
Graph Neural Networks for Probabilistic Causal Discovery

Rezaur Rashid1 Gabriel Terejanu1

1Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC, USA

Abstract

Conventional causal discovery algorithms face sig-
nificant challenges in dealing with large-scale ob-
servational datasets and in capturing global struc-
tural information. To address these limitations, we
introduce a novel graph neural network (GNN)–
based probabilistic framework for causal structure
learning that generates a probability distribution
over possible causal graphs. By encoding the node
and edge attributes into a unified graph representa-
tion, our framework enables the GNN to learn the
complex causal structure directly from the data aug-
mented with statistical and information-theoretic
measures, which exploit the local and global data
properties. Our approach outperforms benchmark
methods, both traditional and recent non-GNN-
based, in terms of accuracy and scalability on syn-
thetic and real-world datasets.

1 INTRODUCTION

Causal inference from observational data is a fundamental
task in many disciplines and forms the backbone of many
practical decision-making procedures as well as theoretical
developments. Classical causal discovery algorithms test
hypotheses of conditional independences to learn causal
structure Spirtes et al. [2001]. Score-based causal discov-
ery algorithms optimize fit scores over various graph struc-
tures Chickering [2002]. While effective in many situa-
tions, these approaches suffer from exponential run-times
and combinatorial explosions in statistic complexity as the
data sets grow Heckerman et al. [1995]. Recent machine
learning advances optimize continuous functions to impose
acyclicity and achieve improved computational performance
NOTEARS algorithm Zheng et al. [2018]. These approaches
typically identify a single best causal graph rather than a
probability distribution over multiple possible graphs, which

can limit its ability to account for uncertainty in the causal
discovery process.

Graph neural networks (GNNs) have revolutionized learning
on data with underlying graph structures. From social net-
work analysis to molecular property prediction (e.g., mod-
eling interactions of atoms in a chemical molecule) Kipf
and Welling [2016], Velickovic et al. [2017], Graph Convo-
lutional Networks (GCN) and other sophisticated variants
such as Graph Attention Networks (GAT), have success-
fully exploited node and edge features to learn deep and
hierarchical representations Zhou et al. [2020], Waikhom
and Patgiri [2023]. Despite their success in areas such as
network analysis and bioinformatics Hamilton et al. [2017],
Lacerda et al. [2012], these methods have yet to be fully
integrated into causal discovery frameworks. Such devel-
opments strongly motivate and justify the idea of utilizing
GNNs for causal learning tasks Yu et al. [2019], Brouillard
et al. [2020], Peters et al. [2017].

This research proposes a novel GNN-based probabilistic
framework for causal discovery that addresses the limita-
tions of our prior work using causal pairs by capturing global
information in the graph structure Rashid et al. [2022]. This
work makes several key contributions: (1) it enhances causal
structure learning by refining the probability distribution of
all possible digraphs; (2) it provides a comprehensive un-
derstanding of causal discovery by learning a spectrum of
causal graphs instead of producing a single deterministic
graph; and (3) it outperforms conventional non-GNN-based
methods in terms of accuracy and scalability.

2 METHODOLOGY

Given an observational dataset D = {xi}Ni=1, where xi rep-
resents an attribute with multiple observations, the goal is to
learn possible directed acyclic graph (DAG) representations
that capture the causal relationships among these attributes.
This involves predicting the direction of edges (forward,
reverse, or no edges) between nodes or data attributes.
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2.1 DATA REPRESENTATION

We first construct a fully connected graph G = (V,E),
where V is the set of all attributes in the observational
dataset, and E is the set of edges between nodes (attributes)
such that every node is connected with every other node
which leads to N(N − 1)/2 edges in the graph for a
dataset with N attributes. We then extract statistical and
information-theoretic measures, such as mutual information,
entropy, and conditional independence test, on the attributes
in the observational dataset to represent each node with 11
features and each edge with 115 features between node pairs
in the graph. Additionally, we use the probability distribu-
tion over the edge direction from our causal-pairs model as
an additional edge feature. In total, we have 118 features for
each edge in the graph.

2.2 DEVELOPPING GNN MODEL

We use a graph neural network model, trained on synthetic
datasets with underlying causal graphs, as an edge classifier
with supervised learning to infer the probability distribu-
tion over the edge direction. We use the ’SAGEConv’ layer
from the GraphSAGE framework as our GNN model which
performs the message-passing operation and updates the
node and edge features iteratively. The model is then able to
capture local and global dependencies in the graph structure
and augment the accuracy of causal relations between nodes.
Finally, after multiple rounds of message passing, we can
obtain the final node and edge features that represent each
node and each edge in the graph, and use them to predict
the probabilities of edge directions (forward, reverse, or no
edge) between any pair of nodes (attributes).

2.3 PROBABILISTIC INFERENCE

Samples from the probability distribution generated by the
GNN model are digraphs, with no guarantees of acyclic-
ity. We enforce acyclicity by approximating the most likely
probability distribution of directed acyclic graphs (DAGs)
using the maximum spanning DAG approach Rashid et al.
[2022]. Finally, we employ the same method described in
our prior work to estimate a sample digraph (PG), a maxi-
mum likelihood digraph (MLG), a sample DAG (PDAG),
and a maximum likelihood DAG (MLDAG) from these two
new probability distributions over all graph structures.

3 RESULT

We evaluate the causal discovery performance of our GNN-
based framework on synthetic datasets and real-world
datasets and compare it with traditional and recent non-
GNN-based methods. The synthetic datasets generation pro-
cess and evaluation metrics are structural Hamming dis-

Table 1: Comparison of edge probability model trained on
GNN framework. The means and standard errors of the
performance metrics are based on the 80 Scale-Free (SF)
graph structures in the test data.

Method ↓ / Metrics → SHD/d TPR FPR

GNN-PG 1.88±0.08 0.51±0.02 0.30±0.01
GNN-MLG 1.85±0.13 0.20±0.02 0.01±0.00
GNN-PDAG 1.55±0.07 0.56±0.02 0.19±0.01
GNN-MLDAG 1.40±0.11 0.48±0.03 0.08±0.01
CausalPairs-PG 2.02±0.12 0.31±0.01 0.26±0.02
CausalPairs-MLG 1.97±0.13 0.12±0.01 0.03±0.01
CausalPairs-PDAG 1.96±0.12 0.30±0.01 0.21±0.02
CausalPairs-MLDAG 1.88±0.13 0.20±0.01 0.09±0.01
PC 1.93±0.15 0.17±0.02 0.08±0.01
GES 1.43±0.11 0.51±0.03 0.26±0.04
LiNGAM 1.68±0.11 0.35±0.02 0.34±0.04
DAG-GNN 1.75±0.12 0.24±0.02 0.02±0.00
NOTEARS-MLP 1.36±0.11 0.47±0.02 0.12±0.02

tance (SHD), true positive rate (TPR), and false positive
rate (FPR) Rashid et al. [2022]. In Table 1, we show that
for Scale-Free (SF) graph structure, our GNN-based frame-
work significantly improves upon SHD compared to tradi-
tional and causal-pairs methods, and compares favorably
to LiNGAM, DAG-GNN and NOTEARS-MLP, which im-
plies better recovery of causal structures. Moreover, from
the TPR and FPR results, the GNN-based framework out-
performs all other methods in identifying true causals while
avoiding false positives. Additional results are provided in
the supplementary material section.

4 CONCLUSION

In this work, we present a probabilistic causal discovery
framework utilizing graph neural networks (GNN). Our re-
sults on both synthetic and real-world datasets demonstrate
that GNN methods outperform causal-pair methods by lever-
aging multi-attribute information captured by the GNN. Fu-
ture work will focus on incorporating acyclicity constraints
directly into the GNN framework, potentially improving
the robustness and accuracy of causal discovery. Addition-
ally, exploring more sophisticated GNN architectures could
further enhance the performance of our approach.
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A EQUATIONS USED IN THE TABLES

Assuming we have n i.i.d. observations in the data matrix X = [x1 . . .xd] ∈ Rn×d, causal discovery attempts to estimate
the underlying causal relations encoded by the directed acyclic graph (DAG), GDAG = (V,E). V contains of nodes associated
with the observed random variables Xi for i = 1 . . . d and the edges in E associate the causal relations encoded by GDAG. In
other words, the presence of the edge i → j corresponds to a direct causal relation between Xi (cause) and Xj (effect).

Our approach uses a graph neural network model to predict the probability p(eij |f) of an edge eij between nodes Xi and
Xj given their feature representations.

p(eij |hi,hj , eij) = f([hi,hj , eij ]), for i < j (1)

Here,

• hi and hj represent the feature vectors of nodes Xi and Xj after the GNN’s message passing and aggregation
operations.

• eij represents the feature vector of the edge eij between nodes Xi and Xj .

• [hi,hj , eij ] denotes the concatenation of the feature vectors of nodes Xi and Xj and the edge features eij .

• The function f represents the GNN classifier that outputs the probability p(eij |hi,hj , eij) of there being an edge
eij ∈ [−1, 0, 1].

eij =


−1 : j → i, causal relation exists from Xj to Xi

0 : i ̸→ j and j ̸→ i, no direct causal relation between Xi and Xj

1 : i → j causal relation exists from Xi to Xj

After computing the probability distributions of causal relations between all the pairs in the dataset, a naive way to construct
the probability distribution of a digraph G is to assume that the causal-pairs are independent.

p(G|f) =
∏
i<j

p(eij |f) (2)

Having this rich probabilistic information on all the causal relationships in the dataset, one may choose to generate the
maximum likelihood digraph.

GML = argmax
G

p(G|f) (3)

Note that the samples from the probability distribution, Eq. 2, and the maximum likelihood estimate, Eq. 3, are digraphs
with no guarantees that they are acyclic. We then generate the most likely probability distribution of directed acyclic graphs
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(DAG) leveraging the maximum spanning DAG approach Schluter [2014] as well as estimate a representative DAG using
the maximum likelihood estimate using the following equations. We have used the following labels for our approaches: PG
given by Eq. 2, MLG given by Eq. 3, PDAG given by Eq. 4, and MLDAG given by Eq. 5; see also Rashid et al. [2022] for
an in-detailed derivation for the equations.

p(G|f,DAG, πML) =
∏

π−1
ML [i]<π−1

ML [j]

p(ei→j |f) (4)

GDAG ≈ argmax
G

p(G|f,DAG, πML) (5)

B ADDITIONAL SIMULATION RESULTS

Table 2 lists additional simulation results for Erdos-Renyi (ER) graph structures and Table 3 show results for real-world
protein network dataset Sachs et al. [2005].

Table 2: Comparison of edge probability model trained on GNN framework. The means and standard errors of the
performance metrics are based on the 80 Erdos-Renyi (ER) graph structures in the test data.

Method ↓ / Metrics → SHD/d TPR FPR

GNN-PG 2.08±0.11 0.52±0.02 0.52±0.06
GNN-MLG 2.17±0.17 0.25±0.02 0.01±0.00
GNN-PDAG 1.75±0.11 0.61±0.03 0.28±0.03
GNN-MLDAG 1.66±0.15 0.54±0.03 0.13±0.02
CausalPairs-PG 2.38±0.14 0.39±0.02 0.72±0.10
CausalPairs-MLG 2.32±0.17 0.15±0.02 0.07±0.01
CausalPairs-PDAG 2.30±0.15 0.38±0.02 0.61±0.09
CausalPairs-MLDAG 2.18±0.16 0.28±0.02 0.29±0.05
PC 2.40±0.21 0.17±0.02 0.22±0.04
GES 1.78±0.13 0.48±0.02 0.87±0.15
LiNGAM 1.97±0.13 0.43±0.02 1.04±0.17
DAG-GNN 2.10±0.17 0.27±0.02 0.06±0.00
NOTEARS-MLP 1.33±0.10 0.58±0.02 0.32±0.06

Table 3: Comparison of our GNN-based probabilistic methods with GES and NOTEARS-MLP that were applied to both
standardized and non-standardized protein network datasets. DAG-GNN and NOTEARS-MLP results for non-standardized
data are reported from the original manuscriptsYu et al. [2019], Zheng et al. [2020]

Dataset type → Standardized Non-standardized

Method ↓ / Metrics → Predicted
Edges

Correct
Edges

Reversed
Edges

Predicted
Edges

Correct
Edges

Reversed
Edges

GNN-PG 19.68 6.60 6.98 19.40 5.86 7.79
GNN-MLG 12.07 5.13 5.64 13.81 5.48 6.86
GNN-PDAG 17.09 6.96 5.81 16.74 4.14 8.62
GNN-MLDAG 14.12 6.96 5.81 12.54 4.71 7.77
CausalPairs-PG 36.14 6.70 7.77 38.01 6.21 8.26
CausalPairs-MLG 9.82 3.04 4.26 10.41 1.52 4.04
CausalPairs-PDAG 33.16 7.42 6.62 34.81 6.47 7.49
CausalPairs-MLDAG 18.48 4.91 5.41 20.60 4.71 6.32
GES 34.00 5.50 9.50 34.00 5.50 9.50
LiNGAM 36.00 4.00 11.00 36.00 4.00 11.00
DAG-GNN 6.00 1.00 5.00 18.00 8.00 3.0
NOTEARS 42.33 5.83 7.18 13.00 7.00 3.00
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