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Abstract

It is a remarkable fact that the same O(
√
T ) regret

rate can be achieved in both the Experts Problem
and the Adversarial Multi-Armed Bandit problem
albeit with a worse dependence on number of ac-
tions in the latter case. In contrast, it has been
shown that handling online MDPs with commu-
nicating structure and bandit information incurs
Ω(T 2/3) regret even in the case of deterministic
transitions. Is this the price we pay for handling
communicating structure or is it because we also
have bandit feedback? In this paper we show that
with full information, online MDPs can still be
learned at an O(

√
T ) rate even in the presence of

communicating structure. We first show this by
proposing an efficient follow the perturbed leader
(FPL) algorithm for the deterministic transition
case. We then extend our scope to consider stochas-
tic transitions where we first give an inefficient
O(

√
T )-regret algorithm (with a mild additional

condition on the dynamics). Then we show how

to achieve O
(√

T
α

)
regret rate using an oracle-

efficient algorithm but with the additional restric-
tion that the starting state distribution has mass at
least α on each state.

1 INTRODUCTION

In this work, we study online learning in Markov Decisions
Processes. In this setting, we have an agent interacting with
an adversarial environment. The agent observes the state of
the environment and takes an action. The action incurs an
associated loss and the environment moves to a new state.
The state transition dynamics are assumed to be Markovian,
i.e., the probability distribution of the new state is fully
determined by the action and the old state. The transition
dynamics are fixed and known to the learner in advance.

No state Ergodic Communicating
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√
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√
T

√
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√
T

√
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Table 1: The dependence on time horizon T of the optimal
regret, under full and bandit feedbacks, as the state transition
dynamics become more complex.

However the losses are chosen by the adversary. The adver-
sary is assumed to be oblivious (the entire loss sequence is
chosen before the interaction begins). We assume that the
environment reveals full information about the losses at a
given time step to the agent after the corresponding action
is taken. The total loss incurred by the agent is the sum of
losses incurred in each step of the interaction. We denote the
set of states by S and the set of actions by A. The objective
of the agent is to minimized its total loss.

This setting was first studied in the seminal work of Even-
Dar et al. [2009]. They studied the restricted class of ergodic
MDPs where every policy induces a Markov chain with a
single recurrent class. They designed an efficient (runs in
polytime in MDP parameters and time of interaction) algo-
rithm that achieved O(

√
T ) regret with respect to the best

stationary policy in hindsight. They assumed full informa-
tion of the losses and that the MDP dynamics where known
beforehand. This work was extended to bandit feedback
by Neu et al. [2014]1. They also achieved a regret bound
of O(

√
T ). Bandit feedback is a harder model in which

the learner only receives information corresponding to the
losses of the actions it takes.

In this paper we will look at the more general class of com-
municating MDPs, where, for any pair of states, there is a
policy such that the time it takes to reach the second state
from the first has finite expectation. In the case of bandit
feedback with deterministic transitions, Dekel and Hazan

1with an additional assumption on the minimum stationary
probability mass in any state
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[2013] designed an algorithm that achieved O
(
T 2/3

)
regret.

This regret bound was proved to be tight by a matching
lower bound in Dekel et al. [2013]. This regret lower bound
was proved by a reduction from the problem of adversarial
multi-armed bandits with switching costs. In this setting, the
agent incurs an additional cost every time it switches the
arm it plays. Their lower bound definitively proves that in
the case of bandit information, online learning over commu-
nicating MDPs is statistically harder than the adversarial
multi armed bandits problem for which we have Õ(

√
T )

regret algorithms (Auer et al. [1995]). Their result gives
rise to the natural question: is the high regret due to the
communicating structure or bandit feedback(or both)? In
the case of experts with switching cost, we know O(

√
T )

regret algorithms such as FPL (Kalai and Vempala [2005]).
Using this, we give an O(

√
T ) algorithm for online learning

in communicating MDPs with full information. Thus, we
show that having communicating structure alone does not
add any statistical price (see Table 1).

1.1 OUR CONTRIBUTIONS

In this paper, we show that online learning over MDPs with
full information is not statistically harder23 than the prob-
lem of online learning with expert advice. In particular, we
design an efficient algorithm that learns to act in Communi-
cating Deterministic MDPs (ADMDPs) with O(

√
T ) regret

under full information feedback against the best determinis-
tic policy in hindsight. This is the first O(

√
T ) regret algo-

rithm for this problem. To achieve this bound, we designed
a follow the perturbed leader (Kalai and Vempala [2005])
style algorithm where we achieve low regret with respect to
the set of exponentially many policies with the additional
guarantee that our algorithm does not switch policies too
much. Since the number of policies is exponential, a naive
implementation of FPL will not work. We had to carefully
choose a polynomial number of perturbations (as opposed
to exponential in naive FPL) such that the algorithm worked.
We believe this is one of the sources of technical novelties
in our paper.

We prove a matching2 regret lower bound in this setting.
We also extend the techniques used in the previous algo-
rithm to design an algorithm that runs in time exponential in
MDP parameters that achieves O(

√
T ) regret in the general

class of communicating MDPs (albeit with an additional
mild assumption3). Again, this is the first algorithm that
achieves O(

√
T ) regret against this large class of MDPs.

Before this, O(
√
T ) regret algorithms were only known for

the case of ergodic MDPs. En route to this, we designed the
Switch_Policy procedure(Algorithm 3) to catch the distri-
bution induced to by a new policy in time O(D2) where D
is the diameter of the MDP. This was subsequently used by

2up to polynomial factors in the number of states and actions
3assuming the existence of a state with a “do nothing" action

Dai et al. [2022] where they prove analogous results to ours
in the bandit case.

Finally, we study the problem of designing oracle-efficient

algorithms. We give an O
(√

T
α

)
regret algorithm for com-

municating MDPs with a start state distribution having prob-
ability mass at least α on each state that is efficient when
given access to an optimization oracle.

2 RELATED WORK

As mentioned in the introduction, a closely related problem
is that of online learning with switching costs. In the case
of full information, algorithms like FPL (Kalai and Vem-
pala [2005]) achieves O(

√
T ) regret with switching cost. In

the case of bandit feedback, Arora et al. [2012b] gives an
algorithm that achieves O(T 2/3) regret with switching cost.
This was proved to be tight by Dekel et al. [2013] where
they proved a matching lower bound.

Another related problem is that of designing oracle-efficient
algorithms (studied in Dudík et al. [2016],Block et al.
[2022],Haghtalab et al. [2022] ). Designing oracle efficient
algorithms is challenging since all the main computational
steps in the algorithm need to be in the form of oracle calls
and this restricts the design space of algorithms.

Subsequent to the release of an earlier version of this paper,
Dai et al. [2022] gave an inefficient O(T 2/3) and oracle-
efficient O(T 5/6) regret algorithm for online learning over
Communicating2 MDPs with bandit information. Their al-
gorithms use our Switch_Policy procedure and thus requires
the same assumption3 as us.

3 PRELIMINARIES

An Online Markov Decision Process consists of a state space
S, action space A, a transition probability matrix P where
P (s, a, s′) is the probability of moving from state s to s′

on action a and a sequence of loss functions(chosen by an
oblivious adversary) ℓ1, . . . , ℓT where each ℓt is a map from
S ×A to [0, 1]. In this paper, S and A will be finite sets.

In the case of Adversarial Deterministic MDPs(ADMDP),
the transitions are deterministic and hence the ADMDP can
also be represented by a directed graph G with vertices
corresponding to states S. The edges are labelled by the
actions. An edge from s to s′ labelled by action a exists in
the graph when the ADMDP takes the state s to state s′ on
action a. This edge will be referred to as (s, a, s′).

A (stationary) policy π is a mapping π : S × A → [0, 1]
where π(s, a) denotes the probability of taking action a
when in state s. When the policy is deterministic, we over-
load the notation and define π(s) to be the action taken
when the state is s. The interaction starts in an arbitrary start



state s1 ∈ S.

An algorithm A that interacts with the online MDP chooses
the action to be taken at each time step. It maintains
a probability distribution over actions denoted by A(. |
s, ℓ1, . . . , ℓt−1) which depends on the current state and the
sequence of loss functions seen so far. The expected loss of
the algorithm A is

L(A) = E

[
T∑

t=1

ℓt(st, at)

]

where at ∼ A (. | st, ℓ1, . . . , ℓt−1) , st+1 ∼ P (·, st, at) For
a stationary policy π, the loss of the policy is

Lπ = E

[
T∑

t=1

ℓt(st, at)

]

where at ∼ π(. | st), st+1 ∼ P (·, st, at). The regret of the
algorithm is defined as

R(A) = L(A)−min
π∈Π

Lπ .

The total expected loss of the best policy in hindsight is
denoted by L∗. Thus,

L∗ = min
π∈Π

Lπ .

For any stationary policy π, let T (s′ | M,π, s) be the ran-
dom variable for the first time step in which s′ is reached
when we start at state s and follow policy π in MDP M . We
define the diameter D(M) of the MDP as

D(M) = max
s̸=s′

min
π

E [T (s′ | M,π, s)] .

A communicating MDP is an MDP where D(M) < ∞.

3.1 PRELIMINARIES ON ADMDPS

In this section, we use the graph G and the ADMDP inter-
changeably. A stationary deterministic policy π induces a
subgraph Gπ of G where (s, a, s′) is an edge in Gπ if and
only if π(s) = a and the action a takes state s to s′.

A communicating ADMDP corresponds to a strongly con-
nected graph. This is because the existence of a policy that
takes state s to s′ also implies the existence of a path be-
tween the two vertices in the graph G.

The subgraph Gπ induced by policy π in the communicating
ADMDP is the set of transitions (s, a, s′) that are possible
under π. Each components of Gπ is either a cycle or an
initial path followed by a cycle. Start a walk from any state
s by following the policy π. Since the set of states is finite,
eventually a state must be repeated and this forms the cycle.

Let N(s, a) be the next state after visiting state s and taking
action a. Define I(s) as

I(s) = {(s′, a) | N(s′, a) = s}.

The period of a vertex v in G is the greatest common divisor
of the lengths of all the cycles starting and ending at v. In
a strongly, connected graph, the period of each vertex can
be proved to be equal(Bremaud [2000] Chap. 2, Thm 4.2).
Thus, the period of a strongly connected G is well defined.
If the period of G is 1, we call G aperiodic.

Let C(s,k) be the set of all closed walks of G of length k
such that the start vertex is s. The elements of C(s,k) are
represented by the sequence of edges in the walks.

Note that the cycles induced by any stationary deterministic
policy π that are of length k and contain the vertex s will
be in C(s,k). However, C(s,k) can also contain cycles not
induced by policies(it can contain cycles that are not simple).
We use C to denote

⋃
s∈S,k∈[k] C(s,k). We sometimes loosely

refer elements of C as cycles. For a cycle c, we define at(c)
to be the action take by c in the tth step if we start following
c from the beginning of the interaction. Similarly, st(c) is
the state that you reach after following c for t−1 steps from
the start of the interaction. We define k(c) as the length of
the cycle c.

The vertices of a strongly connected graph G with pe-
riod γ can be partitioned into γ non-empty cycle classes,
C1, . . . , Cγ where each edge goes Ci to Ci+1.

Theorem 3.1. If G is strongly connected and aperiodic,
there exists a critical length d such that for any ℓ ≥ d, there
exists a path of length ℓ in G between any pair of vertices.
Also, d ≤ n(n− 1) where n is the number of vertices in the
graph.

The above theorem is from Denardo [1977]. It guarantees
the existence of a d > 0 such that there are paths of length d
between any pair of vertices. The following generalization
from Dekel and Hazan [2013] extends the result to periodic
graphs.

Theorem 3.2 (Dekel and Hazan [2013]). If G has a period
γ, there exists a critical value d such that for any integer
ℓ ≥ d, there is a path of in G of length γℓ from any state v
to any other state in the same cycle class.

Remark 3.3. We can also find the paths of length ℓ ≥ d
from a given vertex s to any other vertex s′ efficiently. This
can be done by constructing the path in the reverse direction.
We look at P ℓ−1 to see all the predecessors of s′ that have
paths of length ℓ− 1 from s. We choose any of these as the
penultimate vertex in the path and recurse.

4 DETERMINISTIC TRANSITIONS

We now present our algorithm for online learning in AD-
MDPs when we have full information of losses. We use G



to refer to the graph associated to the ADMDP.

We assume that the ADMDP dynamics are known to the
agent. This assumption can be relaxed as shown in Ortner
[2010] as we can figure out the dynamics in poly(|S|, |A|)
time when the transitions are deterministic. We want to
minimize regret against the class of deterministic stationary
policies.

4.1 ALGORITHM SKETCH

We formulate the task of minimizing regret against the set of
deterministic policies as a problem of prediction with expert
advice. As observed earlier, deterministic policies induce a
subgraph which is isomorphic to a cycle with an initial path.
We keep an expert for each element of C(s,k) for all states s
and k ≤ s. Note that we do not keep an expert for policies
which have an initial path before the cycle. This is because
the loss of these policies differ by at most |S| compared to
the loss of the cycle. Also, we make sure that the start state
of the cycle is in the same cycle class as the start state of the
environment. If this is not the case, our algorithm will never
be in phase with the expert policy. Henceforth, we will refer
to these experts as cycles.

The loss incurred by cycle c ∈ C(s,k) at time t is equal to
ℓt(st, at) where st and at are the state action pair traversed
by the cycle c at time t if we had followed it from the start
of the interaction.

We first present an efficient (running time polynomial in
|S|, |A| and T ) algorithm to achieve O(

√
T ) regret and

switching cost against this class of experts. For this we used
a Follow the perturbed leader (FPL) style algorithm.

We then use this low switching algorithm as a black box.
Whenever, the black box algorithm tells us to switch policies
at time t, we compute the state s that we would have reached
if we had followed the new policy from the start of the
interaction and moved t+ γd steps. We then move to this
state s in γd steps. Theorem 3.2 guarantees the existence of
a path of this length. We then start following the new policy.

Thus, our algorithm matches the moves of the expert policies
except when there is a switch in the policies. Thus, the regret
of our algorithm differs from the regret of the black box
algorithm by at most O(γd

√
T ).

4.2 FPL ALGORITHM

We now describe the FPL style algorithm that competes
with the set of cycles described earlier with O(

√
T ) regret

and switching cost.

Algorithm 1: FPL algorithm for Deterministic MDPs

Sample perturbation vectors ϵi ∈ R|S||A| for
1 ≤ i ≤ |S| from an exponential distribution with
parameter λ;

Sample a perturbation vector δ ∈ R|S|2 from the same
distribution;

while t ̸= T + 1 do
Ct = argmins∈S,k∈[K],c∈C(s,k)

δ(s, k) +∑t−1
i=1 ℓt(st(c), at(c)) +∑max(t,k(c)+1)
i=1 ϵi(st(c), at(c));

Adversary returns loss function ℓt;

4.2.1 Finding the leader: Offline Optimization
Algorithm

First, we design an offline algorithm that finds the cycle
(including start state) with lowest cumulative loss till time t
given the sequence of losses ℓ1 . . . , ℓt−1. This is the argmin
step in Algorithm 1. Given (s, k), we find the best cycle
among the cycles that start in state s and have length k. For
this we use a method similar to that used in Arora et al.
[2012a]. We then find the minimum over all (s, k) pairs to
find the best cycle. Note that we only consider start states s
which are in the same cycle class as the start state s0 of the
game.

We find the best cycle in C(s,k) using Linear Programming.
Let n = |S||A|k. The LP is in the space Rn. Consider a
cycle c ∈ C(s,k). Let ci denoted the ith state in c. Also, let
ai be the action taken at that state. We associate a vector
x(c) with the cycle as follows.

x(c)s,a,i =

{
1 if a = ai and s = ci

0 otherwise

We construct a loss vector in Rn as follows.

ls,a,i =
∑

1≤j<t
(j−i)≡0 mod k

ℓj(s, a)

Our decision set X ⊆ Rn is the convex hull of all x(c)
where c ∈ C(s,k). Our objective is to find x in X such
that ⟨x, l⟩ is minimized. The set X can be captured by the
following polynomial sized set of linear constraints.

x ≥ 0∑
a∈A

x(s,a,1) = 1

∀s′ ∈ S \ {s}, a ∈ A, x(s,a,1) = 0

∀(s′, a′) /∈ I(s), x(s′,a′,k) = 0

∀s′ ∈ S, 2 ≤ i ≤ k,
∑

(s′,a′)∈I(s)

x(s′,a′,i−1) =
∑
a∈A

x(s,a,i)



Once we get an optimal x for the above LP, we can decom-
pose the mixed solution as a convex combination of at most
n+1 cycles from Caratheodory Theorem. Also, these cycles
can be recovered efficiently (Bazaraa et al. [2004]). Each of
them will have same loss and hence we can choose any of
them.

Once we have an optimal cycle for a given (s, k), we can
minimize over all such pairs to get the optimal cycle. This
gives us a polynomial time algorithm to get the optimal
cycle.

Remark 4.1. If the new cycle chosen has the same per-
turbed loss as the old cycle, we will not switch. This is to
prevent any unnecessary switches caused by the arbitrary
choice of cycle in each optimization step (as we choose an
arbitrary cycle with non-zero weight in the solution).

4.2.2 Regret of the FPL algorithm

We now state the bound on the regret and expected number
of switches of Algorithm 1.

Theorem 4.2. For appropriately chosen λ, the regret and
the expected number of switches of Algorithm 1 can be
bounded by

O
(
|S|
√
L∗ · log |S||A|

)
where L∗ is the cumulative loss of the best cycle in hindsight.

To achieve the desired switching bound, we grouped the
policies into polynomial number of groups and showed that
probability of the current policy switching to a policy in any
of these groups is at most λ. Then, taking a union bound
over all the groups, we achieved the desired regret bound.
We prove this result in the supplementary section.

4.3 PUTTING IT TOGETHER

We have described the FPL style algorithm that achieves
low regret and low switching. We now use Algorithm 1 as a
sub-routine to design a low regret algorithm for the online
ADMDP problem.

Recall that for a cycle c, st(c) is the state you would reach
if you followed the cycle c from the start. This can be com-
puted efficiently.

We now state the regret bound of Algorithm 2.

Theorem 4.3. Given a communicating ADMDP with state
space S, action space A and period γ, the regret of Algo-
rithm 2 is bounded by

Regret ≤ O
(
|S|3 · γ

√
L∗ · log |S||A|

)
where L∗ is the total loss incurred by the best stationary
deterministic policy in hindsight.

Algorithm 2: Low regret algorithm for communicating
ADMDPs
t=1;
s0 is the start state of the environment;
Let c1 be the cycle chosen by Algorithm 1 at t = 1;
if s1 ̸= s0(c1) then

Spend γd steps to move to state s0(c1);
c1+γd = c1;
t = 1 + γd;

while t ̸= T + 1 do
Choose action at = at(ct);
Adversary returns loss function ℓt and next state
st+1;

Feed ℓt as the loss to Algorithm 1 ;
if Algorithm 1 switches cycle to ct+1 then

if st+1 ̸= st+1(ct+1) then
Spend γd steps to move to state
st+γd(ct+1);
ct+γd = ct+1;
t = t+ γd;

else
t = t+ 1;

Proof. We spend γd steps whenever Algorithm 1 switches.
In all other steps, we receive the same loss as the cy-
cle chosen by Algorithm 1. Thus, the regret differs by
at most γd · Ns. From Theorem 4.2, we get that the to-
tal regret of our algorithm in the deterministic case is
O
(
|S| · γd

√
T log |S||A|

)
where d is the critical length

in the ADMDP. Note that d is at most O(|S|2) . Thus, we
get that

Regret ≤ O
(
|S|3 · γ

√
L∗ · log |S||A|

)

Remark 4.4. To achieve the first order regret bound, we set
λ in terms of L∗. We need prior knowledge of L∗ to directly
do this. This can be circumvented by using a doubling trick.

4.4 REGRET LOWER BOUND FOR
DETERMINISTIC MDPS

We now state a matching regret lower bound (up to polyno-
mial factors).

Theorem 4.5. For any algorithm A and any |S| > 3, |A| ≥
1, there exists an MDP M with |S| states and |A| actions
and a sequence of losses ℓ1, . . . , ℓt such that

R(A) ≥ Ω
(√

|S|T log |A|
)

where R(A) is the regret incurred by A on M with the given
sequence of losses.



5 STOCHASTIC TRANSITIONS

In the previous sections, we only considered deterministic
transitions. We now present an algorithm that achieves low
regret for the more general class of communicating MDPs
(with an additional mild restriction). This algorithm achieves
O(

√
T ) regret but takes exponential time to run (exponential

in |S|).

Assumption 5.1. The MDP M has a state s∗ and action a
such that

Pr(st+1 = s∗ | st = s∗, at = a) = 1

In other words, there is some state s∗ in which we have a
deterministic action that allows us to stay in the state s∗.
This can be interpreted as a state with a “do nothing" action
where we can wait before taking the next action.

We now state a theorem that guarantees the existence of a
number ℓ∗ such that all states can be reached from s∗ in
exactly ℓ∗ steps with a reasonably high probability.

Theorem 5.2. In MDPs satifying Assumption 5.1, we have
ℓ∗ ≤ 2D and state s∗ such that, for all target states s′, we
have policies πs′ such that

ps′ = Pr[T (s′ | M,πs′ , s
∗) = ℓ∗] ≥ 1

4D

Let p∗ = mins ps. Clearly, p∗ ≥ 1
4D

5.1 ALGORITHM

We extend the algorithm we used in the deterministic MDP
case.

We use a low switching algorithm (FPL) that considers
each policy π ∈ Π as an expert. We know from Kalai and
Vempala [2005] that FPL achieves O(

√
T log n) regret as

well as switching cost. At time t, we receive loss function
ℓt from the adversary. Using this, we construct ℓ̂t as

ℓ̂t(π) = E [ℓt(st, at)]

where s1 ∼ d1, at ∼ π(st, .)

In other words, ℓ̂t(π) is the expected loss if we follow the
policy π from the start of the game. d1 is the initial distribu-
tion of states.

We feed ℓ̂t as the losses to FPL.

We can now rewrite Lπ as

Lπ = E

[
T∑

t=1

ℓt(st, at)

]
=

T∑
t=1

E [ℓt(st, at)] =

T∑
t=1

ℓ̂t(π)

where s1 ∼ d1 and at ∼ π(st, .). Let πt be the policy
chosen by FPL at time t. We know that

E

[
t∑

t=1

ℓ̂t(πt)

]
−

t∑
t=1

ℓ̂t(π) ≤ O(
√
T log |Π|)

for any deterministic policy π.

We need our algorithm to receive loss close to the first term
in the above sum. If this is possible, we have an O(

√
T )

regret bound for online learning in the MDP. We now present
an approach to do this.

5.1.1 Catching a policy

When FPL switches policy, we cannot immediately start
receiving the losses of the new policy. If this was possible,
then the regret of our algorithm will match that of FPL.
When implementing the policy switch in our algorithm, we
suffer a delay before starting to incur the losses of the new
policy (in an expected sense). Our goal now is to make this
delay as small as possible. This coupled with the fact that
FPL has a low number of switches will give us good regret
bounds. Note that this was easily done in the deterministic
case using Theorem 3.2. Theorem 5.2 acts somewhat like
a stochastic analogue of Theorem 3.2 and we use this to
reduce the time taken to catch the policy.

5.2 ANALYSIS

The following lemma shows that the Switch_Policy routine
works correctly. That is, after the execution of the routine,
the state distribution is exactly the same as the state distri-
bution of the new policy.

Lemma 5.3. If Switch_Policy terminates at time t, we have
that

Pr[St = s | Tswitch = t] = dtπ(s)

where dtπ(s) is the distribution of states after following
policy π from the start of the game.

We now bound the expected loss of the algorithm in the
period that FPL chooses policy π

Lemma 5.4. Let the policy of FPL be π from time t1 to t2.
We have that

E

[
t2∑

t=t1

ℓt(st, at)

]
≤ 48 ·D2 +

t2∑
t=t1

ℓ̂t(π)

We are now ready to bound the regret of Algorithm 3

Theorem 5.5. The regret of Algorithm 3 is at most
O
(
D2
√
T log |Π|

)



Algorithm 3: Low Regret Algorithm For Communicat-
ing MDPs

Function Switch_Policy(s,π,t0):
Done = 0
t = t0 + 1 // t0 is the time that B
switched policy
St = s // St stores the state at
time t

while Done ̸= 1 do
Move to state s∗ using the best policy // Say
this step takes k steps
t = t+ k

Sample Tt+ℓ∗ from dt+ℓ∗

π (.)
We set Tt+ℓ∗ as the target state
Use policy πTt+ℓ∗ guaranteed by Corollary 5.2
to move ℓ∗ steps from s∗

t = t+ ℓ∗

if St = Tt then
Consider a Bernouli Random Variable I
such that I = 1 with probability p∗

pSt
.

if I = 1 then
Start following π and set Done to 1
Let the time at this happens be Tswitch

else
I = 0

Continue

else
Continue

Function Main:
Let πFPL

1 be the expert chosen by FPL at time 1
π1 = πFPL

1

Let S1 be the start state.
t = 1
while t ̸= T + 1 do

Sample at from πt(st, .)
Adversary returns loss function ℓt and next state
s St+1=s

Compute ℓ̂t and feed it as the loss to FPL as
discussed before

if FPL switches policy then
Switch_Policy(s, πFPL

t+1, t+ 1) // Call
the switch policy function
to catch the new policy
πt+k = πFPL

t+1 // k is the number
of steps taking by Switch
Policy
t = t+ k

else
πt+1 = πt

t = t+ 1

Proof. We condition on the number of switches made by
FPL. Let Ns be the random variable corresponding to the
number of switches made by FPL. We refer to Algorithm 3
as A.

L(A) = E

[
T∑

t=1

ℓt(st, at)

]

= E

[
E

[
T∑

t=1

ℓt(st, at) | Ns

]]

After each switch, Lemma 5.4 tells us that the Algorithm
suffers at most 48 ·D2 extra average loss to the loss of the
algorithm FPL. Thus,

L(A) ≤ E

[
48 ·D2 ·Ns +

T∑
t=1

ℓ̂t(πt)

]

πt is the policy chosen by algorithm FPL at time t.
Since FPL is a low switching algorithm, we have Ns ≤
O(
√

T log |Π|. The second term in the expectation is at-
most Lπ + O(

√
T log |Π|) for any deterministic policy π.

This is because FPL is a low regret algorithm. Thus, we
have

L(A)− Lπ ≤ O(D2
√

T log |Π|)

for all stationary π.

Thus, R(A) ≤ O
(
D2
√
T log |Π|

)
When Π is the set of stationary deterministic policies, we
get that |Π| ≤ |A||S|. Thus, we get the following theorem.

Theorem 5.6. Given a communicating MDP satisfying As-
sumption 5.1 with |S| states, |A| action and diameter D, the
regret of Algorithm 3 can be bounded by

Regret ≤ O
(
D2
√

T |S| log |A|
)

In fact, since we are using FPL as the expert algorithm,
we can get first-order bounds similar to Theorem 4.2. In a
setting with n experts with m being the total loss of the best
expert, we can derive that the regret and number of switches
can be bounded by O(

√
m · log n).Thus, using this, we get

the following first order regret bounds for Algorithm 3

Corollary 5.7. Given a communicating MDP satisfying
Assumption 5.1 with |S| states, |A| action and diameter D,
the regret of Algorithm 3 can be bounded by

Regret ≤ O
(
D2
√
L∗ · |S| log |A|

)
where L∗ is the total expected loss incurred by the best
stationary deterministic policy in hindsight.



5.3 ORACLE-EFFICIENT ALGORITHM
ASSUMING EXPLORING STARTS

In this section, we design an oracle-efficient algorithm for
the stochastic case assuming that the initial distribution over
states, d1 has probability mass at least α on every state. That
is, Pr[S1 = s] ≥ α for all s ∈ S.

Here, we assume that we have an oracle O that can find the
stationary deterministic policy with minimum cumulative
loss at no computational cost. We use this oracle and the
ideas from the previous sections to design an FPL style
algorithm low regret algorithm.

Before, proceeding to a detailed discussion of the oracle
and the algorithm, we give a few comments on the moti-
vation for designing such algorithms. Oracle efficient re-
ductions are standard for those online problems where the
offline problem is computationally challenging. The ben-
efit is in showing that handling the online case does not
offer any additional complexity (up to poly factors) over
solving the offline problem (where there is no learning, just
optimization). In our case, it is not clear if the offline prob-
lem (calculating the best stationary problem in hindsight)
can be computed efficiently. Theorem 4.12 from Mundhenk
et al. [2000] states that the decision version of the problem
is P-hard and in NP, but nothing further is known about
the hardness to the best of our knowledge. Any future im-
provements in the offline problem immediately improves
our online algorithm as well, and this is the main advantage
of designing an oracle efficient algorithm.

5.3.1 Oracle

The oracle O takes in loss functions ℓ1, . . . , ℓT and out-
puts the stationary deterministic policy with the lowest
expected cumulative loss. That is, it returns the policy
π = argminΠ Lπ , where

Lπ = E

[
T∑

t=1

ℓt(st, at)

]

with s1 ∼ d1 and at = π(st).

We say that an algorithm is oracle-efficient if it runs in
polynomial time when given access to the oracle O. We
now describe our oracle-efficient algorithm.

5.3.2 Algorithm

We use Algorithm 4 as our black box experts algorithm. We
prove that Algorithm 4 has low regret.

Theorem 5.8. The regret and expected number of switches

can be bounded by O

(√
L∗|S| log |S||A|

α

)
.

Algorithm 4: Black Box FPL algorithm used for Com-
municating MDPs with exploring starts

Sample perturbation vectors ϵ ∈ R|S||A| from an
exponential distribution with parameter λ;

while t ̸= T + 1 do

πt = argmin
π∈Π

E

[
ϵ(s1, a1) +

t−1∑
i=1

ℓt(st, at)

]

with s1 ∼ d1 and at = π(st);
Adversary returns loss function ℓt;

The rest of the algorithm is the same as Algorithm 3. The
exploring starts assumption allows us to get an efficient
low regret, low switching algorithm assuming access to the
oracle O:

Theorem 5.9. Given a communicating MDP satisfying As-
sumption 5.1 with a start distribution with at least probabil-
ity α on every state, and given access to the oracle O, we
have an efficient algorithm with

Regret ≤ O

(
D2

√
L∗|S| log |S||A|

α

)

Proof. The proof is exactly the same as that of Theorem 5.5
except that we use the switching cost bound from Theo-
rem 5.8.

6 CONCLUSION

We considered learning in a communicating MDP with
adversarially chosen costs in the full information setting.
We gave an efficient algorithm that achieves O(

√
T ) regret

when transitions are deterministic. We also presented an in-
efficient algorithm that achieves a O(

√
T ) regret bounds for

the general stochastic case with an extra mild assumption.
Our result show that in the full information setting there is
no statistical price (as far as the time dependence is con-
cerned) for the extension from the vanilla online learning
with experts problem to the problem of online learning with
communicating MDPs.

Several interesting questions still remain open. First, what
are the best lower bounds in the general (i.e., not necessarily
deterministic) communicating setting? In the deterministic
setting, diameter is bounded polynomially by the state space
size. This is no longer true in the stochastic case. The best
lower bound in terms of diameter and other relevant quanti-
ties (|S|, |A| and T ) still remains to be worked out. Second,
is it possible to design an efficient algorithm beyond the
deterministic case with fewer assumptions? The source of
inefficiency in our algorithm is that we run FPL with each



policy as an expert and perturb the losses of each policy
independently. It is plausible that an FPL algorithm that
perturbs losses (as in the deterministic case) can also be
analyzed. However, there are challenges in its analysis as
well as in proving that it is computationally efficient. For
example, we are not aware of any efficient way to compute
the best deterministic policy in hindsight for the general
communicating case. This leads us to another open question:
are there any oracle-efficient O(

√
T ) regret algorithms that

do online learning over communicating MDPs. Dai et al.
[2022] give an oracle-efficient O(T 5/6) regret algorithm but
that works for bandits as well and does not use the additional
information that is there in the full information case.
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