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Abstract

Watermarking is an essential technique for embedding an identifier (i.e., water-1

mark message) within digital images to assert ownership and monitor unauthorized2

alterations. In face recognition systems, watermarking plays a pivotal role in ensur-3

ing data integrity and security. However, an adversary could potentially interfere4

with the watermarking process, significantly impairing recognition performance.5

We explore the interaction between watermarking and adversarial attacks on face6

recognition models. Our findings reveal that while watermarking or input-level per-7

turbation alone may have a negligible effect on recognition accuracy, the combined8

effect of watermarking and perturbation can result in an adversarial watermarking9

attack, significantly degrading recognition performance. Specifically, we introduce10

a novel threat model, the adversarial watermarking attack, which remains stealthy11

in the absence of watermarking, allowing images to be correctly recognized initially.12

However, once watermarking is applied, the attack is activated, causing recognition13

failures. Our study reveals a previously unrecognized vulnerability: adversarial14

perturbations can exploit the watermark message to evade face recognition systems.15

Evaluated on the CASIA-WebFace dataset, our proposed adversarial watermark-16

ing attack reduces face matching accuracy by 67.2% with an ℓ∞ norm-measured17

perturbation strength of 2/255 and by 95.9% with a strength of 4/255.18

1 Introduction19

Face recognition systems have become increasingly prevalent in various domains, such as access20

control and surveillance [1–3]. Ensuring the integrity and ownership of facial images used for training21

and evaluation in such systems is crucial. Image watermarking has offered a viable solution for22

proprietary face image protection [4–6]. Watermarking can embed hidden information (also called23

‘watermark message’) in digital faces to assert ownership, authenticate content, and verify data24

integrity [7–9].25

However, as machine learning (ML) models become more sophisticated, they also become susceptible26

to adversarial attacks. Adversarial perturbations (also known as evasion attacks) are carefully crafted27

modifications to input data that deceive ML models without noticeable changes in the image to human28

observers [10–12]. In the context of face recognition, such perturbations can cause recognition errors,29

leading to security breaches; See the literature review in Section 2.30

Although watermarking aims to protect and authenticate images, the interaction between watermark-31

ing processes and adversarial attacks remains underexplored. The presence of watermarking and32

adversarial attacks, along with their interaction, has added substantial complexity to evaluation of33

face recognition systems. Inspired by the above, we address the following question:34

(Q) How does watermarking affect the adversarial robustness of face recognition systems, and can35

adversarial attacks exploit watermarking to even degrade face matching performance?36
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Figure 1: Overview of the Adversarial Watermarking Attack on Face Recognition. The green
path (A) represents the standard watermarking and face recognition process, where the probe face
is watermarked using the watermark encoder and correctly matched with the reference face after
feature extraction. The yellow path (B) shows input-level adversarial perturbations applied to evade
the face recognition system without watermarking. Subtle adversarial perturbations are added to
the probe face, but they do not affect the recognition result without watermarking. The red path (C)
demonstrates the adversarial watermarking process, where the adversarially perturbed face image,
after being watermarked, fails to match the reference face.

To the best of our knowledge, our work unveils the joint effects of watermarking and adversarial37

attacks on face recognition models for the first time. We summarize our contributions below.38

• We propose a testbed (Figure 1) that integrates watermarking techniques into face recognition39

systems. This framework embeds watermarks into facial images to assert ownership while facilitating40

the study of adversarial attacks (Figure 1-(B) and (C)).41

• We introduce a new threat model (Figure 1-(C)) called the Adversarial Watermarking attack,42

which differs from conventional evasion attacks against image classifiers [10, 13, 14]. This attack43

is designed to remain stealthy when watermarking is absent (Figure 1-(B)), allowing images to be44

correctly recognized initially. However, once watermarking is applied, the attack is triggered, causing45

recognition failures and exposing a critical vulnerability in the watermarking process.46

• We validate our proposed attack through extensive experiments on the open-source CASIA-WebFace47

dataset. Our results demonstrate a significant degradation in face matching performance under small48

adversarial perturbations (e.g., 2
255 and 4

255 ) when the watermarking is applied (Figure 1).49

2 Related Work50

Watermarking in Face Recognition. Watermarking techniques have long been used to embed im-51

perceptible information into digital images for purposes such as copyright protection, authentication,52

and integrity verification [6, 15, 16]. In the realm of face recognition, watermarking serves as a tool53

to protect personally identifiable images from unauthorized use and tampering [4, 17–21]. Various54

methods have been proposed to integrate watermarking into facial images without significantly55

affecting recognition performance. Traditional watermarking approaches use frequency domain56

transformations such as Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) to57

embed watermarks in images, with the aim of robustness against common image processing attacks58

[22, 23]. In contrast, recent methods leverage deep neural networks (DNNs) for watermarking, such59

as the HiDDeN framework, which employs end-to-end trainable networks to embed and extract60

watermarks, enhancing resilience against various attacks [5]. Other recent studies have focused61

on ensuring that the watermarking process preserves critical facial features essential for accurate62

recognition [7, 8, 17]. However, these methods mainly focus on robustness against non-adversarial63

distortions and fail to account for the impact of adversarial perturbations specifically designed to64

deceive ML models, particularly when watermarking is applied.65
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Adversarial Attacks in Face Recognition. Adversarial attacks involve introducing subtle, often66

imperceptible perturbations to input data with the intent of deceiving ML models [10, 13, 24]. In face67

recognition systems, adversarial examples can lead to recognition errors, impersonation, or evasion,68

posing significant security risks [25–27]. For example, attackers can manipulate facial images to69

bypass authentication systems or to impersonate other enrolled individuals in the system. Various70

attack generation algorithms, such as Fast Gradient Sign Method (FGSM) [10] and Projected Gradient71

Descent (PGD) [14], have been employed to generate adversarial examples against face recognition72

models. Meanwhile, defense mechanisms such as adversarial training and input pre-processing have73

been proposed to mitigate these attacks [14, 24, 28]. The ongoing arms race between attack and74

defense persists. However, existing studies have primarily focused on evading or improving the75

robustness of model performance, without considering the impact of watermarking whose use is76

growing, e.g., for labeling computer generated images. To the best of our knowledge, the interaction77

between adversarial perturbations and watermarking in face recognition is largely unexplored, with78

no prior work investigating how adversarial attacks leverage watermarking to degrade recognition79

performance.80

3 Methods81

Watermarking System. We start by introducing the technique used for generating watermarked82

face images and its application in the subsequent face recognition task, as shown in Figure 1-(A). To83

formalize the watermarking problem, let the input image be denoted as I ∈ RH×W×C , and a binary84

watermark message as m ∈ {0, 1}L (an L-bit digital signature) embedded into the facial images85

[5, 7, 29]. Our goal is to produce a watermarked image Iw that maintains visual similarity to the86

original image I containing the watermark message m. Furthermore, the watermarked image should87

allow extraction of m, allowing provenance of the image.88

Table 1: The robustness of watermarking evalu-
ated using the reconstructed watermark bit accu-
racy (%) against various (post-watermarking) data
transformations at different scaling strengths. Each
value is averaged over 1000 face images, with an
image size of 112 × 112 and a watermark string bit
length of 48. See more setup details in Section 4.

Transformation Scaling ratio
1 0.95 0.9 0.85 0.8 0.75

Crop 98.39 97.22 93.7 95.12 94.77 94.3
Resize 98.39 92.47 92.0 91.58 89.62 85.93

Transformation Scaling factor
1 1.5 2 2.5 3 3.5

Brightness 98.39 98.48 96.65 94.21 91.6 88.87
Contrast 98.39 98.81 98.15 96.82 94.92 92.62

Transformation JPEG quality factor
100 95 90 85 80 75

JPEG compression 98.39 90.36 85.0 80.8 76.65 73.06

We implement the watermarking system using89

the open source neural network-based HiDDeN90

framework [5]. This system consists of an en-91

coder network fθ and a decoder network gϕ.92

The encoder takes the input image I and the wa-93

termark message m as inputs and generates the94

watermarked image Iw = fθ(I,m). The de-95

coder takes the watermarked image Iw as input96

and reconstructs the embedded watermark mes-97

sage m̂ = gϕ(Iw). The encoder and decoder98

networks are jointly trained using a combina-99

tion of image reconstruction loss and message100

decoding loss. The loss of image reconstruc-101

tion ℓrecons (e.g., mean squared error) ensures102

that the watermarked image is visually similar103

to the original, while the loss of message decod-104

ing ℓdecode (e.g., bitwise binary cross-entropy105

loss) minimizes the difference between embed-106

ded and extracted watermark messages. The overall training objective for watermarking encoder and107

decoder is:108

min
θ,ϕ

EI,m [ℓrecons(Iw, I) + λℓdecode(m̂,m)] (1)

where λ is a regularization parameter balancing the two losses. During training, a random message109

generator produces random bits for m. This randomness allows the network to generalize to any110

watermark message, enabling us to embed user-defined messages in face images later on. Table 1111

shows that our watermarking system is fairly robust against different data transformations. However,112

as demonstrated later, this does not guarantee adversarial robustness for the downstream task when113

using watermarked data.114

Face Recognition on Watermarked Images. With watermarked face images acquired above, we115

proceed to face recognition to assess the impact of the watermarking. In what follows, we provide a116

brief background on face recognition. Given an input face image I, the face recognition model hψ117

maps the image to a feature representation z: z = hψ(I), whereψ represents the learnable parameters118

of the model. The feature z is typically extracted from the penultimate layer of a convolutional neural119
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network (CNN), such as ResNet [30]. The model is trained to minimize a classification loss, such120

as the softmax loss [31] or margin-based losses [31–33], which encourage facial features from the121

same identity to be close in the embedding space while pushing apart facial features from different122

identities. During inference, the model extracts feature representations for a probe face Ip and a123

reference face Ir, denoted as zp and zr, respectively. The similarity between the probe and reference124

faces is computed using the cosine similarity:125

s(zp, zr) =
z⊤p zr

|zp||zr|
(2)

where | · | denotes the Euclidean norm. A match is determined based on whether the similarity score126

exceeds a predefined threshold τ :127

match(zp, zr) =
{
1, if s(zp, zr) ≥ τ,

0, otherwise.
(3)

Our experiments later verify that the watermarking process does not significantly degrade face128

recognition performance in the absence of adversarial perturbations.129

Adversarial Watermarking Attack for Face Recognition. We introduce an adversarial water-130

marking attack that exploits the interaction between adversarial perturbations and the watermarking131

process to degrade face recognition performance. The adversary aims to craft a minimal perturbation132

δ added to a probe face image Ip and find a specific watermark message m ∈ {0, 1}L such that:133

1. Pre-watermark recognition success: The perturbed image I′p = Ip + δ is correctly134

matched with the reference image Ir by the face recognition model hψ, i.e., the similarity135

between their feature representations remains high. Here δ ∈ RH×W×C denotes adver-136

sarial perturbations bounded by ∥δ∥∞ ≤ ϵ, where ϵ is the perturbation strength ensuring137

imperceptibility.138

2. Post-watermark recognition failure: After applying the watermarking encoder fθ with the139

adversary-learned watermark message m, the perturbed input image I′p and its watermarked140

counterpart I′w = fθ(I
′
p,m) lead to a low similarity with the reference image Ir, causing141

the face recognition model hψ to fail.142

Our rationale has two key aspects. First, satisfying both conditions 1 and 2 ensures that the adversarial143

attack (δ) stays stealthy when watermarking is absent, but is triggered upon watermark application,144

leading to recognition failures. Second, this design reveals a unique adversarial challenge in face145

recognition with watermarking, where the optimization of the watermark message in condition 2146

interacts synergistically with the input perturbations δ to amplify the adversarial effect.147

We propose the following joint optimization problem to find the adversarial perturbation δ and the148

watermark message m:149

min
m∈{0,1}L

min
∥δ∥∞≤ϵ

−s(z′p, zr) + s(z′w, zr) (4)

where the optimization variables are the binary watermark message m and the input perturbations150

δ, and s(·, ·) and zr are defined in (2). Recall that z′p = hψ(I
′
p) and z′w = hψ(I

′
w) are the feature151

representations given the probe image I′p = Ip + δ and I′w = fθ(I
′
p,m), respectively. In (4), the152

original similarity term s(z′p, zr) ensures that the perturbed face is still recognized as the same153

identity in the absence of watermarking. And the watermarked similarity term s(z′w, zr) minimizes154

the similarity between the watermarked, perturbed image and the reference image, causing face155

recognition failure post-watermarking.156

To solve the optimization in (4), we then adopt an alternative optimization procedure to jointly157

optimize δ and m. Specifically, we use the PGD (projected gradient descent) method [14] to158

iteratively minimize one variable while keeping the other fixed. In the optimization process, we face159

the challenge of the discrete nature of the watermark message m. Direct optimization over binary160

variables is computationally intractable for large dimensionality L. To address this, we relax m to be161

continuous in the range [0, 1]L during the optimization. This relaxation allows us to employ PGD in162

an efficient way. That is, after performing gradient descent on the relaxed m, we project back onto the163

binary set {0, 1}L by rounding each element to 0 or 1. This ensures the watermark message remains164

valid for the encoder. By alternately optimizing over δ and m, we minimize the joint objective. This165

approach finds a combination of adversarial perturbation and a watermark message that maintains166

high genuine similarity before watermarking and cause misrecognition afterward.167
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4 Experiments168

Experimental Setup. We use the CASIA-WebFace dataset [34], containing face images of 10,575169

individuals, for evaluating face recognition models. We extract 1,000 individuals with two matching170

face images for each identity (Ip and Ir), and pre-processed them by aligning and resizing the171

images to 112 × 112 pixels. We adopt our face recognition model from the AdaFace framework172

[35]. AdaFace is known for its adaptive margin loss that accounts for the quality of the face images,173

improving recognition performance. The model is trained on MS-Celeb-1M dataset [31] using174

standard training protocols with a ResNet-50 backbone [30]. For watermarking, we follow the175

HiDDeN framework [5] to solve the problem (1). The encoder and decoder networks are trained176

on the MS-COCO dataset [36] with random 48-bit watermark messages. The trained encoder is177

then used to embed watermarks in the CASIA-WebFace face images. In generating the adversarial178

watermarking attack (4), the step sizes for optimizing δ and m are set to α = ϵ
T and β = 1

T ,179

respectively, where T = 10 represents the number of iterations for the PGD-10 attack.180

Evaluation. We assess the effectiveness of the adversarial watermarking attack by analyzing face181

recognition performance under two key conditions. First, in the case of recognition with adversarial182

perturbations, adversarial perturbations are applied to the probe images without watermarking. Next,183

in the case of recognition with the adversarial watermarking attack (with watermarking), both184

adversarial perturbations and an optimized watermark message are applied, following the joint185

optimization in (4).186
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Figure 2: Violin plots of similarity scores in (2) at different ϵ values (scaled by 1/255). For each ϵ, the
violin plot shows the distribution of similarity scores between perturbed probe and reference images
under two conditions: with watermarking (blue) and without watermarking (red). By ∥δ∞∥ ≤ ϵ, we
change ϵ to control the perturbation strength.
Table 2: Face matching accuracy (%) with and without watermarking at different perturbation levels
(ϵ, scaled by 1/255), where the matching threshold is set to τ = 0.3 in (3). Performance reduction by
watermarking attack is highlighted in blue.

ϵ 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
W/o Watermarking 81.8 85.4 88.5 90.9 92.2 94.1 95.7 97.5 98.3
W/ Watermarking 73.9 63.5 50.0 35.7 25.0 16.5 8.4 4.5 2.4
Reduction 7.9 21.9 38.5 55.2 67.2 77.6 87.3 93.0 95.9

Adversarial Watermarking: Joint Effects of Watermarking and Adversarial Perturbations.187

To analyze the effect of the adversarial watermarking attack on face recognition performance, we188

first examine the similarity scores between probe and reference images across different perturbation189

strengths ϵ. Figure 2 shows violin plots of the similarity distributions for face recognition, both with190

and without watermarking, when evaluated using input perturbations δ from the proposed adversarial191

watermarking attack. As the perturbation strength ϵ increases, the similarity between probe and192

reference images decreases significantly in the presence of watermarking, while it remains largely193

unaffected without watermarking. This is because in the absence of watermarking, the first loss194

term in (4) aims to maximize the similarity between the probe image and the reference image for195

the applied perturbations δ. With watermarking in the face recognition process, the similarity score196

quickly drops with increased perturbation strength. In fact, when ϵ = 0.5/255, the similarity has197

tended to be smaller than the matching threshold τ (commonly set at τ = 0.3). This shows that even a198

small adversarial perturbation can disrupt face recognition after watermarking, although performance199

remains stable without watermarking.200
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Table 2 shows that watermarking reduces face matching accuracy at all perturbation levels (ϵ). For201

example, at ϵ = 0.0, accuracy drops by 7.9% from 81.8% to 73.9% after watermarking. This202

indicates that the adversarial watermark message alone, as found by (4), reduces recognition accuracy.203

As the perturbation magnitude ϵ increases, the accuracy reduction intensifies. At ϵ = 2/255, the204

accuracy decreases by 67.2%, from 92.2% to 25.0%, and at ϵ = 4/255, the reduction reaches205

95.9%, with the accuracy dropping from 98.3% to just 2.4%. These drastic reductions illustrate the206

adversarial watermarking attack’s effectiveness in significantly degrading face recognition, especially207

at higher perturbation magnitudes. The results demonstrate that adversarial watermarking exploits208

the interaction with perturbations, significantly reducing face matching accuracy.209

Visualizations of Face Images vs. Watermarking and Perturbations. Figure 3 examines the210

combination of watermarking and perturbations (with strength ϵ at 4/255) on face images. To211

compare with reference faces (a), original faces (b) are visualized along with similarity scores by (2).212

Watermarked faces (c) are added with message m by (4), along with similar scores to (b), exhibiting213

minor effects by watermarking. Perturbed faces (d) are added with perturbation δ by (4), along with214

larger scores than (b), maintaining the face matching performance. Adversarial watermarked faces215

(g) have extremely low similarity scores, exhibiting the joint adversarial effect of watermarking and216

perturbation. Element-wise absolute differences are visualized in (d), (f), and (h) respectively for (c),217

(e), (g) to show the imperceptibility of watermark/perturbation. It should be noted that adversarial218

watermarking difference (h) shows more focus on the edges and corners, i.e., the high frequency area219

than (d) and (f), illustrating why the attack works while watermakring or perturbation alone does not.220
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Figure 3: Visualization of reference, probe, and perturbed/watermarked face images along with
perturbation/watermark for four identities. (a) Reference face. (b) Probe face. (c) Watermarked
face. (d) Difference between (b) and (c). (e) Perturbed face. (f) Difference between (b) and (e). (g)
Adversarial watermarked face by watermarking perturbed face. (h) Difference between (b) and (g).
All element-wise absolute differences are scaled by ×10 and color reverted. All probe faces are
marked with their similarity score compared with reference faces at the top of images.

5 Conclusion221

Our study investigated the vulnerabilities of face recognition systems when adversarial perturbations222

are combined with watermarking. While watermarking alone had a minimal effect on recogni-223

tion accuracy, the introduction of adversarial perturbations before watermarking caused significant224

performance degradation. Our findings show that adversarial watermarking attacks could severely un-225

dermine recognition systems even if they remain stealthy when watermarking is absent, highlighting226

the need for improved defenses in both watermarking and face recognition models.227
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