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Abstract

As we scale to more massive machine learning models, the frequent synchroniza-
tion demands inherent in data-parallel approaches create significant slowdowns,
posing a critical challenge to further scaling. Recent work [11}124]] develops and
analyzes an approach (DiLoCo) that relaxes synchronization demands via periodic
synchronization. However, these works do not carefully analyze how DiLoCo’s
behavior changes with model size. In this work, we study the scaling law behavior
of DiLoCo when training LLMs under a fixed compute budget. We focus on how
algorithmic factors, including number of model replicas, hyperparameters, and
token budget affect training in ways that can be accurately predicted via scaling
laws. We find that DiLoCo scales both predictably and robustly with model size.
When well-tuned, DiLoCo scales better than data-parallel training with model size,
and can outperform data-parallel training even at small model sizes. Our results
showcase a more general set of benefits of DiL.oCo than previously documented,
including increased optimal batch sizes, improved downstream generalization with
scale, and improved evaluation loss for a fixed token budget.

1 Introduction

Large language models (LLMs) are typically trained via large-batch distributed data-parallel methods.
However, bandwidth and communication constraints can become bottlenecks at larger scales due
to frequent synchronizations, posing a critical challenge to further scaling. As a remedy, Douillard
et al. [L1] propose DiLoCo (Distributed Low-Communication), a generalization of algorithms like
Local SGD [34,154]] and FedAvg [36]], which enables training of LLMs in parallel across “islands” of
compute (such as datacenters connected via low-bandwidth networks) by performing parallel training
of models with only periodic synchronization. While empirically successful, DiLoCo exists within a
broader context of work on communication-efficient LLM training methods [58, 143}, 156} 13 24} 30]].
Due to the breadth of related work, we defer a more thorough overview to Section

Unlike communication-reduction methods such as quantization and sparsification, DiLoCo funda-
mentally alters training dynamics [49]. While Douillard et al. [11] and Jaghouar et al. [24] show
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that DiLoCo yields comparable evaluation metrics to data-parallel training at moderate model scales,
it is unclear how data-parallel training and DiLoCo compare at larger model scales. Moreover,
DiLoCo has extra hyperparameters not present in data-parallel training that may be computationally
prohibitive to tune at large enough scales. This points to the need for DiLoCo scaling laws. We focus
on two specific scaling laws: (1) predictions for evaluation loss as a function of model size and (2)
predictions for optimal hyperparameter choices for a given model size (which can obviate the need to
perform expensive hyperparameter tuning). In both cases, we are explicitly interested in how these
compare to analogous scaling laws for data-parallel training.

Throughout we consider the task of pre-training a model of size /N on D tokens. We are concerned
with predicting, for both data-parallel training and DiLoCo training, and as a function of N: (1) the
evaluation loss L after training, computed on a held-out set, and (2) optimal hyperparameter settings.
One path towards scaling laws for DiLoCo would be to view them as modifications of scaling laws
for data-parallel training [26} 20]. However, the facets of DiLoCo that are key to its communication-
efficiency also make such an approach infeasible. First, DiLoCo operates by training M/ models
in parallel, with periodic synchronization every H steps. The values of M and H depend on the
ecosystem of compute available (such as bandwidth across datacenters), and are absent in scaling
laws for data-parallel training. Second, DiLoCo uses a bi-level optimization framework; each model
replica performs data-parallel training, but upon synchronization we apply an “outer” optimization
step [L1]. This means that DiLoCo has “outer” hyperparameters not present in Data-Parallel training
that cannot be inferred from data-parallel hyperparameter scaling laws.

Contributions. We develop scaling laws for data-parallel training and DiLoCo from the ground up.
Fixing the number of tokens D to be the “Chinchilla-optimal” number of tokens [20], we model
the evaluation loss and optimal hyperparameters as functions of model size N and (for DiLoCo)
the number of replicas M. E] We empirically estimate these functions using the final evaluation loss
attained by models trained with both algorithms for varying hyperparameters (including learning rate,
batch size, and “outer” learning rate for DiLoCo), model sizes (varying N over 9 model sizes ranging
from 35 million to 2.4 billion parameters), and numbers of DiL.oCo replicas M.

Our scaling laws predict that in many settings, the more communication-efficient DiLoCo algorithm
actually yields better evaluation loss than data-parallel training for the same token budget. Utilizing
our scaling laws to predict the hyperparameters for DiLoCo, we tested these predictions when training
models with 4 billion and 10 billion parameters. The scaling laws proved accurate, with DiLoCo
with M = 2 replicas outperforming data-parallel training as predicted, even while reducing total
communication by a factor of over 100.

We show that DiLLoCo incurs a variety of benefits in comparison to data-parallel training, including
(1) increased optimal batch size, allowing for greater horizontal scalability, (2) greater reductions
in evaluation loss as model size increases, and (3) significantly less wall-clock training time. One
potentially surprising finding: DiLoCo improves training even when communication is not a bottle-
neck. DiLoCo with M = 1 (an enhanced version of the Lookahead optimizer [62]) does not reduce
communication but achieves lower evaluation loss at all model scales. It is also more robust to larger
batch sizes, greatly reducing wall-clock training time.

2 Preliminaries

Table I: General Notation Table 2: Algorithm-Specific Notation

Symbol | Meaning

Symbol | Data-Parallel DiLoCo
]ff Mf/?:(lle\;/:g?ts y Learning rate Inner learning rate
I Evaluation loss n - Outer learning rate
T Trainine steps B Batch size Global batch size
D Token l%u dglé ) M - DiLoCo replicas
C Total FLOPs H - Synchronization cadence

'While we fix H = 30 for these scaling laws, we provide extensive ablations on the role of H in Section



Throughout, we let # denote the model parameters. We let #(*) denote the model at step ¢. Since
DiLoCo operates on M parallel model parameters, we will use subscript notation 6,,, to denote the
m-th model. When there is no subscript, the parameters are assumed to be replicated across all
DiLoCo replicas. For a batch of data x, we let f(6, z) denote the loss of 8 on the batch of data.

DiLoCo [L1] is a technique designed for training models in the presence of communication constraints.
It is motivated by the training of large models across devices that are not all connected by low-latency
bandwidth. To avoid incurring latency costs, DiLoCo trains M models in parallel (ideally, training
each one with co-located compute connected via low latency bandwidth), only synchronizing the
models every H steps. This is similar to the FedOpt algorithm used in federated learning [47], but
with the important difference that the replicas maintain their inner optimizer state across rounds.

DiLoCo applies a bi-level optimization framework across multiple models: each DiLoCo replica
has its own model 9%), and there is a global model 6(*). At every step, each replica takes an inner
optimization step (InnerOpt). Every H steps, each replica computes the AS,? = gUt—H) _ (97(,?, the
difference between the replica’s current model and the most recent global model. We average these
differences across replicas, resulting in A®) which we refer to as an outer gradient. We treat this as a
gradient estimate of the outer modeﬂ and an outer optimization step (OuterOpt) to the outer model
6(t—H) This yields an updated outer model #(*) which is broadcast to all replicas and set as their
current inner model. We give full pseudo-code for DiLoCo in Algorithm [I]

Throughout, we perform model training via dis-

tributed data-parallel training (Data-Parallel), Algorithm 1 DiLoCo
and DiLoCo. In Data-Parallel, at each step : - -
we distribute a batch of B tokens across work- Require: Loss function [0, ), batch size B,
ers. We then compute a batch gradient and number of replicas M, synchronization ca-
perform optimization with a learning rate of dence H, initial model weights 6%, data
~. In DiLoCo, at each step ¢, we take a global sk}ards {D}, e ;Du}

batch of tokens of size B consisting of B/S Require: Optimizers InnerOpt and OuterOpt
sequences each of length S. We partition the 1: Vm, 9,(2) Q)

B/ S sequences across the M DiLoCo replicas, 2: for step t=1...T do

so each replica receives B/SM sequences, each  3: parallel for replica m=1... M do
of length S. Thus, the global token batch size 4, Receive a batch ) ~ D,, of size
is B, but each DiLoCo replica uses a local to- B / M
ken batch size B/M. As in Data-Parallel, each . ) f(er(tq) x(t)>
replica computes a batch gradient and applies ’ g’(’t”) 0/ \Ym i’ ti”l) ®
an inner optimization step with learning rate  © Om’ < InnerOpt(6m ', gm’)
of . Unlike Data-Parallel, DiLoCo does outer 7: end parallel for
optimization (on outer-gradients computed in .
parameter space) every H steps with learning ~ 8: if ¢ m?td H = 0 then
9: A =1 gl
rate 7). ?Z) AP
When comparing Data-Parallel and DiLoCo, we 10: At a1 2= A(;'i 0 A
use the same model size N and token budget 11 6(") < OuterOpt (6, A1)
D. When computing evaluation loss L on some  12: Vm, 9,(,? oM

held-out set, for Data-Parallel we use the current
model, and for DiLoCo we use the most recent global model. We summarize algorithm-independent
notation in Table [I]and algorithm-specific notation in Table 2] An important comparison is Data-
Parallel versus DiLoCo with M = 1. While similar, they are not identical as DiLoCo with M =1
uses an outer optimizer step with optimizer OuterOpt, which is often set to SGD with Nesterov
momentum [/1 l]EI

3 Experimental Methodology

Model architecture. We use a Chinchilla-style decoder-only transformer [20]]. As suggested by
Wortsman et al. [60] and Jaghouar et al. [24], we use QK-LayerNorm to reduce sensitivity to learning

?Note that A® is generally not a gradient of any function, as it can evince non-conservative dynamics [
3This is similar in spirit to the fast- and slow-momentum steps in AAEMAMix [41]}, but yields different
training dynamics since it uses a gradient estimate computed by linearizing across multiple training steps.



Table 3: Model details, including size, number of layers, layer dimensions, and token budgets. For
the larger models (4B and 10B) we use scaling laws to predict optimal hyperparameters, rather than
performing extensive hyperparameter tuning.

Model Transformer Attention QKV Hidden Token  Hyperparameter
Scale Layers Heads Dimension Dimension Budget Sweep
35M 6 8 512 2,048 70M v
90M 9 12 768 3,072 1.8B v
180M 12 16 1,024 4,096 3.6B v
330M 15 20 1,280 5,120 6.6B v
550M 18 24 1,536 6,144 11B v
1.3B 24 32 2,048 8,192 26B v
24B 30 40 2,560 10,240 48B v

4B 36 48 3,072 12,288 80B X
10B 48 64 4,096 16,384 200B X

rate. We also use z-loss regularization [8]. We use a vocabulary size of 32,768: 32,000 in-vocabulary
words, and extra tokens for BOS and out-of-vocabulary. We pack multiple sequences into each batch,
with a sequence length of 2,048 throughout. We pre-train a family of models, varying the number
of transformer layers, number of attention heads, QKV dimension, and feed-forward layer hidden
dimension (see Table[3). We use the Chinchilla-optimal token budget [20] unless otherwise noted.
We do extensive hyperparameter sweeps on all models except the two largest (4B and 10B).

Datasets. Unless otherwise noted, we use the train split of the C4 dataset for training [45]]. We report
evaluation metrics on C4’s held-out validation set. We compute downstream zero-shot evaluation
metrics on 3 tasks: HellaSwag [[61]], Piga [4], and Arc-Easy [9]]. In overtraining ablations (Section E]),
we use the Dolma dataset [53] instead of C4, to avoid doing more than a single epoch of training.

Optimizers. We use AdamW [32] as the optimizer for Data-Parallel and inner optimizer for
DiLoCo, with 3; = 0.9, 8 = 0.99. Following [59], we use a weight decay parameter of A\ = 7"~}
where T is the number of training steps. We do 1000 steps of warmup followed by cosine learning rate
decay to 5% of the peak learning rate. We clip (inner) gradients to a norm of 1. We do not clip outer
gradients. For DiLoCo, we use SGD with Nesterov momentum [55]] as the outer optimizer, using a
momentum of 0.9 and constant outer learning rate. Unless otherwise specified, we set H = 30.

Implementation. We use a modified version of NanoDO [31]] that uses DrJAX [49] to parallelize
training steps across replicas. We use bfloat16 representation of model weights and gradients.

Idealized wall-clock time. For each experiment, we compute an idealized end-to-end wall-clock
time for training. Our model assumes that we are training a model across multiple datacenters. Within
a datacenter, we have a high-bandwidth network. Across datacenters, we have a high-, medium-, or
low-bandwidth network. For details on the idealized wall-clock time, see Section [B}

Scaling law experiments. We perform comprehensive hyperparameter sweeps for Data-Parallel
and DiLoCo on models ranging from 35M to 2.4B We sweep over the learning rate -y using integer
powers of 1/2 and batch size B using powers of 2. For DiLoCo, we train using M = 1,2, 4, 8 and
sweep the outer learning rate n over {0.2,0.4,0.6,0.8,1.0}. We sweep (inner) learning rate and
batch size as needed until the minimum loss value is obtained on an interior point. Using this data,
we derive scaling laws to predict evaluation loss and optimal hyperparameters for larger models. We
use the predicted hyperparameters to train models with 4B and 10B parameters, in order to validate
the scaling laws empirically.

4 Empirical Findings

Before discussing our process for fitting the specific scaling laws, we talk about the empirical results
and four critical findings that are worth highlighting independently.
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Figure 1: We compare Data-Parallel to DiL.oCo for varying model sizes N. For all M, DiLoCo
improves monotonically with respect to Data-Parallel as NV increases.

Finding 1: DiLoCo’s evaluation loss improves relative to Data-Parallel as NV increases. We
give the evaluation loss achieved by Data-Parallel and DiLoCo for each model size N, along with
percentage differences relative to Data-Parallel, in Figure [T} We see that for all values of M, the
percentage difference strictly decreases with V. At N =2.4B, DiLoCo with M = 1 or 2 performs
better than Data-Parallel. We validate this by training 4B and 10B models with hyperparameters set
via our scaling laws. The results are in Table[d] We see that at 4B and 10B scales, DiLoCo with
M = 1,2 continue to do better than Data-Parallel. We discuss the scaling laws in detail in Section [6]

Table 4: Evaluation results on 4B and 10B models, using hyperparameters predicted by scaling laws.
We indicate settings where DiL.oCo reaches lower loss than Data-Parallel in bold.

Algorithm Loss
4B 10B

Data-Parallel 2.224 2.090
DiLoCo, M =1 2.219 (-0.22%) 2.086 (-0.19%)
DiLoCo, M =2 2.220 (-0.18%) 2.086 (-0.19%)
DiLoCo, M =4 2.230 (+0.18%) 2.096 (+0.29%)

Finding 2: DiLoCo with )M/ = 1 attains lower evaluation loss than Data-Parallel across model
scales. DiLoCo with M = 1 also achieves higher downstream zero-shot accuracy, as we show in
Figure 2] These plots also show that DiLoCo with M = 1 also exhibits greater stability with respect
to batch size; doubling or quadrupling the batch size greatly reduced performance of Data-Parallel,
but had little effect on DiLoCo, M = 1, as depicted in Figure[2]

Finding 3: DiLoCo increases optimal batch size. We plot evaluation loss as a function of batch
size in Figure 3] Optimal batch size increases when using DiLoCo, and subsequently increases
with M. As batch size increases, Data-Parallel becomes worse than DiLoCo with M = 2,4, and
eventually, M = 8. We show that the same occurs for downstream tasks in the appendix (see
Figure [I0). This means that DiLoCo exhibits more horizontal scalability, reducing training time via
resource parallelization in addition to reducing communication. To show this, we plot an idealized
wall-clock time when training under networks of varying bandwidth in Figure 4| DiLoCo’s tolerance
for larger batch sizes allows it to achieve comparable loss to Data-Parallel significantly faster.

Finding 4: Optimal outer learning rate is constant with V. While optimal inner learning rate
varies with model size N, the optimal outer learning rate n for DiLoCo is independent of /N and
depends only on M. As shown in Figure 5] for sufficiently large models (N > 335M), the best )
for each M is constant. Larger values of M seem to necessitate larger 7. This is consistent with
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Figure 2: Evaluation loss and downstream accuracy of Data-Parallel and DiLoCo with M = 1 for
varying model and global batch sizes (measured in tokens).
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Figure 3: Evaluation loss of Data-Parallel and DiLoCo as a function of global batch size (in tokens).
We see similar results for other model sizes, but omit for conciseness.

prior findings that outer learning rate should increase as a function of number of clients in federated
learning settings [6].

5 Ablations
Synchronization cadence. Our experiments above all use a synchronization cadence H of 30. We

perform an ablation over H for varying M and model sizes IN. For each setting, we take the optimal
inner learning rate and global batch size from above, and sweep H over {1, 5, 10, 30, 100, 300} and
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Figure 4: Idealized wall-clock time (see Section |B)) when training with Data-Parallel and DiLoCo
across compute nodes connected via high-, medium-, and low-bandwidth networks, for varying model
sizes. For models up to 2.4B, we also vary global batch size. For 4B and 10B models, we use the

batch size predicted by scaling laws (see Section @
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Figure 6: Optimal outer learning rate 7 as a function of synchronization cadence H and model size
N. The optimal 7 increases with H and M (left), but is independent of model size N (right).

n over {0.05,0.1,0.2,0.4,0.6,0.8,1.0}. We first study whether the observation in SectionEl, that
should be tuned independently of IV, holds for other values of H. We give results in the affirmative
in Figure[6] We see that across model scales, the optimal learning rate is essentially only a function
of the number of replicas M and the synchronization cadence H, and is essentially independent of
model size N. There is some slight variation, though this is likely due to not re-tuning the inner
learning rate. Moreover, our results actually show a potentially counter-intuitive phenomenon: The
optimal outer learning rate increases with H, even though the outer gradients increase in size as H
increases. We present additional analyses of synchronization cadence, including how H impacts
evaluation loss and compute utilization, in Section[E.T}

Overtraining. Above, we used the Chinchilla-optimal amount of tokens for each model size [20].
It is often beneficial to perform overtraining, using more tokens than that [17]. We conduct ablations
on various overtraining multipliers. Given an overtraining multiplier ¢ > 1, we train on D = 20N (
tokens, so that ( = 1 corresponds to the Chinchilla-optimal number of tokens. Our results are in
Figure[7] Qualitatively, the scaling remains essentially unchanged as we do more overtraining. We
did not re-tune any hyperparameter in these experiments. For each model size and algorithm, we
simply took the best-performing hyperparameters from our Chinchilla-optimal experiments on C4.
This means that the consistency of DiLoCo as we overtrain held despite the fact that for M > 1, we
used larger batch sizes than Data-Parallel. We shows this in detail in Section[E2]
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6 Scaling Laws

We now discuss the process used to fit scaling laws to our empirical results. For each algorithm (Data-
Parallel or DiLoCo with M € {1,2,4,8}) we ran extensive hyperparameter sweeps on models of
size N up to 2.4B. To fit a scaling law for loss L as a function of IV, we pick the best hyperparameters
for each N, and fit a power law to L(N) ~ AN<“. For DiLoCo, we fit two types of scaling
laws: independent power law for each value of M and joint fits where we fit a single scaling law
L(N, M) ~ AN“M?. We also fit power laws, both individual and joint, to the optimal learning rate
~ and batch size B. Due to a lack of space, we give the parameters of the power laws fit from our
data in Section[F] Here we overview some of the important findings derived from these scaling laws.

Interpolation. First, we measured whether individual or joint fit scaling laws interpolated to our
data in DiLoCo better. We do this via leave-one-out validation. We fit scaling laws for L, v, and B,
but only using data up to NV = 1.3B parameters, leaving out our data on N = 2.4B parameters. We
then use the scaling law to predict the optimal value for L, y, and B at N = 2.4B parameters, across
different values of M. We measure the residual res(y, §) = |log(y) — log(y)| between our prediction
7 and the actual y, and average them across M. The results are in Table[5] We see that the joint fit
matches independent for L and B, but does better at predicting ~.

Table 5: Residuals for scaling law predictions at /N = 2.4B and varying M. We compare independent
and joint scaling laws in predicting loss L, inner learning rate v, and global batch size B. For the
average residuals, we highlight which of independent or joint achieved a lower residual.

Fit | L | ~ | B

—1 Independent | 0.011 0.35 | 0.00088
- Joint 0.019 | 0.14 0.19
—9 Independent | 0.0099 | 0.18 0.44
o Joint 0.013 | 0.29 0.28
—4 Independent | 0.012 | 0.051 0.25
o Joint 0.0082 | 0.086 0.11
_3 Independent | 0.014 | 0.62 0.076
o Joint 0.0076 | 0.23 0.19
Independent | 0.012 | 0.30 0.19
Average over M iy | 0,012 | 019 | 019

Extrapolation. Next, we use the scaling laws for hyperparameters to predict optimal hyperparame-
ters for N = 4B and 10B, for Data-Parallel and DiLoCo with M € {1,2,4}. We train using those



hyperparameters, and measure how well our scaling laws extrapolated. We compare the evaluation
loss of these models in Table[6] We also show how well these aligned with our actual scaling laws for
loss in Figure[§] Our extrapolation reveals a few key points. First, the trends discussed in Section ]
continue to hold at larger model scales, where DiLLoCo with M = 1, 2 does better than Data-Parallel.
Second, as with our interpolation experiments, joint-fit power laws extrapolate better for DiLoCo.

Table 6: Evaluation results on 4B and 10B models, using hyperparameters predicted by individual
and joint scaling laws. We highlight DiLoCo evaluation results that were better (ie. lower) than
Data-Parallel. We see that while DiLoCo with M = 2 does better than Data-Parallel with either
independent or joint fit rules, DiLoCo M = 1 only does better when using joint fit.

Loss
4B 10B

Data-Parallel Independent 2.224 2.090
Independent 2.229 2.103

Algorithm Fit Method

DiLoCo, M =1 Joint 2.219  2.086

. _ . Independent 2.218 2.083
DiLoCo, M = 2 Joint 2.220 2.086
DiLoCo, M = 4 [ndependent 2.2322.098

Joint 2.230 2.096

Data Parallel DiLoCo, M=1 DiLoCo, M=2 DiLoCo, M=4
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Figure 8: Scaling laws for Data-Parallel and DiL.oCo. Pictured are both the loss values to form the
scaling law (by training models up to a scale of 2.4B) and loss values attained on larger models (4B
and 10B). While we present the individual-fit scaling laws for simplicity (and the ability to visualize
Data-Parallel), the joint fit also predicts loss similarly well.

Other results. Due to a lack of space, we relegate other findings of our scaling laws to Section [F]
There we discuss the methodology in more detail, as well as the actual parameters of the power laws.
We also discuss fitting other functional forms to the scaling laws, beyond simple power laws.

7 Discussion and Limitations

Our results above all show that like Data-Parallel, DiLoCo scales predictably with model size in ways
that make it simpler to tune hyperparameters and train models at extremely large scales. Moreover,
DiLoCo can offer significant benefits over Data-Parallel, including superior evaluation loss when
using a single model replica, and increased optimal batch size for any number of model replicas.
These benefits are robust to model scale, overtraining amount, and synchronization frequency.

While promising, there are clear limitations and directions for future exploration. First, while we have
done our best to include downstream evaluations on our models (Section D]) careful evaluation across
domains and downstream tasks is important for validating scaling behavior. Moreover, there are a
wide variety of datasets used for pre-training. While we have incorporated two widely used datasets
of this kind in our analysis, we have not validated robustness across datasets. Second, like Hoffmann
et al. [20], we use dense transformer architectures of varying sizes, and have not validated these results
on alternative architectures (such as Mixture-of-Experts) or in other domains, notably multi-modal
settings. Third, we use an idealized wall-clock model (Section[B), leaving to future work a thorough
analysis of runtime in practical systems, and how it varies according to the type of compute. Last,



while we have attempted to be comprehensive in analyzing the core DiLoCo algorithm, our work
does not encompass various related methods, and does not constitute a comprehensive algorithmic
benchmark. While we expect our findings transfer to related methods, explicit verification of this is
left to future work.
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A Related Work

Distributed training of LLMs. Due to their increasingly large sizes, the advancement of language
models has necessitated advancements in distributed training methods. One vein of work uses
data-parallel training, and attempts to shard its constituent computations across accelerators in
efficient ways. This includes advancements in things like distributed data parallelism [52, 28], ZeRO
parallelism [46, 48], fully-sharded data parallelism [[15, |63], and pipeline parallelism [44] 22, [39]].
Conceptual models of the impact of batch size on training time [35] aid in making the most effective
trade-offs between training time and compute cost when using data-parallel training methods.

As scale continues to increase, the need to all-reduce gradients between data-parallel replicas becomes
a bottleneck in training, causing accelerators to ‘wait’ on this allreduce for an unacceptably long time.
This observation has motivated extensive work in pipeline parallelism and scheduling, communicating
activations rather than gradients. An alternative line of work keeps the basic data processing pattern
of data parallelism while directly minimizing communication requirements.

Three broad families of algorithms exist in that space: (1) sparse updates (including CocktailSGD
(58], PowerSGD [56]], DeMo [43]], and Dion [11]), (2) fast asynchronous updates (including Hogwild
[40], WASH [16], and Sparta [3]), and (3) infrequent updates (including LocalSGD [54], FedOpt
[47], DiLoCo [[L1], and PALSGD [38]]). These are extremely active areas of work, and we do not
attempt to give a comprehensive survey of them all simultaneously. We instead defer the interested
reader to a survey of decentralized LLM training [10].

In this work, we focus on the third category. Douillard et al. [11] showed that we can reduce
communication costs in LLM training significantly by training multiple models independently with
infrequent synchronization. Their method, DiLoCo, massively reduces communication overhead
when training LLMs with a moderate numbers of model replicas. It has also shown great promise in
training LLMs up to 10 billion parameters [24}[23]]. This work has also been extended to asynchronous
overlapped updates [30, [13]], and low-communication expert sharding [[12]].

Federated learning. There is an enormous body of work on communication-efficient training
methods for machine learning. In that vein, DiLoCo is closely related to algorithms used in federated
learning to perform communication-efficient training over decentralized data, often (but not exclu-
sively) on edge devices [25]]. The prototypical algorithm used in federated learning, FedAvg [36],
reduces communication costs by training models in parallel, with periodic model averaging. This
algorithm has been invented and reinvented throughout machine learning, and is also known as Local
SGD [54], parallel SGD [64]], and parallel online backpropagation [34]. The use of inner and outer
optimization steps (as in DiLoCo, see Algorithm [I)) was first used by Hsu et al. [21] and Reddi
et al. [47] for federated learning, focusing on SGD as the inner optimizer and SGDM or Adam [27]]
as the outer optimizer in order to leverage more sophisticated optimizers in resource-constrained
settings. DiLoCo is also closely related to many other federated optimization methods, though the
huge amount of work in this area makes it impossible to summarize succinctly here. We instead refer
the interested reader to the survey of Wang et al. [57]], though the field has of course progressed since
then. While federated learning is often applied to more moderately sized models, Charles et al. [7]]
and Sani et al. [50]] show that federated learning can be used to good effect for LLM training.

Scaling laws. Scaling laws work often aims to estimate how empirical generalization error scales
with various facets, including model size and training set size. Empirical scaling analyses with
power law behavior date have existed for decades (see [2]). Hestness et al. [19] developed power
laws for model and dataset size across various tasks and model architectures (including encoder-
decoder LSTM models). More recently, scaling laws for transformer-based LLMs were proposed by
Kaplan et al. [26] and Hoffmann et al. [20], who exhibited power law relationships between LLM
performance and model size. Sine then, there has been a large number of works developing scaling
laws for other facets of LLMs, including (among many others) inference costs [31]], data-constrained
training [37], and overtraining [17].

Scaling laws for DiLoCo were previously studied by He et al. [[18], who show that DiLoCo with
8 replicas exhibits analogous scaling behavior to Data-Parallel. He et al. [18]] use a fixed number
of replicas, batch size, and outer learning rate, and an unspecified total token budgetE] Our work

4 At the time of writing, He et al. [18]] only say that “Each model was trained to achieve adequate convergence”.
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expands on many aspects of their work and explores others that were not considered, including but
not limited to: 10x larger models, varying the number of replicas (including single-replica DiLoCo),
varying token budgets and overtraining, parametric function fitting, scaling laws for hyperparameters,
and optimal batch size analysis.

B Wall-Clock Time Model

In this section, we present an idealized model for the wall-clock times of Data-Parallel and DiLoCo.
We measure the total elapsed time, which means that parallelization (e.g. via increasing the batch
size) reduces wall-clock time.

B.1 Computation Time

Here, we mean the time expended by floating point operations in model training, ignoring communi-
cation time across nodes (which we treat separately in the section below). We use the idealized model
where the total FLOPs C' = 6 N D. Given some number of chips R, each of which can perform )
floating point operations per second, the total computation time is bounded below by C'/RQ. The
number of chips R is purely a function of model size N and global batch size B. The number of
chips does not depend on the algorithm (Data-Parallel or DiLoCo) or number of model replicas when
using DiL.oCo.

B.2 Communication Time

The network connectivity is characterized by a bandwidth W and latency e. When performing an
all-reduce of N parameters over IR compute nodes, the lower bound on the amount of traffic sent and
received by at least one of the compute nodes participating in the all-reduce is 2N (1 — R~1) [42]].
Such algorithms are called bandwidth-optimal. Since communication across the nodes is done
synchronously but in parallel, in a network with bandwidth W and latency ¢ between each pair of
nodes, the time to complete the all-reduce is at least

IN (1Y,
W RE.

DiLoCo [11] was designed for settings where models are too large to fit in a single datacenter, so they
must be trained across compute islands connected by low bandwidth. To model this, we will assume
that we are training over R compute nodes (typically, GPUs or TPUs). Some of these are connected
by networks within a datacenter, and others are connected across datacenters. We let Wy, €y denote
the bandwidth and latency of the within-datacenter network, and W7, e; analogously defined for the
cross-datacenter network. Typically, Wy > W7, eo < €.

Data-Parallel: At every training step 7', we have to perform an all-reduce over all R compute
nodes. Since some nodes are connected across datacenters, the total communication time is at least

2N 1
— (11— = T
(& (-7)+=)
DiLLoCo, M = 1: At every inner step 7', we perform an all-reduce over all R devices as in
Data-Parallel training. We also do an all-reduce every H steps for the outer optimization. Some of

these nodes are connected across datacenters, so the communication time per all-reduce is at least
2N (1 — R~Y)W; ' 4 &,. The total communication time is therefore at least

2N 1 1
— | 1-—= T 1+ —=].
CAGEDEGE)
DiLoCo, M > 2: We assume that each of the M model replicas is trained on compute nodes
connected within the same datacenter. In each inner step T, each model replica is trained by R/M

devices which need to do an all-reduce. However, no communication occurs between datacenters, so
the communication time of each inner step is bounded by 2N (1 — M R’l)VVO_1 + €o.
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Each outer optimization step involves all-reducing over all R devices, connected across datacenters.
This incurs a communication time of at least 2N (1 — R=Y) W, ! 4 &,. Since it occurs only every H
steps, the total communication time is bounded below by:

ﬂ 1_% + T_|_ & 1_l _|_ Z
W, R) "0 W, R) ) H

Note that this suggests that as long as H > W, /W, the outer communication steps incur at most
half of the total communication cost.

Streaming DiLLoCo. We note that the computed cost above applies to the Streaming DiL.oCo [13]]
as well. While the inner step remains the same, the outer step is smoothed such that each fragment
p € {1,...,P} is every H steps. However, fragment communication is offset such that some
fragment is communicated every H/ P steps, resulting in the communication amortizing to the same
per-step cost. This is expected as Streaming DiLoCo reduces peak communication over any step, but
does not reduce total communication across training.

Overlapping communications. Another contribution of Douillard et al. [13] is the ability to overlap
communications required for the outer optimizer with computation by using a stale version of the
fragment in the outer optimizer, and merging the result of this outer optimization with the locally
optimized fragment. This would allow, for example, the communication term to be omitted from the
calculation for wall-clock-time, if computation time dominates communication time. This setting
is different from an algorithmic perspective, so its impact on scaling would need to be examined
independently.

B.3 Total Wall-Clock Time

The total wall-clock time is a sum of the computation and communication times above. To measure
the communication time, we must know the number of chips R used for each experiment, the number
of FLOPs per chip per second @, the bandwidth and the latency of the within-datacenter and cross-
datacenter networks. For computation costs, we use a slightly idealized number of chips R based
on our experiments, but ensuring that doubling the global batch size would double the number of
chips. We base the constant () on publicly available information about the FLOPs capabilities of
the TPU v5e and v6e chipsﬂ which have peak compute per chip (in bfloat16) of 197 teraflops and
918 teraflops, respectively. Assuming a maximum FLOPs usage of 50%, these chips have an actual
compute of approximately 100 and 408 teraflops, respectively. When computing idealized compute
time, we set ( = 300 teraflops, somewhere in-between the two.

For bandwidth and latency, we consider three archetypes of networks:
1. High-bandwidth network with bandwidth Wy;e, = 400 gigabits per second and a latency
of epigh = 10~ seconds.

2. Medium-bandwidth network with bandwidth W, = 100 gigabits per second and a
latency of epeq = 103 seconds.

3. Low-bandwidth network with bandwidth W, = 10 gigabits per second and a latency of
10w = 1072 seconds.

We stress that these are not based on any actual systems, and are simply designed as instructive
archetypes of networks. For the idealized communication time, we always use the high-bandwidth
network for the within-datacenter network, and one of the three for the cross-datacenter network.

C Datasets and Licenses

In this section, we discuss the datasets used in our experiments and their respective licenses. We note
that the datasets themselves are all referenced in Section[3

>See https://cloud.google.com/tpu/docs/vée.
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e C4 [45]]. This dataset is a cleaned version of Common Crawl’s web crawl corpusﬁ We used
the version accessible via Hugging Face, provided by Allen A]ﬂ and made available under
the ODC-BY license. Because it is derived from Common Crawl, its usage is also bound by
the Common Crawl terms of use. We use the en version of the dataset. We note that while
widely used and filtered, the dataset still contains undesirable content including hate speech.
See [33] for an analysis of its contents, and discussion of mitigation strategies. We do not
release any assets derived from this dataset.

* Dolma [53]]. This dataset consists of 3 trillion tokens drawn from web content, academic
publications, code, books, and related material. We used the v1_7 version of the dataset
accessible via Hugging Face, provided by Allen A]EL and made available under the ODC-BY
license. We note that the usage of this dataset is also bound by license agreements and
restrictions of its original data sources. See [33] for more details.

» HellaSwag [61]]. We use this dataset for zero-shot evaluation metrics. We used the ver-
sion available under the MIT licenseﬂ For details, see https://rowanzellers.com/
hellaswag/.

* Piqa [4]. We use this dataset for zero-shot evaluation metrics. We used the version available
under the Academic Free License v3.

» Arc-Easy [9]. We use the Arc-Easy dataset for zero-shot evaluation metrics. We use the
version accessible via Hugging Face, provided by Allen A]EL made available under the
CC-BY-SA-4.0/license.

D Additional Experimental Results
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Figure 10: Zero-shot evaluation accuracy on HellaSwag of Data-Parallel and DiLoCo as a function of
global batch size (in tokens).
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Figure 11: Zero-shot evaluation accuracy on Piqa of Data-Parallel and DiLoCo as a function of global
batch size (in tokens).

In this section, we give additional experimental results that expand on those in Section[d] In Figures[9]
[T0[T1] and[I2] we present evaluation loss and evaluation accuracy on various downstream zero-shot

*https://https://commoncrawl .org/
"https://huggingface.co/datasets/allenai/cé
®https://huggingface.co/datasets/allenai/dolma
‘https://github.com/rowanz/hellaswag,
Uhttps://github.com/ybisk/ybisk.github.io/tree/master/piga
"https://huggingface.co/datasets/allenai/ai2_arc
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Figure 12: Zero-shot evaluation accuracy on Arc-Easy of Data-Parallel and DiLoCo as a function of
global batch size (in tokens).

tasks, as a function of algorithm, model size, and global batch size. The results consistently show
that Data-Parallel’s evaluation performance degrades quickly as batch size increases. By contrast
DiLoCo’s performance degrades more slowly, or even improves, as batch size increases. We note that
Arc-Easy was quite noisy as an evaluation task.
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Figure 13: Evaluation loss and zero-shot accuracy of Data-Parallel and DiL.oCo with M = 1 for
varying model and global batch sizes (measured in tokens). In all settings, DiLoCo with M = 1 does
better than Data-Parallel, and the gap between them increases with batch size.
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Figure 14: Zero-shot evaluation accuracy of Data-Parallel and DiLoCo with M = 1 for varying
model and global batch sizes (measured in tokens), on Piga and Arc-Easy. In nearly all settings,
DiLoCo with M = 1 does better than Data-Parallel, and the often the gap increases with batch size.

In Figures[T3]and T4} we compare Data-Parallel and DiLoCo with M = 1 in terms of their evaluation
loss and zero-shot evaluation accuracy on HellaSwag, Piqa and Arc-Easy. As above, we note that
DiLoCo with M = 1 has an improved tolerance to larger batch sizes.

E Ablations

Here, we expand upon the ablation studies discussed in Section[5] We give more detailed experimental
analyses, as well as idealized wall-clock times under varying networks.
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E.1 Synchronization Cadence

As discussed in the synchronization cadence ablations in Section [5] we perform an ablation
over H for varying M and model sizes N. For each setting, we take the optimal inner learn-
ing rate and global batch size from above, and sweep H over {1, 5,10, 30,100,300} and n over
{0.05,0.1,0.2,0.4,0.6,0.8,1.0}.

In addition to the results in Section[5] we analyze how H impacts the evaluation loss of DiLoCo in
Figure[I3] For all models, synchronizing every step (H = 1) performs the worst, but after this point
all values of H perform somewhat comparably. For a fixed N and M, evaluation loss increases as H
increases. However, this increase is less pronounced for M/ = 1 and larger models. This yields an
important finding: As the model size N increases, we can actually perform synchronization across
DiLoCo replicas less frequently, while nearly maintaining evaluation performance.

3.6

Model Scale
— 90M
180M
—— 550M
Algorithm
3.0 < — DiloCo, M=1
K ---- DiLoCo, M=2
DiLoCo, M=4

3.4

3.2

Eval Loss

2.8

2.6
1 5 10 30 100 300
Synchronization Cadence

Figure 15: Infrequent synchronization works better for larger models. Outside of H = 1, which
performs the worst, evaluation loss increases with H. However, the rate of increase is less pronounced
for DiLoCo with M = 1 and for larger models, suggesting that large models can be synchronized
quite infrequently.

Table 7: Simulated compute utilization. We estimate the step time based on the required flops using
the rule proposed by Kaplan et al. [26] and a max flop utilization of 60%. We estimate the bandwidth
(in Gbit/s) required to reach a level of compute utilization using [[13]]’s simulator. We highlight in
light blue 10x reduction of bandwidth, and in dark blue 100x reduction.

Gbit/s to reach a compute utilization CU =?
50% 80%  90%  95% 99%

Data-Parallel 104.8 1842 2223 2223 390.7
DiLoCo, H =1 104.8 1842 2223 2223 390.7
Chinchilla 10B 0.8s DiLoCo, H = 10 16.0 494 86.8 1526 2223
DiLoCo, H = 50 3.0 11.0 23.3 41.0 126.5
DiLoCo, H = 100 1.4 6.2 13.3 233 86.8
DiLoCo, H = 300 0.5 2.0 4.3 9.1 41.0

Data-Parallel 126.5 2223 2683 323.8 323.8
DiLoCo, H =1 126.5 2223 268.3 323.8 323.8
Llama3 405B 26s DiLoCo, H = 10 19.3 72.0 1265 1842 268.3
DiLoCo, H = 50 3.6 13.3 28.1 59.6 184.2
DiLoCo, H = 100 2.0 7.5 16.0 339 126.5
DiLoCo, H = 300 0.7 3.0 6.2 13.3 59.6

Data-Parallel 323.8 569.0 686.6 686.6 1000.0+
DiLoCo, H =1 323.8 569.0 686.6 686.6 1000.0+
DeepSeek-V3  671B 20s DiLoCo, H = 10 494 1526 2683 390.7 686.6
DiLoCo, H = 50 7.5 339 720 1265 390.7
DiLoCo, H = 100 4.3 16.0 410 720 268.3
DiLoCo, H = 300 1.7 6.2 13.3 281 126.5

Architecture Size  Step time | Method

Compute utilization. The synchronization cadence of DiLoCo is critical to training large-scale
models distributed across the world. Indeed, less frequent synchronization (larger H) diminishes
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Figure 16: DiLoCo greatly increases compute utilization. Here we present simulated compute
utilization for DiLoCo and Data-Parallel across a range of bandwidth and synchronization cadences
H. A compute utilization of 0.8 means 80% of the time is spent in computation, and 20% in
communication. A higher value is better. We see similar results for other model sizes, but omit for

visual clarity.

the bandwidth requirements of training. Following [13]], we simulate the amount of bandwidth

required to have a compute utilization (=--———

compute time

) as large as possible for three types of LLMs: a

10B Chinchilla-style transformer [20] in F1g1@ a 405B Llama3 model [14] in Fig[T6b] and a 671B
DeepSeek-v3 MoE [29] in Fig[T6c| We also report raw numbers in Table[7}

E.2 Overtraining

We expand on the overtraining ablation study in Section[5] As we showed there, DiLoCo continues
to enjoy large optimal batch sizes, compared to Data-Parallel. This improves horizontal scalability,
decreasing end-to-end wallclock time. Wallclock time is also smaller for M/ > 1 due to reduced

communication.

To illustrate this, we plot idealized training time of Data-Parallel and DiLoCo with M = 2 for different
overtraining amounts in Figure[I7] DiLoCo speeds up overtraining by reducing communication costs,
and utilizing larger batch sizes, therefore requiring fewer serial training steps. This suggests that
DiLoCo is a significant boon in overtraining, as we can amortize compute time (which can be quite
long for overtraining) via horizontal scalability.
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Figure 17: For Data-Parallel and DiLoCo, M = 2, we plot idealized wall-clock time (see Section
for training by Data-Parallel and DiLoCo, M = 2 across compute nodes connected via high-,
medium-, and low-bandwidth networks. For each algorithm and overtraining amount, we display
lines represent varying model sizes, from 335M parameters to 2.4B. DiLoCo is faster in all settings,
due to both its reduced communication and its tolerance to larger batch sizes. Even in the high-
bandwidth setting, the larger batch sizes increase horizontal scalability, reducing end-to-end wallclock
time. We see similar results for M > 4 and for smaller models, but omit for visual clarity.
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F Scaling Laws

We now discuss the process we used to fit scaling laws to our empirical results, expanding on
the discussion in Section [6} Recall that for each algorithm (Data-Parallel or DiLoCo with M €
{1,2,4, 8}) we ran extensive hyperparameter sweeps on models of size N up to 2.4B. To fit a scaling
law for loss L as a function of N, we pick the best hyperparameters (in terms of evaluation loss) for
each N, aggregate the loss values, and fit some kind of function for L(N), such as a power law [26].
We will also fit scaling laws to the optimal hyperparameters. We will fit two types of scaling laws for
DiLoCo: independent fits for each value of M, and joint fits where we fit a single scaling law as a
function of N and M simultaneously.

F.1 Independent scaling laws

Scaling laws for loss. We first fit scaling laws for the loss obtained by Data-Parallel training. We fit
a power law to the evaluation loss of Data-Parallel as a function of N via the power law approximation
L(N) ~ AN®. Note that this can easily be done via applying linear fit techniques to log(L), and is
not sensitive to things like initial values of A, .. The resulting power law is in the first row of Table(]

We mirror this above for DiLoCo when doing independent fits. For each value of N, M, we record
the lowest loss value across all hyperparameters. We can then fit power law Ly (N) := L(N, M) =~
AN for each M. The results are given in Table§]

Table 8: Power law approximations for loss L(N) ~ AN®.

A o

Data-Parallel 18.129 —0.0953
DiLoCo, M =1 18.363 —0.0961
DiLoCo, M =2 18.768 —0.0969
DiLoCo, M =4 19.762 —0.0992
DiLoCo, M =8 21.051 —0.1018

The results show that Data-Parallel and DiLoCo see similar predicted reductions in loss as a function
of N. Notably, the fit parameters suggest that DiLoCo, M = 1 outperforms Data-Parallel at
essentially all but the absolute smallest model scales. This mirrors the results discussed in Section ]

Scaling laws for hyperparameters. For Data-Parallel, we fit scaling laws for learning rate + and
batch size B. For DiLoCo, we fit scaling laws for inner learning rate v and global batch size B.
Given their analogous role in the algorithms, we fit them in the same way. For (inner) learning rate,
we use the same approach as fitting scaling laws for loss: for each IV (and M, for DiLoCo), we select
the best hyperparameters, and fit a power law. The results are in Table[9]

For (global) batch size, we alter this slightly. As discussed in Section [3] our sweeps use powers of 2
for batch size, in order to saturate compute. However, the optimal batch size may be between these
values. To account for this, we first fit a quadratic approximation to the batch size. Specifically, for
each value of N we look at the loss as a function of log,(B) (when using the best learning rate for
that B), and fit a quadratic to this function. We select the minima of those quadratics and fit a power
law to them, as a function of N. The results are in Table[T0}

DiLoCo has a third hyperparameter we could fit scaling laws to: the outer learning rate. However,
as shown in Section 4] the optimal outer learning rate is (for sufficiently large models) seemingly
constant. Therefore, a scaling law would seemingly not yield any improved predictive performance
over simply using the best outer learning rate for each M (see Figure[3).

F.2 Joint scaling laws

Alternatively, we can fit joint power laws to various facets of DiLoCo, using a two-variable power
law f(N, M) ~ AN®M?. We do this for loss L, inner learning rate -y and global batch size B. For
the first two, we select, for each value of N, M, the best learning rate and loss. For batch size we
do the same, but using the quadratic approximations from the section above. We can then fit a joint
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Table 9: Power law approximations for Table 10: Power law approximations for

(inner) learning rate y(N) ~ AN®. (global) batch size B(N) ~ AN®.
A « A «
Data-Parallel 16319.2 —0.819 Data-Parallel 462.68 0.281
DiLoCo, M =1 74620.6 —0.945 DiLoCo, M =1 27.873 0.435
DiLoCo, M =2 3978.82 —0.780 DiLoCo, M =2 15.749 0.479
DiLoCo, M =4 4512.99 —0.789 DiLoCo, M =4, 10.957 0.510
DiLoCo, M =8 618986 —1.102 DiLoCo, M =8 38.072 0.455

Table 11: Joint power law approximations f(N, M) = AN“M? for the loss L, inner learning rate -,
and batch size B of DiL.oCo.

A « 8

L 19.226 —0.0985 0.0116
v 22256 —0.8827 0.2929
B 14521  0.4695  0.3399

power law via standard linear regression techniques. The resulting power laws are in Table[TT] Just
as with the independent fits, we do not attempt to fit scaling laws to the outer learning rate 7, as the
optimal value is independent of V.

F.3 Measuring goodness-of-fit

Now that we have two different ways of developing scaling laws for DiLoCo, we can attempt to ask
which one yields better predictions. First we do this via leave-one-out validation. Specifically, we use
the same methodology as above to fit scaling laws for L, v, and B, but only using dataup to N =
1.3B parameters, leaving out our data on N = 2.4B parameters. We then use the scaling law to predict
the optimal value for L, vy, and B at N = 2.4B parameters, across different values of M.

Table 12: Joint fit scaling laws match or beat independent fit. Here we give the residuals for
scaling law predictions for N = 2.4B and varying M. We compare the residual of independent and
joint fitting strategies in predicting loss L, inner learning rate v, and global batch size B. For the
average residuals, we highlight which of independent or joint achieved a lower residual. We see that
the joint fit matches independent for L and B, but does better at predicting .

Fit | L | ~ | B

-1 Independent | 0.011 0.35 | 0.00088
- Joint 0.019 | 0.14 0.19
) Independent | 0.0099 | 0.18 0.44
o Joint 0.013 | 0.29 0.28
—4 Independent | 0.012 | 0.051 0.25
a Joint 0.0082 | 0.086 0.11
M=2%8 Independent | 0.014 | 0.62 0.076
o Joint 0.0076 | 0.23 0.19
Independent | 0.012 | 0.30 0.19
Average over M5, 7 | 0,012 | 019 | 019

Given a predicted value y and a reference value of y, we compute the residual of our prediction as the
mean absolute error of the logarithm: res(y, §) = |log(y) — log(7)|. We use this measure as it works
well for all three variables simultaneously, despite the fact that they vary greatly in their scale. For
each M € {1,2,4,8}, we compute the predicted value of the three parameters above, and measure
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the residual relative the actual optimal value at N = 2.4B. We report these values, as well as their
average across M, in Table

Our results generally show that both approach is generally valid (as there is no clear winner) but also
that there is significant variation in residuals between )M . That being said, we see that on average,
while the individual fit is slightly better at predicting the loss and global batch size, the independent
fit is significantly better at predicting inner learning rate.

F.4 Extrapolating to larger models

We use the independent and joint fits to predict optimal hyperparameters for Data-Parallel and
DiLoCo with M € {1,2,4} at 4B and 10B model scales. Note that for Data-Parallel, we can
only use independent fits. We run training on these models with these hyperparameters, using a
Chinchilla-optimal token budget, and compare the results.

Table 13: Joint fit hyperparameters extrapolate well to larger models. Here we show the
evaluation results on 4B and 10B models, using hyperparameters predicted by individual and joint
scaling laws. We highlight DiLoCo evaluation results that were better (ie. lower) than Data-Parallel.
We see that while DiLoCo with M = 2 does better than Data-Parallel with either independent or
joint fit rules, DiLoCo M = 1 only does better when using joint fit.

Loss
4B 10B

Data-Parallel Independent 2.224  2.090
Independent 2.229 2.103

Algorithm Fit Method

DiLoCo, M =1 Joint 2219 2.086

. . Independent 2.218 2.083
DiLoCo, M = 2 Joint  2.220 2.086
DiLoCo, M — 4 Independent 2.232  2.098

Joint 2.230 2.096

We see two important facets. First, unlike results above, at 4B and 10B scales we see that DiLoCo
with M = 2 actually outperforms both Data-Parallel and DiLoCo, M = 1, regardless of using
individual or joint fit approaches. Second, we see that DiLoCo, M = 1 requires the joint fit to do
better than Data-Parallel. Other than in this case, joint and independent fits perform comparably
throughout. All in all, the joint fit approach to hyperparameters appears to have a slight edge over
individual fit in extrapolating. Combined with its ability to also extrapolate to larger M, we generally
recommend the joint fit approach for all hyperparameters.

We now use these loss values to see how they compare to the scaling laws fit above. We generally
find that the loss values are predicted very well, within a few percentage points of the loss predicted
by the scaling laws. We present the fit scaling law and extrapolated loss values in Figure

Data Parallel DiLoCo, M=1 DiLoCo, M=2 DiLoCo, M=4
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Figure 18: DiLoCo scaling laws extrapolate well to larger models. We present loss scaling laws
for Data-Parallel and DiLoCo. Pictured are both the loss values to form the scaling law (by training
models up to a scale of 2.4B) and loss values attained on larger models (4B and 10B). While we
present the individual-fit scaling laws for simplicity, the joint fit also predicts loss well.
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F.5 Parametric Function Fitting

Various works on scaling laws have often found it useful to fit functions more complex than power
laws to the data [20]]. We are particularly interested in parametric forms for our joint scaling laws.
While Hoffmann et al. [20] use a risk decomposition argument to decompose loss as a function of N
and D, it is not immediately clear how to do decompose L(N, M). To that end, we use an empirical
approach. We develop candidate functions, and determine which does best in an extrapolative sense.
We use the following functional forms:

1. L(N,M) ~ AN“M”

2. L(N,M)~ AN“MP +C

3. L(N,M) ~ AN®+t8M | ¢

4. L(N,M)~ AN® + BM# 4+ C

The first is included for comparison’s sake, as it recovers the power law scaling law used above.
Fitting more sophisticated functions can be much more sensitive to initial values of parameters, and
also sensitive to outlier data. Therefore, when fitting these functions to our loss values above, we use
the general strategy proposed by Hoffmann et al. [20]].

In detail, let fo(IV, M) denote one of the functional forms above, where () represents the set of
parameters to be fit (e.g. @ = {A,«a, 8} for the first). Let Hubers denote the Huber loss with
parameter 8. Let A/, M denote the set of values of N and M considered. For each N, M, we have
an empirical loss L(N, M), and some estimate of the loss fo(IN, M). We then solve the following
minimization problem:

IIgIl Z Z Huber5<log fo(N, M) —log L(N, M))

NeN MeM

We minimize this via L-BFGS, using some initialization ) for the parameters. We repeat this
process for 256 random initializations )¢ of the parameters. We hold out all loss values at the N
= 2.4B scale, and select the parameters ) that best fit the held-out data, measured in terms of the
average residual |log fo (N, M) — log L(N, m)| over all M.

Table 14: Parametric function fitting improves joint scaling laws. We showcase various parametric
approximations to the empirical loss function L(N, M), along with their validation error on held-
out loss data at the N = 2.4B scale. We see that joint power laws (the first) and classical loss
decomposition (the last) are significantly worse at predicting loss on the held-out data.

Parametric form Average Residual
L(N,M) ~ AN*MP” 0.0044
L(N,M)~ AN“MP +C 0.0035
L(N,M) ~ AN“+PM 4 & 0.0025
L(N,M) ~ AN® + BM"? + C 0.0043

We see that the power law (row 1) and additive decomposition (row 4) are significantly worse at
extrapolating loss values than more nuanced parametric forms. We note that the additive decomposi-
tion resembles the decomposition of loss as a function of model size N and token budget D used by
Hoffmann et al. [20]], but does not seem to reflect how M affects loss for DiLoCo. We leave it as
an open problem to determine what parametric forms better predict loss, and can be explained by
theoretical understanding of communication-efficient training.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We give extensive empirical evidence explicitly backing each claim made in
the abstract and introduction in Sections[4} [5} and[6] with further evidence in Appendix

[El and[F

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We explicitly identify limitations of our work in Section (/| We have attempted
to be absolutely transparent about every detail in our empirical work, as a way to make
clearer the limitations, as well.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: We do not include any theoretical results in the work.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We explicitly discuss every aspect of our empirical setup in Section[3} Our
scaling law methodology is also explicitly detailed in Section [F] and our wallclock time
model is detailed exactly in Section[B]

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The datasets used for our experiments are available publicly, through standard
distribution channels (including Hugging Face). We do not explicitly open-source our
code. While we would like to make the code available (and are working on a modified
version of it that can be open-sourced), we could not open-source the code as is due to the
use of institution-specific code for launching experiments across accelerators. However,
our code is based entirely on open-source libraries that we actively reference, including
NanoDO [31] and DrJAX [49]. There is no special behavior in our experiments that is not
detailed explicitly in Section [3} Indeed, our results strongly mirror those in other work,
including [24].

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify this exactly in Section[3] We have detailed all possible aspects of
training, including datasets, splits, optimizers, hyperparameters, model architecture details,
model sizes, vocabulary size, and sequence lengths. Any missing details are unintentional,
and would gladly be provided by the authors.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
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Justification: While we would gladly produce and report error bars, doing so to within any
statistically significant degree would be prohibitively expensive due to the large number of
hyperparameters and model sizes used throughout.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detail the exact accelerators used for our experiments. We also detail what
aspects of their computational profile were used for our idealized wall-clock computations
in Section

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have evaluated our work against each of the concerns listed in the guide-
lines, and believe that it adheres to the provided standard.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Generally, our work has no specific possible societal impact of the sort in the
guidelines below. Algorithms like DiLoCo are similar to the example of “optimizing neural
networks faster” in the guidelines below. That being said, we do wish to give one specific
societal impact that is relevant: communication-efficient algorithms like DiLoCo enable
thte training of models in a decentralized fashion. This means that some assumptions about
Al used in things like policy-making may not hold, such as the assumption that LLMs are
trained within a single datacenter. For example, Al policy monitoring based on total amount
of compute may be more difficult in settings where algorithms like DiLoCo are deployed,
as the amount of compute used by each compute node may be quite small, and the nodes
themselves may be decentralized. It may also allow smaller groups and institutions to do
LLM training at scale. This can be good (democratizing access to LLMs, and enabling
greater competition in Al marketplaces) and bad (enabling adversarial actors to scale up
training of LLMs), though the specifics will depend on how the algorithms evolve, and by
what margin they can reduce communication and computation bottlenecks.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We release no data or models as part of this work, and do not believe that the
work poses any risks in this regard.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
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12.

13.

14.

that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We discuss all datasets used in Section 3] We further detail the datasets,
versions, and licenses used in Section[C

Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not produce, disseminate, or release any new assets as part of this work.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work did not involve any crowdsourcing or research with human subjects.

Guidelines:
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15.

16.

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work did not involve any crowdsourcing or research with human subjects,
and did not necessitate any IRB approvals.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We do not explicitly discuss this in the main body of the work, but we did not
use LLMs for any component of the research itself. The methodology, coding, and initial

draft were all completed entirely by humans. LLMs were only used for minor stylistic and
grammatical edits after the first draft.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

32


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries
	Experimental Methodology
	Empirical Findings
	Ablations
	Scaling Laws
	Discussion and Limitations
	Related Work
	Wall-Clock Time Model
	Computation Time
	Communication Time
	Total Wall-Clock Time

	Datasets and Licenses
	Additional Experimental Results
	Ablations
	Synchronization Cadence
	Overtraining

	Scaling Laws
	Independent scaling laws
	Joint scaling laws
	Measuring goodness-of-fit
	Extrapolating to larger models
	Parametric Function Fitting


