
Under review as a conference paper at ICLR 2022

ENHANCING THE TRANSFERABILITY OF ADVERSAR-
IAL ATTACKS VIA SCALE ENSEMBLE

Anonymous authors
Paper under double-blind review

ABSTRACT

There is a line of works on adversarial example generation in computer vision,
which makes deep learning suffer a lot. Driven by the transferability decrease
among models with different input sizes, we present a novel attack method by
using a scale input ensemble framework to enhance the transferability of adver-
sarial images, which is named Scale Ensemble Method(SEM). Our method can
preserve the characteristic texture of the original image via zooming the surro-
gate model’s input in and out in a specific sequence during generating adversarial
examples. The superior texture feature highlights the important attacking region
and increases the diversity of adversarial perturbations for assisting a more ag-
gressive attack. The experiments on ImageNet show that our method successfully
mitigates the gap of transferability between models with different input sizes and
achieves about 8% higher success rate comparing with the state-of-the-art input
transformation methods. And we also demonstrate that our method can integrate
with existing methods and bypass a variety of defense methods with over 90%
success rate.

1 INTRODUCTION

Adversarial examples are widely used in different scenarios include image classification (Goodfel-
low et al. (2014)),image generation (Chen et al. (2021b)), video classification (Chen et al. (2021a)),
etc for testing the venerability of deep neural networks. Those adversarial examples can gener-
ate closely with the target model (white-box attack) or do not rely on the target model (black-box
attack). For the safety of DNN, both adversarial attack and defense have been attracting a lot of
attention in both academia and industry.

Despite the attack methods have been proposed differently for different scenarios, another impor-
tant direction is producing more transferable adversarial examples. While, we found some features
when we explore the adversarial transferability. We attack the pretrained models in Pytorch using
size 3x224x224 while the Inception(Szegedy et al. (2016)) uses the size 3x299x299, and the trans-
ferability between these two kinds of models usually suffers decreasing. This reminds us that almost
all the previous works craft adversarial examples in a model-specific image size, which makes the
adversarial examples sensitive to the image interpolation method (Quiring et al. (2020)).

Based on the above, we start to rescale adversarial examples in various sizes and ensemble them
together to omit the scale feature that the target model learned,, shown in Fig. 1, which we called
Scale Ensemble Method (SEM). Note that SEM is different from the previous adversarial method
SIM(Lin et al. (2020)), which scales the pixel values of images while ours change the image size.
The method we used to change the input size is inspired by the excellent work DeepDreams1, which
feeds the networks with images of different sizes to enhance rich features that neural networks have
learned. Furthermore, the attention maps of images with various scales also show that different
scales of images can produce different attention maps. This indicates that our method can contain
more different attention areas which may reflect in the adversarial perturbation generating process.
More importantly, compared with other input-transformation methods, we do not import other dis-
tribution noises for increasing the input diversity, but only use the different scales of the inputs to
capture the various features related to the texture and segmentation of the original images.

1https://www.tensorflow.org/tutorials/generative/deepdream
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We evaluate our approach on four different image classification models pretrained on Ima-
geNet(Deng et al. (2009)), and compare our method with three state-of-the-art input transformation
adversarial methods. The results show our proposal outperforms the other methods 5% to 10% suc-
cess rate across all models. And we also integrate our method with others to propose a new SOTA
attack method. Experiments on clean and adversarially-trained models both demonstrate the effec-
tiveness of our new ensemble method. Finally we test our attack on ten adversarial defense methods.
The results show that SEM achieves an average of 90.5% success rate on four models against ten
defense methods, which is 5.8% higher than the previous best method.

The contributions of this paper are as follows:

• Different from other input transformation-based methods, our work can maintain the input
texture to form more robust adversarial attacking features. We reveal that the image scale
can be a quite important factor for helping adversarial examples generation.

• Our work is outperforming other attack methods, and can also joint with other attack al-
gorithms to promote attack transferability. Even in defense settings, our method can also
maintain efficient attack performance.

• We provide an explanation of the mechanism of our attacking method, which suggests that
the diversity of gradient is important for generating more transferable adversarial examples.

2 RELATED WORKS

2.1 ADVERSARIAL ATTACKS

There are a lot of methods that have been proposed for adversarial examples generation. Adversarial
attacks can be classified as white-box attacks and black-box attacks. In the white-box setting, they
can also be classified as gradient optimization based methods and input transformation based meth-
ods. In this work, we mainly focus on promoting the attack performance of input transformation
based methods. Here, we provide a brief introduction to a number of recently introduced white-box
attacks in the literature.

Gradient Optimization Based Attack. Szegedy et al. (2013), Goodfellow et al. (2014) and Ku-
rakin et al. (2018) starts the adversarial examples in deep learning. Dong et al. (2018) proposed
MI-FGSM which integrate momentum into the iterative attack and lead to a higher transferability
for adversarial examples. Translation Invariant Method (TIM) was also proposed by Dong et al.
(2019) to evading the defense models with the Gaussian Smooth to smooth the local gradients dur-
ing iterations. Lin et al. (2020) claim that Nesterov accelerated gradient is superior than momentum,
they adapt Nesterov accelerated gradient as a gradient optimization method to improve the transfer-
ability of adversarial examples. Wang & He (2021) proposed a method called variance tuning to
enhance the class of iterative gradient based attack methods, they use the gradient variance of the
previous iteration to tune the current gradient so as to stabilize the update direction and escape from
poor local optima.

Input Transformation Based Attack. Xie et al. (2019) optimize the adversarial perturbations over
the diverse transformation of the input image at each iteration. The transformations include the
random resizing and the random padding. Diverse Input Method (DIM) can be naturally integrated
into other gradient-based attacks to further improve the transferability of adversarial examples. Lin
et al. (2020) modify the input image with the scale factor which is divide the value of image pixels
by 2i. The approach changes the input images a lot to avoid ”overfitting” on the white-box model.
Wu et al. (2018) utilizes the variance reduced gradient to generate more transferable adversarial
examples, says an averaged gradient can removes the local fluctuation compared with others.

2.2 DEFENSE

Adversarial defense develops together with attacks. One of the most famous approach to defend-
ing against adversarial attacks is Adversarial Training(AT, Goodfellow et al. (2014)), which trains
deep neural network(DNN) with adversarial examples to enhance the model’s robustness against ad-
versarial attacks. Moreover, Tramèr et al. (2018) proposed Ensemble Adversarial Training(EAT), a
technique that augments training data with perturbations transferred from other models. EAT exhibit
much stronger robustness due to the higher transferability of its training adversarial examples.
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Figure 1: The process to generate adversarial examples via SEM. The input image first be trans-
formed into different image sizes. Then, through the target model, we calculate the related gradients
of those inputs. Finally, we integrate the related gradients to generate the adversarial perturbation.

Besides adversarial training, there is a major class of adversarial defenses processing the input im-
ages to achieve robustness. Guo et al. (2018) use JPEG compression and Total Variance Minimiza-
tion (TVM) to compress the perturbed images. Similarly, Liu et al. (2019) propose a DNN-oriented
JPEG compression method named Feature Distillation (FD). Xie et al. (2018) mitigate the impact of
adversarial perturbation via randomly Resize and Padding (R&P). Xu et al. (2018) squeeze the per-
turbed images via reducing the bit color(Bit-Red) of input images. Cohen et al. (2019) use Random
Smoothing (RS) to recover the perturbed accuracy. Prakash et al. (2018) use the pixel deflection
(PD) to redisrtibute the input images. Liao et al. (2018) train a denoising model guided by the high-
level representation of DNN (HGD). Naseer et al. (2020) similarly train a purifier network through
minimize the mid-level feature distance between clean and adversarial images, which is called Neu-
ral Representation Purifier (NRD). Besides, Mustafa et al. (2019) propose a novel defense strategy
that uses the image super-resolution (SR) to destroy the adversarial perturbation.

In this paper, we choose both AT and EAT to evaluate our attacks. And all of the above defense
methods are used to test the effectiveness of our method.

3 METHODOLOGY

In this paper, we propose a novel input transformation method that exhibit the features of images at
different scales named Scale Ensemble Method(SEM). Typical examples are shown in Fig. 1. We
provide the detail description of our approach in the next.

Given an image x with ground-truth label y, and a classification model f(x) : X → Y , we want
to generate an adversarial example xadv that fools the classifier and keep the perturbation unper-
ceptual simultaneously. Denote J is the cost function for target classifier f , the goal of crafting an
adversarial example xadv can be described as

argmax
xadv

J(xadv, y), s.t. ‖x− xadv‖∞ ≤ ε (1)

A group of methods have been proposed to solve the optimization problem in Eq.1 based on
FGSM(Goodfellow et al. (2014)). We take MI-FGSM(Dong et al. (2018)) as an example. Com-
pared with the original single-step method FGSM, MI-FGSM is extend to an iterative version and
uses momentum item to boost the optimization process. The iterative update rule of MI-FGSM is

gt+1 = µ · gt +
∇xJ(xadvt , ytrue)∥∥∇xJ(xadvt , ytrue)

∥∥
1

,

xadvt+1 = Clipεx{xadvt + α · sign(gt+1)},
(2)

where sign(·) function restricts the perturbation in the L∞ norm bound, Clipεx(·) function restricts
generated adversarial examples to be within the ε-ball of x,∇xJ denote the derivative function of J
to x, µ is decay rate and gt is the accumulated gradient at iteration t. Based on MI-FGSM, Lin et al.
(2020) uses the Nestrov(Nesterov (1983)) to accelerate the convergency, which is named NI-FGSM.

3.1 INPUT TRANSFORMATION METHODS

Although the development of FGSM makes the optimization faster and preciser, the transferability
of adversarial examples they generate is still very low. A series of input transformation methods
have been proposed to mitigate the problem. And we will introduce several of them here briefly.

3



Under review as a conference paper at ICLR 2022

Variance Reduced Method(VRM). VRM propose that the gradients shatter in the local landscapes
of DNN’s input space, and they suggest to smooth the landscape with Gaussian mollifier, the true
gradient to update the adversarial examples at the point x is calculated by

Gσ(x) = Eξ∼N (0,σ2)[g(x+ ξ)] (3)
where σ is variance of sampled Gaussian noise. In the paper, they sample the noise m times and
average the gradient as the gradient expectation ta x.

Diverse Input Method(DIM). Xie et al. (2019) think that pure optimizations like MI-FGSM are
easy to overfit the specific networks. So they propose to randomly resize the pad the original images
with a given probability.

Scale Invariant Method(SIM). Lin et al. (2020) propose to optimize the adversarial perturbation
over the scale copies of the input image, where the transformation they use is Si(x) = x/2i, i.e.
simply dividing the pixel values of x with 2i.

Although these input transformation methods do improve the transferability of adversarial examples,
they all generate adversarial examples in a model-specific size. Once the adversarial examples are
generated, the only way to attacking a target model with different input size is resizing. However,
this usually doesn’t work well(see detail in Sec.4.2).

Another problem of existing input transformation methods is gradient diversity. The key point of
input transformation methods is to avoid overfitting in a single model. To be more specific, they
want to find a generalizable gradient that can fit all the potential victim models, which is rarely
possible due to the imperfect performance of target models. Existing methods like DIM and VRM
augment the input data in a random manner, but the gradients of these methods rarely change with the
transformations. These approaches have small gradient diversity so that once the white-box model
gives wrong attention the update gradient is totally wrong. SIM is a little different that augments
inputs via dividing pixel value. The gradients of SIM is much diverse but not concentrated when the
scale factor i is very large. In other words, the model often gives the wrong gradients when i is large,
and the accumulated gradients of SIM have more bias. The detail of above analysis of gradient can
be seen in Sec.4.6.

Based on above discussion, we propose our Scale Ensemble Method that augments the inputs in
various image scales and keep gradients more diverse but concentrate on the accurate areas.

3.2 SCALE ENSEMBLE METHOD

Denote Tα is the transformation which resizes the image with size s into αs. The interpolation
methods we use in this paper is the Nearest Neighbour Interpolate for the its low computation cost.

We introduce scale range l and r where we want our image sizes to range and the scale number N .
We first generate N evenly spaced resize factors over scale interval [l, r]. The new scale αi of input
image can be described as

αi = Ceil{[l + i(r − l)] · s}, i = 0, 1, ..., N − 1. (4)

A group of transformation functions {Tαi
}N−1i=0 could be created via Eq.4.

During each attack iteration, the adversarial examples xadvt will be transformed into N different
scales {Tαi(x

adv
t )}N−1i=0 and then fed into the classification model f to compute the gradients. The

update gradient at iteration t can be computed by the following formulation:

ĝt =
1

N

N∑
i=1

∇xJ(Tαi
(xadvt ), ytrue), (5)

combining with MI-FGSM to form SE-MI-FGSM, the gradient update rule is

gt+1 = µ · gt +
ĝt
‖ĝt‖1

,

xadvt+1 = Clipεx{xadvt + α · sign(gt+1)}.
(6)

Through updating the adversarial examples T times, we can get the final adversarial example xadvT .
The update gradient of SEM is much more diverse compared with other input transformation method
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because the each layer of target network perceives different area of the original images, which plays
the role like model ensemble, and on the other hand we do not import any other distribution noise
so the original texture information can be maintained at a high level.

Note that here our gradient accumulation methods can be combined with other optimization-based
attacks like NI-FGSM too. Besides, SEM can be combined with not only gradient constrained
attacks but also any other input transformation methods.

4 EXPERIMENTS

In order to validate the effectiveness of our proposed method, we conduct some experiments on Im-
ageNet (Russakovsky et al. (2015)). The construction of this section is as follows: we first introduce
the experiment setup including models, dataset, baselines, and the hyper-parameters. Next, we show
the comparison of our SEM with other input transformation methods through untarget attacks with a
single model. Then we combine a series of previous attacks to introduce the state-of-the-art transfer
attack, which outperforms the previous single method attacks with a large margin, and also in this
part, we confirm that our SEM can integrate the SOTA and enhancing the transferability further.
After that, we test our methods with 10 adversarial defense methods and demonstrate the robustness
of the proposed attack. Next we conduct some ablation studies to further validate the effectiveness.
Finally we give some analysis of why our method works better than others.

4.1 SETUP

Models. We select 4 common-used ImageNet pre-trained models Inception-v3 (Inc-v3), Inception-
Res-v2(IncRes-v2)(Szegedy et al. (2016)), ResNet50(Res-50)(He et al. (2016)) and DenseNet121
(Den-121) (Huang et al. (2017)) as our white-box models to craft adversarial examples. Note the
basic input size is 299 for Inception-v3, Inception-ResNet-v2, and 224 for the other models in Py-
Torch. As for evaluation, we add another two adversarially trained models AdvInception-v3 (Inc-
v3adv) and Inception-Res-v2ens (IncRes-v2ens) (Tramèr et al. (2018)) into our evaluation model list
besides the above four models.

Dataset. We follow the setting of papers (Wang & He (2021)) and randomly pick 1000 clean images
from the ILSVRC 2012 validation set (Russakovsky et al. (2015)), which are separated from 1000
classes of ImageNet and mostly classified correctly by the evaluation models.

Baselines. In this paper, we implement untarget attacks with two common-used optimization meth-
ods MI-FGSM (Dong et al. (2018)) and NI-FGSM (Lin et al. (2020)). We compare SEM with three
other input transformation methods DIM, SIM and VRM previously mentioned. The name of the
integrated method starts with the input transformation method followed by the basic optimization
method like SE-MI-FGSM, DI-NI-FGSM, etc.

Hyper-parameters. We follow the setting of (Wang & He (2021)) with maximum perturbation as
ε = 16, number of iterations T = 10, and step size α is set as ε/T = 1.6. The decay rate of
momentum-based optimization methods MI-FGSM and NI-FGSM is 1.0. The diverse input prob-
ability of DIM is setting as 0.5, kernel size of TIM is 7 × 7, and scale of copies of SIM is 5(i.e.
i = 0, 1, 2, 3, 4). For VT, we set N = 20, β = 1.5. The hyper-parameters m,σ for VR is 20 and 20
following the original paper. Finally for SEM, we set the scale number N = 50, and l and r are 0.7
and 1.3.

4.2 SINGLE MODEL ATTACKS

We first conduct the experiment of attacking a single model with four different input transformation
methods. In detail, we conduct the untarget adversarial attacks with 4 models previously metioned.
All the success rates are calculated with 1000 adversarial examples in this paper. The results are
shown in Tab.1, where the row indicates the attack models and the column indicates evaluation
models.

According to Tab.1 we can first conclude that almost all white-box attacks succeed except for
DenseNet, where our method achieves the success rate of 97.4% compared with 93.3% that the
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Table 1: The success rate (%) of single model attacks. The rows indicate the attack models while
the columns are evluation models.

Model Attack Inc-v3 IncRes-v2 Res-50 Den-121 Inc-v3adv IncRes-v2ens

Inc-v3

VR-MI-FGSM 99.9* 80.1 68.9 68.9 55.5 36.0
DI-MI-FGSM 99.5* 64.0 49.6 49.6 30.3 12.0
SI-MI-FGSM 100.0* 68.9 56.6 56.6 38.5 17.0
SE-MI-FGSM 100.0* 87.2 74.8 74.8 51.4 31.5
VR-NI-FGSM 100.0* 80.2 66.1 66.1 49.3 29.0
DI-NI-FGSM 99.9* 64.7 49.0 49.0 27.3 9.2
SI-NI-FGSM 100.0* 75.8 63.6 63.6 39.9 18.4
SE-NI-FGSM 100.0* 89.8 79.0 79.0 51.3 30.0

IncRes-v2

VR-MI-FGSM 82.1 95.3* 69.0 69.0 58.8 52.4
DI-MI-FGSM 69.2 90.9* 52.0 52.0 31.4 19.2
SI-MI-FGSM 84.2 98.6* 67.7 67.7 53.5 43.9
SE-MI-FGSM 87.0 97.5* 76.3 76.3 60.1 49.3
VR-NI-FGSM 83.2 98.8* 65.3 65.3 49.8 37.3
DI-NI-FGSM 65.6 97.1* 46.6 46.6 25.3 11.8
SI-NI-FGSM 85.8 99.3* 69.9 69.9 52.4 37.2
SE-NI-FGSM 88.1 98.9* 74.6 74.6 53.9 37.7

Res-50

VR-MI-FGSM 92.7 91.7 99.8* 99.8 87.7 81.1
DI-MI-FGSM 84.1 80.5 99.7* 99.7 68.3 53.7
SI-MI-FGSM 86.0 81.7 100.0* 100.0 71.2 58.5
SE-MI-FGSM 98.4 97.6 100.0* 100.0 92.6 86.8
VR-NI-FGSM 90.1 89.6 99.9* 99.9 82.0 71.6
DI-NI-FGSM 79.1 71.8 99.9* 99.9 56.7 37.6
SI-NI-FGSM 86.3 81.4 100.0* 100.0 68.9 54.1
SE-NI-FGSM 98.5 97.6 100.0* 100.0 91.4 83.2

Den-121

VR-MI-FGSM 89.0 85.7 93.3 93.3* 81.9 72.5
DI-MI-FGSM 76.6 68.4 81.7 81.7* 57.4 41.4
SI-MI-FGSM 80.4 72.4 85.7 85.7* 65.7 50.6
SE-MI-FGSM 95.6 94.1 97.1 97.1* 89.2 79.4
VR-NI-FGSM 85.4 80.8 92.0 92.0* 77.1 66.1
DI-NI-FGSM 71.5 61.9 79.3 79.3* 50.3 31.6
SI-NI-FGSM 79.3 70.9 85.8 85.8* 63.5 45.8
SE-NI-FGSM 94.6 93.4 97.4 97.4* 87.5 73.8

others’ best. It’s notable that success rates of adversarial examples generated by ResNet-50 achieve
nearly 100% when transferred to the other three normally trained models.

Next, through comparing the transfer attacks between models with input sizes 299×299 (Inc-v3 and
IncRes-v2) and 224 × 224 (Res-50 and Den-121), we can find that the transferability downgrades
obviously when compared with the same input sizes. On the other hand, comparing SEM with others
when the input size varies, we can conclude that our method alleviates the transferability decrease
phenomenon a lot.

At last, when evaluating the transferability among models of the same size, our method also outper-
forms the other three models. And in general, we can conclude that SEM’s transferability is about
8% higher than VR, which is the previous best input transformation method according to the table.

4.3 INTEGRATED WITH OTHER METHODS

In this part, we conduct the experiments that prove our SEM can integrate with SOTA transfer-
based adversarial attacks and enhance the transferability further. To be more exact, we combine five
transferability enhancement methods (VT, TIM, DIM, VR, and SIM) with two basic optimization
methods MI-FGSM and NI-FGSM to compose PB-M(N)I-FGSM, which means the previous best
methods. After that, we integrate SEM with them to form SE-PB-M(N)I-FGSM. The experiments
are also implemented on four attack models and six evaluation models with 1000 images.

As Tab.2 shows, compared with the single-method attacks the combination of previous transfer-
based attacks helps enhance the transferability with a large margin. And by integrating our method
with the previous best adversarial attack, our method achieves the result that nearly any pair of nor-
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Table 2: The success rate (%) of single model attacks integrated with gradient enhancement methods.

Model Attack Inc-v3 IncRes-v2 Res-50 Den-121 Inc-v3adv IncRes-v2ens

Inc-v3

PB-MI-FGSM 99.8* 89.3 85.7 89.5 87.7 76.1
SE-PB-MI-FGSM 100.0* 95.9 93.4 95.6 92.5 84.8

PB-NI-FGSM 100.0* 86.3 82.1 88.7 83.8 70.6
SE-PB-NI-FGSM 100.0* 94.6 91.8 93.9 90.4 79.0

IncRes-v2

PB-MI-FGSM 90.5 97.1* 85.0 89.3 87.4 87.5
SE-PB-MI-FGSM 93.1 97.8* 89.0 92.6 91.5 89.7

PB-NI-FGSM 93.2 99.0* 85.9 90.7 86.8 84.9
SE-PB-NI-FGSM 92.7 99.3* 86.7 91.8 90.8 86.5

Res-50

PB-MI-FGSM 94.4 90.7 99.7* 97.4 92.0 89.1
SE-PB-MI-FGSM 98.6 97.9 100.0* 99.6 96.6 95.4

PB-NI-FGSM 93.1 90.2 99.9* 98.3 90.7 86.9
SE-PB-NI-FGSM 98.9 97.9 100.0* 99.6 97.0 95.5

Den-121

PB-MI-FGSM 89.5 84.4 91.6 100.0* 89.1 85.5
SE-PB-MI-FGSM 95.7 94.3 97.4 99.9* 94.4 92.3

PB-NI-FGSM 89.6 84.3 91.8 100.0* 88.2 82.8
SE-PB-NI-FGSM 96.5 94.6 97.5 99.9* 94.5 90.8

mal models can transfer to each other with an average of about 95% success rate, which outperforms
the PB about 5% across all models. When against the adversarially trained models, the proposed
SE-PB-M(N)I-FGSMs also have superior performance, whose transfer rate is about 10% higher than
the previous best method and achieves 90% on average. Note that all our attacks are implemented
with only single models instead of the model ensemble(Wang & He (2021); Dong et al. (2019)), and
in general our proposed method can be integrated with other methods and make the success rate of
transfer attacks achieves over 90%.

4.4 ATTACKING DEFENSE MODELS

Following Wang & He (2021); Dong et al. (2019), we also evaluate the transferability of adversarial
exmaples against Inc-Res-v2ens with 10 advanced defense methods to demonstrate the robustness of
our attacks. In detail, the defense methods include the top-2 in NIPS-2017 competition HGD (Liao
et al. (2018)) and R&P (Xie et al. (2018)), and 8 extra recently proposed defense methods JPEG
Compression (Guo et al. (2018)), Feature Distillation (FD) (Liu et al. (2019)), Bit-Reduction (Bit-
Red) (Xu et al. (2018)), Total Variance Minimization (TVM) (Guo et al. (2018)), Random Smooth-
ing (RS) (Cohen et al. (2019)), Super Resolution (SR) (Mustafa et al. (2019)), Pixel Deflection (PD)
(Prakash et al. (2018)) and Neural Representation Purifier (NPR) (Naseer et al. (2020)).

We test all these defense methods with previously mentioned PB-M(N)I-FGSM and SE-PB-M(N)I-
FGSM for their best transferability. And the attacking models keep the same as previous while the
evaluating model is defended by various defense methods with Inc-Res-v2ens as backbone following
(Naseer et al. (2020); Dong et al. (2019)). The experiment results are shown in Tab.3.

From the table, we can observe that for all models and defenses our SE-PB-M(N)I-FGSM out-
performs the previous best methods. Comparing with Tab.2 we can find that some of the defense
strategies increase the attack success rate instead of decreasing it, and most even don’t work on
defending both attacks, which takes a great challenge to the failure of defending against adversarial
attacks. Note that NRP is the newly proposed defense that trains a generator the purify the adver-
sarial examples using a self-supervised approach, which performs best among all these defenses.
However, the proposed method also bypasses it with an average success rate of 79.3% compared
with the PB method 71.5%. Finally, as a whole, our proposed method achieves an average success
rate of 90.5% which is 5.8% higher than the previous best.

4.5 ABLATION STUDIES

In this section, we conduct the experiment to test the impact of hyper-parameters l, r, and N in our
experiments.
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Table 3: The success rate (%) of attacks against ten defense methods. The backbone of defense
models is IncRes-v2ens.

Model Attack JPEG FD Bit-Red TVM HGD R&P RS SR PD NRP

Inc-v3

PB-MI-FGSM 79.8 77.9 87.6 85.7 76.0 78.5 76.2 85.1 83.9 74.1
SE-PB-MI-FGSM 88.1 87.0 91.1 91.2 84.7 87.8 83.3 90.3 89.9 77.8

PB-NI-FGSM 76.3 72.1 82.0 81.1 70.7 71.8 71.1 79.3 78.4 68.0
SE-PB-NI-FGSM 84.8 81.4 88.9 87.7 79.0 83.5 76.9 86.8 86.1 75.0

IncRes-v2

PB-MI-FGSM 89.5 89.0 89.5 89.4 89.5 88.4 87.3 88.8 89.0 80.7
SE-PB-MI-FGSM 93.8 93.3 93.4 94.3 93.7 93.5 91.9 93.4 92.8 85.1

PB-NI-FGSM 88.9 87.4 88.0 88.4 88.4 87.8 85.3 88.7 86.9 75.7
SE-PB-NI-FGSM 92.6 92.2 93.0 92.4 93.0 92.8 90.2 92.0 91.7 80.8

Res-50

PB-MI-FGSM 90.6 89.0 90.9 92.8 90.4 88.8 89.6 90.4 90.6 81.7
SE-PB-MI-FGSM 95.6 95.8 95.4 96.4 95.9 95.6 92.9 94.9 94.5 87.0

PB-NI-FGSM 88.4 88.1 90.4 91.9 89.0 87.0 88.3 88.9 88.9 75.5
SE-PB-NI-FGSM 95.3 95.7 95.7 96.0 95.9 96.2 92.8 95.0 94.5 84.9

Den-121

PB-MI-FGSM 86.4 86.2 88.2 90.0 86.7 84.9 86.5 86.9 87.2 77.1
SE-PB-MI-FGSM 92.1 91.8 92.3 94.0 93.0 92.1 91.0 92.0 91.7 81.7

PB-NI-FGSM 85.2 85.1 85.9 87.6 85.2 83.6 83.5 84.8 85.3 73.4
SE-PB-NI-FGSM 92.3 90.7 92.1 93.8 92.5 92.0 89.6 91.9 91.5 79.7

Scale range. We first study this parameter by fixing the scale number N=50 and then perform the
grid search for these two related parameters l and r. For the best effect of scale ensemble, we assume
1 must be in the spatial range (l, r), which means that the image size must range around the target
models’ original input size. So we set l searched between 0.3 and 1.0 with 0.1 as the interval, and for
r we set 1.0 and 1.8 with the same search interval. The grid search is conducted with SP-MI-FGSM
for four different models separately. The results are shown in the first row of Fig. 2, where we plot
the 3D surfaces of the average success rate on six evaluation models with l and r change. From
the figure, we can observe that nearly all the models acquire the best transferability when l = 0.7
and r = 1.3. And according to the accurate calculation, we can conclude that the peak point for
all models is (0.7, 1.3) except VGG-16, whose peak is (0.6, 1.3). The result also demonstrates the
efficiency of our parameters used before.

Scale numbers.

By fixing l and r as previously searched, we change the scale numberN between 1 and 100 and then
generate 1000 adversarial examples with different Scale numbers separately. All these experiments
are conducted via SP-MI-FGSM on four different models. We calculate the success rate of these
adversarial examples on all evaluation models except attacking models themselves. Results for four
models are shown in Fig. 2.

From the figure, we can see the transferability of Inc-v3 is increasing slowly when N = 80 but
other models’ reach convergency at the point of N = 40 clearly. And we can also find that the
adversarially trained models converge slower than the normally trained. So, as a conclusion, N =
50, which is used in our previous experiments, is the best value for balancing the computational cost
and the attacking effects for all models.

4.6 WHY IS SCALE-ENSEMBLE EFFECTIVE

The purpose of this section is to explain the strength of our method compared with other attacking
methods in input diversity. We empirically assume that, by getting the balance of input diversity
and attacking regions, our method can generate more robust and unify perturbations for stronger
attacks. As illustrated in Fig. 3, we plot five possible attention maps during each iteration with scale
changing. The illustration skill comes from Grad-CAM(Selvaraju et al. (2017)).

We can separately see that the first two rows which represents DIM and VRM have similar attention
areas while the background images are acquired by random augmentation. This phenomenon shows
these two input diverse methods won’t change the attention maps a lot, which in other words is
unable to diverse the input at a high level. The bottom two raws of Fig.3 show the attention maps
with scale increasing. The results show that SIM obviously imports large image-unrelated features
so that the attention maps fails concentrating on the importance regions of the attack image. Finally

8



Under review as a conference paper at ICLR 2022

(a) Inc-v3 (b) Res-50 (c) VGG-16 (d) Den-121

Figure 2: Results of ablation studies on scale range l and r (first row), and on scale number N
(sencond row).

Figure 3: Attention maps change with scale increasing inner a single iteration. Each row indicates
a different method. The attention maps of the top two methods which we called scale-invariant are
not related with the scale changing, while the last two are scale related, whose attention maps are
related with pixel scales and image scales separately.

as a contrast, our SEM overcomes these two feedbacks and introduces more diverse but correct input
images. More illustration results can be seen in A.3.

5 CONCLUSIONS

This paper presents a novel method to generating adversarial examples for increasing attack trans-
ferability. Furthermore, it can also bypass different defense methods. The core idea is to ensemble
the inputs with the different scales that can maintain the most natural texture of original pictures
without other noises imported. Experiments compared with three other input transformation meth-
ods on four classification models, and ten defense methods validate the effectiveness of the proposed
methodology. Our research delivers a key message to the community that the scale of inputs can be
an important factor for generating more effective adversarial examples.
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A APPENDIX

A.1 ENSEMBLE ATTACKS

We conduct the experiments of model ensemble attacks to demonstrate the effectiveness of SEM
further. The ensemble models are Inception-v3, InceptionResNet-v2, ResNet-50 and DenseNet-121
as described before. Results are shown in Tab.4

Table 4: The success rate (%) of model ensemble attacks.

Model Attack Inc-v3 IncRes-v2 Res-50 Den-121 Inc-v3adv IncRes-v2ens

Inc-v3

PB-MI-FGSM 99.8* 89.3 85.7 89.5 87.7 76.1
SE-PB-MI-FGSM 100.0* 95.9 93.4 95.6 92.5 84.8

PB-NI-FGSM 100.0* 86.3 82.1 88.7 83.8 70.6
SE-PB-NI-FGSM 100.0* 94.6 91.8 93.9 90.4 79.0

IncRes-v2

PB-MI-FGSM 90.5 97.1* 85.0 89.3 87.4 87.5
SE-PB-MI-FGSM 93.1 97.8* 89.0 92.6 91.5 89.7

PB-NI-FGSM 93.2 99.0* 85.9 90.7 86.8 84.9
SE-PB-NI-FGSM 92.7 99.3* 86.7 91.8 90.8 86.5

Res-50

PB-MI-FGSM 94.4 90.7 99.7* 97.4 92.0 89.1
SE-PB-MI-FGSM 98.6 97.9 100.0* 99.6 96.6 95.4

PB-NI-FGSM 93.1 90.2 99.9* 98.3 90.7 86.9
SE-PB-NI-FGSM 98.9 97.9 100.0* 99.6 97.0 95.5

Den-121

PB-MI-FGSM 89.5 84.4 91.6 100.0* 89.1 85.5
SE-PB-MI-FGSM 95.7 94.3 97.4 99.9* 94.4 92.3

PB-NI-FGSM 89.6 84.3 91.8 100.0* 88.2 82.8
SE-PB-NI-FGSM 96.5 94.6 97.5 99.9* 94.5 90.8

Ensemble

PB-MI-FGSM 99.3 95.8 97.8 99.5 94.8 90.8
SE-PB-MI-FGSM 99.7 99.0 99.3 99.8 97.9 95.8

PB-NI-FGSM 99.9 93.1 99.2 99.9 92.6 87.6
SE-PB-NI-FGSM 99.9 99.3 99.9 100.0 97.5 95.3

The attacking result is also as predicted that we achieve over 95% average success rate, which
outperforms the PB methods over 5%.

A.2 ATTACKS WITH SAME FORWARD TIMES

In this part we study another problem that whether the comparsion of four input transformation
methods is fair enough. As discussed before in the open-review of SIM, a researcher will doubt
whether just setting iteration the same but forwarding and backwarding the model different times
for different input transformation methods is fair. We doubt this problems too.

The main idea in this part to study the question is to keep the forward times same for every method
and compare the attacking effectiveness instead of keeping the iteration. We know that the forward
times for DIM, SIM, VRM and SEM is 1, 5, 20 and 50 during each single iteration. So for keeping
the forward times the same when attacking, we adjust the attack iterations of each method as 1000,
200, 50 and 20 separately. The results are shown in Tab.5.

It is noticeable that the transferability of adversarial examaple generated in this way is clearly lower
than the results shown in Fig.1. And we thought the biggest problem of causing this problem is
overfitting. Although all methods try to enhance the transferability of adversarial examples via
various input transformations, the overfitting phenomenon is inevitable when the iteration increases.
From the Fig.5, on the one hand we can conclude SEM has higher transferability in this situation
as previous setting, and on the other hand, SEM has higher success rate than others in white-box
setting too.

A.3 MORE RESULTS OF ATTENTION MAPS

More results of attention maps are illustrated in Fig.4
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Table 5: The success rate (%) of attacks with the same forward times.

Model Attack Inc-v3 IncRes-v2 Res-50 Den-121 Inc-v3adv IncRes-v2ens

Inc-v3

VR-MI-FGSM 99.9* 82.2 68.4 75.0 60.8 43.0
DI-MI-FGSM 100.0* 72.9 59.4 67.4 36.8 19.9
SI-MI-FGSM 100.0* 58.5 43.6 56.9 30.0 13.5
SE-MI-FGSM 100.0* 87.4 75.9 82.2 49.4 30.1
VR-NI-FGSM 100.0* 77.2 62.7 68.9 49.0 28.8
DI-NI-FGSM 100.0* 72.0 55.8 64.2 33.3 16.1
SI-NI-FGSM 100.0* 52.2 39.5 51.1 26.4 10.7
SE-NI-FGSM 100.0* 90.2 77.9 83.3 52.3 30.4

IncRes-v2

VR-MI-FGSM 84.1 96.6* 73.2 77.2 64.9 61.4
DI-MI-FGSM 80.6 99.5* 63.5 69.6 39.8 29.2
SI-MI-FGSM 81.9 99.7* 64.0 72.9 52.3 40.1
SE-MI-FGSM 88.5 98.3* 78.3 82.8 62.2 52.3
VR-NI-FGSM 84.2 99.7* 68.2 73.8 55.2 43.3
DI-NI-FGSM 81.7 100.0* 63.1 70.3 38.3 24.0
SI-NI-FGSM 76.1 99.9* 54.3 67.0 40.4 28.6
SE-NI-FGSM 90.4 99.5* 77.5 84.0 57.3 43.4

Res-50

VR-MI-FGSM 61.5 55.0 98.4* 72.4 36.5 36.0
DI-MI-FGSM 50.0 41.6 97.8* 55.9 16.5 12.9
SI-MI-FGSM 39.1 29.1 95.8* 49.9 15.8 11.2
SE-MI-FGSM 96.9 96.0 100.0* 99.1 52.2 42.6
VR-NI-FGSM 37.9 29.8 91.8* 50.3 20.8 17.2
DI-NI-FGSM 41.2 33.6 93.2* 48.0 13.8 9.4
SI-NI-FGSM 27.7 20.5 82.6* 36.6 11.9 7.8
SE-NI-FGSM 95.7 95.1 100.0* 99.3 45.3 33.3

Den-121

VR-MI-FGSM 48.8 40.2 50.5 99.3* 30.2 29.5
DI-MI-FGSM 42.4 34.6 36.6 99.3* 15.2 12.0
SI-MI-FGSM 30.8 22.4 26.7 98.5* 13.8 10.4
SE-MI-FGSM 92.4 89.4 94.8 100.0* 49.5 37.5
VR-NI-FGSM 32.8 25.4 32.8 97.7* 19.3 16.9
DI-NI-FGSM 39.5 32.1 30.6 98.2* 13.5 9.6
SI-NI-FGSM 25.8 17.8 20.9 94.4* 12.4 6.8
SE-NI-FGSM 93.1 88.7 95.7 100.0* 45.1 28.5
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Figure 4: More results of target model’s attention maps on the transformed images.
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