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ABSTRACT

Subgraph representation learning based on Graph Neural Network (GNN) has
exhibited broad applications in scientific advancements, such as predictions of
molecular structure–property relationships and collective cellular function. In
particular, graph augmentation techniques have shown promising results in im-
proving graph-based and node-based classification tasks. Still, they have rarely
been explored in the existing GNN-based subgraph representation learning stud-
ies. In this study, we develop a novel multi-view augmentation mechanism to
improve subgraph representation learning models and thus the accuracy of down-
stream prediction tasks. Our augmentation technique creates multiple variants of
subgraphs and embeds these variants into the original graph to achieve highly im-
proved training efficiency, scalability, and accuracy. Benchmark experiments on
several real-world biological and physiological datasets demonstrate the superior-
ity of our proposed multi-view augmentation techniques in subgraph representa-
tion learning.

1 INTRODUCTION

Subgraph representation learning using Graph Neural Networks (GNNs) can be broadly applied to
various subgraph-related tasks in many fields of science and technology. As an outstanding example,
the PPI (Protein–Protein Interaction) network (Zitnik et al., 2018) uses nodes, edges, and subgraphs
to represent single proteins, their interactions, and the set of interacting proteins, respectively. GNNs
can be used to predict the biological processes (PPI-BP), cell component (PPI-CC), and molecular
function (PPI-MF) by classifying the functionality of a subgraph (i.e., a group of proteins) in the PPI
network. Another example is to apply GNN to fragment-based quantum chemical theory where each
fragment in a crystal or aggregate is a subgraph and subgraph representation learning can predict the
quantitative interactions between different fragments. Although applying GNNs to subgraph-related
tasks (Alsentzer et al., 2020; Kim & Oh, 2022; Wang & Zhang, 2021) starts to draw some attention,
none of them have implemented graph augmentation techniques to improve task accuracy.

This work presents a novel multi-view approach to augment graphs for improving accuracy of sub-
graph classification tasks. Inspired by the effectiveness of graph contrastive learning Hassani &
Khasahmadi (2020); Zhu et al. (2020); You et al. (2020), our basic idea is to create multiple views
of a subgraph by augmenting it, learn the embedding for each of the view, and then combine the rep-
resentations for predicting the label of the subgraph. The rationale behind it is that the augmented
subgraphs (i.e., the multiple views) essentially form an ensemble, which could provide more robust
signal in determining the properties of the subgraph.

The basic idea poses a fundamental challenge in how to efficiently create augmented subgraphs.
Augmenting the entire graph to produce different views of the same subgraph is not scalable because
the size of the augmented graph will grow linearly with the number of views. Figure 1(c) illustrates
the problem. With only one additional view, GNNs need to conduct forward and backward propaga-
tions on two independent graphs (i.e., the original graph and the augmented graph) during training,
doubling the training cost. We address the efficiency issue by embedding augmented subgraphs in
the original graph, significantly decreasing the demand for GPU resources. In this case, the compu-
tation of the embeddings for the augmented subgraphs can share intermediate representations within
their neighborhood. Figure 1(d) illustrates an alternative efficient design where the augmented sub-
graphs are embedded into an augmented graph, instead of the original graph. We empirically validate
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that preserving the original view of subgraphs is essential for multi-view augmentation to improve
task accuracy.
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Figure 1: Illustration of graph augmentation approaches. (a) The original graph G contains two
subgraphs (colored in orange and blue). (b) Augmented subgraphs are created by randomly dropping
some edges in G. The new graph G′ is called the augmented graph. (c) A graph with two independent
components where G is the original graph and G′ is the augmented graph. Learning on this graph
doubles the training cost. (d) Augmented subgraphs G” are embedded into an augmented graph G′.

In summary, this work makes the following contributions:

• This work proposes a novel multi-view augmentation strategy to improve the accuracy
of subgraph-based learning tasks. This study is the first to explore the benefits of graph
augmentation techniques in subgraph representation learning.

• The proposed multi-view augmentation strategy dynamically binds augmented subgraph
views to the whole graph to drop exaggerated GPU resource consumption in order to
achieve highly-improved training efficiency and task accuracy.

• Empirical evaluations on three subgraph datasets demonstrate that our augmentation ap-
proach can improve existing subgraph representation learning by 0.3%–2.9% in accuracy,
which is on average 1.1% higher than general graph augmentation techniques DropEdge
and GAug-M.

2 RELATED WORKS

Subgraph Representation Learning Subgraph representation learning using GNNs has gained
substantial attention these years (Meng et al., 2018) due to its broad applications in scientific
domains. Outstanding examples include SubGNN (SubGraph Neural Network) (Alsentzer et al.,
2020), which routes messages for internal and border properties within sub-channels of each chan-
nel, including neighborhood, structure, and position. After that, the anchor patch is sampled and the
features of the anchor patch are aggregated to the connected components of the subgraph through
six sub-channels. GLASS (Wang & Zhang, 2021) employs a labeling trick (Zhang et al., 2021) and
labels nodes belonging to any subgraph to boost plain GNNs on subgraph tasks. S2N (Subgraph-
To-Node) (Kim & Oh, 2022) translates subgraphs into nodes and thus reduces the scale of the input
graph. These approaches focus on developing novel subgraph-based GNNs to improve task accu-
racy, but they have never implemented graph augmentation techniques.

Graph Augmentation Data augmentation is a vital part of deep learning. Many general graph
augmentation techniques have been proposed to improve task accuracy recently. For node classifi-
cation tasks, Rong et al. (2020) proposes DropEdge to randomly drop the edges in a graph to enlarge
the support of the training distribution. DGI (Deep Graph Infomax) (Veličković et al., 2019) perturbs
the nodes by performing a row-wise swap of the input feature matrix while the adjacency matrix re-
mains unchanged, generating negative samples for comparison learning and maximizing the mutual
information of input and output. GAug (Zhao et al., 2021) generates and removes edges of the
graph by training an edge predictor to finally achieve the effect of high connectivity between nodes
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within the same class and low connectivity between nodes from different classes. NeuralSparse
(Neural Sparsification) (Zheng et al., 2020) proposes a supervised graph sparsification technique
that improves generalization by learning to remove potentially task-irrelevant edges from the input
graph. GraphCL (You et al., 2020) points out that different data augmentation techniques introduce
different advantages in graph learning tasks in different domains. For example, edge perturbation
can enhance learning in social network graphs, but can be counterproductive in compound graphs
learning by destroying the original information. SUBG-CON (SUBGraph CONtrast) (Jiao et al.,
2020) samples a series of subgraphs containing regional neighbors from the original graph as train-
ing data to serve as an augmented node representation. Although these methods show promising
results for augmenting graphs for node- and graph-based downstream tasks, they are not designed
for augmenting subgraphs for subgraph-based tasks.

Multi-view Graph Learning Multi-view representation learning on graphs has attracted signifi-
cant attention because they capture different properties on the same graph. Hassani et al. (Hassani
& Khasahmadi, 2020) introduce a multi-view graph learning manner to perform contrastive learn-
ing. O2MAC (One2Multi graph AutoenCoder) (Fan et al., 2020) proposes a multi-view-based auto-
encoder to promote self-supervised learning. MV-GNN (Multi-View Graph Neural Network) (Ma
et al., 2020) utilizes two MPNNs (Message Passing Neural Networks) (Gilmer et al., 2017) to en-
code atom and bond information respectively via multi-view graph construction. They construct
multi-view graphs to express different levels of information in a graph, which is an intuitive and ef-
ficient way of building augmented graphs. Our work also leverages multi-view–based augmentation
but focuses on subgraph-based tasks.

3 NOTATIONS AND PRELIMINARIES

3.1 NOTATIONS

Let G = (V,E,X) denote a graph, where V = {1, 2, .., N} represents the node set, E ⊆ V × V
represents the edge sets, and X is the matrix that represents the corresponding node feature. Xi,
the ith row of X , represents the features associated with the ith node. Let vi denote a node in G. The
adjacency matrix A ∈ {0, 1}N×N , where aij = 1 denotes that (vi, vj) ∈ E. GS = (VS ,ES ,XS)
denotes a subgraph of G, where VS ⊆ V, ES ⊆ E ∩ (VS × V)S , and XS stacks the rows of X
belonging to VS . The adjacency matrix of a subgraph GS is AS .

3.2 SUBGRAPH REPRESENTATION LEARNING

Given the set of subgraphs S = {GS1
,GS2

, ..,GSn
} and their labels T = {tS1

, tS2
, ..., tSn

}, the goal
of Subgraph Representation Learning is to learn a representation embedding hSi

for each subgraph
GSi to predict the corresponding tSi .

3.3 GRAPH AUGMENTATION

In the present work, we illustrate our multi-view augmentation scheme based on two typical existing
graph augmentation strategies, DropEdge (Rong et al., 2020) and GAug-M (Zhao et al., 2021).

DropEdge is a graph data perturbation strategy that randomly drops edges in a graph (Rong et al.,
2020) so that it enlarges the training support to improve the performance of GNNs on node-level
tasks. We employ DropEdge for each subgraph to generate an augmented subgraph, by generating
a stochastic boolean mask Mp ∈ Rm×m, where m is the number of nodes in the subgraph and p
represents the rate of dropping edges. The new adjacency matrix becomes A′

S = AS −Mp ⊙AS ,
where ⊙ means the element-wise product.

GAug-M (Zhao et al., 2021) is a graph data augmentation strategy that leverages neural edge predic-
tors to promote intra-class and demote inter-class edges so as to form new edge weights. It contains a
two-stage training schema. In the first step, we use VGAE (Variational Graph Auto-Encoders) (Kipf
& Welling, 2016) as the edge predictor to get an edge-probability matrix M , which describes the
graph’s probabilistic connectivity, M = σ(ZZT ), where Z = GNN(A,X)). Denote |E| as the
number of edges in graph G. In the second step, we use the probability matrix M , to make the top
i|E| non-edges with the highest edge probabilities to be connected, and the least j|E| edges with the
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lowest edge probabilities to be disconnected to produce an augmented graph from G to G′, where
i, j ∈ {0, 1}.

4 METHODS

In this section, we present our proposed multi-view augmentation approach, following by analyses
of the computational complexity and discussions on the shortage of the alternatives shown in Figure
1 and the advance of our multi-view approach.

4.1 METHODOLOGY

Figure 2 illustrates the basic idea of the multi-view augmentation that is implemented in the present
study. At each forward step, we generate augmented views of subgraphs in this batch by randomly
perturbing original subgraphs with a particular graph data augmentation strategy. After that, we
add the augmented subgraphs to the original graph and feed the new graph into a subgraph-specific
neural network. Here, we obtain subgraph embeddings of both the original subgraph and the aug-
mented subgraph. These embeddings are fed into a pooling function to generate a single subgraph
embedding for each subgraph, which is used for downstream subgraph-based tasks. Meanwhile, to
maximize the agreement between the original subgraph embeddings and the augmented subgraph
embeddings, we utilize the contrastive loss between the original graph and augmented graphs.
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Figure 2: Overview of our proposed subgraph augmentation approach. The two subgraphs in the
original graph are colored in green and orange. We first generate multi-subgraph views via stochastic
augmentation. Following that we connect the augmented subgraph to the remaining part of the
original graph, by adding edges that link the augmented subgraph and the whole graph. After feeding
forward the whole graph into subgraph-specific GNNs, we extract the subgraph embeddings of
different views, respectively (triangles and squares). Ultimately, we fuse the embeddings of different
views by a pooling function and obtain the augmented subgraph embeddings (diamonds).

After subgraph augmentation, we obtain augmented subgraphs G′
S = (V′

S ,E′
S ,X

′
S). We enrich

the original graph to include both the augmented subgraph and the original subgraph. The enriched
graph is thus called a Multi-View Graph. Mathematically, the multi-view graph G′ = (V′,E′,X ′)
where V′ = V ∪ V′

S . The consequent adjacency matrix becomes

A′ =

[
A A[:,V′

S ]
A[V′

S , :] AS

]
. (1)

Feeding forward the multi-view graph into subgraph-specific neural networks, by selecting the sub-
graph and augmented subgraph nodes by masks MSO

,MSA
, we can get the embeddings of both

the augmented subgraph and the original subgraph and denote them as hSO
and hSA

, respectively.
We fuse different subgraph embeddings into one embedding by applying a pooling function (e.g.,
MaxPool or AvgPool):

H = GNN(G′) (2)
hSO

, hSA
= H[MSO

],H[MSA
], (3)

hS = Pool(hSO
, hSA

) (4)
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With the learned subgraph embeddings, we can predict the subgraph properties by applying a MLP
(Multi-Layer Perception), (Hastie et al., 2009)

t̂S = softmax(MLP (hS)). (5)

Meanwhile, we implement the contrastive loss between the augmented views, which enforces the
embeddings of the original subgraph and the generated subgraph embedding to be close and those
of augmented subgraphs not generated by this subgraph to be distant. Let λ be the coefficient to
control the contrastive loss contribution, the total loss function becomes

L = Lcls(tS , t̂S) + λLcontrast(hSO
, hSA

). (6)

4.2 COMPUTATIONAL COMPLEXITY ANALYSIS

The proposed subgraph multi-view augmentation is independent to augmentation strategies or
subgraph-specific GNNs. Thus, we can train the model in an end-to-end fashion, which means
there’s neither modification at the beginning of each epoch nor after the forward. We can sim-
ply analyze the additional computational complexity made by the augmentation, the corresponding
augmented graph inference at each forward step.

Let the number of nodes in the original graph be |V|, the number of edges be |E|, the number of the
ith subgraph node be |VSi

|, the number of the ith subgraph node be |ESi
|, and the training setting

for batch size be b. Therefore, the expectation of |VS |, E[|VS |] is going to be E[|VS |] =
∑

i |VSi
|

b
.

Likewise, the expectation of |ES |, E[|ES |] is going to be E[|ES |] =
∑

i |ESi |
b

.

Considering a graph neural network for which the computational complexity is O(fGNN(|V|, |E|)),
and the memory complexity is O(gGNN(|V|, |E|)), the computational complexity for an augmen-
tation strategy is O(fAug(|V|, |E|)), and the memory complexity is O(gAug(|V|, |E|)). Because
we augment on subgraphs only during the augmentation stage, the computational complexity is
O(fAug(E[|VS |], |E[|ES |])), and the memory complexity is O(gAug(E[|VS |],E[|ES |])) With regard
to the forward step, the total computational complexity of the whole graph is |V| + E[|VS |] and
that of edges is |E|+E[|ES |]. In this way, the inference computational complexity is O(fGNN(|E|+
E[|ES |], |E|+ E[|ES |])), and the memory complexity is O(gGNN(|E|+ E[|ES |], |E|+ E[|ES |])).
To summarize our analysis, the overall computational complexity is O(fAug(E[|VS |], |E[|ES |]) +
fGNN(|E| + E[|ES |], |E| + E[|ES |])), and the overall memory complexity is
O(gAug(E[|VS |], |E[|ES |]) + gGNN(|E|+ E[|ES |], |E|+ E[|ES |])).

4.3 STRENGTHS OF OUR MULTI-VIEW AUGMENTATION SCHEME

4.3.1 MULTI-VIEW ON SUBGRAPH

Augmentation on whole-graph vs. Augmentation on subgraph The augmentation strategies are
supposed to directly modify the whole-graph edges and nodes. However, the time complexity be-
comes unaffordable for the augmentation strategy when it is greater than O(|V|). Because the nodes
of the subgraphs only accept messages from their k-hop neighbors, it’s more efficient to augment
subgraph-related edges.

Single-view vs. Multi-view DropEdge (Rong et al., 2020) and GAug-M (Zhao et al., 2021) take the
strategy of single-view augmentation. One way to augment the subgraph-based data is to augment
the original graph using the single-view augmentation on subgraph edges to perturb the message-
passing flow of the subgraph, which will reduce the amount of the information contained in the
original graph. Our multi-view method, on the other hand, can keep the original subgraph structures
because it just modifies the augmented subgraph.

Copy graph vs. Subgraph multi-view GraphCL (You et al., 2020) creates another graph view to
allow contrastive samples to perform the self-supervised training. It’s intuitive to create another
whole graph by using the augmentation strategies. Neverthless, such an augmentation flow doubles
the memory and time consumptions, which is not affordable for large-scale graph learning tasks like
social networks or protein-protein interactions. In this way, multi-view graph learning improves the
hardware resource requirements and accelerates the computations.
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Augmentation on all views vs. Preserving one original view Although augmentation on all views
will provide wider training support than keeping the original subgraph structures, however, there is
a loss of the information from the original subgraphs. Because we perform the augmentation on the
newly-created view, it’s enough for perturbing so that keeping one original view can help the model
to learn lossless graph-based information. In this way, our proposed multi-view augmentation can
show more generalizability and efficiency in subgraph representation learning.

4.3.2 STRAIGHT INFERENCE VS. JOINING IN CONTRASTIVE LOSS

Comparing with straight inference, a contrastive loss can effectively make the source subgraphs and
the augmented subgraphs closer and the other augmented subgraphs more distant. This strategy will
prevent the increased disagreement of views after epochs of training.

5 EXPERIMENTS

In this section, we evaluate the performance of our proposed subgraph multi-view augmentation
strategy across a variety of architectures, datasets, and graph augmentation strategies, and compare
them with other strategies to show the effectiveness of our multi-view subgraph augmentation.

5.1 EXPERIMENT SETTINGS

5.1.1 DATASETS

Table 1: Statistics of four real-world datasets.
DATASET NODES EDGES SUBGRAPHS

PPI-BP 17,080 316,951 1,591
HPO-METAB 14,587 3,238,174 2,400
HPO-NEURO 14,587 3,238,174 4,000

Table 1 summarizes statistics of
the datasets obtained from Sub-
GNN (Alsentzer et al., 2020). We
follow the split reported in Wang
& Zhang (2021). Specifically, PPI-
BP (Zitnik et al., 2018) aims to pre-
dict the collective cellular function of a given set of genes known to be associated with specific BP
(Biological Processes) in common. The graph shows the correlation of the human PPI (Protein–
Protein Interaction) network where nodes represent proteins and edges represent the interaction
between proteins. A subgraph is defined by the collaboration of proteins and labeled according to
cellular functions from six categories (metabolism, development, signal transduction, stress/death,
cell organization, and transport). HPO-METAB and HPO-NEURO (Splinter et al., 2018; Hartley
et al., 2020) simulate rare disease diagnosis with the task of predicting subcategories of metabolic
and neurological disorders that are the most consistent with these phenotypes. The graph is a knowl-
edge graph containing phenotypic and genotypic information for rare diseases. A subgraph consists
of a collection of phenotypes associated with rare monogenic diseases.

5.1.2 GNN MODELS

The proposed augmentation technique is model-agnostic because it does not alter the GNN model. In
the experimental part, we evaluate the proposed multi-view augmentation using a subgraph-specific
model GLASS (Wang & Zhang, 2021) and two widely-used GNN architectures: GCN (Graph Con-
volutional Networks) (Kipf & Welling, 2017) and GSAGE (GraphSAGE) (Hamilton et al., 2017).
We chose DropEdge (Rong et al., 2020) and GAug-M (Zhao et al., 2021) to create subgraph views
that are different from the orignal subgraph.

5.1.3 BASELINES FOR COMPARISON

We compare our proposed approach w/ Augmentation MV with the following baselines.

• Original: It directly trains the GNN model (i.e., GLASS, GCN, and GSAGE) to establish
a baseline without any augmentation (see Figure 1(a)).

• w/ Augmentation: It applies DropEdge or GAug-M on the original graph G to get an
augmented graph G′ (see Figure 1(b)). The GNNs will learn on the augmented graph G′.
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• w/ Augmentation Copy: It applies DropEdge or GAug-M on the original graph G to get
an augmented graph G′ (see Figure 1(c)). The GNNs will learn on both G and G′. The final
embedding is generated after a pooling operation as in Equation 4.

• w/ Augmentation AllView: It applies DropEdge or GAug-M on both original subgraphs
and the augmented subgraphs, to generate G′ and G′′, which fails to preserve the subgraph
structure (see Figure 1(d)). The final embedding is generated after a pooling operation as
in Equation 4.

5.1.4 IMPLEMENTATION DETAILS

We perform a hyperparameter search for all of the baselines and our approach and report the best
mean F1 score on all test datasets. The searching space of hyperparameters and details are provided
in in the Appendix A. Because GAug-M (Zhao et al., 2021) requires an initial edge probabilistic
distribution, we use VGAE (Kipf & Welling, 2016) to perform the self-supervised learning on edge
prediction to generate the distribution. For the GNN model GLASS (Wang & Zhang, 2021), we
first train the model in an unsupervised manner, and then use supervision from downstream tasks to
fine-tune the model hyperparameters, following the procedure provided by the original paper. We
perform 10 independent training and validation processes with 10 distinct random seeds.

5.2 RESULTS

5.2.1 OVERALL RESULTS

The empirical performance is summarized in Tables 2 and 3. Our proposed subgraph augmentation
improves most of the task accuracy and improves across all three datasets where the whole-graph
augmentation strategy succeeded in improving the accuracy, we applied our strategy into GCN,
GSAGE, and GLASS. It performs better than most baseline approaches, mainly because it inhibits
over-smoothing and over-fitting problems. Specifically, our approach improves the Micro-F1 scores
by 0.6%–2.9%, 0.5%–2.5%, and 0.3%–1.7% compared to plain GLASS, GCN, and GSAGE, respec-
tively. Specifically, when we apply multi-view augmentation (MV) to GCN and GSAGE, we find
that such backbones combined with multi-view augmentation show a great increase in performance.

Table 2: Mean Micro-F1 scores with standard deviations of the mean on three real-world datasets.
Results are provided from runs with 10 random seeds on DropEdge.

BACKBONE METHOD PPI-BP HPO-METAB HPO-NEURO

GLASS

Original 0.610± 0.006 0.600± 0.003 0.678± 0.004
w/ DropEdge 0.626± 0.006 0.607± 0.008 0.678± 0.004

w/ DropEdge copy 0.605± 0.006 0.593± 0.013 0.676± 0.003
w/ DropEdge AllView 0.613± 0.007 0.577± 0.008 0.672± 0.006

w/ DropEdge MV 0.628± 0.005 0.607± 0.008 0.685± 0.003

GCN

Original 0.613± 0.008 0.553± 0.018 0.658± 0.007
w/ DropEdge 0.618± 0.006 0.556± 0.006 0.651± 0.006

w/ DropEdge copy 0.553± 0.005 0.349± 0.026 0.317± 0.018
w/ DropEdge AllView 0.595± 0.006 0.552± 0.019 0.613± 0.010

w/ DropEdge MV 0.619± 0.006 0.567± 0.006 0.622± 0.007

GSAGE

Original 0.621± 0.006 0.581± 0.008 0.684± 0.002
w/ DropEdge 0.618± 0.006 0.556± 0.006 0.651± 0.006

w/ DropEdge copy 0.593± 0.010 0.555± 0.011 0.676± 0.005
w/ DropEdge AllView 0.618± 0.006 0.567± 0.011 0.682± 0.002

w/ DropEdge MV 0.623± 0.003 0.591± 0.006 0.687± 0.001

On augmentation on subgraphs The augmentation should take place in the k-hop neighbors of
a subgraph to avoid the requirement of extreme fine tunes on hyperparameters, as demonstrated
from Tables 2 and 3. Comparing fields of w/ Augmentation with w/ Augmentation MV we
can see that the performance of our approach at least maintains the performance of implementing
augmentation on whole graph. On the GSAGE backbone, we can see that DropEdge and GAug-
M promote the performance of HPO-NEURO by 3.6% and 2.7%, respectively, compared with the
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Table 3: Mean Micro-F1 scores with standard deviations of the mean on three real-world datasets.
Results are provided from runs with 10 random seeds on GAug-M.

BACKBONE METHOD PPI-BP HPO-METAB HPO-NEURO

GLASS

Original 0.610± 0.006 0.600± 0.003 0.678± 0.004
w/ GAug-M 0.609± 0.003 0.596± 0.007 0.681± 0.003

w/ GAug-M copy 0.621± 0.006 0.593± 0.016 0.679± 0.003
w/ GAug-M AllView 0.617± 0.004 0.579± 0.005 0.672± 0.006

w/ GAug-M MV 0.625± 0.004 0.598± 0.005 0.682± 0.003

GCN

Original 0.613± 0.008 0.553± 0.018 0.658± 0.007
w/ GAug-M 0.603± 0.008 0.557± 0.011 0.641± 0.006

w/ GAug-M copy 0.556± 0.007 0.335± 0.025 0.306± 0.016
w/ GAug-M AllView 0.591± 0.006 0.544± 0.008 0.593± 0.007

w/ GAug-M MV 0.616± 0.008 0.564± 0.008 0.640± 0.003

GSAGE

Original 0.621± 0.006 0.581± 0.008 0.684± 0.002
w/ GAug-M 0.603± 0.017 0.588± 0.012 0.672± 0.004

w/ GAug-M copy 0.606± 0.006 0.546± 0.007 0.684± 0.003
w/ GAug-M AllView 0.622± 0.005 0.583± 0.001 0.682± 0.003

w/ GAug-M MV 0.628± 0.005 0.591± 0.008 0.689± 0.003

direct augmentation. This result shows that our approach is able to get stronger results within a
limited hyperparameter space because we perform the augmentation on neighbor regions, which is
a more important region for augmentation.

On creating subgraph multi-view only As discussed in Section 4.3.1, one way to perform aug-
mentation is to duplicate a graph. From Tables 2 and 3, comparing fields of w/ Augmentation copy
with w/ Augmentation MV, our approach always performs better than copying the original graph.
We even observe a sharp decrease by over 21.8% on the GCN backbone with HPO datasets. This
result indicates the importance of the addition of the contrastive loss, and proves that duplicating the
original graph may take potential failures in aligning the original graph and the augmented graph.

On preserving one view The argument that augmenting all views can bring more training support
to models but lose the information from the original graph, as discussed in Section 4.3.1 can also be
provided by Tables 2 and 3. Comparing fields of w/ Augmentation AllView with w/ Augmentation
MV, we can find that our approach also brings some improvements. These results echo that it’s
necessary to keep at least one view to make the subgraphs lossless in information. w/ Augmentation
copy with w/ Augmentation MV field,

5.2.2 ABLATION STUDY ON THE CONTRASTIVE LOSS

In addition to the comparison on different augmentation strategies, we also perform the ablation on
the importance of the contrastive loss, as reported in Tables 4 and 5. Overall, the results show that
the contrastive loss can greatly improve the learning process of subgraph embeddings, which utilizes
maximizing the agreement between the original subgraph and the augmented subgraph. Also, the
decrease on w/ Augmentation copy compared with our approach echoes this point of view.

5.2.3 COMPUTATIONAL TIME

Table 6: The training time records gener-
ated by the experiments.

METHOD TIME / EPOCH (s)
w/ GAug-M 0.439
w/ GAug-M MV 0.465
w/ GAug-M copy 0.788

We compare the computational time for the direct
augmentation on original graphs w/ Augmentation,
copying the original graph w/ Augmentation Copy
and our approach w/ Augmentation MV, based on
the same experimental settings and hyperparameters.
We generate the records using GAug-M as the aug-
mentation approach, GLASS as the backbone, and
PPI-BP as the dataset. The results are shown in Table 6. We can see that using multi-view does not
greatly increase the computational complexity and the memory complexity in practice. Meanwhile,
directly duplicating the graph will almost double the training time, which means an unaffordable
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Table 4: Ablation Study on DropEdge.

BACKBONE METHOD PPI-BP HPO-METAB HPO-NEURO

GLASS
Original 0.610± 0.006 0.600± 0.003 0.678± 0.004

w/ No Contrast 0.618± 0.006 0.597± 0.005 0.685± 0.003
w/ Contrast 0.628± 0.005 0.607± 0.008 0.683± 0.004

GCN
Original 0.613± 0.008 0.553± 0.018 0.658± 0.007

w/ No Contrast 0.616± 0.006 0.506± 0.030 0.606± 0.011
w/ Contrast 0.619± 0.006 0.567± 0.006 0.622± 0.007

GSAGE
Original 0.621± 0.006 0.581± 0.008 0.684± 0.002

w/ No Contrast 0.616± 0.007 0.583± 0.008 0.684± 0.004
w/ Contrast 0.623± 0.003 0.591± 0.006 0.687± 0.001

Table 5: Ablation Study on GAug-M.

BACKBONE METHOD PPI-BP HPO-METAB HPO-NEURO

GLASS
Original 0.610± 0.006 0.600± 0.003 0.678± 0.004

w/ No Contrast 0.611± 0.006 0.591± 0.007 0.682± 0.003
w/ Contrast 0.625± 0.004 0.598± 0.005 0.680± 0.003

GCN
Original 0.613± 0.008 0.553± 0.018 0.658± 0.007

w/ No Contrast 0.613± 0.008 0.513± 0.019 0.580± 0.015
w/ Contrast 0.616± 0.008 0.564± 0.008 0.640± 0.003

GSAGE
Original 0.621± 0.006 0.581± 0.008 0.684± 0.002

w/ No Contrast 0.621± 0.005 0.582± 0.008 0.684± 0.003
w/ Contrast 0.628± 0.005 0.591± 0.008 0.689± 0.003

increase on the computational complexity. This result shows that our approach gains both efficiency
and effectiveness in subgraph augmentation comparing with other baseline approaches.

6 CONCLUSION

We propose a novel model-agnostic subgraph augmentation strategy to facilitate subgraph-based
GNNs. By creating a new subgraph and link to the original graph, it will include more diversity in
message passing to the graph to enhance model training support. This subgraph-specific augmenta-
tion strategy can improve the performance and the robustness of a graph neural network. A bunch
of improved experiments on both GAug-M and DropEdge on different datasets show the general-
izability on models and augmentation strategies. It’s expected that our research will empower the
subgraph representation learning to go further and broader.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 HYPERPARAMETER TUNING

By solidating the hyperparameters by GLASS on all backbone settings, we implement the grid
hyperparameter searching on augmentations. For λ, we select a searching space {0, 0.01, 0.05, 0.1,
0.5, 1,1.25, 1.5, 2, 2.5}. For DropEdge-related tasks, our searching space for p is {0.1, 0.2, 0.3, 0.4,
0.5}. For GAug-related tasks, our searching space for (rm pct, add pct) is {(0, 50), (15, 35), (30,
20), (45, 5)}. Since we used VGAE to generate different probabilistic edge distribution, we selected
i from {1, 2}.
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