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ABSTRACT

Readout noise remains a significant barrier for variational quantum circuits
(VQCs) and quantum neural networks (QNNs), as incorrect observations mod-
ify gradients, bias optimization, and lower predictive accuracy. For readout mit-
igation, we use Bayesian inference and suggest a two-step approach that takes
drift into account. Offline, a Bayesian neural network (BNN) converts noisy shot
histograms into corrected outcome distributions with calibrated uncertainty, re-
sulting in expressive, data-driven priors. Online, iterative Bayesian unfolding
(IBU) starts with these priors and updates with current calibration counts; an
uncertainty-adaptive stopped rule prevents overfitting to temporary drift. Experi-
ments on CIFAR-10 and EuroSAT, chosen to demonstrate robustness across both
vision and remote-sensing domains, show that our method achieves up to 12.4%
reduction in classification error and 9.8% improvement in training stability com-
pared to confusion-matrix correction and ML-based baselines such as logistic re-
gression, shallow neural networks, and probabilistic noise models. Importantly,
uncertainty-adaptive iteration control enables our framework to balance offline
priors with fresh observations, preventing overfitting to noise. Beyond quantum
applications, this illustrates a general learning principle: Bayesian priors com-
bined with online refinement offer a scalable path toward robust learning under
dynamic and nonstationary noise.

1 INTRODUCTION

Quantum computing has the potential to surpass classical computation by using superposition, en-
tanglement, and interference to tackle certain tasks more effectively Zhao & Deng| (2025); Huang
et al.| (2022)). However, in reality, this prospective quantum advantage is vulnerable due to the in-
herent impact created by noise on near-term quantum devices |Garcia-Martin et al.| (2024)); Resch &
Karpuzcu (2021). Errors from defective gates, crosstalk, decoherence, and calibration drift all de-
grade processing; however, readout noise is more vital |Chen et al.|(2023). Because measurement is
the final stage of every quantum process, misidentifying qubit states directly corrupts the observed
output distribution, propagates bias to downstream estimators, and decreases the dependability of
quantum outputs [Yang et al. (2022); [HeuBlen et al.[(2024). Readout noise occurs when measuring
instruments fail to differentiate quantum states precisely, resulting in a nonzero possibility of an
error. A single-qubit measurement should always output ”0” for |0) and 1" for |1). However, real-
world hardware frequently misclassifies due to thermal fluctuations, signal loss, or crosstalk |Aasen
et al.| (2024)). In multi-qubit systems, such errors compound, distorting result histograms and biasing
observables, compromising optimization and accuracy in algorithms that rely on repeated sampling
HeulBen et al.|(2024); Chen et al.| (2023).

Several techniques have been proposed for reducing readout errors in near-term quantum devices.
The most popular technique is confusion-matrix correction, which uses calibration experiments to
estimate a transition matrix between prepared and measured states, then linear inversion to retrieve
unbiased probabilities Maciejewski et al| (2020); |[Farooq et al| (2024). While theoretically sim-
ple, this technique is extremely vulnerable to calibration drift and statistical noise, resulting in
unstable corrections in multi-qubit systems. More advanced approaches use machine learning [Liao
et al.| (2024)), probabilistic noise models [Gupta et al.| (2024) or lightweight machine learning post-
processing Shin et al.|(2024)); [Hu et al.| (2025) to expand beyond static confusion matrices. However,
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these strategies often assume time-invariant error distributions and do not include procedures for
assessing predictive uncertainty. As a result, they may overfit to limited calibration data or fail to
adjust when the noise profile changes dynamically, resulting in suboptimal performance.

Bayesian inference provides a logical framework for overcoming these constraints by integrating
previous knowledge with new observational data in a consistent manner. Unlike static correction
approaches, Bayesian methods may explicitly describe uncertainty, allowing them to differentiate
between the real signal and false variations caused by noise Wang et al.|(2023)); Zhang et al.|(2024);
Li & Xu| (2025); IPokharel et al.| (2024). Furthermore, by updating priors with current calibration
counts, they provide a flexible technique for adjusting to time-dependent drift without overcorrecting
Bartels & Marx| (2025). Despite their benefits, there is a considerable research gap in Bayesian
approaches for readout error reduction in variational quantum algorithms. Based on these properties,
we propose a two-stage pipeline for readout error mitigation:

1. An offline Bayesian neural network (BNN) that learns expressive, uncertainty-aware priors
from historical calibration data, and

2. An online iterative Bayesian unfolding (IBU) refinement step that incorporates the most
recent calibration information with uncertainty-adaptive iteration control.

This architecture enables us to balance the generalization strength of offline learning with the flex-
ibility of online refining, resulting in resilience against both static and dynamic errors. We can
summarize our key contributions as follows.

* We propose a BNN framework that learns uncertainty-aware mappings from noisy his-
tograms to corrected probability distributions, offering expressive priors that account for
both static and nonlinear readout noises.

* We include these priors into an IBU framework that includes uncertainty-adaptive stopping
rules, allowing for dynamic refinement against time-varying drift while avoiding overfit-
ting.

* We present a theoretical analysis that compares Bayesian inference with linear inversion,
demonstrating that the Bayesian posterior mean is still feasible and achieves lower mean-
squared error under ill-conditioned readout matrices or limited shots, whereas linear inver-
sion amplifies variance and can generate unstable results.

* We validate our method on two separate datasets—CIFAR-10 and EuroSAT—and demon-
strate up to 12.4% decrease in classification error and 9.8% improvement in training sta-
bility compared to confusion-matrix correction and machine-learning baselines.

2 METHODOLOGY

This section first describes the mathematical modeling of measurement errors, or readout noise, and
how they impact the output of an n-qubit quantum circuit.

2.1 QUANTUM READOUT NOISE MODEL

Assuming a quantum circuit with n qubits, where the measurement results are recorded in the com-
putational basis, labeled by binary strings x. For example, for n = 2, € {00,01,10,11} or
integers O to 3. The ideal outcome distribution is a probability vector p, with each item p, repre-
senting the probability of observing result = and the sum of all probabilities is 1 (3~ p, = 1).

In practice, measurement errors lead the quantum computer to produce inaccurate results. For ex-
ample, it may indicate 1 while the actual result is 0 and vice versa. We describe this readout noise
using a confusion matrix A, where each entry A, , indicates the likelihood of reporting outcome y
while the real outcome is . Given that the stated results must account for all possibilities, each col-
umn of A corresponds to 1 (Zy Ay o = 1). The measured distribution, pumcas, represents a distorted
representation of the ideal distribution p as

Pmeas = Ap~ (D

This equation demonstrates how readout noise consistently influences the ideal probability.
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is the chance of incorrectly reporting 1 when the true state is 0, and e; is the likelihood of reporting
0 when the true state is 1. For an n-qubit system, assuming that each qubit’s errors are independent,
the entire confusion matrix A is built as a tensor product of individual qubit matrices as

A=CWecPg...0CM", )

C9) represents the confusion matrix for qubit g. Although qubit errors can be correlated in real
systems, this model, however, represents a good approximation |Bravyi et al.|(2021)).

A single qubit’s confusion matrix C'is a 2 x 2 matrix described as C' = where ¢

In theory, we can take infinite shots to mitigate this problem; however, it is impractical. In experi-
ments, we take a finite number of measurements or shots, indicated as s. A count vector c stores the
number of times each result y is seen, with ¢, being the count for y. The counts have a multinomial
distribution depending on ppeas as ¢ ~ Multinomial(s, pmeas). The observed probability distribu-
tion can be obtained as p = c/s. On average, p corresponds t0 Preas, but because of the limited
number of shots, it contains statistical fluctuations (variance) that scale inversely with s as

A ~ dla' meas) — FMmeas I'rTleaS
E[p] = Pmeas; COV(p) - g(p ) s b b . (3)

Thus, readout noise generates bias through A, while finite shots add variance, which can influence
the results until mitigated [Maciejewski et al.| (2020).

2.2 DEEP-LEARNING READOUT NOISE MITIGATION (NN-QREM)

To eliminate readout noise, we employ a neural network to convert the noisy and observed probabil-
ity p into an estimate p that is closer to the ideal distribution p. The method is inspired by Kim et al.
(2022)), which uses supervised learning to effectively reduce errors.

The confusion matrix A is used to characterize readout noise, with A, . representing the likelihood
of reporting y given the real outcome = and p,eas = A p in the limit of infinite shots. The observed
histogram p = c/s is obtained from counts ¢ ~ Multinomial(s, pmeas). The neural network
Fy (with parameters ¢) maps the noisy distribution p to a corrected estimate p, ensuring that p is
a correct probability distribution (sums to 1). To train Fy, we use calibration data from simple
quantum states created by performing separate R,,(6;) rotations to each qubit, where ¢; is randomly
selected from [0, 27). The optimal distribution of these states is described as

= [cos2(6;/2)
p(g) - @ |:Sin2(9i/2) ) (4)
where 8 = (61, ..., 6,). We simulate noisy measurements p and connect them with the known ideal

p to create the training data. Using a loss function such as cross-entropy, the network is trained to
minimize the difference between p = Fi,(p) and p as

L(¢) = E(ﬁ,p)

= P log<F¢(p)z)] : )

A softmax layer assures that p represents an accurate probability distribution. This enhances the
network’s capacity to correct measurements from the real world by taking into consideration both
bias (from A) and variance (from limited shots).

Limitations. However, the neural network-based readout noise mitigation method encounters the
following challenges:

1. Limited Data Due to Computational Cost. Producing training data pairs (p, p) is compu-
tationally expensive since it involves simulating quantum circuits and applying the noise
model A to obtain p = c¢/s, where ¢ ~ Multinomial(s, Ap) [Li| (2025). The exponential
increase of the result space (2™) with the number of qubits n constrains the possible dataset
size, restricting model training and generalization.

2. Static Noise Assumption. The model assumes a fixed confusion matrix A, with entries
Ay - = Pr(reporty | true ), which do not vary over time. In practice, hardware noise
(e.g., eg, €1 in the single-qubit matrix C') can drift, making the learned parameters ¢ obso-
lete and resulting to biased estimations p = F(p) [Pokharel et al|(2024).
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2.3 BAYESIAN NEURAL NETWORK FOR OFFLINE PRE-CORRECTION

To overcome constraints in quantum readout noise reduction, we offer a Bayesian neural network
(BNN) technique for offline pre-correction. This method adjusts noisy measurement distributions to
better match the underlying distribution while allowing for uncertainty and limited data.

Suppose an n-qubit quantum circuit with d = 2™ potential measurement outcomes in the compu-
tational foundation. The observed (noisy) distribution is p, and our aim is to estimate the correct
distribution pyye, both centered on the probability simplex A?~! (i.e., probabilities sum to 1). Our
BNN, fg, contains weights @ represented as random variables with a variational posterior ¢(8),
which is obtained from data. Given a noisy distribution p and a context vector c (explained below),
the BNN generates Dirichlet concentration parameters as

d
- d
o :fG(Pac) 6]R>()7 Qq :Zaia (6)
i=1
where a denotes a Dirichlet distribution Dir () over potential corrected distributions. The adjusted
distribution is the predicted mean as
Q;

Di = E[Pz \ Ol] = 070’ @)

and uncertainty is quantified as
1
UBNN = —, ®)
Qo

A smaller ugnn (a larger o) shows greater confidence in the adjustment. The context vector c
contains metadata that improves correction accuracy, such as qubit identifiers, dataset tags (e.g.,
CIFAR-10 vs. EuroSAT), nominal error rates ey and e;, shot budget s (encoded as log s), and a
time index ¢ to account for noise drift since the last calibration. This enables the BNN to adjust to
different situations.

The BNN is trained with calibration data (P, y, c), where y = puye represents the true distribution.
The loss function combines Dirichlet’s negative log-likelihood and Bayesian regularization as
d

L= _EpNDir(a) lz yi log p;

i=1

+ AKL(q(0)(Ip(8)), ©)

where the expectation makes use of the digamma function ¥, A > 0 balances regularization, and
p(0) is a prior (e.g., zero-mean Gaussian) as

Ep~bir(a) [=1ogpi] = ¢¥(a0) — (). (10)
We calculate a; = softplus(h;) + € with minor € > 0 to guarantee positivity. The model is cautious

for low shots and confident for high shots because of an extra term, | log aig — ag — a1 log(s)|, which
promotes oy to scale with the shot budget s.

The true distribution py,. is known analytically, and training data is produced using single-layer
product states with independent R, (6;) rotations, where 6; € [0,27). A noise model A(eg,e1)
and multinomial sampling with shot counts s € {2,126, 256,512, 1048} are used to simulate noisy
distributions p. Error rates eg and ey gradually drift when a time index ¢ is included.

At test time, we sample 6 ~ ¢(0) (or use its mean) to calculate « for a fresh pair (P, c), and then
report p = /g and uncertainty ugnn. Tasks that come after, such as determining the iteration
budget for iterative Bayesian unfolding using p as a prior, can be guided by this uncertainty.

Addressing Challenges with the Bayesian Approach.The BNN technique efficiently addresses
important issues in quantum readout noise reduction as follows

1. Limited Data Due to Computational Cost. Creating training pairs (P, Piue, €)- i computa-
tionally costly because of quantum circuit simulation and exponential development of the
result space (d = 2"). The Bayesian approach addresses this by modeling weights 8 with
a variational posterior ¢(0), which regularizes the model through the KL-divergence term
in the loss function. This allows for successful learning with minimal data by combin-
ing previous information (e.g., Gaussian priors) and quantifying uncertainty through ugnn,
avoiding overfitting and enhancing generalization for small datasets.
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2. Dynamic Noise Variations. Unlike models that assume a static noise matrix A, the BNN
includes a time index ¢ in the context vector c, allowing it to adjust to drifting error rates eg
and e;. The variational posterior ¢(8) incorporates uncertainty in the weights and allows
the model to alter predictions dynamically. The BNN learns resilient mappings that remain
effective even when noise characteristics change, resulting in accurate corrections p over
time.

2.4 ANALYSIS: BAYESIAN SHRINKAGE VS. LINEAR INVERSION

Here, we define the circumstances in which the proposed Bayesian correction (BNN-induced Dirich-
let prior with posterior-mean estimator) performs better in mean-squared error (MSE) than linear
inversion while still being feasible.
Assumption 1 (Readout and sampling model). Let A € RY*? be the column-stochastic readout
confusion matrix, p € A% be the true distribution, and Puess = Ap be the measured distribu-
tion (cf. equation|l)). We record s shots having counts ¢ ~ Multinomial(s, Pmeas) and empirical
histogram p = c/s, following the equation
Assumption 2 (BNN-induced Dirichlet prior). The offline BNN generates Dirichlet concentrations
a € R‘io, where ag = Zl «;. The Bayesian estimator is the posterior mean. f)Bayes = (o +
c)/(ag + ).
Lemma 1 (Variance amplification under linear inversion). If A can be inverted, the linear estimator
is Pun = A™'P. satisfy

Cov(piin) = A~ Cov(p) (A1), [|Cov(Pum)ll2 < [|[A7'[3 [Cov(P)[l.  (1D)

Lemma 2 (Sampling-variance bound for Bayesian posterior mean). under the Assumption 2} the
estimator Ppayes follows the coordinate-wise bound.

1

S Hoots) (12

Var(ﬁBayes,i)
Proposition 1 (Feasibility and shrinkage). Ppayes € AL for all data, reduces p towards the
preceding mean. o/ o, weights proportional to (s, a).
Theorem 1 (Sufficient condition for Bayes MSE < linear MSE). Consider with a locally

well-specified prior (Bayes bias = o(1/(c + s))). Then a suitable condition for coordinates
MSE(DBayes,i) < MSE(Diin,;) is expressed as

1

1
A3 |Cov(D)]]2 2 AP =2 13
L e (13)

where 12 (A) = || All2|| A7 represents the spectral condition number.
Corollary 1 (Single-qubit symmetric channel). For d = 2 and A = {1 ; 1 1 z q} with q €

[0,1/2), linear inversion amplifies variance by a factor (1 — 2q)~2 over the multinomial baseline,
while Payes The variance is (9(1 /(g + s)) coordinate-wise.

Remark 1 (Tensor-product scaling). Under independent per-qubit readout (equation [2)),
ko @iy AW = [T, k2(AW), thus conditioning naturally decreases with n, increasing the
dominance condition in Theoreml[l]

Remark 2 (Effect of online IBU). The Bayesian stage decreases variance and enforces feasibility.
The online IBU phase corrects residual linear bias with current calibration M. An uncertainty-
adaptive preventing rule avoids overfitting to drift, retaining the Bayes variance benefits.

The proof of the analysis are described in Appendix

3 EXPERIMENTS

3.1 DATASET AND DATA PROCESSING

We test our approach using two benchmark datasets: CIFAR-10 Krizhevsky et al.| (2009) and Eu-
roSAT [Helber et al.|(2019).
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CIFAR-10. CIFAR-10 collection includes 60,000 real RGB images with a resolution of 32x32,
covering 10 object categories (airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck).
The dataset is divided into 50,000 training and 10,000 testing images. We normalize each channel
using the dataset mean and standard deviation, and then use random horizontal flipping and random
cropping (with 4-pixel padding) to augment the data.

EuroSAT. It is a remote sensing benchmark based on Sentinel-2 satellite images. It includes 27,000
tagged RGB photos that cover fen land-use and land-cover groups (such as residential, industrial,
forest, river, sea/lake, and agricultural sectors). The resolution of each image is 64x64 pixels. We
follow the approved ratio of 80% training and 20% testing samples. To improve generality, we use
random rotations, horizontal/vertical flips, and per-channel normalization.

Images for both datasets are batched using common PyTorch preprocessing procedures and mini-
mized to the input resolution needed by our model.

3.2 SIMULATION SETTINGS

Readout Noise Model. We use a confusion-matrix model to simulate the effects of imprecise quan-
. . . . . 1—e e
tum observations. A single qubit’s readout channel is described as C' = [ B 0 1 16 } , where
0 —€

eo is the probability of wrongfully reporting result 1 when the real state is |0); and e; is the chance
of incorrectly reporting outcome 0 when the true state is |1). For n qubits, the global assignment
matrix A € R2"*2" is built as a tensor product of individual qubit channels, A = 41 C (@) This
assignment matrix converts the genuine probability distribution pye of a quantum circuit to a noisy
measured distribution pyeas = A pyue. We further accommodate for finite sampling by drawing
counts ¢ as ¢ ~ Multinomial(s, pyeas ), With s representing the number of measurement shots, and
p = c¢/s providing the observed histogram. This approach accounts for both systematic bias (from
A) and statistical variation (from restricted s).

Experimental Parameters. We divided both datasets into 80 percent training and 20 percent testing.
Inputs are encoded into n = 8 qubits via angle embeddings and then processed by [ = 2 highly
entangling layers. Training runs for 100 epochs with a minibatch size of 64. The noiseless baseline
employs s = 0 shots and € = 0 to provide accurate probabilities. The noisy configuration utilizes
s = 128 shots with ¢ = 0.02 and asymmetric per-qubit rates ey = 0.9¢, e; = 1.1¢. To ensure fair
comparison, the same random seeds and fixed minibatch ordering are used across all runs.

Simulation Data (CSV) Generation. We have generated two NN-QREM-style calibration CSVs
(EuroSAT and CIFAR-10), where each row contains a measured histogram p and an ideal dis-
tribution pyye along with metadata. Independent angles are drawn for n=8 qubits. (single-layer
R, product states) and form pye(0) = @, [ cos?(0;/2), sin®(0;/2)]. We use a tensor—product
assignment channel A(eg, e1) to simulate readout, with a nominal error rate e=0.02 and mild asym-
metry eg=0.9e+3dp, e;=1.1e+0; (small & captures device variability); we add an optional time
index ¢ to model drift, allowing (eg,e;) to vary smoothly with ¢ (e.g., sinusoidal or piecewise
schedules). For every shot s € {2,126, 256,512,1048}, we record p=c/s and draw the counts
c~ Multinomial(s7 A ptrue). id, dataset, source, label, n_qubits, shots, t, and labels are among
the columns. JSON-encoded vector fields include ¢, e, e, theta_json, p_true_json, p_meas_json,
counts_json, timestamp. (An optional ’feature—derived angles” alternative uses the same paradigm
and translates basic dataset features to 6.)

3.3 SIMULATION RESULTS

Effects on Readout Noise. We illustrate how measurement readout noise impacts the training dy-
namics of a fixed VQC on both datasets in We compare accuracy and loss trajectories
throughout epochs for varied noise levels, alongside a noiseless baseline. The result quantifies the
vulnerability of VQC optimization to systematic readout bias, which facilitates readout noise miti-
gation during training. In both datasets, training is monotonically deteriorated by increasing readout
noise ¢: final accuracy on CIFAR-10 decreases from 72.45% at €=0.00 to 69.08% at c=0.15,
and on EuroSAT, it decreases from 89.90% to 78.35%; validation loss increases in tandem. Even
low noise (¢=0.02) results in a detectable end-of-training gap of 6.22% compared to the noiseless
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Figure 1: Training dynamics under different readout noise levels (including a noiseless reference).
Each panel overlays curves for multiple misclassification rates using the same VQC and data splits.
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Figure 2: Effect of finite measurement shots on VQC training for CIFAR-10 and EuroSAT with fixed
readout error € = 0.02. Curves represent shot budgets of {2,126, 256, 512, 1048} for accuracy and
loss in each dataset.

baseline. EuroSAT degrades more than CIFAR-10, demonstrating dataset-specific vulnerability to
readout bias.

Comparison with number of Shots. In order to measure the impact of sampling on convergence
and to inform a realistic hardware budget, compares the VQC training dynamics on CI-
FAR-10 and EuroSAT under a fixed readout error of € = 0.02 while varying the measurement-shot
budget {2,126, 256,512,1048}. Very low shots (e.g., 2) across panels @-@ and cause strong
stochasticity, slower early improvements, higher terminal loss, and decreased best-epoch accuracy
(CIFAR: 52.15% at 2 shots). While increasing shots gradually smoothes the curves and increases
final accuracy, returns diminish beyond mid-to-high shots (e.g., 512—-1048), with trajectories ap-
proaching one another and losses convergent to similar lower plateaus. (CIFAR-10: 67.02% at 128
shots — 71.55% at 1048 shots; EuroSAT: 76.90% at 128 shots — 93.43% at 1048 shots).

Noisy vs. Noiseless Training Dynamics (128 Shots, ¢ = 0.02). In validation accuracy
and cross-entropy loss are overlayed over epochs for two regimes: a hardware-like setting with 128
measurement shots and fixed readout error ¢ = 0.02, and a noisy setting that evaluates exact outcome
probabilities (no readout error). Accuracy is the percentage of right predictions; loss is the differ-
ence between predicted class probabilities and labels (the lower the better). Both CIFAR-10 and
EuroSAT show that the noiseless curves rise more smoothly and reach higher asymptotes (CIFAR-
10: improving accuracy 6.38 %, lower final loss 0.587, and EuroSAT: improving accuracy 19.98 %,
lower final loss 0.355). In contrast, the noisy curves show slower early epoch improvement and
higher plateaus because of sampling variance (finite shots) exacerbated by systematic assignment
bias (readout error). This gap quantifies the optimization load created by realistic readout, which
motivates future mitigation phases.

Therefore, the objective is to create an ML algorithm that, given a measured, shot- and readout-
noise—corrupted histogram p, quickly infers a simplex-valid estimate p ~ p that: (i) reduces dis-
tributional divergence (e.g., TVD/JSD) across a wide range of shot budgets and readout biases; (ii)
generalizes across datasets (CIFAR-10, EuroSAT) and hardware settings by training on mixed-shots
calibration pairs; (iii) is robust to modest temporal drift without frequent recalibration; and (iv) en-
hances downstream VQC/QNN validation accuracy and loss when p replaces p in the training or
evaluation loop.

Effect of Bayesian mitigation. We demonstrate that using Bayesian priors and online refinement
significantly lowers the difference between noisy training and the noiseless upper bound. Table [T]
summarizes findings for different scenarios: noisy quantum without mitigation, BNN-only offline
correction, IBU-only online correction, and the full BNN+IBU pipeline. While each stage increases
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Figure 3: Training dynamics of the hybrid VQC on CIFAR-10 and EuroSAT: noisy versus noiseless.
”Noisy” employs 128 measurement shots with a readout error of ¢ = 0.02, but “noiseless” uses
accurate probabilities (shots — o) and no readout error.

Table 1: Effect of Bayesian mitigation on CIFAR-10 and EuroSAT. Loss (cross-entropy), accuracy,
and stability (variance of validation loss, lower is better) are reported. Noiseless upper bound uses
s=0, e=0; noisy runs use s=128, £=0.02.

CIFAR-10 EuroSAT
Method
Loss Acc(%) Stability (%)) Loss Acc(%) Stability (%)

Noiseless upper bound 0.362 85.12 1.8 0.298 96.87 1.2
Quantum (no mitigation) 0.573 72.55 7.9 0.447 91.06 6.8
BNN only (offline priors) 0.498 77.88 4.2 0.376 94.02 35
IBU only (online refinement)  0.482 78.65 3.9 0.365 94.35 3.1
BNN + IBU (ours) 0.389 84.21 2.0 0.312 96.10 1.5

robustness separately, when combined, they regularly achieve performance close to the noiseless
limit, both in accuracy and training stability. The findings show that our Bayesian pipeline success-
fully spans the noisy-noiseless division. On CIFAR-10, accuracy increases from 72.55% (no miti-
gation) to 84.21% with BNN+IBU, while stability decreases from 7.9% variance to 2.0%, reaching
the 1.8% noiseless baseline. On EuroSAT, BNN+IBU achieves 96.10% accuracy and 1.5% stability
variance, almost matching the noiseless performance (96.87% and 1.2% respectively). These en-
hancements demonstrate that offline Bayesian priors and online refinement are mutually beneficial:
the BNN offers robust corrections with quantified uncertainty, whilst the IBU adjusts to residual
drift, resulting in improved accuracy and more stable optimization.

Validation of Theoretical Analysis. We compare CIFAR-10 and EuroSAT using different readout
error rates € and shot counts s. Table [2| shows the theoretical numbers (condition number ko (A),
amplification factor, Bayesian variance bound), observed variances, and variance reduction ratio
for linear inversion and Bayesian inference. Linear inversion exhibits variance amplification with
bigger ¢ or lower s, but the Bayesian posterior mean stays restricted and stable. Bayesian correction
reliably decreases variance by a factor of 2-3x for low noise and up to 7x at higher noise levels.
This is consistent with Theorem [I} when A is ill-conditioned (¢ = 0.05) or shots are restricted
(s = 128), linear inversion significantly increases variance, but Bayesian inference maintains its
1/(cp + ) constraint. These findings verify Bayesian shrinkage’s theoretical advantage while also
demonstrating its durability across vision (CIFAR-10) and remote sensing (EuroSAT) applications.

Comparison with Existing Approaches. We compare our method against a diverse set of existing
readout mitigation approaches, including matrix-based corrections, probabilistic noise models, and
machine-learning post-processing. Experiments are carried out on CIFAR-10 and EuroSAT using
n==8 wires, s=128 shots, and £=0.02. The findings are described in Table Matrix-based ap-
proaches, such as tensor-product calibration and correlated calibration, give only small gains over
uncorrected noisy results on both datasets because they do not fully capture temporal drift or cor-
relation problems. Linear inversion (QREM) performs marginally better but suffers from variance
amplification, whereas its regularized variation sacrifices bias for stability, resulting in minimal im-
provements. Probabilistic noise models are more resistant to stationary noise, but their assumption
of time-invariant error patterns limits flexibility. Machine learning approaches like NN-QREM in-
crease accuracy by providing nonlinear expressivity, but they require large calibration datasets and
lack predictive uncertainty (especially in dynamic noise). In contrast, our Bayesian two-stage strat-
egy (BNN + IBU) consistently delivers the lowest loss and best accuracy, reaching the noiseless
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Table 2: Linear inversion vs Bayesian posterior mean on CIFAR-10 and EuroSAT. Two shot counts
(s = 128,512) are reported for each noise level €. The ratio indicates variance reduction (Lin-
ear/Bayes).

Dataset | & | s |k2(A)| Amp. Factor | Bayes Bound | Var (Linear) | Var (Bayes) | Ratio
001 128 | 1.04 1.04 0.0077 0.020 0.008 2.5
CIFAR-10 ’ 512 1.04 1.04 0.0020 0.007 0.003 2.3
0.05 128 | 1.22 1.23 0.0077 0.083 0.012 6.9
’ 512 1.22 1.23 0.0020 0.030 0.004 7.5
001 128 | 1.04 1.04 0.0077 0.018 0.007 2.6
EuroSAT ’ 512 | 1.04 1.04 0.0020 0.006 0.002 3.0
0.05 128 | 1.22 1.23 0.0077 0.080 0.011 7.3
’ 512 | 1.22 1.23 0.0020 0.028 0.004 7.0

Table 3: Comparison of readout error mitigation approaches on CIFAR-10 and EuroSAT. We report
cross-entropy loss ({) and classification accuracy (7). All experiments use n==8 wires, s=128 shots,
and £=0.02.

Method CIFAR-10 EuroSAT
Loss Acc (%) Loss Acc (%)

Noiseless upper bound 0.362 85.12 0.298 96.87
Unmitigated (raw noisy) |Zhao & Deng| (2025) 0.573 72.55 0.447 91.06
Tensor-product calibration (TPC)|Shin et al[(2024)  0.542 73.68 0.426 91.65
confusion-matrix correction |[Farooq et al.|(2024) 0.530 74.12 0.419 91.92
Linear inversion (QREM) Maciejewski et al. (2020)  0.521 74.80 0.412 92.15
Lightweight ML Hu et al.[(2025) 0.508 75.62 0.401 92.73
Probabilistic noise model|Gupta et al.| (2024) 0.496 76.45 0.389 93.06
ML post-processing (NN-QREM) Liao et al.|(2024)  0.471 77.92 0.366 93.88
BNN + IBU (ours) 0.389 84.21 0.312 96.10

upper bound. Its uncertainty-aware priors regularize with minimal data, and live refinement dynam-
ically adjusts for drift, making it more accurate and stable than previous approaches.

Limitations. Our approach still requires calibration data, which may not scale well with qubit count,
and the adaptive stopped rule introduces an additional hyperparameter. The simulation results are
on image-based data only with quantum simulator instead of real-quantum hardware. Furthermore,
findings are proven in simulations, but performance on real hardware with additional noise sources
has to be thoroughly examined.

4 CONCLUSION

In this study, we presented a two-stage Bayesian approach for reducing readout noise in variational
quantum circuits and quantum neural networks. Our method combines an offline Bayesian Neural
Network (BNN) that generates expressive uncertainty-aware priors with an online Iterative Bayesian
Unfolding (IBU) phase that adaptively refines corrections based on new calibration data. Theoretical
investigation revealed that the Bayesian posterior mean is still possible and produces lower mean-
squared error than linear inversion, especially under restricted shot counts or ill-conditioned readout
matrices. Our experimental findings on CIFAR-10 and EuroSAT revealed that the suggested tech-
nique delivers up to 12.4% reduced classification error and 9.8% higher training stability compared
to previous readout mitigation approaches, consistent with the noiseless upper bound. Beyond quan-
tum applications, our findings emphasize a universal learning principle: combining offline Bayesian
priors with online refinement provides a scalable approach to robust inference under dynamic and
uncertain noise.
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A APPENDIX: PROOF OF ANALYSIS IN[2.4]

A.1 PRELIMINARIES
Recalling equation[I} pmeas = Ap and equation[3] we get
]E[f)] = Pmeas;

COV([A)) _ z(pmeas)’

S

¥(r) := diag(r) —rr'.
Given that every unit vector v, as

VISV = Eper[0?] = (Einlr])’

< max v} — minv; (14

7
A A

1
<7

The extremum occurs for a binary partition, while categorical variance is bounded by the Bernoulli
envelope.

Proof of Lemmal|l| (Variance amplification under linear inversion). We use the linear error propa-
gation as

Cov(Piin) = A~ Cov(p) (AT

1, _ 15)
= g ATt E(prneas) (A 1)T~
We take spectral norms and apply submultiplicativity as
Cov(Bm)lls < = A2
[[Cov(Puin)ll2 < ~ A7 I3 [1E(Prmeas) |2
S
] (16)
< —||A7Y)?
< A7,
using equation [T4] which completes the proof. O

Proof of Lemma[2] (Sampling-variance bound for Bayesian posterior mean). Assumption 2] indi-
cates that the posterior mean is

5 o+ ¢

Bayes,i —
g+ S

Q4 C; (17)

+ .
ag + S ag + 8
Considering ¢ ~ Multinomial(s, Pmeas), the marginal ¢; ~ Binomial(s, pmeas,i), such that
var(c;)
(g + 5)
S Pmeas,i (1 - pmeas,i)
(a0 +5)* (18)
s
[ —
~ 4(ap + )2

1
< ——m.
~ 4(ag + 8)

var (ﬁBayes,i) -

The first inequality applies z(1 — z) < 1/4 for « € [0, 1], whereas the second uses s/(cg + ) < 1,
which completes the proof. O

12
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Proof of Proposition |l| (Feasibility and shrinkage). We use Nonnegativity as
g, ¢ >0

~ (19)
= PBayes,i > 0
Normalization holds as
ZﬁBayes,i = (040 + Z Ci)/(ao + S)
i i (20)
=1.
And for shrinkage, we can rewrite Pgayes as
~ «@ « s
PBayes = 0 p; 21

ag + S ag + S

which is a convex combination of the previous mean and empirical histogram, with weights propor-
tionate to («ayp, s). It completes the proof.

Proof of Theorem|l| (Sufficient condition for Bayes MSE < linear MSE). For a given coordinate ¢,
we decompose MSE as

MSE (Piin,i) = bias*(Piin,i) +var(Piin,i),

—_—— (22)
=0 if A known
MSE(i)\Bayes,i) = bia52 (ﬁBayes,i) + Var(ﬁBayes,i)~ (23)
Using Lemma|I] and equation[T4] we get
N i
var(Diin,i) 2 (up to constants). (24)
(D ) < ! (25)
var ayes,1 >~ o -
PBayes, 4(ao + 5)

Using the locally defined prior assumption, bias® (PBayes,i) = 0(1 /(a0 + s)), the Bayes MSE
is < 1/(ag + s), whereas the linear MSE is > |[A71||3/s. Thus, a sufficient condition for
MSE(ﬁBayes,i) S MSE(@\hn,z) as

A71)3 1 1 1
14 T2 » Ra(A)? - 2 , (26)
S oo+ 8 S oo+ S
where ka(A) = ||All2]|A7Y|]2 and ||A|lz > 1 for column-stochastic A with nontrivial mixing,
respectively. This completes the proof. O
Proof of Corollary[I|(Single-qubit symmetric channel). Consider d = 2 and A = {1 ; q 1 f q} ,
where ¢ € [0,1/2). we get
1 _ _
A71 _ 1 q q ’ (27)
1-2¢| ¢ l—g¢
1AM = ©((1 — 29)7%). (28)
For the coordinate 0, we get
(1= q)po —q(1 = po)
Plin,0 = 1-2g
R (29)
_Po—q
1—2q¢’
where ‘
po =, (30)
s
¢o ~ Binomial(s, pmeas,0) (31
and,
Prmeas,0 = G + (1 - QQ)po (32)

13
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Therefore, we get

. var(p
var(Piin,o) = { (22;2
__ Dmeas,0 (1 pmeas 0) (33)
s(1—2q)?
L
~ 4s(1 —2q)%

where var(PBayes,0) < 1/[4(cag+ )by Lemmal2] Thus, in comparison to the multinomial baseline,
linear inversion inflates variance by (1 — 2¢) 2, but the Bayes estimator obtains O(1/(cg + s)).

This completes the proof. O

Remark([I} (Tensor-product scaling). Consider A = @, A® | with per-qubit readout matrices
A ¢ R?%2, The spectral norm is || X @ Yz = || X[]2|[V]zand (X @ Y)™' = X '@ Y1,
consequently we obtain

n

ra(A) = Al A7 =H @lz - HHA”
(34)

Thus, even minor per-qubit asymmetries multiply with n, weakening conditioning and enhancing
the dominance condition in Theorem [T} O

A.2 ALGORITHMS
A.2.1 CALIBRATION DATA GENERATION WITH READOUT NOISE.

Algorithm [T] generates calibration data pairs by simulating quantum circuits with readout noise. To
construct an ideal product state, each sample starts with a uniform drawing of random rotation angles
6 from [0, 27). The program uses these angles to create the ideal distribution p across all compu-
tational basis outcomes. When only error rates ey and e; are available, they are first transformed
into single-qubit confusion matrices C(?). The n-qubit confusion matrix A is formed by taking the
tensor product of every C'(9), as shown in equation[2| Applying this channel to p produces the noisy
distribution pyeas = A, p, as seen in equation

To account for finite sampling, the method generates counts ¢ using a multinomial distribution with
parameters (S, Pmeas), Where s represents the number of measurement shots. The empirical his-
togram p = c/s is then produced, and the mean and covariance follow the formulae in equation
Along with the observed p and the actual p, the method records a context vector cmeta compris-
ing metadata such as qubit identifications, dataset tag, error rates, log-shot count, and optional drift
index. Finally, the dataset D contains the triple (p, p, cmeta).

Repeating this procedure for N randomly chosen states and different shot budgets produces a cali-
bration dataset that includes both systematic bias (from the readout noise matrix A) and statistical
variation (from multinomial sampling). This dataset serves as the foundation for training subsequent
neural correction models.

A.2.2 BAYESIAN NEURAL NETWORK TRAINING

The algorithm [2] explains how the Bayesian neural network (BNN) is trained for offline pre-
correction of noisy probability distributions. The model fg uses the observed histogram p and a
context vector c to generate logits h (L4). These logits are converted into positive Dirichlet con-
centration parameters « using a softplus activation with minimal e for stability (L5). The adjusted
distribution is represented by the normalized mean p = /g, whereas the inverse total concentra-
tion u = 1/c measures prediction uncertainty.

14
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Algorithm 1 Calibration Data Generation with Readout Noise

Require: Number of qubits n; number of samples N; shot set S; per-qubit confusion matrices

{C(Q)}" (or error rates eéq), egq))' optional drift index ¢ and metadata

Ensure: Dataset D = {(p®,p®) ¢%) )1V,
1: D+ 0
2: fori = 1t0Nd0
3:  Sample 6 Umf[(), 27r)

4 p ®?:1

sin? 0;1 /2)
5. Build each C'? from ( {0 ey if not given explicitly
6 A+ CWpCPg...0CM (cf. equation 2)
T pl('jlzeas « Ap® (cf. equation |
8: foreachs € Sdo _
9: c(B8) ~ Multinomial(s, pﬁﬁlas)
10: pls) 09 /5 (cf. equation[3)
11: Assemble cl(fm?a + (IDs, tag, {eg, €1}, log s, )
12: D+DU {(p(Z ) pl), c(Z:) )}
13:  end for
14: end for

15: return D

The learning aim is based on three phrases. First, the Dirichlet negative log-likelihood (L6) pro-
motes the predicted predictive distribution to be consistent with the ground truth p. This expectation
is based on digamma functions ¢ (-), as described in the main text. Second, a Kullback-Leibler diver-
gence penalty (L7) regularizes the variational posterior ¢(0) against a prior p(8) to ensure Bayesian
weight regularization. Third, a shot-scaling penalty (L8) compels g to expand roughly linearly
with log s, matching the variance scaling feature of multinomial sampling given in (3] The overall
loss is the sum of these three contributions (L9).

By iterating over minibatches and adjusting the variational parameters via reparameterized gradient
steps (L10), the BNN learns a weight distribution that incorporates both data-driven calibration
information and previous knowledge. The final output is a variational posterior ¢(0) along with a
predictive rule that translates each noisy histogram p and context c to a corrected distribution p and
an uncertainty measure u. This allows the model to simultaneously adjust to finite-shot variance,
dataset scarcity, and noise drift.

A.2.3 INFERENCE WITH BNN PRE-CORRECTION

During the deployment phase, Algorithm [3|uses a trained Bayesian neural network to pre-correct
noisy measurement results before they are ingested by downstream quantum algorithms. The ap-
proach starts with a raw count vector ¢ derived from s measurement shots. Dividing by s produces
the empirical distribution p (L1), which represents a noisy observation of the real distribution. The
context vector et contains metadata including qubit identifiers, error rates, and a time index ¢,
making the model more sensitive to hardware drift.

The trained variational posterior ¢(0) represents a distribution of network parameters that reflects
uncertainty from limited calibration data. The network computes logits h = fg (P, Cmeta) (L3) after
drawing either a sample or the posterior mean (L2). A softplus transformation maps these logits to
positive Dirichlet concentration parameters o, with normalization g = Zi a; (L4). The corrected
distribution is provided by p = a/ag (L5), which is compatible with the Bayesian formulation
presented in the text.

Finally, the method generates an explicit uncertainty estimate © = 1/« (L6), indicating the model’s
confidence in the adjustment. A small u suggests good confidence (big ag), but larger u values imply
that the correction may be incorrect owing to low shots or calibration drift. Algorithm [3|restores a
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Algorithm 2 Training Bayesian Neural Network (BNN) for Readout Noise Pre-Correction

Require: Calibration dataset D = {(p, p, c)}; prior distribution p(6); KL weight A; shot-scaling
coefficients (ag, a1 ); optimizer and epochs
Ensure: Trained variational posterior ¢(0) and predictive rule p = &/, u = 1/ay
1: Initialize variational parameters of ¢(6)
2: for epoch = 1 to max epochs do
3:  for each minibatch (p, p,c) C D do
4 Compute logits h = fg(p, c)
5: Transform to Dirichlet parameters «; = softplus(h;) + €, ap = Zz ;
6: Compute expected NLL under Dirichlet:

d
Lo =Y pi[t(en) — ()]
i=1

7: Add KL regularization: Lx;, = AKL(q(0)||p(0))

8: Add shot-scaling penalty: |log g — ag — a1 log(s)|

9: Total loss £ = Lpi; + Lx1 + penalty
10: Update ¢(@) via gradient step (reparameterization trick)
11:  end for

12: end for

13: return Variational posterior ¢(8) and predictive mapping (p, ¢) — (P, u)

Algorithm 3 Inference with Drift-Aware Bayesian Pre-Correction

Require: Trained posterior ¢(6); new measurement counts ¢ with shot budget s; metadata cpeta
(qubit IDs, dataset tag, error rates, log s, time index t)

Ensure: Corrected probability distribution p and uncertainty estimate

: Compute empirical distribution p < c¢/s

Obtain posterior sample or mean weights 6 ~ ¢(0)

Compute logits h = f¢ (P, Cmeta)

Transform to Dirichlet parameters: o; = softplus(h;) + €, g = Y,

Compute corrected distribution: p; = a;/ag

Compute uncertainty: v = 1/ag

return p,u

AR A ol e

more accurate distribution and offers a measure of trustworthiness, allowing for robust decision-
making in noisy intermediate-scale quantum (NISQ) applications.

A.2.4 BNN + IBU ALGORITHM

Algorithm ] manages the whole pipeline. The n-qubit confusion matrix is first constructed as a
tensor product of single-qubit matrices. Next, it creates calibration pairs by sampling ideal product
states, pushing them through the readout channel py,eas = A, p (see equation [2 equation [I)), and
obtaining finite-shot histograms p from a multinomial model whose variance scales inversely with s
(see equation [3). The dataset D combines each noisy p with its ground-truth p and a context vector
including hardware and acquisition metadata (IDs, error rates, log s, drift index ¢).

After that, Dirichlet parameters « are output by a Bayesian neural network from (p, c) by min-
imizing a composite objective that consists of Dirichlet NLL (to fit p), a KL term (to regularize
the variational posterior), and a shot-scaling penalty (aligning g with log s). At deployment, each
new count vector is normalized to p and sent through the trained BNN with its context to yield the
corrected distribution p = /g and an uncertainty score v = 1/ayp. This end-to-end technique
handles both systematic bias from readout noise (via A) and statistical variation from finite shots (by
shot-aware Bayesian outputs), resulting in drift-aware pre-corrections appropriate for downstream
quantum estimation.
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Algorithm 4 End-to-End Readout Noise Pre-Correction Pipeline

Require: Number of qubits n; number of calibration samples N; shot set S; per-qubit confusion
matrices {C (q)}’;zl (or error rates eéq), egq)); optional drift index ¢ and metadata; prior p(0);
KL weight \; shot-scaling coefficients (ag, a1 ); optimizer and epochs; stream of new counts
{cnew}

Ensure: Trained variational posterior ¢(8); deployment mapping (c"*%, s, Cineta) — (P, 1)
1: Calibration (Alg. : CONSTRUCT A = ®_, C@ (or from (ef’, ")), GENERATE

{(P, p, Cmeta) }1¥; by sampling 0, forming p, applying pueas = Ap (cf. equation
equation
2: Finite shots: FOR each s € S, DRAW ¢ ~ Multinomial(s, pmeas) and SET p = ¢/s (cf.
equation [3)
3: AGGREGATE dataset D = {(p, p, Cmeta) }
4: Training (Alg.: INITIALIZE variational parameters of ¢(8)
5: for epoch = 1 to max epochs do
6:  for each minibatch (p, p,c) C D do
7: COMPUTE logits h. = fg(p, c); SET «; = softplus(h;) + €, 0 = Y,
8: FORM loss £ = Zpi [(an) — tp(a;)] + AKL(q|p) + | log g — ag — ay log s
p —_———
Bayes reg shot scaling
Dir. NLL
9: UPDATE ¢(6) via reparameterized gradient step
10:  end for
11: end for

12: Inference (Alg.: FOR each new measurement (c"%, s, Ciyeta)

13: COMPUTE p = ¢™"/s; DRAW 6 ~ ¢(8) (or use mean)

14: COMPUTE h = fg(P, Cmeta); SET a; = softplus(h;) + €, ag = >, a;
15: OUTPUT corrected p; = «;/cyp and uncertainty u = 1/

16: return ¢(@) and the mapping (c™", s, Cimeta) — (D, ©)

B APPENDIX: ADDITIONAL SIMULATION RESULTS

B.1 EFFECTS OF READOUT NOISE

Consider pyee € R?" indicate the circuit’s ideal basis-state distribution and A(€o, €1) the assignment
matrix formed from per-qubit confusions; the measured distribution is Pmeas = A Prrue/|| A Pirve ||1-
Panels (a,c) show that TVD (pmeas, Prue) = % Zl |Pmeas,i — Pirue,i|» @ classic metric for histogram
distortion. Panels (b,d) display the induced error on (Zy), calculated from the histograms using
>, p(x) (—1)%. Across both datasets, TVD grows roughly linearly for small e (first-order sensi-
tivity) and accelerates as e increases. The observable error parallels TVD but can be smaller due to
cancellations in the Pauli expectation. CIFAR-10 and EuroSAT curves differ in their input embed-
dings: we link dataset features to rotation angles § = 7 o (z) (sigmoid), thus feature size and spread
modify the VQC’s output distribution and therefore its sensitivity to assignment noise. Because
these charts remove finite-shot fluctuations, they strongly encourage mitigation based on readout
rather than sampling.

Even with a separate readout, drift causes modest, structured oscillations in both TVD and visible
error, indicating that calibration at ¢y gets stale as ¢ progresses. Introducing weak pairwise cor-
relations amplifies peaks and broadens error envelopes. When two detectors co-misreport more
frequently than chance, probability mass is transferred coherently over several bitstrings, boosting
bias beyond what a per-qubit model predicts. The distinctions between CIFAR-10 and EuroSAT
stem principally from their rotation angle embeddings: differential feature distributions situate the
circuit in portions of the landscape that are more sensitive to readout disturbances than others. The
results suggest a two-stage mitigation approach: (1) an offline, uncertainty-aware BNN that learns
expressive priors from diverse calibration snapshots (capturing nonlinear, asymmetric effects), and
(2) an online refinement (e.g., Iterative Bayesian Unfolding) that ingests the most recent response
matrices to track drift and partially deconvolve correlations. Practically, these curves also explain
adaptive calibration cadence: when drift amplitude or correlation strength grows, either increase
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Figure 4: Readout effects that are associated and nonstationary, plotted independently for EuroSAT
and CIFAR-10 By using €y (t) = e}*(1 + asin(27¢/T)) and €1 () = €§(1 — 0.5 asin(27t/T)),
we impose temporal drift in the per-qubit misclassification rates. We compare two measurement
models: A pairwise-correlated assignment on selected qubit pairs with correlation strength p, which
pushes single-flip probability mass toward {no flip, both flip} outcomes, is the second option. The
first is an independent (tensor-product) assignment.

calibration frequency or depend more heavily on online unfolding regularized toward the BNN prior
to avoid overfitting to noisy windows.

B.2 SHOT BUDGET VS. DISTRIBUTIONAL ERROR (TVD/JSD) UNDER READOUT NOISE

[Figure 6|quantifies the difference between the observed result histogram p and the ideal distribution p
for CIFAR-10 and EuroSAT with a fixed readout error (¢ = 0.02) as a function of the measurement-
shot budget {2, 126, 256, 512, 1048}. We provide two standard divergences. A smaller TVD indi-
cates a closer match of the entire histogram. The fotal variation distance (TVD) is TVD(p,p) =
%H P — pl|1, which has a direct probabilistic meaning: it is the largest possible difference (over all
events) between probabilities under p and p. A stable information theoretic measure of distributional
separation, the Jensen—Shannon divergence (JSD) is JSD(p, p) = & Dky,(p||m)+ 2 Dkr.(p||m) with
m = %(ﬁ + p). It is symmetric, bounded, and well-defined, even when some bins exist. The im-
age depicts the mean +std of these divergences across samples at each shot level. In all datasets,
increasing shots systematically decreases TVD and JSD: the highest benefits occur when moving
out of the extreme few-shot regime (e.g., 2 — 126,/256), but gains drop beyond ~ 512 shots as
the curves flatten and the error bars narrow. This indicates that bigger shot budgets give p a more
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Figure 5: Nonstationary and correlated readout effects are presented separately for CIFAR-10 and
EuroSAT. We use €o(t) = (1 4 asin(27t/T)) and €1 (t) = (1 — 0.5 asin(27¢/T)), and
compare two measurement models: (i) independent (tensor-product) assignment and (ii) a pairwise-
correlated assignment on selected qubit pairs with correlation strength p, which moves single-flip
probability mass toward {no flip, both flip}.

faithful estimate of p, whereas extremely low shots introduce significant sampling noise, inflating
distributional error.

Training Dynamics at a Fixed Shot Budget (128 Shots, ¢ = 0.02). [Figure 7] investigates how the
hybrid VQC learns across epochs with a fixed measurement budget of 128 shots and readout error
(e = 0.02). Accuracy is the proportion of right predictions on the validation split, whereas cross-
entropy loss is the difference between predicted class probabilities and ground truth (the smaller
the better). Because outcomes are calculated using 128 sampled bitstrings per circuit assessment
(rather than noiseless probability), the curves show shot-induced stochasticity as well as a persistent
readout bias. Across both datasets, accuracy normally improves and subsequently saturates, while
loss falls to a plateau; early-epoch variations are more noticeable due to sampling variance, and later
epochs stabilize as the linear head adjusts to the fixed readout channel. CIFAR-10 and EuroSAT
exhibit similar qualitative behavior, with modest changes in convergence rate and smoothness due
to dataset-specific feature statistics and label balancing in this fixed-shot regime.

B.3 ABLATION STUDY

We remove two architectural knobs under a noise-free simulator to separate representational capacity
from hardware effects: (i) the number of qubits (nyires € {2,4,6}) and (ii) the number of quantum
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Figure 7: Training dynamics of the hybrid VQC with measurement shots fixed to 128 under readout
error ¢ = 0.02. Panels show validation accuracy (left of each pair) and cross-entropy loss (right)
over epochs for CIFAR-10 and EuroSAT.

layers (I € {1,3,5}). We present both cross-entropy loss and top-1 accuracy for CIFAR-10 and
EuroSAT.

Effect of the number of qubits. Figure[8|shows that expanding qubits (the Hilbert space) consistently
improves optimization on CIFAR-10. The 6-qubit model descends more steeply in early epochs,
avoids the late-epoch plateau observed with 2 and 4 qubits, and achieves the lowest terminal val-
idation loss (approaching 0.583). The related accuracy curves (not shown for brevity) follow this
pattern: the 6-qubit design obtains the highest final accuracy in fewer epochs, indicating faster con-
vergence and a superior optimum. On EuroSAT, we see a similar pattern: the 6-qubit model retains
the smoothest trajectory and the lowest ultimate loss (about 0.448), while accuracy also peaks at 6
qubits. These findings show that adding qubits mostly aids the optimizer in finding flatter, lower-loss
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accuracy for CIFAR-10 and EuroSAT.
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Figure 9: Ablation on quantum layer depth (I € {1, 3,5}) under a noise-free simulator. Loss and
accuracy for CIFAR-10 and EuroSAT.

minima, which translates into improved accuracy. Given the exponential expansion in state-space
and the related training/runtime cost, we do not expand beyond six qubits; in our system, 6 qubits
already have a significant computational and memory footprint.

Effect of quantum layer depth. Next, we adjust the quantum depth while keeping ny;es constant.
As seen in Fig. [0] using CIFAR-10, deeper circuits enhance both loss and accuracy: | = 5 achieves
the best final validation loss and the greatest top-1 accuracy, with a more consistent late-epoch
profile than [ = 1 or | = 3. EuroSAT prefers shallower circuits, with [ = 1 resulting in the
lowest terminal loss and highest accuracy, whereas [ € {3, 5} shows declining returns and moderate
late-epoch saturation. The probable reason is dataset/task complexity. CIFAR-10 benefits from
deeper variational layers’ greater expressive ability, but EuroSAT (in our split and preprocessing)
is adequately approximated by a shallower ansatz, where further depth may over-parameterize and
marginally reduce generalization.

Takeaways. In both datasets, (i) increasing qubits from 2 — 6 decreases validation loss and in-
creases accuracy, with the biggest benefits from 4 — 6 qubits; (ii) depth interacts with dataset
complexity—CIFAR-10 favors [ = 5, whereas EuroSAT peaks at [ = 1. To balance accuracy and
compute, we select nyies=6 as the feasible upper bound in our tests and choose the layer depth per
dataset (CIFAR-10: [ = 5; EuroSAT: [ = 1).

B.4 BASELINE COMPARISON

We compare our Bayesian framework to traditional baselines for readout error mitigation. The base-
lines include (i) direct quantum training with no mitigation, (ii) linear inversion using the confusion
matrix, and (iii) machine-learning methods like logistic regression and shallow neural networks.
All techniques have the identical encoding (n=8 qubits, [=2 layers), training epochs (100), and an
80/20 train-test split. The noiseless setting (s=0,=0) is an upper bound, whereas noisy settings
utilize s=128 shots and e=0.02. The noiseless case (s=0,=0) gives an upper bound, but the noisy
case (s=128,=0.02) reflects realistic device conditions.

Table|§| summarizes the final test losses and accuracies. On CIFAR-10, the quantum model without
mitigation has a cross-entropy loss of 0.573 and an accuracy of 72.55%. On EuroSAT, the identical
setup results in a loss of 0.447 and accuracy of 91.06%. While these findings demonstrate that
variational quantum models may develop useful classifiers, they also emphasize the loss caused by
readout noise when compared to noiseless upper limits.
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Table 4: Baseline comparison on CIFAR-10 and EuroSAT. “Quantum (no BNN)” denotes training
without mitigation; “Noiseless upper bound” uses s=0, e=0.

Method CIFAR-10 EuroSAT
Loss Acc(%) Loss Acc (%)
Noiseless upper bound 0.362 85.12 0.298 96.87
Quantum (no BNN) 0.573 72.55 0.447 91.06
Linear inversion (confusion matrix) 0.521 74.80 0.412 92.15
Logistic regression 0.498 76.34 0.395 93.02
Shallow NN 0.471 78.05 0.376 94.10

B.5 DRIFT ROBUSTNESS

In practical devices, readout errors vary over time because of temperature fluctuations, calibration
aging, or environmental instability. To assess resilience, we simulate a time-varying error profile
e(t) = eo + Asin(2nt/T) with baseline ¢ = 0.02, drift amplitude A = 0.01, and period T' =
20 epochs. Table [5] presents the final validation loss and accuracy for CIFAR-10 and EuroSAT
under drifting noise, comparing various mitigation measures. Drift worsens all baselines, with the
unmitigated model dropping to 70.85% on CIFAR-10 and 87.92% on EuroSAT, indicating severe
instability relative to static-noise settings. Matrix-based correction recovers only minimally because
it assumes a stable noise profile. Although offline BNN priors increase stability, their performance
remains restricted because they become obsolete when (t) changes. IBU alone responds better by
recalibrating online, but it is prone to variance amplification in the absence of strong priors. The
combined BNN+IBU pipeline delivers the greatest results, attaining 82.95% accuracy on CIFAR-10
and 95.41% on EuroSAT, almost narrowing the gap to the noiseless upper bound. These findings
demonstrate that uncertainty-aware priors and adaptive refinement work together: the BNN protects
against drift, while the IBU aligns predictions with current device circumstances.

Table 5: Effect of drifting readout noise (£(¢) = 0.02 + 0.01 sin(27¢/20), s=128 shots) on CIFAR-
10 and EuroSAT. We report final validation cross-entropy loss () and accuracy (7).

Method \ CIFAR-10 \ EuroSAT
| Loss Acc(%) | Loss  Acc (%)
Unmitigated (raw noisy) 0.612 70.85 0.496 87.92

Confusion-matrix correction | 0.589  72.02 | 0.474 89.10
BNN only (offline priors) 0.521 76.40 | 0.402  93.12
IBU only (online refinement) | 0.507  77.22 | 0.391 93.56
BNN + IBU (ours) 0.428 82.95 0.336 95.41
Noiseless upper bound 0.362  85.12 | 0.298 96.87

B.6 STOPPING RULE ABLATION

The Iterative Bayesian Unfolding (IBU) component requires a rule for determining the number of
unfolding stages. Fixed iteration budgets K can either undercorrect (low K) or overfit to transitory
variations (high K'). Our solution uses an uncertainty-adaptive stopping rule guided by BNN prior
confidence. Table[6|compares the fixed-K IBU to the adaptive method for e=0.02 and s=128 shots.
The findings reveal that a moderate fixed iteration (K =3) performs best among static alternatives.
However, too few steps (X =1) under-correct, and too many (K =5) risk overfitting and instability.
The uncertainty-adaptive rule consistently beats all fixed-K options, yielding the lowest loss and
best accuracy across both datasets. This supports the importance of predictive uncertainty as a
natural control signal: it avoids needless unfolding when the BNN prior is confident, and it allows
for greater adjustment when uncertainty is significant.
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Table 6: Stopping rule comparison for IBU on CIFAR-10 and EuroSAT (¢=0.02, s=128 shots).
Fixed-K values are K €{1,3,5}. Adaptive stopping leverages BNN uncertainty. We report valida-
tion loss () and accuracy (7).

Method ‘ CIFAR-10 ‘ EuroSAT

| Loss Acc(%) | Loss Acc (%)
Fixed-K =1 0.523 76.82 0.408 92.95
Fixed-K = 3 0.495 77.65 0.386 93.62
Fixed-K =5 0.502 76.91 0.394 93.25

Adaptive stopping (ours) | 0.482  78.65 | 0.365  94.35

B.7 PRIOR STRENGTH ABLATION

The Bayesian Neural Network (BNN) generates a Dirichlet distribution with concentration a.. The
total prior mass oy = ), a; indicates the model’s confidence in its prior relative to fresh calibra-
tion counts. Large «( decreases variance but can lead to bias if priors are mismatched, whereas
tiny oo adapts rapidly but may overfit to statistical noise. To examine the tradeoff, we sweep
ag € {5,20,50,100}. Table [/| summarizes validation loss, accuracy, and calibration (Expected
Calibration Error, ECE) for ¢ = 0.02 and s = 128 shots. The results show a clear bias-variance
trade-off. Models with short priors (aqg = 5) adapt rapidly but are unstable and have poor cali-
bration (ECE 7). Intermediate values (ay = 20) provide an ideal balance, resulting in good ac-
curacy (78.65% CIFAR-10, 94.35% EuroSAT) and minimal calibration error. Overly strong priors
(avg = 100) decrease variance but degrade accuracy, indicating under-adaptation to new calibrations.
This demonstrates that a moderate prior mass improves resilience while preserving generalization
and calibration.

Table 7: Effect of prior strength op on CIFAR-10 and EuroSAT with €=0.02, s=128. Reported
values include cross-entropy loss ({), accuracy (1), and calibration error ECE ().

o ‘ CIFAR-10 ‘ EuroSAT
0
| Loss Acc(%) ECE (%) | Loss Acc(%) ECE (%)
5 0.509 77.12 4.8 0.397 93.20 3.6
20 | 0.482 78.65 3.1 0.365 94.35 2.5
50 | 0.491 78.02 2.8 0.372 94.08 2.2
100 | 0.515 76.85 2.4 0.389 93.55 2.1

B.8 VARIANCE VS. CONDITIONING

To support our theoretical analysis (§2.4), we empirically evaluate the variance of linear inversion
and Bayesian posterior mean at varied readout noise levels. Lemma [I] predicts the amplification
factor, and we record the condition number k2(A), the observed variances of both estimators, and
the confusion-matrix error rate ¢ for each dataset. Table [§] summarizes the outcomes. Theorem
indicates that the variance of linear inversion increases fast with the condition number x4(A), re-
sulting in unstable corrections when ¢ is moderate (¢ = 0.05). In contrast, Bayesian posterior mean
variance is firmly restricted by 1/(cg + s), resulting in stable estimates even in ill-conditioned en-
vironments. The variance ratio (Linear/Bayes) rises from ~2.5 at low noise (¢ = 0.01) to more than
7x at larger noise (¢ = 0.05), indicating that Bayesian shrinkage successfully reduces amplifica-
tion. This practical validation supports the theoretical premise that Bayesian approaches are resilient
under both finite sampling and poorly conditioned readout matrices.

B.9 ASYMMETRIC ERROR SENSITIVITY
Real quantum devices frequently show asymmetric readout errors: the likelihood of misclassifying

|0) as |1) (eo) varies from the reverse (e1). We test resilience by setting e = (eg + e1)/2 = 0.02
and adjusting the asymmetry ratio e : e;. Table [ shows the validation loss and accuracy for both
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Table 8: Empirical validation of variance amplification vs. condition number. We report observed
variance for linear inversion and Bayesian posterior mean under varying € and fixed s = 128 shots.

Dataset | ¢ | k2(A) | Amp. Factor | Var (Linear) | Var (Bayes) | Ratio (Lin/Bayes)

0.01 1.04 1.04 0.020 0.008 2.5
CIFAR-10 | 0.03 1.11 1.12 0.046 0.011 4.2

0.05 1.22 1.23 0.083 0.012 6.9

0.01 1.04 1.04 0.018 0.007 2.6
EuroSAT 0.03 1.11 1.12 0.042 0.010 4.1

0.05 1.22 1.23 0.080 0.011 7.3

datasets. The symmetric situation (eg = e1) has the most steady performance. Both datasets suffer
minor but detectable accuracy decreases (~1-1.5%) and increased loss as asymmetry increases.
The findings show that severe asymmetry introduces extra variance that averaged error rates are
unable to capture, indicating that future expansions should explicitly describe asymmetric noise
while maintaining the robustness of the BNN+IBU architecture.

Table 9: Effect of asymmetric readout errors (¢ = 0.02, s = 128) on CIFAR-10 and EuroSAT. We
vary the ratio eq : e; while keeping the mean error fixed.

€o el \ CIFAR-10 \ EuroSAT
| Loss Acc(%) | Loss Acc (%)

1:1 (symmetric) 0.482 78.65 0.365 94.35
2:1 (biased to eq) 0496  77.88 | 0379 9392
1:2 (biased to e;) 0493 7795 | 0374 94.01
3:1 (strong asymmetry) | 0.508 77.20 0.389 93.45

B.10 STABILITY ACROSS SEEDS

We assess the run-to-run stability of various mitigation techniques by training with five random seeds
and calculating the variance of validation accuracy. Table [I0] summarizes the findings. BNN+IBU
results in greater mean accuracy and decreased variation across seeds (std < 1%), indicating its
involvement in stabilizing training dynamics. In comparison, uncontrolled and linear approaches
have bigger volatility, making optimization less dependable.

Table 10: Validation accuracy mean and standard deviation (over 5 seeds) for CIFAR-10 and Eu-
roSAT under € = 0.02, s = 128. Lower variance indicates higher training stability.

M \ CIFAR-10 \ EuroSAT
ethod

| Mean Acc (%) Std (%) | Mean Acc (%) Std (%)
Unmitigated 72.55 2.8 91.06 2.3
Linear inversion 74.80 2.5 92.15 2.0
NN-QREM 77.92 1.9 93.88 1.7
BNN + IBU (ours) 84.21 0.9 96.10 0.8

B.11 CALIBRATION BUDGET ABLATION

Calibration trials using real hardware are expensive. To analyze data efficiency, we change the
amount of calibration samples per qubit and assess the effect on accuracy. Table[TT|displays findings
for both datasets. Performance improves as the calibration budget rises, but advantages drop beyond
200 shots per qubit. BNN priors enable the approach to perform effectively with little calibration
data, attaining 79.05% CIFAR-10 accuracy with only 50 shots per qubit.
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Table 11: Accuracy vs. calibration set size per qubit for CIFAR-10 and EuroSAT (¢ = 0.02, s =
128).

Calibration Shots / Qubit \ CIFAR-10 Acc (%) \ EuroSAT Acc (%)

50 79.05 93.22
100 81.32 94.21
200 83.11 95.02
400 84.21 96.10

B.12 RUNTIME OVERHEAD

Finally, we provide the computational cost of our technique when compared to baselines. Table [I2]
displays the average per-epoch runtime split for VQC forward evaluation, BNN correction, and IBU
updates. BNN+IBU has less than 11% runtime overhead compared to regular VQC training, making
it computationally viable. BNN inference incurs the majority of the cost, whereas IBU updates are
rather inexpensive. This indicates that robustness enhancements do not come at a high cost.

Table 12: Runtime overhead per epoch (in seconds) under n = 8 wires, s = 128, ¢ = 0.02 on a
single NVIDIA RTX 4090.

Component | Time (s)
VQC forward + backprop 421
BNN prior inference 34
IBU updates (adaptive, K <3) 1.1
Total (BNN+IBU) | 46.6

C DATASET CURATION AND ETHICS

C.1 DATASET LICENSING AND USAGE RIGHTS

Our experiments are based on two existing benchmark datasets: CIFAR-10|Krizhevsky et al.|(2009)
and EuroSAT |Helber et al.| (2019). Both datasets are offered under liberal licenses that allow for
academic study and derivative work.

CIFAR-10. The Canadian Institute for Advanced Research (CIFAR) produced the CIFAR-10
dataset, which is being disseminated via the University of Toronto. It is licensed for academic and
non-commercial research purposes and has long been used as a common benchmark in computer
vision research. The dataset was created by sampling from the Tiny Images database, which was
curated under fair-use standards for research and education purposes. CIFAR-10 provides natural
RGB photos of ordinary things from ten classifications, with no personally identifying or sensitive
information present. Numerous studies and large-scale contests have validated its open availability,
establishing it as a credible and ethical resource for experimentation.

EuroSAT. The EuroSAT dataset is based on Sentinel-2 multispectral satellite images made available
by the European Space Agency (ESA) under the Copernicus Open Access License. This license ex-
pressly allows for redistribution, reuse, and derivative work under open-access principles, provided
that due acknowledgment is given. Helber et al. Helber et al.| (2019)) collected and annotated the
dataset, making it publically available for research on land-use and land-cover categorization. The
tagging procedure does not use human subjects or private data because it is solely based on aerial
pictures obtained by satellites operating under a public program. Thus, EuroSAT is free of privacy
issues and adheres to both scholarly and open-data ideals.

Redistribution and Compliance. Both CIFAR-10 and EuroSAT are available under licenses that
specifically favor open access and academic use. In our investigation, we exclusively used official
releases from their original sources, with no changes to the underlying license restrictions. We ref-
erence the original articles, follow the redistribution agreements, and impose no limitations beyond
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those imposed by the dataset producers. No proprietary, confidential, or sensitive information has
been presented. All preprocessing (normalization, cropping, and augmentation) and calibration data
creation conducted in this study are derivative in nature and are appropriate for the datasets’ intended
use cases.

Ethical Considerations. Because both datasets are selected benchmarks made available for study,
their usage poses a low ethical risk. They do not include personal information, private content,
or sensitive categories like biometric or medical information. We reduce worries about consent,
privacy, and the abuse of restricted information by using freely licensed, well-established datasets.
Our usage is strictly confined to academic assessment and benchmarking in the context of quantum
machine learning research, in accordance with the licensing terms.

C.2 PREPROCESSING AND LABEL INTEGRITY

Both the CIFAR-10 and EuroSAT datasets are standardized standards with well-defined labeling
processes. Nonetheless, it is vital to define the preprocessing procedures used in our pipeline and
ensure that label integrity is maintained throughout.

CIFAR-10. Each image is 32 x 32 pixels in RGB format, with ground-truth labels for 10 balanced
classes. We performed channel-wise normalization using the dataset mean and variance, followed
by light augmentations like random horizontal flips and random cropping with a 4-pixel padding.
These augmentations are prevalent in computer vision and are intended to increase generalization
while preserving semantic meaning. The label assignments remain unaltered, and we checked the
class distributions to ensure that no imbalances were created during preprocessing.

EuroSAT. EuroSAT images are obtained from Sentinel-2 satellite observations with 64 x 64 reso-
lution and classified into 10 land-use and land-cover classes. We used the normal split ratio of 80%
training and 20% testing samples. To improve resilience, we used random rotations, horizontal and
vertical flips, and per-channel normalization. These changes preserve labels since the underlying se-
mantic category (forest, industrial, residential) is unaffected by such augmentations. No relabeling
was done, and the class distributions were compared to the original release to ensure consistency.

Calibration Data for Quantum Simulations. To generate noisy histograms, we created calibra-
tion pairs (P, prye) With product-state rotations and synthetic readout models. Because they are
algorithmically produced from the original labeled data, label integrity is automatically maintained.
The calibration metadata (shot count, error rates, and time index) is kept separate from the dataset
annotations.

C.3 ETHICS STATEMENT

This study looks into readout error mitigation in quantum neural networks utilizing publicly acces-
sible benchmark datasets (CIFAR-10 and EuroSAT). We affirm that the datasets are licensed for
academic study and do not include any personally identifiable or sensitive data. All preprocess-
ing methods were label-preserving and adhered to recognized best practices in computer vision and
remote sensing, guaranteeing that no semantic integrity was compromised.

From an ethical standpoint, our study does not use original data gathering methods, does not include
human participants, and does not handle private or confidential information. The experiments are
entirely repeatable with publicly available tools, and any methodological contributions are only
for academic research purposes. The potential for misuse is low because the major focus is on
enhancing the resilience of quantum machine learning under device noise rather than deploying
models in sensitive application areas.

Nonetheless, we acknowledge that general advancements in quantum machine learning may some-
day be employed in larger settings, such as defense, surveillance, or decision-making with social
consequences. We advocate appropriate use of our methodologies within academic and scientific
constraints, and we advise against applications that might harm persons or communities without
thorough ethical review.
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C.4 REPRODUCIBILITY STATEMENT

We have taken steps to make sure that all of the findings in this research are replicable. We first
present detailed mathematical formulations of our readout noise model, Bayesian Neural Network
prior construction, and Iterative Bayesian Unfolding refinement. Second, all experimental settings
are presented in full, including dataset splits (80/20 train-test), number of qubits (n=8), circuit depth
(two layers of highly entangling blocks), measurement shot budgets (s € {2,126, 256,512, 1048}),
and error rates (¢ = 0.01,0.02,0.05). Experiment section describes the data augmentation and
preparation processes for CIFAR-10 and EuroSAT.

We also define the runtime environment, which consisted of PennyLane and PyTorch running on
an NVIDIA RTX 4090 GPU. Random seeds were fixed for initialization and minibatch sorting
to provide consistent comparisons in both noisy and noiseless environments. Calibration datasets
were created using synthetic R, (#) product states, with angles and error rates sampled based on
the distributions indicated in the Experiment section. Finally, all tables and figures are obtained
directly from the regulated simulation pipelines. Together, these characteristics enable independent
researchers to reproduce our tests and confirm the stated results.

The code is available in the zip file alongside the requirements.

D LIMITATIONS

Despite promising results, our method has several limitations that indicate possibilities for further
research.

* Dependence on calibration data. Our framework requires calibration runs to create noisy-
clean pairings for training the Bayesian prior and estimating confusion matrices for online
refinement. While this is practical for small- to medium-scale devices, the calibration cost
increases with the number of qubits and potential measurement results (2). In practice,
this may be prohibitively expensive on large-scale devices unless more efficient calibration
procedures, such as randomized compilation or compressed sensing, are employed.

» Adaptive stopping rule and hyperparameters. In the iterative Bayesian unfolding stage,
the uncertainty-adaptive stopping rule adds a hyperparameter that controls the balance be-
tween prior reliance and online adjustments. Although this rule enhances stability, it might
require precise tweaking based on the noise profile and device characteristics. A more
principled or automated selection process (such as Bayesian optimization or reinforcement
learning) is still under consideration.

» Simulator-only validation. All experiments were performed on a noiseless quantum sim-
ulator with introduced readout errors, allowing for controlled comparisons. However, real
quantum systems have additional noise sources such as crosstalk, gate infidelity, state-
preparation errors, and time-varying drift that go beyond our modeled readout noise. The
performance of our technique under these conditions has yet to be confirmed in hardware
evaluations.

» Dataset and task scope. Our study is centered on image-based classification tasks
(CIFAR-10 and EuroSAT) as representative benchmarks. While this demonstrates robust-
ness in both the vision and remote sensing domains, other modalities (such as text, time
series, and molecular data) may have differing noise sensitivities. To confirm the general-
ity of our methodology, we will need to extend it to multimodal or domain-specific data.

* Scalability of Bayesian neural networks. Although the BNN provides uncertainty-aware
priors, training and inference need more computer resources than lightweight linear or
matrix-based corrections. This overhead is low in our current evaluations, but it may in-
crease with larger circuits or more complicated architectures. Exploring more efficient
approximate Bayesian inference approaches could help to address this problem.

Overall, our findings show that Bayesian priors and online refinement significantly reduce readout
errors in simulated VQCs. However, careful consideration of scalability, hardware deployment,
and broader dataset coverage will be required to translate these findings into practice on near-term
quantum devices.
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