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Abstract

Many probabilistic modeling problems in machine learning use gradient-based
optimization in which the objective takes the form of an expectation. These
problems can be challenging when the parameters to be optimized determine the
probability distribution under which the expectation is being taken, as the naïve
Monte Carlo procedure is not differentiable. Reparameterization gradients make
it possible to efficiently perform optimization of these Monte Carlo objectives
by transforming the expectation to be differentiable, but the approach is typically
limited to distributions with simple forms and tractable normalization constants.
Here we describe how to differentiate samples from slice sampling to compute slice
sampling reparameterization gradients, enabling a richer class of Monte Carlo
objective functions to be optimized. Slice sampling is a Markov chain Monte Carlo
algorithm for simulating samples from probability distributions; it only requires a
density function that can be evaluated point-wise up to a normalization constant,
making it applicable to a variety of inference problems and unnormalized models.
Our approach is based on the observation that when the slice endpoints are known,
the sampling path is a deterministic and differentiable function of the pseudo-
random variables, since the algorithm is rejection-free. We evaluate the method on
synthetic examples and apply it to a variety of applications with reparameterization
of unnormalized probability distributions.

1 Introduction

Probabilistic modeling is a powerful approach to inferring latent structure in complex real-world
processes, but often presents computational challenges for inference and further downstream tasks.
In many modern probabilistic models, inference is recast as optimization of a probabilistic objective
that takes the form of an expectation of a loss function with respect to some distribution. A salient
example is variational inference [27, 3], where a simpler distribution is optimized to approximate a
posterior distribution by minimizing the Kullback-Leibler (KL) divergence to the truth. In particular,
Monte Carlo methods for estimating the gradient of the KL with respect to the parameters have
extended the use of variational inference to non-conjugate Bayesian models [43, 44] and neural
networks [31]. Such probabilistic objectives also appear in a number of other applications in
machine learning and computational science, including the generator loss in generative adversarial
networks [15], computing the sensitivity of expectations under the posterior distribution to prior
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hyperparameters [21, 19, 12], computing the Black-Scholes delta in computational finance [13], and
choosing a design that maximizes the probability of improvement in an experiment [56].

Typically, the probabilistic objectives are comprised of expectations that cannot be computed in
closed form, so gradients are often estimated via Monte Carlo sampling [39]. Two popular classes of
Monte Carlo gradient estimators are the score function estimator [32, 14, 55, 43, 44] and the pathwise
(or “reparameterization gradient”) estimator [23, 24, 45, 31, 49]. Score function gradient estimators
are general-purpose, as they apply when the underlying density is differentiable and can be sampled
from, even if the cost function is not differentiable. However, they often have high variance and are
used with variance reduction techniques (e.g., Ranganath et al. [44]). In contrast, reparameterization
gradients apply when the loss function is differentiable and samples from the underlying density
can be generated by a known deterministic, differentiable transformation of samples from a simpler
distribution that does not depend on the model parameters. Typically, reparameterization gradients
have lower variance than score function gradients, provided the loss function is sufficiently smooth
[39]. Therefore, developing effective reparameterized gradient estimators has been an active area of
research in sensitivity and perturbation analysis [23, 24, 13] and stochastic backpropagation [31, 45].

However, reparameterization gradients are primarily limited to distributions with tractable normalizing
constants. This precludes their use for complex models of interest such as energy-based models
and non-conjugate Bayesian models (although alternative training methods exist, see e.g. Lawson
et al. [33]). Thus, generalizing reparameterization with MCMC to unnormalized distributions is an
important direction for developing effective gradient estimators for complicated models. Indeed, some
recent work has focused on reparameterization gradients for unnormalized distributions in specialized
problems, including Gibbs samplers with reparameterizable conditional sampling steps [54] and
dynamics-based MCMC without accept/reject steps (e.g., Salimans et al. [50], Dai et al. [8]). However,
developing estimators for general unnormalized distributions using reparameterized gradients and
MCMC is not straightforward with existing approaches. For instance, not all Gibbs sampling steps
are reparameterizable using current methods, due to, e.g., rejection sampling [11] or “Metropolis-
within-Gibbs” sampling [7]. Next, dynamics-based MCMC samplers without accept/reject steps are
approximate samplers with asymptotic bias. Finally, a key obstacle in applying MCMC methods
with accept/reject steps, such as the Metropolis-Hastings (MH) [22], Metropolis-Adjusted Langevin
(MALA) [16], and Hamiltonian Monte Carlo (HMC) [42] algorithms, is that they do not have
differentiable sample paths.

An appealing alternative to MCMC methods currently used for reparameterized gradients is slice
sampling [41], an auxiliary-variable MCMC method that can be applied to unnormalized probability
distributions and does not require an accept/reject step or sensitive tuning parameters. Crucially, the
lack of an accept/reject step leads to the key observation that for a fixed pseudo-random sequence,
the realized slice sampling Markov chain is differentiable with respect to the model parameters. In
this work, we develop reparameterization gradients for samples generated from slice sampling that
apply to distributions known only up to a normalizing constant. Slice sampling reparameterization
gradients are broadly applicable to complicated multivariate distributions, such as energy-based
models (EBMs) [35] and non-conjugate Bayesian models. While the generated samples are correlated
and the gradient estimates are biased because we simulate from a finite Markov chain, we demonstrate
the efficacy of slice sampling reparameterization gradients in simulations, investigating the bias and
variance properties of reparameterized slice sampling in comparison with existing gradient estimators.
We then show applications of slice sampling reparameterized gradients to a number of problems in
machine learning and statistics in the areas of deep generative modeling, approximate inference, and
Bayesian sensitivity analysis.

2 Background

In this work we are concerned with probabilistic objectives that take the form of an expectation of a
real-valued function ` with respect to a base density pθ(x), i.e.,

L(θ) = Epθ(x)[`(x)] . (1)

Typically the expectation cannot be computed in closed form, so computing the gradient of this
objective with respect to the distributional parameters θ requires stochastic estimates of the gradient
of the expectation. Two popular classes of stochastic gradient estimators are score function gradients
and reparameterization (or pathwise) gradients; see Mohamed et al. [39] for a review.
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2.1 Continuous reparameterization gradients

Reparameterization gradients are used for problems with a differentiable loss function ` and contin-
uous density pθ. They apply when samples from pθ can be generated by a deterministic transfor-
mation fθ of samples from a base distribution p(ε) that does not depend on θ. That is, if ε ∼ p(ε)
then x = fθ(ε) ∼ pθ(x). Applying this transformation, the gradient of the objective with respect
to θ can then be expressed as an expectation with respect to a distribution that does not depend on θ.
Assuming that the derivative and integral can be interchanged [39, Section 4.3.1]:

∇θL(θ) = ∇θEp(ε)[`(fθ(ε))] = Ep(ε)[∇θ`(fθ(ε))]. (2)

Monte Carlo estimates of the gradient are then computed using samples from p(ε).

Many examples of reparameterization gradients for continuous distributions exist. “One-liner”
reparameterization gradients use a simple function to transform the base distribution into the desired
parameterized distribution [31, 45, 39]. The inverse CDF (quantile function) can be used to transform
uniform random variables into arbitrary 1D distributions, and gradients can be computed when
evaluating and differentiating the inverse CDF are numerically tractable. Additional examples are
implicit reparameterization gradients [10], doubly reparameterized gradients [53], reparameterization
of accept/reject sampling [40], and generalized reparameterization gradients [48].

2.2 Markov chain Monte Carlo via slice sampling

For complicated target distributions, direct sampling via, e.g., the inverse CDF, is often not feasible
and moreover it is often the case that the target density function can only be evaluated up to an
unknown normalization constant; this commonly occurs in Bayesian posterior inference where the
marginal likelihood is unavailable. Markov chain Monte Carlo (MCMC) algorithms address both of
these challenges. An MCMC algorithm is a recipe for constructing a Markov chain that is easy to
simulate and that converges in distribution to the target, gaining computational tractability at the cost
of initialization bias and correlation between the samples.

The most common recipe for constructing an MCMC transition operator is the Metropolis–Hastings
algorithm [38], which combines an easy-to-simulate proposal distribution with a randomized ac-
cept/reject decision that depends only on a ratio of densities, thereby avoiding the need to know the
normalization constant. Variations on this theme include Gibbs sampling, in which the proposal is
chosen to be the conditional distribution for a subset of the variables, and Hamiltonian Monte Carlo
(HMC) [42], in which the proposal is constructed from a fictive dynamical system.

Slice sampling [41] is an alternative approach to MCMC based on the observation that samples
taken uniformly from the volume beneath the target PDF have the correct marginal distribution.
Slice sampling defines a Markov transition operator that leaves this uniform distribution invariant,
and is example of an auxiliary variable MCMC method (along with HMC, Swendsen-Wang [51],
pseudo-marginal MCMC [1], and others). It is appealing because such transition operators can be
constructed without having to identify a proposal distribution and the updates never get “stuck” as
can happen with Metropolis–Hastings; it is also generally robust to choices of tuning parameters.

Consider a distribution with density pθ(x) = 1
Z(θ)πθ(x) where the normalizing constant may not

be known. Slice sampling typically proceeds in two steps. Starting from a point xn, a height yn+1

is sampled uniformly beneath the density at xn such that yn+1 ∼ U(0, πθ(xn)). The height yn+1

defines a “slice” through the probability density given by S = {x : yn+1 < πθ(x)}. The next
point xn+1 is then sampled uniformly from the set S. There are different methods for sampling
uniformly from S, including component-wise updates and construction of hyper-rectangles; here
we use random-direction slice sampling to sample from the set S (37, Chapter 29.7). A random
direction d is generated from a uniform distribution over directions, and the direction defines
a line segment through the slice with endpoints x− and x+. Finally, a value xn+1 is sampled
uniformly between the endpoints. The most common procedure for finding the endpoints, as proposed
by Neal [41], is to use a reversible “stepping-out” procedure followed by “interval shrinking” to
determine xn+1. In this work we will not use this stepping out procedure and will instead perform a
direct search for the slice boundaries. This direct search is key to the present work, as it eliminates
the non-differentiable accept/reject step that otherwise appears in most implementations of slice
sampling.
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Figure 1: Slice sampling. Left: One step of a 1D slice sampler. Right: Reparameterized slice sampling
computational graph with reverse mode gradients shown for a loss computed on the final sample.

3 Slice sampling reparameterization gradients

3.1 Random-direction slice sampling with numerical slice endpoints

Here we describe the steps of random-direction slice sampling in more detail. We consider a
continuous, unnormalized density πθ(x) with parameters θ and start from a point xn ∈ Rd. We
sample three random quantities: two uniform random numbers u1, u2 ∈ [0, 1] and a uniform random
unit vector d ∈ Rd. The value u1 determines the height of the slice u1πθ(xn). The direction d induces
a line through the slice. This line intersects with the density at points where πθ(xn+αd) = u1πθ(xn)
for scalar values α. The intersecting points on the slice S induce the set of α values

A := {α ∈ R : πθ(xn + αd) = u1πθ(xn)} . (3)

Define the slice endpoints representing the closest intersecting locations on the slice S in the positive
and negative directions where πθ(xn + αd) = u1πθ(xn) as

x+ := xn + α+d, x− := xn + α−d, where α+ := min
α>0
A, α− := max

α<0
A. (4)

The points α+ and α− are identified using numerical root finding (Appendix A). The next sam-
ple xn+1 is then taken uniformly between the endpoints x− and x+:

xn+1 = x− + u2(x+ − x−) = xn + u2α
+d + (1− u2)α−d . (5)

Importantly, α− and α+ are implicit functions of xn, d, u1, and θ, denoted by α+(xn,d, u1, θ),
and α−(xn,d, u1, θ). Via Equation (5), the next sample iterate xn+1 is then a deterministic function
of the previous iterate xn, the parameters θ, and the random variables u1, u2, and d:

xn+1 = xn + u2 α
+(xn,d, u1, θ)d + (1− u2)α−(xn,d, u1, θ)d . (6)

In Figure 1 and later sections, we use ε to refer to the random draws u1, u2, and d. Notably, the per-
iteration cost of identifying the slice endpoints is similar for one-dimensional and higher-dimensional
distributions, as the algorithm searches for slice endpoints along a single direction per-iteration
regardless of the dimensionality of the sampling space.

3.2 Differentiating the slice sampling path

Recall that the goal is to estimate the gradient of an expectation taken with respect to pθ(x) ∝ πθ(x)
with an unknown normalization constant. Consider the following reparameterization of the proba-
bilistic objective L(θ) and its Monte Carlo estimator L(θ), respectively:

L(θ) = Epθ(x)[`(x)] = Ep(ε)[`(x(ε; θ))] (7)

≈ 1

N

N∑
n=1

`(x(εn; θ)) =: L(θ), where ε(n) iid∼ p(ε),
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and where x(ε; θ) is a deterministic function of ε and θ and p(ε) is the distribution of the uniform
random variables u1 and u2 and the uniform random direction d. Given an initial sample x0, the
slice sampling algorithm generates the samples x1:N := (xn)Nn=1, where xn = x(ε(n); θ) is the
value of the function established in Equation (5) evaluated at the previous point xn−1 and the
sample ε(n) = (u

(n)
1 , u

(n)
2 ,d(n)). After the forward pass of generating the samples, we evaluate the

objective function and use reverse-mode automatic differentiation (AD) to compute gradients [17,
Section 3.2]. In what follows, we derive the reverse-mode gradients, and for notational simplicity, we
will drop the explicit dependence of xn on ε and θ. Our derivation uses implicit differentiation to
efficiently compute gradients of the slice endpoints, avoiding the need to compute gradients through
the numerical root finding algorithm.

Applying the chain rule, the gradient of L(θ) with respect to θ is given by a recurrence relation
backwards through the samples xn:

∇θL(θ) =

N∑
n=1

[Jθ(xn)]T∇xnL, (8)

where Jθ(xn) ∈ Rd×m is the Jacobian of xn with respect to θ ∈ Rm. Here we observe that the
gradient ∇θL(θ) depends on the gradients of the loss with respect to each sample,∇xnL ∈ Rd. For
the final sample xN this value is simply∇xNL = 1

N∇xN `(xN ). Due to the sequential dependency,
for earlier samples xn where n = 1, ..., N − 1 the loss gradients need to be backpropagated via

∇xnL =
1

N
∇xn`(xn) + [Jxn(xn+1)]T∇xn+1

L. (9)

The computational graph demonstrates how each sample xn+1 depends on the previous samples x1:n

and the parameters θ (Figure 1). Therefore, to compute gradients with respect to the parameters
and/or the initial condition, the Jacobians Jxn(xn+1) and Jθ(xn+1) are needed. Using Equation (5)
for xn+1, these Jacobians can be computed indirectly via adjoints, i.e.,

Jxn(xn+1) = Jxn
(
xn+ du2α

++ d(1−u2)α−
)

= Id + u2d∇xn [α+]T+ (1− u2)d∇xn [α−]T

Jθ(xn+1) = Jθ
(
xn+ du2α

++ d(1−u2)α−
)

= u2d∇θ[α+]T+ (1− u2)d∇θ[α−]T. (10)

We use implicit differentiation to compute∇xn [α+],∇xn [α−],∇θ[α+],∇θ[α−]. The values α are
solutions to

f(xn,d, α, θ) = lnπθ(xn + αd)− lnu1 − lnπθ(xn) = 0. (11)

Applying implicit differentiation (17, Chap. 15) results in:

∇xnα = − ∇xnf

∂f/∂α
= −∇xn lnπθ(xn + αd)−∇xn lnπθ(xn)

dT∇xn lnπθ(xn + αd)
(12)

∇θα = − ∇θf
∂f/∂α

= −∇θ lnπθ(xn + αd)−∇θ lnπθ(xn)

dT∇xn lnπθ(xn + αd)
.

After computing {∇x1L, . . . ,∇xNL}, the gradient ∇θL is then formed by computing by Equa-
tion (8). Importantly, we compute ∇θL without ever fully representing either of the Jacobians by
using vector-Jacobian products (Appendix D). We implemented1 the forward sampling and reverse
mode AD in JAX [4].

3.3 Gradient of expected log likelihood

In applications, we often require the gradient of the expected log likelihood Eqφ(x)[log qφ(x)] with
respect to φ. For example, this arises in variational inference when optimizing the ELBO or KL
divergence. For a distribution qφ(x) = 1

Z(φ)e
fφ(x), the gradient of the reparameterized objective is

∇φEqφ(x)[log qφ(x)] = ∇φEp(ε)[log qφ(x(φ, ε))] (13)

= Ep(ε)[∇φfφ(x(φ, ε))−∇φ logZ(φ)]. (14)

1Our implementation is available at https://github.com/PrincetonLIPS/slicereparam
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Figure 2: Gradient estimator bias and variance for various Monte Carlo gradient estimators across
four different distributions (columns). Slice sampling reparameterization gradients are in green.

This appears to require the gradient of the unknown log normalizing constant. However, applying the
total derivative [46] yields

∇φEp(ε)[∇φ log qφ(x(φ, ε))] = Ep(ε)[∇x log qφ(x(φ, ε))∇φx(φ, ε) +∇φ log qφ(x)] (15)

= Ep(ε)[∇xfφ(x(φ, ε))∇φx(φ, ε)] + Ep(ε)[∇φ log qφ(x)] (16)

= Ep(ε)[∇xfφ(x(φ, ε))∇φx(φ, ε)]. (17)

where we dropped the dependence of x on φ to indicate evaluation at a value x. We drop the second
term in (16) because it is the expected score function and is therefore equal to zero. Notably, this
gradient of the expected log likelihood does not require the gradient of the log normalizer and we can
compute the necessary quantities to construct Monte Carlo gradient estimates. In our experiments,
we use this estimator when optimizing the ELBO and KL divergence with unnormalized models.

4 Experiments

Here we apply slice sampling reparameterization gradients to several problems, demonstrating the
generality of the approach and the potential appeal of reparameterization gradients for unnormalized
distributions. For additional experimental details see the supplementary material (Section C).

4.1 Bias and variance

Following Mohamed et al. [39], we quantify the empirical bias and variance of slice sampling repa-
rameterization gradients in comparison to standard reparameterization gradients, score function gra-
dients, and reparameterized Langevin dynamics (Figure 2). We estimate∇θEq(x;θ)[ 1

D

∑
i(xi − k)2]

with x ∈ RD for multiple distributions q and various values of k. These experiments show that
slice sampling gradient estimates have initialization bias for finite sample sizes, which is expected.
Importantly, however, we also find that slice sampling reparameterization gradients can be lower
variance than score function gradients computed from exact samples from the distribution.

The first example is a one-dimensional Gaussian with q(x; θ) = N (x; θ, 1) and θ = 1. In this case,
slice sampling mixes well and the resulting reparameterization gradients are nearly unbiased with
variance similar to the standard reparameterization estimator. We next focus on comparing slice
sampling with Langevin dynamics on multi-dimensional examples. We consider two 5-dimensional
multivariate Gaussian distributions q(x; θ) = N (x; θ1,Ψi) with diagonal covariances Ψ1 and Ψ2

and a Laplace distribution q(x; θ) =
∏
i Laplace(xi; θ, bi). While Langevin with a tuned step size

may outperform slice sampling in some cases, we find that the performance of Langevin dynamics
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Figure 3: The target p (left) and fit mean-field Gaussian (middle) and EBM (right) approximating
distributions. Each panel is shown with the same color scale.

varies considerably for the same set of step sizes across the two multivariate Gaussian distributions.
On the other hand, slice sampling performance is consistent across each of the examples and improves
with more samples. The versatility of slice sampling is highlighted by the Laplace example. In
this case the gradient of the mean from reparameterized Langevin dynamics is zero. On the other
hand, slice sampling reparameterization gradients have low bias and notably have substantially lower
variance than the score function gradients computed from exact samples from the distribution.

4.2 Minimizing KL-divergence

Minimizing the KL-divergence DKL(qθ||p) w.r.t. θ between a parameterized distribution qθ and a
target p is a core problem of approximate inference. Here we optimize this objective using slice
sampling reparameterization gradients on a number of synthetic examples. Our goal for these
experiments is simply to demonstrate successful optimization using slice sampling reparameterization
gradients, and we expect other methods such as normalizing flows or alternative gradient estimators
would also perform well (see Section C.2 for a comparison to a normalizing flow model). We present
one experiment in the main text with additional experiments in Section C.7.

To demonstrate the potential utility of unnormalized approximate distributions, we choose a 2D
“banana” distribution that has a complicated dependency between the two dimensions as the tar-
get (Figure 3). We optimize an EBM approximate distribution

qφ(z) =
1

Z(φ)
exp(fφ(z))N (z;µφ, σ

2
φ), (18)

where fφ is a feed-forward neural network mapping from the two-dimensional input space to a scalar
energy. The Gaussian term is included in the model to ensure integrability. We optimized θ by
minimizing DKL(qθ||p) using slice sampling reparameterization gradients and Adam [30].

The fit and target distributions are shown in Figure 3 along with a comparison to fitting a mean-field
Gaussian to the same objective. Qualitatively, the fit EBM appears remarkably similar to the target.
We estimated the KL divergence between the target p and the approximate distributions q using
numerical integration. We find that the KL divergence between the fit EBM and the target approaches
zero and is much lower than the KL divergence between the target and the mean-field Gaussian
posterior (Figure 3).

4.3 Variational contrastive divergence with fully reparameterized gradients

Combining variational inference with MCMC methods is an active area of research [50, 26, 3, 47].
One approach is to use samples from a variational posterior to initialize an MCMC chain targeting
the true posterior. The distribution of the resulting samples will be closer in KL divergence to the
true posterior than the variational posterior, making the ELBO tighter. However, this approach can
be challenging because the dependence on the variational parameters decreases as the length of the
MCMC chain increases and the distribution of the generated samples is not available in closed form.

Ruiz and Titsias [47] propose the variational contrastive divergence (VCD) objective for combining
variational inference with MCMC to address these two problems. Let the approximate posterior
be qθ(z), and let q(t)θ (z) be the distribution given by sampling an initial value z(0) ∼ qθ(z) and then
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running t steps of an MCMC chain targeting the true posterior p(z | x). Then the VCD objective is

LVCD(θ) = −Eqθ(z)[log p(x, z)− log qθ(z)] + E
q
(t)
θ (z)

[log p(x, z)− log qθ(z)]. (19)

Notably, this does not require evaluating q(t)θ and instead only requires sampling from it. However,
the second term of the VCD objective is an expectation with respect to MCMC samples, and Ruiz
and Titsias [47] use a score function estimator to estimate this gradient. With reparameterized slice
sampling we can use fully reparameterized gradients to optimize the VCD objective. Notably, this is
an example that requires a differential MCMC algorithm to obtain reparameterization gradients.

Table 1: Estimated heldout log likelihoods.
method MNIST Fashion MNIST

VCD [47] -95.86 -117.65
VCD w/ Reparam (Ours) -93.99 -118.02

We fit a variational autoencoder (VAE) [31, 45]
using the VCD objective to MNIST [34] and
Fashion MNIST [58]. Our network architectures
matched those used in Ruiz and Titsias [47]:
the latent dimensionality was 10 and both the
encoder and decoder had two hidden layers with
200 units and ReLU nonlinearities. The model was optimized for 400K iterations using ADAM
with batch sizes of 100. We also estimated the held-out log-likelihood via the importance sampling
approach used in Ruiz and Titsias [47].

In Table 1, we compare the held-out log likelihoods on MNIST and Fashion MNIST for our method
with slice sampling reparameterization gradients and the results reported in Ruiz and Titsias [47]
for S = 8 samples. We find that slice sampling reparameterization gradients perform comparably or
better than the original VCD results, with each method having a higher test log likelihood on one
of the datasets. As a function of the number of MCMC iterations (Figure 4), the test log likelihood
for slice sampling reparameterization gradients appears to scale better than the results obtained
in Ruiz and Titsias [47] (Figure 2 in that paper). Finally, for samples generated from the slice
sampler, optimization using reparameterization gradients largely outperformed optimization using
score function gradients (Appendix C).

We also demonstrate that the learned model and slice sampling procedure provide a meaningful result.
In Figure 4, we show the expected value of the observation given a sample from the variational
posterior and how 8 steps of slice sampling towards the target posterior improve the latent sample.
The resulting conditional mean estimate for zT appears more similar to the true observation x than
the estimate for z0. For example, in the bottom row the initial sample appears more like a nine but is
transformed to a one, which is the true observation.

4.4 Conditional EBM approximate posterior

We next used slice sampling reparameterization gradients to fit a VAE with a conditional EBM
approximate posterior:
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q(z | x) =
1

Z(θ,x)
exp{fφ(x)>gφ(z) + log p0(z)}. (20)

The observations are x, the latent variables are z ∈ RD, and log p0(z) is a prior. The functions fφ(x)
and gφ(z) map to vectors with an embedding dimensionality De. This differs from the standard VAE
in that the encoder f does not map to the mean of the latent space, but rather a separate embedding
that is nonlinearly combined by g(z) to give the energy. The form of the conditional EBM has
been studied previously in Khemakhem et al. [28, 29]. We fit the model to MNIST data (Figure 5)
with D = 20 and De = 50. Unconditional samples from the generative model look reasonable. We
visualized the embedding of held out test images by the function f using t-SNE [36]. Interestingly,
we see clusters in the embedding space corresponding to digits, with some overlap for similar digits.
Finally, as a baseline comparison we also fit the model using reparameterized Langevin dynamics.
The resulting model provided a qualitatively similar embedding of the digits (Appendix C.4).

unconditional samples visualization of embedding

t-SNE axis 1

t-S
N

E 
ax

is
 2

Figure 5: Unconditional samples (left) and embedding visualization (right) of a VAE fit to MNIST
with an EBM approximate posterior.

4.5 Adversarial training of EBMs

We next apply our method to training generative adversarial networks (GANs) [15] with EBM
generators. Let the generator distribution be pθ(x) ∝ efθ(x). Standard GANs define an implicit
distribution over the data points, whereas an EBM defines an unnormalized log-likelihood in the data
space. We optimize the Wasserstein GAN [2] objective with the gradient penalty from [18]:

min
θ

max
D∈D

Epd(x)[D(x)]− Epθ(x)[D(x)] + λEp(x̂)[(‖∇x̂D(x̂)‖2 − 1)2] (21)

where x̂ are sampled uniformly between pairs of real and generated data points [18], D is the
discriminator, and D is the set of 1-Lipschitz functions. We trained two dimensional EBMs using this
approach on three synthetic datasets, and we find that the distribution of generated samples from the
learned energy qualitatively match the training distribution (Figure 6, left). Our network architecture
and optimizer were based on those in [52, 6], and in future work we are interested in exploring
applications of reparameterization gradients for unnormalized distributions to disciminator-driven
latent sampling [6] and latent optimization for GANs [57].

4.6 Bayesian sensitivity analysis

The sensitivity of expectations under Bayesian posteriors to prior hyperparameters is a common
quantity of interest in Bayesian statistics [21, 19]. One formalization of this sensitivity to the
prior is as the gradient of the expectation with respect to the prior hyperparameters. Formally, the
local sensitivity of an expectation Epα [g(θ)] at a point α0 is ∇αEpα [g(θ)]|α=α0

, where pα is the
posterior pα = p(θ | D, α) [20]. Typically the normalizing constant of the posterior is unknown and
score function gradient approaches are needed to estimate this gradient. However, slice sampling
reparameterization gradients may provide a lower variance estimator of the sensitivity.

Baseball example We consider a non-conjugate hierarchical model of baseball hit probabilities
[9, 5]. The model of the number of successes (hits) for player j in Kj attempts (at bats) is

φ ∼ U [0, 1] κ ∼ Pareto(1, α) θj ∼ Beta(φ · κ, (1− φ) · κ) yj ∼ Binomial(Kj , θj), (22)
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Figure 6: Left: Training and learned generative samples (top) and learned energy function (bottom)
for the Swiss roll, two circles, and spirals datasets. Right: Linear approximation to posterior mean
hierarchical hit probability based on the estimated sensitivity at α = 1.5.

where φ determines the mean and κ roughly determines the variance of the hierarchical mean hit
probability across players. The hyperparameter of interest, α, determines the shape of the prior distri-
bution on κ. We estimated the local sensitivity ∇αEpα [φ] using slice sampling reparameterization
gradients. We find that the estimated local sensitivity provides a good linear approximation to how the
value of α determines the hierarchical mean hit probability (Figure 6, right). We present additional
results in the supplementary material (Appendix C).

5 Discussion

Limitations The slice sampler used in this paper samples random directions from the uniform
distribution over directions for identifying one-dimensional slices in higher dimensions. For complex
distributions, as the dimensionality increases it may be decreasingly likely that the sampled random
direction helps to efficiently explore the distribution. This can reduce the sampling efficiency of
the algorithm and limit the performance in higher dimensions. In future work, we are interested in
exploring non-uniform distributions over random directions.

Next, the algorithm relies on identifying the closest points that satisfy the slice boundary condition,
which are the slice endpoints. To identify these points, we first “step out” from the current point until a
bracketing point is found before running the root finder algorithm (Appendix A). Ideally, this bracket
contains only one point that satisfies the boundary condition, which is the slice endpoint. However,
for multimodal distributions this is not guaranteed, and therefore finding the slice boundaries can be
inexact for multimodal distributions. In particular, this is more challenging when modes are closely
connected such that there are multiple nearby points that satisfy the slice endpoint condition. We can
check if the next sampled point is on the slice to verify if this is an issue, and modify the stepping out
procedure to probe more finely spaced locations if needed.

Conclusion In this work we developed slice sampling reparameterized gradients and demonstrated
the method on a variety of applications involving approximate inference, energy-based models,
GANs, and Bayesian statistics. Among many possible directions, in future work we are interested in
combining reparameterized slice sampling with normalizing flows to improve the geometry of the
sampling space [25], developing reparameterization gradients for other classes of slice samplers, and
continuing to explore applications of reparameterization gradients of unnormalized distributions.

Societal Impact The potential negative societal impacts of our work are broadly the harm that can
be done using reparameterization gradient estimators to optimize models. One example would be
optimizing GANs for harmful applications such as “DeepFakes.”
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