defined as the negative l2-norm of the difference between the command and the current
velocity. For more details, see Appendix C.

Baselines. Through these tasks, we check the advantage of safe RL over traditional RL. Proximal
policy optimization (PPO) (Schulman et al., 2017), based on the trust region method, and truncated
quantile critic (TQC) (Kuznetsov et al., 2020), based on the SAC, are used as traditional RL base-
lines. To apply the same experiment to traditional RL, it is necessary to design a reward reflecting
safety. We construct the reward through a weighted sum as R̄ = (R−

∑3
i=1 wiCi)/(1+

∑3
i=1 wi),

where R and C{1,2,3} are used to train safe RL methods and are defined in Appendix C, and R is
called the true reward. The optimal weights are searched by a Bayesian optimization tool1, which
optimizes the true reward of PPO for the Mini-Cheetah task. The same weights are used for all
robots and baselines to verify if reward engineering is required individually for each robot.

Results. Figure 4 shows the true reward sum graphs according to the x-directional velocity com-
mand. The overall training curves are presented in Appendix D.2, and the demonstration videos are
attached to the supplementary. The figure shows that SDAC performs the locomotion tasks success-
fully, observing that the reward sums of all tasks are almost zero. PPO shows comparable results
in the Mini-Cheetah and Laikago since the reward of the traditional RL baselines is optimized for
the Mini-Cheetah task of PPO. However, the reward sum is significantly reduced in the Cassie task,
where the kinematic model largely differs from the other robots. TQC shows the lowest reward sums

1We use Sweeps from Weights & Biases (Biewald, 2020).
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Figure 4: True reward sum graphs according to the x-directional command. The true reward is
defined in Appendix C. The solid line and shaded area represent average and one fifth of std value,
respectively. The graphs are obtained by running ten episodes per seed for each command.

(a) Training curves of the point goal task according to the trace-decay λ.

(b) Training curves of the naive and proposed methods for the Cassie task.

Figure 5: Ablation results. The cost rates show the cost sums divided by the episode length. The
shaded area represents the standard deviation. The black lines indicate the limit values, and the
dotted lines in (b) represent the limit values + 0.025.

despite the state-of-the-art algorithm in other RL benchmarks (Kuznetsov et al., 2020). From these
results, it can be observed that reward engineering is required according to algorithms and robots.

5.3 ABLATION STUDY

We conduct ablation studies to show whether the proposed target distribution lowers the estimation
bias and whether the proposed gradient integration quickly converges to the feasibility condition.
In Figure 5a, the number of CVs is reduced as λ increases, which means that the bias of constraint
estimation decreases. However, the score also decreases due to large variance, showing that λ can
adjust the bias-variance tradeoff. In Figure 5b, the proposed gradient integration method is compared
with a naive approach, which minimizes the constraints in order from the first to the third constraint,
as described in Section 3.3. The proposed method reaches the feasibility condition faster than the
naive approach and shows stable training curves because it reflects all constraints concurrently.

6 CONCLUSION

We have presented the trust region-based safe distributional RL method, called SDAC. To maximize
the merit of the trust region method that can consistently satisfy constraints, we increase the per-
formance by using the Q-function instead of the advantage function in the policy update. We have
also proposed the memory-efficient, practical method for finding low-biased target distributions in
off-policy settings to estimate constraints. Finally, we proposed the handling method for multiple
constraint settings to solve the feasibility issue caused when using the trust region method. From
extensive the experiments, we have demonstrated that SDAC with mean-std constraints achieved im-
proved performance with minimal constraint violations and successfully performed the locomotion
tasks without reward engineering.
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A ALGORITHM DETAILS

A.1 CONVERGENCE ANALYSIS

In this section, we show that the proposed TD(λ) target distribution converges to the Zπ . First, we
express the target distribution using a distributional operator and show that the operator is contrac-
tive. Finally, we show that Zπ is the unique fixed point.

Before starting the proof, we introduce useful notions, distance metrics, and operators. As the return
Zπ(s, a) is a random variable, we define the distribution of Zπ(s, a) as νπ(s, a). Let η be the
distribution of a random variable X . Then, we can express the distribution of affine transformation
of random variable, aX + b, using the pushforward operator, which is defined by Rowland et al.
(2018), as (fa,b)#(η). To measure a distance between two distributions, Bellemare et al. (2023) has
defined the distance lp as follows:

lp(η1, η2) :=

(∫
R
|Fη1(x)− Fη2(x)|

p
dx

)1/p

, (15)

where Fν(z) is the cumulative distribution function. This distance is 1/p-homogeneous, regular, and
p-convex (see Section 4 of Bellemare et al. (2023) for more details). For functions that map state-
action pairs to distributions, a distance can be defined as (Bellemare et al., 2023): l̄p(ν1, ν2) :=
sup(s,a)∈S×Alp(ν1(s, a), ν2(s, a)). Then, the proposed TD(λ) target distribution can be expressed
as an operator as below.

T µ,π
λ ν(s, a) :=

1− λ

N

∞∑
i=0

λi

× Eµ

 i∏
j=1

η(sj , aj)

Ea′∼π(·|si+1)

[
(fγi+1,

∑i
t=0 γ

trt
)#(ν(si+1, a

′))
] ∣∣∣s0 = s, a0 = a

 , (16)

where η(s, a) = π(a|s)
µ(a|s) . Then, the operator T µ,π

λ has a contraction property.

Theorem 3. Under the distance l̄p and the assumption that the state, action, and reward spaces are
finite, T µ,π

λ is γ1/p-contractive.

Proof. First, the operator can be rewritten using summation as follows.

T µ,π
λ ν(s, a) =

1− λ

N

∞∑
i=0

λi
∑
a′∈A

∑
(s0,a0,r0,...,si+1)

Prµ(s0, a0, r0, ..., si+1︸ ︷︷ ︸
=:τ

)

 i∏
j=1

η(sj , aj)


× π(a′|si+1)(fγi+1,

∑i
t=0 γ

trt
)#(ν(si+1, a

′))

=
1− λ

N

∞∑
i=0

λi
∑
a′∈A

∑
τ

Prµ(τ)

 i∏
j=1

η(sj , aj)

π(a′|si+1)
∑
s′∈S

1s′=si+1

×
∑
r′0:i

(
i∏

k=0

1r′k=rk

)
(fγi+1,

∑i
t=0 γ

tr′t
)#(ν(s

′, a′))

=
1− λ

N

∞∑
i=0

λi
∑
a′∈A

∑
s′∈S

∑
r′0:i

(fγi+1,
∑i
t=0 γ

tr′t
)#(ν(s

′, a′))

× Eµ

 i∏
j=1

η(sj , aj)

π(a′|si+1)1s′=si+1

(
i∏

k=0

1r′k=rk

)
︸ ︷︷ ︸

=:ws′,a′,r′
0:i

=
1− λ

N

∞∑
i=0

∑
s′∈S

∑
a′∈A

∑
r′0:i

λiws′,a′,r′0:i(fγi+1,
∑i
t=0 γ

tr′t
)#(ν(s

′, a′)).

(17)
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Since the sum of weights of distributions should be one, we can find the normalization factor N =
(1 − λ)

∑∞
i=0

∑
s∈S

∑
a∈A

∑
r0:i

λiws,a,r0:i . Then, the following inequality can be derived using
the homogeneity, regularity, and convexity of lp:

lpp(T
µ,π
λ ν1(s, a), T µ,π

λ ν2(s, a))

= lpp

(
1− λ

N

∞∑
i=0

∑
s∈S

∑
a∈A

∑
r0:i

λiws,a,r0:i(fγi+1,
∑i
t=0 γ

trt
)#(ν1(s, a)),

1− λ

N

∞∑
i=0

∑
s∈S

∑
a∈A

∑
r0:i

λiws,a,r0:i(fγi+1,
∑i
t=0 γ

trt
)#(ν2(s, a))

)

≤
∞∑
i=0

∑
s∈S

∑
a∈A

∑
r0:i

(1− λ)λiws,a,r0:i
N

lpp

(
(fγi+1,

∑i
t=0 γ

trt
)#(ν1(s, a)),

(fγi+1,
∑i
t=0 γ

trt
)#(ν2(s, a))

)
≤

∞∑
i=0

∑
s∈S

∑
a∈A

∑
r0:i

(1− λ)λiws,a,r0:i
N

lpp
(
(fγi+1,0)#(ν1(s, a)), (fγi+1,0)#(ν2(s, a))

)
=

∞∑
i=0

∑
s∈S

∑
a∈A

∑
r0:i

(1− λ)λiws,a,r0:i
N

γi+1lpp (ν1(s, a), ν2(s, a))

≤
∞∑
i=0

∑
s∈S

∑
a∈A

∑
r0:i

(1− λ)λiws,a,r0:i
N

γi+1
(
l̄p (ν1, ν2)

)p
≤ γ

(
l̄p (ν1, ν2)

)p
.

(18)

Therefore, l̄p (T µ,π
λ ν1, T µ,π

λ ν2) ≤ γ1/p l̄p (ν1, ν2).

By the Banach’s fixed point theorem, the operator has a unique fixed distribution. From the definition
of Zπ , the following equality holds (Rowland et al., 2018): νπ(s, a) = Eπ [(fγ,r)#(νπ(s′, a′))].
Then, it can be shown that νπ is the fixed distribution by applying the operator T µ,π

λ to νπ:

T µ,π
λ νπ(s, a) =

1− λ

N

∞∑
i=0

λi

× Eµ

 i∏
j=1

η(sj , aj)

Ea′∼π(·|si+1)

[
(fγi+1,

∑i
t=0 γ

trt
)#(ν

π(si+1, a
′))
] ∣∣∣s0 = s, a0 = a


=

1− λ

N

∞∑
i=0

λiEπ
[
(fγi+1,

∑i
t=0 γ

trt
)#(ν

π(si+1, ai+1))
∣∣∣s0 = s, a0 = a

]
=

1− λ

N

∞∑
i=0

λiνπ(s, a) = νπ(s, a).

(19)
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A.2 PSEUDOCODE OF TD(λ) TARGET DISTRIBUTION

We provide the pseudocode for calculating TD(λ) target distribution for the reward critic in Algo-
rithm 2. The target distribution for the cost critics can also be obtained by simply replacing the
reward part with the cost.

Algorithm 2: TD(λ) Target Distribution

Data: Policy network πψ , critic network Zπθ , and trajectory {(st, at, µ(at|st), rt, dt, st+1)}Tt=1.
Sample an action a′T+1 ∼ πψ(sT+1) and get Ẑtot

T = rT + (1− dT )γZ
π
θ (sT+1, a

′
T+1).

Initialize the total weight wtot = λ.
for t=T, 1 do

Sample an action a′t+1 ∼ πψ(st+1) and get Ẑ(1)
t = rt + (1− dt)γZ

π
θ (st+1, a

′
t+1).

Set the current weight w = 1− λ.
Combine the two targets, (Ẑ(1)

t , w) and (Ẑ
(tot)
t , wtot), and sort the combined target

according to the positions of atoms.
Build the CDF of the combined target by accumulating the weights at each atom.
Project the combined target into a quantile distribution with M ′ atoms, which is Ẑ(proj)

t ,
using the CDF (find the atom positions corresponding to each quantile).

Update Ẑ(tot)
t−1 = rt−1 + (1− dt−1)γẐ

(proj)
t and

wtot = λ
πψ(at|st)
µ(at|st) (1− dt−1)(1− λ+ wtot).

end
Return {Ẑ(proj)

t }Tt=1.

A.3 PROOF OF THEOREM 1

Before showing the proof, we present a new function and a lemma. A value difference function is
defined as follows:

δπ
′
(s) := E [R(s, a, s′) + γV π(s′)− V π(s) | a ∼ π′(·|s), s′ ∼ P (·|s, a)] = E

a∼π′
[Aπ(s, a)] .

Lemma 4. The maximum of |δπ′
(s)− δπ(s)| is equal or less than ϵR

√
2Dmax

KL (π||π′).

Proof. The value difference can be expressed in a vector form,

δπ
′
(s)− δπ(s) =

∑
a

(π′(a|s)− π(a|s))Aπ(s, a) = ⟨π′(·|s)− π(·|s), Aπ(s, ·)⟩.

Using Hölder’s inequality, the following inequality holds:

|δπ
′
(s)− δπ(s)| ≤ ||π′(·|s)− π(·|s)||1 · ||Aπ(s, ·)||∞

= 2DTV(π
′(·|s)||π(·|s))maxaA

π(s, a).

⇒ ||δπ
′
− δπ||∞ = maxs|δπ

′
(s)− δπ(s)| ≤ 2ϵRmaxsDTV(π(·|s)||π′(·|s)).

Using Pinsker’s inequality, ||δπ′ − δπ||∞ ≤ ϵR
√
2Dmax

KL (π||π′).

Theorem 1. Let us assume that maxsH(π(·|s)) < ∞ for ∀π ∈ Π. The difference between the
objective and surrogate functions is bounded by a term consisting of KL divergence as:∣∣J(π′)− Jµ,π(π′)

∣∣ ≤ γ

(1− γ)2

√
Dmax

KL (π||π′)

(√
2βϵH + 2ϵR

√
Dmax

KL (µ||π′)

)
, (9)

where ϵH = max
s

|H(π′(·|s))|, ϵR = max
s,a

|Aπ(s, a)|, Dmax
KL (π||π′) = max

s
DKL(π(·|s)||π′(·|s)),

and the equality holds when π′ = π.
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Proof. The surrogate function can be expressed in vector form as follows:

Jµ,π(π′) = ⟨ρ, V π⟩+ 1

1− γ

(
⟨dµ, δπ

′
⟩+ β⟨dπ, Hπ′

⟩
)
,

where Hπ′
(s) = H(π′(·|s)). The objective function of π′ can also be expressed in a vector form

using Lemma 1 from Achiam et al. (2017),

J(π′) =
1

1− γ
E
[
R(s, a, s′) + βHπ′

(s) | s ∼ dπ
′
, a ∼ π′(·|s), s′ ∼ P (·|s, a)

]
=

1

1− γ
E

s∼dπ′

[
δπ

′
(s) + βHπ′

(s)
]
+ E
s∼ρ

[V π(s)]

= ⟨ρ, V π⟩+ 1

1− γ
⟨dπ

′
, δπ

′
+ βHπ′

⟩.

By Lemma 3 from Achiam et al. (2017), ||dπ − dπ
′ ||1 ≤ γ

1−γ
√
2Dmax

KL (π||π′). Then, the following
inequality is satisfied:

|(1−γ)(Jµ,π(π′)− J(π′))|

= |⟨dπ
′
− dµ, δπ

′
⟩+ β⟨dπ − dπ

′
, Hπ′

⟩|

≤ |⟨dπ
′
− dµ, δπ

′
⟩|+ β|⟨dπ − dπ

′
, Hπ′

⟩|

= |⟨dπ
′
− dµ, δπ

′
− δπ⟩|+ β|⟨dπ − dπ

′
, Hπ′

⟩| (∵ δπ = 0)

≤ ||dπ
′
− dµ||1||δπ

′
− δπ||∞ + β||dπ − dπ

′
||1||Hπ′

||∞ (∵ Hölder’s inequality)

≤ 2ϵRγ

1− γ

√
Dmax

KL (µ||π′)Dmax
KL (π||π′) +

βγϵH
1− γ

√
2Dmax

KL (π||π′) (∵ Lemma 4)

=
γ

1− γ

√
Dmax

KL (π||π′)

(√
2βϵH + 2ϵR

√
Dmax

KL (µ||π′)

)
.

If π′ = π, the KL divergence term becomes zero, so equality holds.

A.4 PROOF OF THEOREM 2

We denote the policy parameter space as Ψ ⊆ Rd, the parameter at the tth iteration as ψt ∈ Ψ,
the Hessian matrix as H(ψt) = ∇2

ψDKL(πψt ||πψ)|ψ=ψt , and the kth cost surrogate as Fk(ψt) =

Fµ,πk (πψt ;α). As we focus on the tth iteration, the following notations are used for brevity: H =
H(ψt) and gk = ∇Fk(ψt). The proposed gradient integration at tth iteration is defined as the
following quadratic program (QP):

gt = argmin
g

1

2
gTHg s.t. gTk g + ck ≤ 0 for ∀k, (20)

where ck = min(
√

2ϵgTkH
−1gk, Fk(πψ;α)−dk+ζ). In the remainder of this section, we introduce

the assumptions and new definitions, discuss the existence of a solution (20), show the convergence
to the feasibility condition for varying step size cases, and provide the proof of Theorem 2.

Assumption. 1) Each Fk is differentiable and convex, 2) ∇Fk is L-Lipschitz continuous, 3) all
eigenvalues of the Hessian matrix H(ψ) are equal or greater than R ∈ R>0 for ∀ψ ∈ Ψ, and 4)
{ψ|Fk(ψ) + ζ < dk for ∀k} ≠ ∅.

Definition. Using the Cholesky decomposition, the Hessian matrix can be expressed asH = B ·BT
where B is a lower triangular matrix. By introducing new terms, ḡk := B−1gk and bt := BT gt,
the following is satisfied: gTkH

−1gk = ||ḡk||22. Additionally, we define the in-boundary and out-
boundary sets as:

IBk :=

{
ψ|Fk(ψ)− dk + ζ ≤

√
2ϵ∇Fk(ψ)TH−1(ψ)∇Fk(ψ)

}
,

OBk :=

{
ψ|Fk(ψ)− dk + ζ ≥

√
2ϵ∇Fk(ψ)TH−1(ψ)∇Fk(ψ)

}
.
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The minimum of ||ḡk|| in OBk is denoted as mk, and the maximum of ||ḡk|| in IBk is denoted as
Mk. Also, minkmk and maxkMk is denoted as m and M , respectively, and we can say that m is
positive.

Lemma 5. For all k, the minimum value of mk is positive.

Proof. Assume that there exist k ∈ {1, ...,K} such that mk is equal to zero at a policy parameter
ψ∗ ∈ OBk, i.e., ||∇Fk(ψ∗)|| = 0. Since Fk is convex, ψ∗ is a minimum point of Fk, minψFk(ψ) =
Fk(ψ

∗) < dk − ζ. However, Fk(ψ∗) ≥ dk − ζ as ψ∗ ∈ OBk, so mk is positive due to the
contradiction. Hence, the minimum of mk is also positive.

Lemma 6. A solution of (20) always exists.

Proof. There exists a policy parameter ψ̂ ∈ {ψ|Fk(ψ) + ζ < dk for ∀k} due to the assumptions.
Let g = ψ − ψt. Then, the following inequality holds.

gTk (ψ − ψt) + ck ≤ gTk (ψ − ψt) + Fk(ψt) + ζ − dk ≤ Fk(ψ) + ζ − dk. (∵ Fk is convex.)

⇒ gTk (ψ̂ − ψt) + ck ≤ Fk(ψ̂) + ζ − dk < 0 for ∀k.

Since ψ̂ − ψt satisfies all constraints of (20), the feasible set is non-empty and convex. Also, H is
positive definite, so the QP has a unique solution.

Lemma 6 shows the existence of solution of (20). Now, we show the convergence of the proposed
gradient integration method in the case of varying step sizes.

Lemma 7. If
√
2ϵM ≤ ζ and a policy is updated by ψt+1 = ψt + βtgt, where 0 < βt <

2
√
2ϵmR

L||bt||2

and βt ≤ 1, the policy satisfies Fk(ψ) ≤ dk for ∀k within a finite time.

Proof. We can reformulate the step size as β = 2
√
2ϵmR

L||bt||2 β
′
t, where β′

t ≤
L||bt||2

2
√
2ϵmR

and 0 < β′
t < 1.

Since the eigenvalues of H is equal to or bigger than R and H is symmetric and positive definite,
1
RI − H−1 is positive semi-definite. Hence, xTH−1x ≤ 1

R ||x||
2 is satisfied. Using this fact, the

following inequality holds:

Fk(ψt + βtgt)− Fk(ψt) ≤ βt∇Fk(ψt)T gt +
L

2
||βtgt||2 (∵ ∇Fk is L-Lipschitz continuous.)

= βtg
T
k gt +

L

2
β2
t ||gt||2

= βtg
T
k gt +

L

2
β2
t b
T
t H

−1bt (∵ gt = B−T bt)

≤ −βtck +
L

2R
β2
t ||bt||2. (∵ gTk gt + ck ≤ 0)

Now, we will show that ψ enters IBk in a finite time for ∀ψ ∈ OBk and that the kth constraint is
satisfied for ∀ψ ∈ IBk. Thus, we divide into two cases, 1) ψt ∈ OBk and 2) ψt ∈ IBk. For the first
case, ck =

√
2ϵ||ḡk||, so the following inequality holds:

Fk(ψt + βtgt)− Fk(ψt) ≤ βt

(
−
√
2ϵ||ḡk||+

L

2R
βt||bt||2

)
≤ βt

√
2ϵ (−||ḡk||+mβ′

t)

≤ βt
√
2ϵm(β′

t − 1) < 0.

(21)

The value of Fk decreases strictly with each update step according to (21). Hence, ψt can reach IBk
by repeatedly updating the policy. We now check whether the constraint is satisfied for the second
case. For the second case, the following inequality holds by applying ck = Fk(ψt)− dk + ζ:

Fk(ψt + βtgt)− Fk(ψt) ≤ βtdk − βtFk(ψt)− βtζ +
L

2R
β2
t ||bt||2

⇒Fk(ψt + βtgt)− dk ≤ (1− βt)(Fk(ψt)− dk) + βt(−ζ +
√
2ϵmβ′

t).
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Since ψt ∈ IBk,
Fk(ψt)− dk ≤

√
2ϵ||ḡk|| − ζ ≤

√
2ϵM − ζ ≤ 0.

Since m ≤M and β′
t < 1,

−ζ +
√
2ϵmβ′

t < −ζ +
√
2ϵM ≤ 0.

Hence, Fk(ψt + βtgt) ≤ dk, which means that the kth constraint is satisfied if ψt ∈ IBk. As ψt
reaches IBk for ∀k within a finite time according to (21), the policy can satisfy all constraints within
a finite time.

Lemma 7 shows the convergence to the feasibility condition in the case of varying step sizes. We
introduce a lemma, which shows ||bt|| is bounded by

√
ϵ, and finally show the proof of Theorem 2,

which can be considered a special case of varying step sizes.

Lemma 8. There exists T ∈ R>0 such that ||bt|| ≤ T
√
ϵ.

Proof. By solving the dual problem of (20), gt can be expressed as:

gt = −
K∑
k=1

λkH
−1gk s.t. λk = max

(
ck −

∑
j ̸=k λjg

T
j H

−1gk

gTkH
−1gk

, 0

)
for ∀k.

The following inequality holds for ∀k:

λk ≤ max

(
ck

||ḡk||2
, 0

)
≤ max

(√
2ϵ||ḡk||
||ḡk||2

, 0

)
≤

√
2ϵ

||ḡk||
.

Using triangular inequality,

||bt|| = ||BT gt|| = ||
∑
k

λkB
TH−1gk|| ≤

∑
k

λk||BTH−1gk||

≤
√
2ϵ
∑
k

||BTH−1gk||
||ḡk||

= K
√
2ϵ.

Hence, for every constant T >
√
2K, the statement holds.

Theorem 2. Assume that the cost surrogates are differentiable and convex, gradients of the surro-
gates are L-Lipschitz continuous, eigenvalues of the Hessian are equal or greater than a positive
value R ∈ R>0, and {ψ|Fk(πψ;α) + ζ < dk, ∀k} ≠ ∅. Then, there exists E ∈ R>0 such that if
0 < ϵ ≤ E and a policy is updated by the proposed gradient integration method, all constraints are
satisfied within finite time steps.

Proof. The proposed step size is βt = min(1,
√
2ϵ/||bt||), and the sufficient conditions that guaran-

tee the convergence according to Lemma 7 are followings:

√
2ϵM ≤ ζ and 0 < βt ≤ 1 and βt <

2
√
2ϵmR

L||bt||2
.

The second condition is self-evident. To satisfy the third condition, the proposed step size βt should
satisfy the followings: √

2ϵ

||bt||
<

2
√
2ϵmR

L||bt||2
⇔ ||bt|| <

2mR

L
.

If ϵ < 2((mR)/(LK))2, the following inequality holds:

√
2ϵ <

2mR

LK
⇒ ||bt|| ≤ K

√
2ϵ <

2mR

L
. (∵ Lemma 8.)

Hence, if ϵ ≤ E = 1
2min( ζ2

2M2 , 2(
mR
LK )2), the sufficient conditions are satisfied.
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A.5 POLICY UPDATE RULE

To solve the constrained optimization problem (12), we find a policy update direction by linearly
approximating the objective and safety constraints and quadratically approximating the trust region
constraint, as done by Achiam et al. (2017). After finding the direction, we update the policy using
a line search method. Given the current policy parameter ψt ∈ Ψ, the approximated problem can be
expressed as follows:

x∗ = argmax
x∈Ψ

gTx s.t.
1

2
xTHx ≤ ϵ, bTk x+ ck ≤ 0 ∀k, (22)

where g = ∇ψJ
µ,π(πψ)|ψ=ψt , H = ∇2

ψDKL(πψt ||πψ)|ψ=ψt , bk = ∇ψF
µ,π
k (πψ;α)|ψ=ψt , and

ck = Fk(πψ;α) − dk. Since (22) is convex, we can use an existing convex optimization solver.
However, the search space, which is the policy parameter space Ψ, is excessively large, so we reduce
the space by converting (22) to a dual problem as follows:

g(λ, ν) = minxL(x, λ, ν) = minx{gTx+ ν(
1

2
xTHx− ϵ) + λT (Bx+ c)}

=
−1

2ν

gTH−1g︸ ︷︷ ︸
=:q

+2 gTH−1BT︸ ︷︷ ︸
=:rT

λ+ λT BH−1BT︸ ︷︷ ︸
=:S

λ

+ λT c− νϵ

=
−1

2ν
(q + 2rTλ+ λTSλ) + λT c− νϵ,

(23)

where B = (b1, .., bK), c = (c1, ..., cK)T , and λ ∈ RK ≥ 0 and ν ∈ R ≥ 0 are Lagrange
multipliers. Then, the optimal λ and ν can be obtained by a convex optimization solver. After
obtaining the optimal values, (λ∗, ν∗) = argmax(λ,ν)g(λ, ν), the policy update direction x∗ are
calculated by −1

ν∗ H
−1(BTλ∗ + g). Then, the policy is updated by ψt+1 = ψt + βx∗, where β is a

step size, which can be calculated by a line search method.
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B ABLATION STUDY ON SURROGATE FUNCTIONS

We have extended the off-policy TRPO (Meng et al., 2022) to the entropy-regularized version and re-
formulated it as the SAC-style version. In this section, we evaluate the original, entropy-regularized,
and SAC-style versions in the continuous control tasks of the MuJoCo simulators (Todorov et al.,
2012). We use neural networks with two hidden layers with (512, 512) nodes and ReLU for the
activation function. The output of a value network is linear, but the input is different; the original
and entropy-regularized versions use states, and the SAC-style version uses state-action pairs. The
input of a policy network is the state, the output is mean µ and std σ, and actions are squashed
into tanh(µ + ϵσ), ϵ ∼ N (0, 1) as in SAC (Haarnoja et al., 2018). The entropy coefficient β in
the entropy-regularized and SAC-style versions are adaptively adjusted to keep the entropy above a
threshold (set as −d given A ⊆ Rd). The hyperparameters for all versions are summarized in Table
1.

Parameter
Discount factor γ 0.99
Trust region size ϵ 0.001
Length of replay buffer 105

Critic learning rate 0.0003
Trace-decay λ 0.97
Initial entropy coefficient β 1.0
β learning rate 0.01

Table 1: Hyperparameters for all versions.

The training curves are presented in Figure 6. All methods are trained with five different random
seeds. Since there is no importance ratio and the Q-functions directly provide policy update direc-
tion, the SAC-style version outperforms the others.

(a) Ant-v3 (b) HalfCheetah-v3 (c) Hopper-v3

(d) Humanoid-v3 (e) Swimmer-v3 (f) Walker2d-v3

Figure 6: MuJoCo training curves.
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(a) Point goal. (b) Car button. (c) Mini-Cheetah. (d) Laikago. (e) Cassie.

Figure 7: (a) and (b) are Safety Gym tasks. (c), (d), and (e) are locomotion tasks.

C EXPERIMENTAL SETTINGS

Safety Gym. We use the goal and button tasks with the point and car robots in the Safety Gym
environment (Ray et al., 2019), as shown in Figure 7a and 7b. The environmental setting for the
goal task is the same as in Kim & Oh (2022b). Eight hazard regions and one goal are randomly
spawned at the beginning of each episode, and a robot gets a reward and cost as follows:

R(s, a, s′) = −∆dgoal + 1dgoal≤0.3,

C(s, a, s′) = Sigmoid(10 · (0.2− dhazard)),
(24)

where dgoal is the distance to the goal, and dhazard is the minimum distance to hazard regions. If
dgoal is less than or equal to 0.3, a goal is respawned, and the number of constraint violations (CVs)
is counted when dhazard is less than 0.2. The state consists of relative goal position, goal distance,
linear and angular velocities, acceleration, and LiDAR values. The action space is two-dimensional,
which consists of xy-directional forces for the point and wheel velocities for the car robot.

The environmental settings for the button task are the same as in Liu et al. (2022). There are five
hazard regions, four dynamic obstacles, and four buttons, and all components are fixed throughout
the training. The initial position of a robot and an activated button are randomly placed at the
beginning of each episode. The reward function is the same as in (24), but the cost is different since
there is no dense signal for contacts. We define the cost function for the button task as an indicator
function that outputs one if the robot makes contact with an obstacle or an inactive button or enters
a hazardous region. We add LiDAR values of buttons and obstacles to the state of the goal task,
and actions are the same as the goal task. The length of the episode is 1000 steps without early
termination.

Locomotion Tasks. We use three different legged robots, Mini-Cheetah, Laikago, and Cassie, for
the locomotion tasks, as shown in Figure 7c, 7d, and 7e. The tasks aim to control robots to follow
a velocity command on flat terrain. A velocity command is given by (vcmd

x , vcmd
y , ωcmd

z ), where
vcmd
x ∼ U(−1.0, 1.0) for Cassie and U(−1.0, 2.0) otherwise, vcmd

y = 0, and ωcmd
z ∼ U(−0.5, 0.5).

To lower the task complexity, we set the y-directional linear velocity to zero but can scale to any non-
zero value. As in other locomotion studies (Lee et al., 2020; Miki et al., 2022), central phases are in-
troduced to produce periodic motion, which are defined as ϕi(t) = ϕi,0+f ·t for ∀i ∈ {1, ..., nlegs},
where f is a frequency coefficient and is set to 10, and ϕi,0 is an initial phase. Actuators of robots
are controlled by PD control towards target positions given by actions. The state consists of velocity
command, orientation of the robot frame, linear and angular velocities of the robot, positions and
speeds of the actuators, central phases, history of positions and speeds of the actuators (past two
steps), and history of actions (past two steps). A foot contact timing ξ can be defined as follows:

ξi(s) = −1 + 2 · 1sin(ϕi)≤0 ∀i ∈ {1, ..., nlegs}, (25)

where a value of -1 means that the ith foot is on the ground; otherwise, the foot is in the air. For the
quadrupedal robots, Mini-Cheetah and Laikago, we use the initial phases as ϕ0 = {0, π, π, 0}, which
generates trot gaits. For the bipedal robot, Cassie, the initial phases are defined as ϕ0 = {0, π},
which generates walk gaits. Then, the reward and cost functions are defined as follows:

R(s, a, s′) = −0.1 · (||vbasex,y − vcmd
x,y ||22 + ||ωbase

z − ωcmd
z ||22 + 10−3 ·Rpower),

C1(s, a, s
′) = 1angle≥a, C2(s, a, s

′) = 1height≤b, C3(s, a, s
′) =

nlegs∑
i=1

(1− ξi · ξ̂i)/(2 · nlegs),
(26)
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where the power consumption Rpower =
∑
i |τivi|, the sum of the torque times the actuator speed,

is added to the reward as a regularization term, vbasex,y is the xy-directional linear velocity of the base
frame of robots, ωbase

z is the z-directional angular velocity of the base frame, and ξ̂ ∈ {−1, 1}nlegs is
the current feet contact vector. For balancing, the first cost indicates whether the angle between the
z-axis vector of the robot base and the world is greater than a threshold (a = 15◦ for all robots). For
standing, the second cost indicates the height of CoM is less than a threshold (b = 0.3, 0.35, 0.7 for
Mini-Cheetah, Laikago, and Cassie, respectively), and the last cost is to check that the current feet
contact vector ξ̂ matches the pre-defined timing ξ. The length of the episode is 500 steps. There is
no early termination, but if a robot falls to the ground, the state is frozen until the end of the episode.

Hyperparameter Settings. The structure of neural networks consists of two hidden layers with
(512, 512) nodes and ReLU activation for all baselines and the proposed method. The input of value
networks is state-action pairs, and the output is the positions of atoms. The input of policy networks
is the state, the output is mean µ and std σ, and actions are squashed into tanh(µ+ϵσ), ϵ ∼ N (0, 1).
We use a fixed entropy coefficient β. The trust region size ϵ is set to 0.001 for all trust region-based
methods. The overall hyperparameters for the proposed method can be summarized in Table 2.
Since the range of the cost is [0, 1], the maximum discounted cost sum is 1/(1− γ). Thus, the limit

Parameter Safety Gym Locomotion
Discount factor γ 0.99 0.99
Trust region size ϵ 0.001 0.001
Length of replay buffer 105 105

Critic learning rate 0.0003 0.0003
Trace-decay λ 0.97 0.97
Entropy coefficient β 0.0 0.001
The number of critic atoms M 25 25
The number of target atoms M ′ 50 50
Constraint conservativeness α 0.25, 0.5, and 1.0 1.0
Limit value dk 0.025/(1− γ) [0.025, 0.025, 0.4]/(1− γ)
Slack coefficient ζ - minkdk = 0.025/(1− γ)
Reward weights wi - [5.19, 3.71, 0.34]

Table 2: Hyperparameter settings for the Safety Gym and locomotion tasks.

value is set by target cost rate times 1/(1 − γ). For the locomotion tasks, the third cost in (26) is
designed for foot stamping, which is not essential to safety. Hence, we set the limit value to near
the maximum (if a robot does not stamp, the cost rate becomes 0.5). The reward weights are also
presented in Table 2, which are optimized using the existing Bayesian optimization tool. In addition,
baseline methods use multiple critic networks for the cost function, such as target (Yang et al., 2021)
or square value networks (Kim & Oh, 2022a). To match the number of network parameters, we use
two critics as an ensemble, as in Kuznetsov et al. (2020).

Tips for Hyperparameter Tuning.

• Discount factor γ, Critic learning rate: Since these are commonly used hyperparameters,
we do not discuss these.

• Trace-decay λ, Trust region size ϵ: The ablation studies on these hyperparameters are
presented in Appendix D.4. From the results, we recommend setting the trace-decay to
0.95 ∼ 0.99 as in other TD(λ)-based methods (Precup et al., 2000). Also, the results show
that the performance is not sensitive to the trust region size. However, if the trust region
size is too large, the approximation error increases, so it is better to set it below 0.003.

• Entropy coefficient β: This value is fixed in our experiments, but it can be adjusted auto-
matically as done in SAC (Haarnoja et al., 2018).

• The number of atoms M,M ′: Although experiments on the number of atoms did not per-
formed, performance is expected to increase as the number of atoms increases, as in other
distributional RL methods Dabney et al. (2018a).

• Length of replay buffer: The effect of the length of the replay buffer can be confirmed
through the experimental results from an off policy-based safe RL method (Kim & Oh,
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2022a). According to that, the length does not impact performance unless it is too short.
We recommend setting it to 10 to 100 times the collected trajectory length.

• Constraint conservativeness α, limit value dk: If the cost sum follows a Gaussian distri-
bution, the mean-std constraint becomes the CVaR constraint. Then, the probability of
the worst case can be controlled by adjusting α. For example, if we set α = 0.125 and
d = 0.03/(1 − γ), the mean-std constraint enforces the probability that the average cost
is less than 0.03 during an episode greater than 95% = Φ(ϕ(Φ−1(α))/α). Through this
meaning, proper α and dk can be found.

• Slack coefficient ζ: As mentioned at the end of Section 3.3, it is recommended to set this
coefficient as large as possible. Since dk − ζ should be positive, we recommend setting ζ
to mink dk.

• Reward weights: These are used when defining the reward function for traditional RL
methods, so these are not hyperparameters of our method.

In conclusion, most hyperparameters are not sensitive, so few need to be optimized. It seems that
α and dk need to be set based on the meaning described above. Additionally, if the approximation
error of critics is significant, the trust region size should be set smaller.
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D EXPERIMENTAL RESULTS

D.1 SAFETY GYM

Figure 8: Training curves of mean constrained algorithms for the Safety Gym tasks. The solid line
and shaded area represent the average and std values, respectively. The solid black lines in the
second row indicate limit values. All methods are trained with five random seeds.

In this section, we present the training curves of the Safety Gym tasks separately according to the
conservativeness of constraints for better readability. Figure 8 shows the training results of the mean
constrained and mean-std constrained algorithms with α = 1.0. Figures 9 and 10 show the training
results of the mean-std constrained algorithms with α = 0.25 and 0.5, respectively. In Figure 8, it
can be observed that the score of SDAC has the fastest convergence speed and that the cost rates
also converge to the limit values quickly. Observing that all the other methods show the highest
total CVs in the car button task, this task is challenging to meet the constraint. Thus, SDAC also
has a higher cost rate for the car button than other tasks. In addition, since decreasing α makes the
constraints more conservative, the cost rates and the number of total CVs of SDAC are reduced in
Figures 9 and 10. For α = 0.25 and 0.5, SDAC shows the highest scores and the lowest number of
CVs in all tasks.
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Figure 9: Training curves of mean-std constrained algorithms with α = 0.5 for the Safety Gym.

Figure 10: Training curves of mean-std constrained algorithms with α = 0.25 for the Safety Gym.

D.2 LOCOMOTION TASKS

We present the training curve for the locomotion tasks in Figure 11, where the true reward is defined
in (26). The traditional RL baselines are trained with the reward R̄ = (R −

∑3
i=1 wiCi)/(1 +∑3

i=1 wi), and the weights are described in Section C. The training curve contains graphs of the
three cost rates and the true reward sum.
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(a) Mini-Cheetah.

(b) Laikago.

(c) Cassie.

Figure 11: Training curves of the locomotion tasks. The black dashed lines show the limit values
used for the safe RL methods. The solid line represents the average value, and the shaded area shows
one-fifth of the std value. All methods are trained with five different random seeds.

D.3 ABLATION STUDY ON COMPONENTS OF SDAC

We experiment with variations of SDAC to examine the effectiveness of each component. SDAC
has two main components, SAC-style surrogate functions and distributional critics. We call SDAC
with only distribution critics, SDAC-Dist, and SDAC with only SAC-style surrogates, SDAC-Q. If all
components are absent, SDAC is identical to OffTRC (Kim & Oh, 2022a). The variants are trained
with the point goal task of the Safety Gym, and the training results are shown in Figure 12. SDAC-Q
lowers the cost rate quickly but shows the lowest score. SDAC-Dist shows scores similar to SDAC,
but the cost rate converges above the limit value 0.025. In conclusion, SDAC can efficiently satisfy
the safety constraints through the SAC-style surrogates and improve score performance through the
distributional critics.

Figure 12: Training curves of variants of SDAC for the point goal task.
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D.4 ABLATION STUDY ON HYPERPARAMETERS

To check the effects of the hyperparameters, we conduct ablation studies on the trust region size and
entropy coefficient. The results are shown in Figure 13. From the entropy coefficient results, it can
be seen that excessive exploration causes the constraint to be violated. Thus, the entropy coefficient
should be adjusted cautiously, or it can be better to set the coefficient to zero. Since Theorem 1
shows that the estimation error of the surrogates is proportional to the trust region size, it can be
observed from Figure 13b that the number of CVs increases with the size of the trust region due to
the estimation error.

(a) Entropy coefficient β.

(b) Trust region size ϵ.

Figure 13: Training curves of SDAC with different hyperparameters for the point goal task.

E COMPUTATIONAL COST ANALYSIS

In this section, we analyze the computational cost of the gradient integration method. The proposed
gradient integration method has three subparts. First, it is required to calculate policy gradients
of each cost surrogate, gk, and H−1gk for ∀k ∈ {1, 2, ...,K}, where H is the Hessian matrix of
the KL divergence. H−1gk can be computed using the conjugate gradient method, which requires
only a constant number of back-propagation on the cost surrogate, so the computational cost can be
expressed as K ·O(BackProp).

Second, the quadratic problem in Section 3.3 is transformed to a dual problem, where the trans-
formation process requires inner products between gk and H−1gm for ∀k,m ∈ {1, 2, ...,K}. The
computational cost can be expressed as K2 ·O(InnerProd).

Finally, the transformed quadratic problem is solved in the dual space ∈ RK using a quadratic
programming solver. Since K is usually much smaller than the number of policy parameters, the
computational cost almost negligible compared to the others. Then, the cost of the gradient in-
tegration is K · O(BackProp) + K2 · O(InnerProd) + C. Since the back-propagation and the
inner products is proportional to the number of policy parameters |ψ|, the computational cost can be
simplified as O(K2 · |ψ|).
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