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ABSTRACT

Large Multimodal Models (LMMs) have demonstrated impressive performance
in short video understanding tasks but face great challenges when applied to long
video understanding. In contrast, Large Language Models (LLMs) exhibit out-
standing capabilities in modeling long texts. Existing work attempts to address
this issue by introducing long video-text pairs during training. However, these ap-
proaches require substantial computational and data resources. In this paper, we
tackle the challenge of long video understanding from the perspective of context
windows, aiming to apply LMMs to long video tasks without retraining on long
video datasets. We first conduct an in-depth analysis of why pretrained LMMs
struggle to understand lengthy video content, identifying that discrepancies be-
tween visual and language modalities lead to different context windows for visual
and language tokens, making it difficult to directly extend the visual tokens to
match the language context window. Based on this, we propose to adapt LMMs
for long video understanding tasks by extending the visual context window, elim-
inating the need for retraining on large-scale long video datasets. To further miti-
gate the significant memory consumption caused by long sequences, we introduce
a progressive pooling inference strategy that selectively adjusts the spatial resolu-
tion of frame embeddings, reducing the number of visual tokens while retaining
important spatial information. Across multiple long video understanding bench-
marks, our method consistently improves the performance as the number of video
frames increases. On the MLVU benchmark, our method outperforms GPT-4o,
even though our model size is only 7B. Additionally, in the 256-frame setting, our
method reduces memory usage by approximately 45% compared to the baseline,
without introducing any performance loss.

1 INTRODUCTION

Large Multimodal Models (LMMs), built on pre-trained Large Language Models (LLMs) and
trained on massive image-text pairs, have shown remarkable capabilities in image understanding (Li
et al., 2023b; Gao et al., 2023; Dai et al., 2023; Zhu et al., 2023; Ye et al., 2023; Li et al., 2023a; Liu
et al., 2023a). Recently, by segmenting high-resolution images into multiple sub-images for input,
LMMs have not only improved in fine-grained image understanding but also demonstrated zero-shot
video understanding capabilities (Liu et al., 2024b; Yao et al., 2024; Li et al., 2024a). Despite these
advancements, current LMMs are still limited to short video understanding tasks and face difficulties
when applied to long videos due to the excessive sequence lengths involved.

Several approaches (Li et al., 2023d; Jin et al., 2023; Song et al., 2024) have explored using vi-
sual resamplers to reduce the number of visual tokens, allowing the models to process more video
frames. However, this token reduction inevitably leads to a loss of critical information, negatively
affecting performance. Recent efforts (Xue et al., 2024; Liu et al., 2024c) have tackled this issue by
incorporating long video-text pair datasets during pre-training. However, this approach faces signif-
icant challenges due to the high computational cost associated with the quadratic complexity of the
attention mechanism (Vaswani et al., 2017) and the scarcity of high-quality long video-text data.

To alleviate the high computational costs and data collection challenges associated with long video
understanding, we approach the problem from the perspective of the context window. First, we
observe that in recent open-source LMMs, language decoders generally support longer language
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Figure 1: (a) The blue curve of illustrates the accuracy comparison of different video sequence
lengths on LongVideoBench (180s-600s) (Wu et al., 2024). The yellow curve shows the sliding
window perplexity (S = 256) of ten 128k Proof-pile documents (Azerbayev et al., 2023), and for
the sake of comparison, we take the negative of the perplexity. Visualization of visual embeddings
(output of the modality projection layer) and language embeddings in the language decoder using
t-SNE (Van der Maaten & Hinton, 2008). The visual embeddings and language embeddings form
two distinct clusters.

modeling (Yao et al., 2024; Li et al., 2024a). For instance, the latest LMM, LLaVA-OneVision (Li
et al., 2024a), employs Qwen2 (Yang et al., 2024) as its language decoder. As illustrated in Figure
1a, the performance of LLaVA-OneVision in language understanding tasks improves consistently
as the input sequence length increases (yellow curve). However, for visual understanding tasks, the
performance initially improves but then declines as sequence length grows (blue curve). Further
visualization of the latent space inside the language decoder shows that visual and language embed-
dings form distinct clusters (Figure 1b), indicating significant modal differences in the latent space.
This explains the performance of LMMs on visual understanding tasks shown in Figure 1a. We
believe that due to the differences between the visual and language modalities, LMMs pre-trained
on short visual sequences cannot directly extrapolate visual tokens to the effective context window
size of the language decoder. Therefore, we redefine the context window in LMMs as two distinct
windows: the visual context window, representing the maximum length of visual tokens during
pre-training, and the language context window, referring to the maximum length of language to-
kens during pre-training.

Building on this observation, we propose to extend the commonly used language context window
extension method, YaRN (Peng et al., 2024), to LMMs for long video understanding. Specifically,
we redefine the scaling factor of the base frequency in positional embeddings as the ratio of the
visual context window to the target context window. By modulating the rotational frequency of the
positional embeddings, we expand the effective range of the visual context window, enabling LMMs
to handle longer video sequences. It’s important to note that extending the visual context window
does not directly narrow the modality gap between visual and language embeddings.

Additionally, to alleviate the rapid memory consumption caused by long sequences, we propose a
progressive pooling strategy to handle video frame embeddings. Specifically, considering the re-
dundancy between consecutive frames in the same event, such as a static background, we uniformly
sample the video frames into multiple groups. We assume that each group represents an event, and
we control the group size through hyperparameters. In each group, the first frame’s embedding re-
tains a higher spatial resolution, while the subsequent frames are pooled with a larger stride to lower
resolutions. We believe the first frame preserves rich spatial, fine-grained information compared to
the other frames within the group, while the remaining frames reduce intra-group redundancy. This
approach minimizes the loss of spatial information while reducing the number of visual tokens.

Across multiple long video understanding benchmarks, our method consistently improves perfor-
mance as the number of video frames increases. Notably, on the MLVU benchmark (Zhou et al.,
2024), our method outperforms GPT-4o. Most importantly, our approach does not require retraining,
allowing it to benefit from continuous advancements in open-source LMMs.

In summary, our paper makes the following key contributions:
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• We exploit the modality difference between visual and language tokens in the language
decoder to redefine the effective context window in LMMs: the visual context window and
the language context window.

• We propose a method to extend positional embeddings within the visual context window,
enabling LMMs to handle long video tasks without the need for training on long video-text
paired data.

• We introduce a progressive pooling strategy for visual frame embeddings, mitigating re-
ducing memory consumption in long video sequences.

2 BACKGROUND AND RELATED WORK

2.1 ROTARY POSITION EMBEDDINGS

Rotary Position Embeddings (RoPE) (Su et al., 2024) introduce a rotation matrix to incorporate
relative positional information into the self-attention mechanism, enhancing the model’s ability to
capture positional relationships between words.

Given a sequence S = {wi}Ni=1 with corresponding embeddings E = {xi}Ni=1, the query and key
vectors are computed as: qm = fq (xm,m), kn = fk (xn, n), where m and n are positions in
the sequence. The unnormalized attention scores are then calculated by dot-producting two vectors:
qT
mkn. To incorporate relative positional information, the query and key vectors are represented in

complex form:

fq (xm,m) = eimΘ (Wqxm) , fk (xn, n) = einΘ (Wkxn) , (1)

where Θ = diag
(
θj = b−2j/d, j ∈ [1, 2, . . . , d/2]

)
is the diagonal matrix and b = 10000.

In real coordinates, RoPE can be expressed using the following function:

fq (xm,m) = Rm (Wqxm) =
cosmθ1 − sinmθ1 · · · 0 0
sinmθ1 cosmθ1 · · · 0 0

0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · cosmθd/2 − sinmθd/2
0 0 · · · sinmθd/2 cosmθd/2

Wqxm.
(2)

Therefore, when the word embedding xm at position m is multiplied by matrix Rm, and the word
embedding xn at position n is also multiplied by matrix Rn, resulting in the transformed query and
key vectors, the attention weights will inherently include the relative positional information. We
provide a more detailed derivation of RoPE in Appendix A.2.

2.2 RELATED WORK

Large Multimodal Models LMMs typically consist of a visual encoder, a pre-trained LLM, and a
modality projection module that converts visual content into token sequences for the LLM. Leverag-
ing large amounts of high-quality image-text paired data, LMMs have shown strong capabilities in
image understanding (Li et al., 2023b; Gao et al., 2023; Dai et al., 2023; Zhu et al., 2023; Ye et al.,
2023; Li et al., 2023a; Liu et al., 2023a; 2024b; Yao et al., 2024; Li et al., 2024a). By sampling
videos into multiple frames, LMMs can extend to video understanding tasks (Xu et al., 2024; Chen
et al., 2023a; Maaz et al., 2024; Liu et al., 2023b; Li et al., 2023c; 2024b). Examples include Video-
ChatGPT (Maaz et al., 2024), VideoChat2 (Li et al., 2024b), and PLLaVA (Xu et al., 2024), which
enhance LMMs’ video understanding through high-quality data and fine-tuning methods. However,
these methods face challenges with long videos due to the large number of visual tokens generated
per frame.

To address this, visual token compression methods have been proposed (Li et al., 2023d; Jin et al.,
2023; Song et al., 2024). For instance, LLaMA-VID (Li et al., 2023d) uses only two tokens per
frame, and MovieChat (Song et al., 2024) introduces a memory mechanism to compress long video
tokens into a fixed size. These methods, however, often result in information loss.
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我们也可以仿照这个画一个可视化的图。
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Figure 2: Examples of RoPE embeddings under different context extension methods. Upper: RoPE
directly extrapolated beyond the pre-training range. Middle: YaRN interpolating and extrapolating
different RoPE dimensions beyond the pre-training range. Down: Our method further distinguishes
between visual and language context windows in YaRN, allowing for different interpolation and
extrapolation of RoPE dimensions.

In recent work, LongVILA (Xue et al., 2024) attempted to introduce long video-text pairs into the
training of LMMs to expand the context window size. LongVA (Zhang et al., 2024) expands the
context window by continuously training LLMs on long texts, transferring its long text understand-
ing capabilities to long video understanding. However, they inevitably introduce high computational
costs and data collection challenges.

Context Window Extension for LLMs The fixed context length during pre-training limits the infer-
ence performance of language models in scenarios involving long sequence inputs. To address this
issue, researchers have proposed a series of RoPE-based language positional embedding extension
methods, such as Position Interpolation (PI) (Chen et al., 2023b; kaiokendev, 2023), NTK Interpola-
tion (bloc97, 2023), and YaRN (Peng et al., 2024). Specifically, PI scales the positions of long texts
that exceed the context window down to the original window size. However, it compresses distances
between nearby tokens, which can degrade performance. NTK interpolation extends the context
window by adjusting the rotational speed of RoPE through reducing the base frequency. Building
upon NTK interpolation, YaRN further distinguishes between high-frequency and low-frequency
information to accommodate different RoPE embeddings.

3 METHOD

In this section, we first introduce the corresponding modifications of the language position embed-
ding extension method to the visual context window. We then further discussed another factor that
limit long video understanding: memory constraints.

3.1 VISUAL CONTEXT WINDOW EXTENSION

In Section 2.1, we describe the commonly used position embedding method in LLMs and LMMs,
RoPE (Rotary Position Embedding). LLMs typically have a fixed context window size, and when
the input sequence exceeds this limit, the model struggles to accurately understand positional infor-
mation, leading to a decline in performance. As shown in Figure 1a, LMMs encounter similar issues
when processing long video sequences.

To address this, we adapt the language position embedding extension method, YaRN (Peng et al.,
2024), for the visual context window to better support long video understanding. Figure 2 illustrates
an example of our method. In our approach, we define the training context length for visual data
as Lv

train (i.e., visual context window), and the extended context length as Lv
test. Consequently, we

define the scaling factor s as follows:

s =
Lv

test

Lv
train

. (3)
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Figure 3: Pipeline of progressive pooling strategy.

Then, we selectively interpolate the hidden dimensions based on the wavelength λi of the RoPE
embeddings:

λi =
2π

θi
= 2πb

2i
d . (4)

Following this, we define ri =
Lv

train
λi

to determine which dimensions require interpolation. Finally,
following YaRN, combining the scaling factor s with the wavelength λi, the base frequency is mod-
ified as follows:

θnew
i =

[
γi + (1− γi)

1

s

]
θi, γi =


1, ri > β

0, ri < α
ri−α
β−α , otherwise,

(5)

where, α and β are hyperparameters. When ri < α, we apply linear interpolation proportionally
based on s. When ri > β, no interpolation is applied. For cases between α and β, we apply a
linear interpolation transition. We provide detailed derivations of context window extension method
in Appendix A.3. It is important to note that our modifications to YaRN are minimal, ensuring
simplicity and compatibility with various acceleration techniques, such as flash-attention (Dao et al.,
2022).

3.2 PROGRESSIVE POOLING

In this section, we discuss another factor that limits the performance of long video understanding:
memory constraints. Taking LLaVA-OneVision as an example, given a video V uniformly sampled
into N video frames, the visual encoder and multimodal projection module process these frames to
obtain the video sequence embeddings Fv ∈ RN×729×d. To reduce the number of visual tokens,
LLaVA-OneVision performs bilinear pooling with a stride of 2 on each video frame embedding,
which then serves as the input to the LLM decoder. However, even after bilinear pooling, a video
sequence of 256 frames generates 50,176 tokens.

Long sequences contribute to high memory consumption. Inference in LMMs can be divided into
two stages: prefill and decoding. During the prefill stage, all visual tokens are projected into a
high-dimensional space and stored as KVCache for efficient decoding later. This incurs substantial
memory costs. Even with bilinear pooling, processing 256 frames generates 50,176 tokens, requiring
approximately 73 GB of GPU memory. This greatly limits the deployment of LMMs for long video
understanding.

To alleviate excessive memory consumption, we propose a progressive pooling strategy. As shown
in Figure 3, we first uniformly divide the video sequence embeddings Fv into multiple groups, with
a division stride defined as K. We assume that each group represents an event. Considering the
redundancy between consecutive frames in the same event, such as a static background, we retain
only the first frame of each group at a higher spatial resolution. The remaining frames within each
group are stored at a lower spatial resolution using a larger pooling stride. Specifically, the video
sequence embeddings Fv are divided into multiple groups, each containing K frames, resulting in a
total of M = N

K groups.:
{Fv,i}Ni=1 → {{Fv,w,j}Kj=1}Mw=1. (6)

5
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Table 1: Performance evaluation on VideoMME (Fu et al., 2024) benchmark. * indicates the results
of reproduction.

Methods Frames Short Medium Long Overall

Qwen-VL-Chat-7B (Bai et al., 2023) 4 46.9 38.7 37.8 41.1
VideoLLaVA-7B (Lin et al., 2023) 8 45.3 38.0 36.2 39.9
VideoChat2-Mistral-7B (Li et al., 2024b) 16 48.3 37.0 33.2 39.5
VideoLLaMA2-7B (Cheng et al., 2024) 16 56.0 45.4 42.1 47.9
LLaVA-NeXT-Qwen2-7B (Liu et al., 2024b) 32 58.0 47.0 43.4 49.5
LLaVA-OneVision-7B* (Li et al., 2024a) 32 69.3 55.1 49.7 58.2
Chat-UniVi-V1.5-7B (Jin et al., 2024) 64 45.7 40.3 35.8 40.6
ST-LLM-7B (Liu et al., 2024d) 64 45.7 36.8 31.3 37.9
LongVA-7B (Zhang et al., 2024) 128 61.1 50.4 46.2 52.6
LongVILA-8B (Xue et al., 2024) 256 61.8 49.7 39.7 50.5

Ours 256 72.7 58.2 52.9 61.3
512 71.9 58.7 51.3 60.6

In each group, the first frame Fv,w,1 is retained at high resolution:

F high-res
v,w,1 = Pool(Fv,w,1, stride = sh). (7)

The remaining frames are pooled at a lower resolution with a larger stride sl (sh<sl), resulting in:

{F low-res
v,w,j = Pool(Fv,w,j , stride = sl)}Kj=2. (8)

Finally, the processed frames are reassembled into a new video sequence embedding F new
v :

F new
v = {{F high-res

v,w,1 , F low-res
v,w,2 , . . . , F low-res

v,w,K}Mw=1}, (9)

where Pool(·, stride) represents the pooling operation with the specified stride.

The progressive pooling strategy significantly reduces the number of visual tokens while preserving
the integrity of spatial information.

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

We evaluate the long video understanding capabilities of our method on three key benchmarks:
VideoMME (Fu et al., 2024), MLVU (Zhou et al., 2024), and LongVideoBench (Wu et al., 2024).

VideoMME is a widely used benchmark for assessing the ability of LMMs to handle long videos
in real-world scenarios. It divides the test set into three subsets based on video length: short videos
(< 2 minutes), medium-length videos (4 to 15 minutes), and long videos (30 to 60 minutes), with
durations ranging from 11 seconds to 1 hour.

MLVU offers a diverse collection of video lengths, types, and evaluation tasks. It includes long
video understanding tasks (TR: Topic Reasoning, AR: Anomaly Recognition), single-detail long
video understanding tasks (NQA: Needle QA, ER: Ego Reasoning, PQA: Plot QA), and multi-detail
long video understanding tasks (AO: Action Order, AC: Action Count). The benchmark includes
videos of various types, such as movies, surveillance footage, egocentric videos, cartoons, and game
videos, with lengths ranging from 3 minutes to over 2 hours.

LongVideoBench focuses on long-span understanding, particularly on referential reasoning prob-
lems that depend on long-frame inputs and cannot be resolved using only a single or sparse frames. It
evaluates videos of varying lengths, including (8s, 15s], (15s, 60s], (180s, 600s], and (900s, 3600s].

4.2 IMPLEMENTATION DETAILS

To validate the effectiveness of our approach, we use the latest LMM, LLaVA-OneVision 7B, as
the backbone and baseline model. This model employs a classic multimodal encoder-decoder archi-
tecture, consisting of a visual encoder (SigLIP (Zhai et al., 2023)), an LLM decoder (Qwen2), and

6
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Table 2: The overall performances on MLVU (Zhou et al., 2024). Two input strategies are used
by the LMMs in evaluation: Uniform Sampling, which evenly samples N frames from the video;
Frame Rate Sampling (N fps), which samples N frames per second. † denotes proprietary models.

Methods Frames Holistic Single Detail Multi Detail M-Avg
TR AR NQA ER PQA AO AC

GPT-4o† (OpenAI, 2024) 0.5 fps 87.4 74.5 64.8 57.1 65.1 56.7 46.3 64.6
LLaMA-VID-7B (Li et al., 2023d) 1 fps 50.8 34.5 30.1 32.7 32.5 23.9 27.8 33.2
LLaVA-1.6-7B (Liu et al., 2024b) 16 60.6 41.0 43.1 38.4 41.0 25.5 25.7 39.3
InternVL-1.5-7B Chen et al. (2024b) 16 78.8 67.0 52.7 43.5 54.4 32.8 23.8 50.4
LLaVA-OneVision-7B* (Li et al., 2024a) 32 88.6 74.0 73.0 62.2 67.9 43.2 28.6 64.2
TimeChat-7B (Ren et al., 2024) 96 23.1 27.0 24.5 28.4 25.8 24.7 32.0 30.9
LongVA-7B (Zhang et al., 2024) 256 83.3 58.5 69.3 50.0 67.2 38.6 27.2 56.3
MovieChat-7B (Song et al., 2024) 2048 29.5 25.0 24.2 24.7 25.8 28.6 22.8 25.8

Ours 256 87.5 74.5 76.3 65.3 75.9 52.9 31.6 68.6
512 87.1 76.5 75.5 65.3 76.1 52.5 37.4 69.1

Table 3: Performance evaluation on LongVideoBench (Wu et al., 2024) benchmark.

Methods Frames Duration Group (s) Avg
(8, 15] (15, 60] (180, 600] (900, 3600]

LLaVA-1.5-13B (Liu et al., 2024a) 8 49.0 51.1 41.8 39.6 43.4
LLaVA-Next-Mistral-7B (Liu et al., 2024b) 8 53.4 57.2 46.9 42.1 49.1
VideoLLaVA-7B (Lin et al., 2023) 8 43.1 44.6 36.4 34.4 39.1
VideoChat2-7B (Li et al., 2024b) 8 49.3 49.3 39.0 37.5 39.3
LLaVA-Next-Video-34B (Liu et al., 2024b) 8 57.6 61.6 48.7 45.9 50.5
PLLaVA-34B (Xu et al., 2024) 8 60.1 66.8 50.8 49.1 53.2
LLaVA-OneVision-7B* (Li et al., 2024a) 32 68.8 70.4 54.6 48.1 56.0
LongVA-7B (Zhang et al., 2024) 256 57.4 60.4 47.3 44.7 49.7

Ours 256 68.8 69.2 56.1 51.2 57.5
512 66.1 67.4 58.5 52.1 58.0

a multimodal projection module (MLP). For each video frame, the visual encoder and multimodal
projection module encode the frame into video sequence embeddings Fv ∈ RN×729×d. Through
bilinear pooling with a stride of 2, this is reduced to Fv ∈ RN×196×d.

Following the default settings in YaRN, we set the hyperparameters α and β (in Section 3.1) to 1
and 32, respectively. Previous research (Peng et al., 2024; Chen et al., 2023b; Ding et al., 2024)
has shown that fine-tuning after interpolation enhances a model’s ability to interpret scaled RoPE
embeddings. Therefore, we compare the results of both tuning-free and fine-tuned approaches.
Specifically, we randomly sample 10K instances from the allava instruction dataset (Chen et al.,
2024a) and fine-tune the LLaVA-OneVision language decoder using LoRA (Hu et al., 2022), setting
lora r to 64 and lora α to 16. The learning rate is set to 1e − 5 with a batch size of 1. In our
experiments, unless otherwise stated, we use the tuning-free model to present our results. The
default parameters for the progressive pooling method are: division stride K = 4, high-resolution
pooling stride sh = 2, and low-resolution pooling stride sl = 8.

4.3 QUATITATIVE RESULTS

Results on VideoMME Table 1 presents the results on the VideoMME benchmark. Compared
to the baseline model, LLaVA-OneVision, our method shows consistent improvements across all
intervals for short, medium, and long videos. Notably, for long videos, the accuracy improved by
3.2%. In comparison to the latest long video understanding models, our approach continues to
achieve optimal performance. For instance, compared to LongVILA-8B, which was pre-trained on
long video-text pairs, our method demonstrates an improvement of 10.8%. Crucially, our method
achieves these gains without requiring any pre-training or fine-tuning on long video-text pairs.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Performance evaluation of different context window extension methods on the VideoMME.

Frames Short Medium Long Overall

LLaVA-OneVision-7B 256 64.9 53.3 50.4 56.2
LLaVA-OneVision-7B + YaRN 256 67.6 56.3 51.7 58.5
Ours (Tuning-free) w/o progressive pooling 256 71.6 59.1 52.2 61.0
Ours (Fine-tuning) w/o progressive pooling 256 71.9 60.2 53.2 61.8

Table 5: Ablation studies on the VideoMME benchmark, where all videos are uniformly sampled to
256 frames. Specifically, sh represents the high-resolution pooling stride for the first frame of each
group; sl indicates the low-resolution pooling stride for the remaining frames within each group;
and K denotes the grouping stride, which refers to the number of frames within each group.

(sh, sl),K Memory (GB) Short Medium Long Overall

(2, 2), 0 73 71.6 59.1 52.2 61.0
(4, 4), 0 37 70.8 59.0 51.2 60.3
(8, 8), 0 29 68.1 56.2 49.7 58.0
(2, 4), 4 45 72.4 58.3 51.3 60.7
(2, 8), 4 40 72.7 58.2 52.9 61.3
(2, 4), 8 41 70.1 57.6 50.8 59.5
(2, 8), 8 35 69.7 56.4 51.4 59.2

(2, 4), 16 40 68.6 57.4 51.4 59.1
(2, 8), 16 31 70.3 56.3 50.7 59.1

Results on MLVU and LongVideoBench MLVU and LongVideoBench are two benchmarks
specifically designed to evaluate long video understanding tasks. Table 2 presents the results on
MLVU, where our method significantly outperforms all comparison models, even surpassing GPT-
4o. Table 3 provides the results on LongVideoBench, where test samples are categorized into vari-
ous duration intervals to highlight different models’ performance in long video comprehension. Our
method shows a slight performance drop in the intervals (8, 15] and (15, 60] when sampling 512
frames compared to the baseline LLaVA-OneVision. This performance drop in shorter intervals can
be attributed to the fact that dense frame sampling results in excessively long input sequences for
shorter videos, which leads to attention distraction and degrades model performance. Using different
frame sampling strategies for videos of varying durations can alleviate this issue.

4.4 ABLATION STUDIES

To validate the effectiveness of the proposed module, we conducted experiments on VideoMME,
focusing on visual context window extension and progressive pooling strategies.

Visual Context Window Extension Table 4 presents the comparative results under the scenario of
uniformly sampling 256 frames, including direct extrapolation, YaRN interpolation, and our method.
It is noteworthy that all results in the table did not utilize the progressive pooling strategy. The results
indicate that using YaRN interpolation improves model performance, confirming the effectiveness
of positional interpolation. Our method, which applies interpolation on the visual context window,
achieves a significant performance enhancement compared to YaRN. Additionally, we fine-tuned the
model using 10K image-text pairs after interpolation, further improving model performance. This
aligns with the conclusions drawn from context window extension methods in LLMs.

Progressive Pooling Table 5 presents the comparative results of different pooling strategies and
progressive pooling parameters on VideoMME. It is important to note that all experiments in the
table utilized visual context window extension. The upper half of the table displays the results of
uniform pooling with pooling strides of 2 (the default pooling strategy of the baseline model), 4, and
8. It is evident that as the pooling stride increases, memory consumption decreases gradually, but
performance declines progressively. The lower half of the table shows the results of our proposed
progressive pooling strategy. We conducted experiments with varying pooling strides and grouping
strides, comparing performance under different parameters. The results indicate that the optimal
performance occurs at sh = 2, sl = 8, and K = 4. In this setting, compared to the baseline method
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34 seconds

…The scene transitions to an outdoor track and field stadium filled with spectators, where
athletes are preparing for their events. .... The javelin thrower is seen kneeling on the track,
celebrating their performance...

Describe this video.

LLaVA-OneVision-7B 32 frames 

Ours 256 frames 

... It shows a female athlete dressed in a red and black uniform with the word "GERMANY"
printed across her chest, indicating her nationality. She is seen running along the track with a
javelin in hand, preparing for her throw. ... The final segment of the video highlights the
athlete\'s victory celebration. She is shown holding the German flag, waving it with enthusiasm,
and interacting with photographers and officials....

LLaVA-OneVision-7B 256 frames (extrapolation)

The video begins with a close-up of the IAAF World Championships Moscow 2013 logo, followed
by a series of images showing an athlete in a red and black uniform holding a javelin. The athlete
is seen standing on a track field with a large stadium filled with spectators in the background.
The athlete is also shown celebrating, raising their arms and waving the flag of Germany….

Figure 4: Qualitative results from different methods demonstrate that our approach exhibits accurate
and detailed video captioning capabilities. Red indicates incorrect content, while blue represents the
corresponding correct description.

(with a uniform pooling stride of 2), our approach reduces memory usage by approximately 45%
while achieving superior performance. This is because shorter sequence lengths mitigate the issue
of attention distraction. Additionally, we found that the pooling stride has a smaller impact on the
model, while the grouping stride has a significant effect. This may be due to larger grouping strides
leading to greater intra-group scene variation, resulting in a loss of spatial information.

4.5 QUALITATIVE RESULTS

Figure 4 illustrates the qualitative results of our method in video captioning. It is evident that
LLaVA-OneVision-7B generates incorrect descriptions when the default input is set to 32 frames.
When directly extrapolated to 256 frames, the model appears to forget information from the middle
section of the video, only describing the beginning and the end. In contrast, our method generates
accurate and detailed descriptions for the input video when 256 frames are provided. Appendix A.4
provides the complete video descriptions.

4.6 CONCLUDING REMARKS

In this paper, we address the long video understanding issue from the perspective of context win-
dows, effectively avoiding the resource consumption associated with training from scratch. By
redefining the effective context window of LMMs into visual and language context windows, we
propose the visual context window extension. This approach allows LMMs trained on short videos
to be applied to long video understanding tasks without fine-tuning. Additionally, we introduce a
progressive pooling strategy to mitigate memory consumption issues caused by long sequences. In
a 256-frame setting, this strategy reduces memory usage by approximately 45% without introducing
any performance loss. We hope this work will advance research in long video understanding and
provide insights for the design of future long video understanding models.

9
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A APPENDIX

A.1 VISUAL NEEDLE-IN-A-HAYSTACK
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Figure 5: Visualization of the Needle in the Long Video Haystack Experiment, where green repre-
sents correct answers, while red indicates incorrect answers. Left: progressive pooling parameters
are set to sh = 2, sl = 8, K = 4. Right: progressive pooling parameters are set to sh = 2, sl = 4,
K = 4. Our method enables LMMs, pre-trained on short videos (32 frames), to be extended to 1024
frames without requiring fine-tuning.

As shown in Figure 5, we utilize V-NIAH (Zhang et al., 2024) to measure the model’s long-context
capabilities. Probes are inserted at different positions within the video, and a question-answering
task is conducted; a response is considered correct only when it matches the answer (indicated in
green), otherwise, it is deemed incorrect (indicated in red). It is evident that our method demonstrates
outstanding performance across different progressive pooling parameters, effectively extending the
model’s visual context window to 1024 frames without requiring fine-tuning.

A.2 ROTARY POSITION EMBEDDINGS

Rotational Position Embeddings (RoPE) (Su et al., 2024) introduce a rotation matrix and mean-
while incorporates the explicit relative position dependency in self-attention formulation, enabling
the model to capture the relative positional relationships between words, thereby enhancing its per-
formance in processing sequential data.

Given a sequence S = {wi}Ni=1, where N represents the sequence length and wi represents the
i-th word. Its corresponding word embeddings are E = {xi}Ni=1, where xi is the embedding of the
i-th word. Before calculating attention, it is necessary to incorporate positional information into the
word embeddings and transform them into the query vectors and the key vectors.

qm = fq (xm,m) ∈ Rd, kn = fk (xn, n) ∈ Rd, (10)

where m and n represent different positions, respectively. Next, attention is computed using the
query and key vectors.

softmax

(
qT
mkn√
d

)
, (11)

where qm,kn are considered as column vectors so that qT
mkn is simply the Euclidean inner product.

To incorporate relative positional information, we express the inner product between the query and
key vectors as a function, denoted as g(·).

⟨fq (xm,m) , fk (xn, n)⟩ = g (xm,xn,m− n) . (12)

For the function g(·), it is evident that the inner product encodes positional information only in a
relative form (i.e., m− n).

The next goal is to find an appropriate function g(·) that conforms to the aforementioned relation.
Specifically, we first represent the query and key vectors in complex form. The representations of
the query and key vectors are as follows:

fq (xm,m) = eimΘ (Wqxm) , fk (xn, n) = einΘ (Wkxn) . (13)
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For the sake of clarity and ease of understanding in the subsequent formulas, where i2 = −1 is
the imaginary unit and Θ = diag

(
θj = b−2j/d, j ∈ [1, 2, . . . , d/2]

)
is the diagonal matrix. RoPE

associates each (complex-valued) hidden neuron with a distinct frequency θj . The benefit of this
approach is that the dot product between the query and key vectors depends only on the relative
distance m− n. This process is represented by the following formula:

⟨fq (xm,m) , fk (xn, n)⟩
=
〈
eimΘ (Wqxm) , einΘ (Wkxn)

〉
=Re

(
eiΘ(m−n)x∗

mW∗
qWkxn

)
=g (xm,xn,m− n) ,

(14)

where Re(·) is the real part of a complex number and (·)∗ represents the conjugate complex number
of (·).
According to Euler’s formula,

ei(m−n)Θ = cos((m− n)Θ) + i sin((m− n)Θ). (15)

In real coordinates, RoPE can be expressed using the following function:

fq (xm,m) = Rm (Wqxm) =
cosmθ1 − sinmθ1 · · · 0 0
sinmθ1 cosmθ1 · · · 0 0

0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · cosmθd/2 − sinmθd/2
0 0 · · · sinmθd/2 cosmθd/2

Wqxm.
(16)

Therefore, when the word embedding xm at position m is multiplied by matrix Rm, and the word
embedding xn at position n is also multiplied by matrix Rn, resulting in the transformed query and
key vectors, the attention weights will inherently include the relative positional information. This is
because the following identity holds:

(RmWqxm)
⊤
(RnWkxn)

= (Wqxm)R⊤
mRn(Wkxn)

= (Wqxm)⊤Rn−m(Wkxn).

(17)

A.3 VISUAL CONTEXT WINDOW EXTENSION

In this section, we provide a more detailed derivation of the visual context window extension based
on YaRN.

Unlike the context window extension methods used in LLMs, we first define the visual context
window (Lv

train), and the extended context window (Lv
test), with the scale factor s representing the

ratio between the two:
s =

Lv
test

Lv
train

. (18)

Based on the derivation of RoPE, the inner product between the query and key vectors can be ex-
pressed in complex form as follows:

(Rmq)
⊤
(Rnk) = Re

d/2−1∑
i=0

q[2i:2i+1]k
∗
[2i:2i+1]e

i(m−n)θi

 (19)

where q = Wqxm and k = Wkxn. According to Euler’s formula, ei(m−n)θi can be represented as
a point on the unit circle, where m− n controls the angle on the circle. Therefore, we define λd as
the wavelength of the RoPE embedding in the d-th hidden dimension.

λi =
2π

θi
= 2πb

2i
d . (20)
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The wavelength describes the token length required for the RoPE embedding to complete a full
rotation (2π) in dimension d.

Next, we define r, which represents the ratio between the original context size and the wavelength.

r(i) =
L

λi
. (21)

This ratio determines which positional dimensions require interpolation. Following YaRN, we in-
troduces two hyperparameters to control the boundaries of the interpolation strategy.

θnew
i =

[
γi + (1− γi)

1

s

]
θi, γi =


1, ri > β

0, ri < α
ri−α
β−α , otherwise,

(22)

When ri < α, linear interpolation is applied proportionally based on s. When ri > β, no inter-
polation is applied. Otherwise, a linear interpolation transition is applied between the above two
cases.

A.4 LONG VIDEO CAPTION

Figure 6 presents the complete generation of qualitative results for video captioning. It is evident
that the descriptions produced by our method are more accurate.

A.5 MORE VISUALIZATION

Figure 7 illustrates the visualization of visual and language embeddings from different layers of
the LLM decoder after applying the visual context window extension. It can be observed that even
after the application of the context window extension, the visual and language embeddings still
exhibit two clustering centers. This is because the visual context window extension strategy is not
designed to address the differences between modalities. Instead, its primary goal is to scale the
positional embeddings of visual tokens to fit within the effective visual context window, enabling
the model to process longer visual sequences without additional training. By doing so, the method
cost-effectively adapts LMM trained on short videos to handle long video sequences.
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The video begins with a close-up of the IAAF World Championships Moscow 2013 logo, featuring a
dynamic athlete in mid-air against a vibrant background of red, orange, and white colors. The scene
transitions to an outdoor track and field stadium filled with spectators, where athletes are
preparing for their events. A javelin thrower, dressed in a red and black uniform with yellow shoes,
is seen holding a javelin and running towards the throwing area. The background includes various
sponsor banners such as 'SEIKO,' 'Canon,' and 'adidas.' The javelin thrower then releases the
javelin into the air, with the camera capturing the motion from different angles.\n\nThe video
continues with a close-up of the javelin thrower in mid-action, running on the track with the
javelin in hand. The background shows the crowded stadium with spectators and officials. The scene
then shifts to a wider view of the stadium, revealing the javelin thrower in the foreground with the
crowd in the background. The javelin thrower is seen releasing the javelin into the air, with the
camera capturing the motion from different angles. The video concludes with the javelin thrower
kneeling on the track, celebrating their performance.\n\nThe final segment of the video features a
close-up of the javelin thrower in mid-action, running on the track with the javelin in hand. The
background shows the crowded stadium with spectators and officials. The javelin thrower is seen
releasing the javelin into the air, with the camera capturing the motion from different angles. The
scene then shifts to a wider view of the stadium, revealing the javelin thrower in the foreground
with the crowd in the background. The javelin thrower is seen kneeling on the track, celebrating
their performance. The video concludes with the javelin thrower standing up, holding a German flag,
and waving it triumphantly. The background includes the stadium's seating and various event banners.
The text 'IAAF JAVELIN THROW WOMEN' and 'Moscow 2013' appears at the bottom of the screen, along
with the athlete's name and results.

LLaVA-OneVision-7B 32 frames 

Ours 256 frames 

The video begins with a series of images displaying the logo for the IAAF World Championships Moscow
2013. The logo features a stylized figure in motion, set against a backdrop of vibrant colors
including red, white, and blue, symbolizing speed and athleticism.\n\nFollowing this, the video
transitions to footage from an athletics event, specifically focusing on javelin throw. It shows a
female athlete dressed in a red and black uniform with the word "GERMANY" printed across her chest,
indicating her nationality. She is seen running along the track with a javelin in hand, preparing for
her throw. The background reveals a crowded stadium filled with spectators, and various
advertisements such as "SEIKO," "Canon," and "adidas" are visible around the track area.\n\nThe
athlete then executes her javelin throw, running up to gain momentum before releasing the javelin
into the air. The camera captures the javelin\'s flight path, showing it soaring through the air
towards the field. The stadium is bustling with activity, and officials can be seen observing the
event closely.\n\nThe video continues to show the athlete in mid-action, having just released the
javelin. The camera follows the javelin\'s trajectory, which is captured in slow motion, emphasizing
its speed and distance. The athlete is seen celebrating her throw, raising her arms in triumph, and
the crowd in the stands appears engaged and excited.\n\nThe final segment of the video highlights the
athlete\'s victory celebration. She is shown holding the German flag, waving it with enthusiasm, and
interacting with photographers and officials. The scoreboard overlay indicates that she has won the
event with a score of 96.58 meters, marked as "GOLD." The athlete is visibly elated, smiling broadly
and embracing the moment of triumph. The background remains consistent with the previous scenes,
featuring the large stadium filled with spectators and the event\'s branding prominently
displayed.\n\nIn summary, the video showcases the IAAF World Championships Moscow 2013, focusing on
the javelin throw event. It captures the athlete\'s preparation, execution, and celebration of her
winning throw, highlighting the excitement and competitive spirit of the championship.

LLaVA-OneVision-7B 256 frames (extrapolation)

The video begins with a close-up of the IAAF World Championships Moscow 2013 logo, followed by a
series of images showing an athlete in a red and black uniform holding a javelin. The athlete is seen
standing on a track field with a large stadium filled with spectators in the background. The athlete
is also shown celebrating, raising their arms and waving the flag of Germany.\n\nThe video then
transitions to a wider shot of the stadium, showing the athlete walking across the field while still
holding the flag. The stadium is filled with spectators, and there are banners and flags visible in
the background. The athlete continues to celebrate, waving the flag and smiling.\n\nThe video
concludes with a close-up of the athlete walking across the field, still holding the flag. The athlete
is wearing a red and black uniform with the name "TOYOTA" and the number "431" on it. The athlete is
also wearing black shorts and yellow shoes. The athlete is walking towards the camera, waving the flag
and smiling. The background shows the stadium filled with spectators, and there are banners and flags
visible in the background. The athlete continues to celebrate, waving the flag and smiling.

Describe this video.

Figure 6: An example of generating long video captions using different methods. Compared to 32-
frame and 256-frame extrapolations, our approach exhibits greater detail and accuracy.
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0-th Layer 10-th Layer 27-th Layer

Figure 7: Top: Visualization of visual and language embeddings from different layers of LLM
decoder without the visual context window extension strategy; Down: Visualization of visual and
language embeddings from different layers of LLM decoder with the visual context window exten-
sion strategy.
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