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Abstract
In this paper we provide a theoretical analysis of
counterfactual invariance. We present a variety
of existing definitions, study how they relate to
each other and what their graphical implications
are. We then turn to the current major question
surrounding counterfactual invariance, how does
it relate to conditional independence? We show
that whilst counterfactual invariance implies con-
ditional independence, conditional independence
does not give any implications about the degree or
likelihood of satisfying counterfactual invariance.
Furthermore, we show that for discrete causal
models counterfactually invariant functions are
often constrained to be functions of particular
variables, or even constant.

1. Introduction
Causality has emerged as an important language to reason
about generalisation and invariance in machine learning.
These approaches to generalisation have involved — but are
not limited to — modelling changing environments within
causal graphs (Peters et al., 2016), defining invariant pre-
dictors in terms of causal graphs (Bühlmann, 2020) and
applying causality to predict invariant conditional distribu-
tions (Magliacane et al., 2018).

Counterfactual Invariance has arisen as a promising new
causal definition of invariance (Veitch et al., 2021). The idea
is that we should aim for predictors which lead to the same
outcome had we, contrary to fact, intervened on a spurious
part of our data. For example, if we change the name of an
actor in a movie review but keep everything else the same,
the sentiment of the review should not change. Therefore
we want the sentiment analysis model to be invariant to
counterfactual perturbations of spurious features.

The goal of this paper is to analyse a variety of definitions
of counterfactual invariance and examine what implications
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they have in causal models. We look at the definition intro-
duced in Veitch et al. (2021) and an alternative based upon
distributional equality from Quinzan et al. (2022), consid-
ering how they relate to each other and what they imply in
terms of graphical structure.

We then turn to the central question of the relationship be-
tween invariance and conditional independence. First, we
give a set of independences implied by counterfactual in-
variance that encompass many existing results in the liter-
ature. We then turn to the reverse implication, asking if
these independences imply that a given variable or function
satisfies counterfactual invariance. To this our answer is
negative, and we show that independences do not bound
the degree of counterfactual invariance, and that counter-
factual invariance remains in some sense ‘unlikely,’ even if
the independences hold. This raises questions about what
passing conditional independence tests achieves in terms of
counterfactual invariance, as well as how best to discuss the
benefit conditional independence brings.

Finally we prove that for almost all discrete causal models
the only counterfactually invariant functions are functions
whose inputs do not causally depend on the intervening
variable. This implies that if all variables causally depend
on the intervening variable then almost always the only
counterfactually invariant functions are constant. This has
implications for counterfactual fairness, as in this context
many have argued that almost all variables will depend
on sensitive attributes (Kusner et al., 2017). These results
suggest that in these cases the only counterfactually fair
functions will be constant.

2. Background
Notations Throughout we will use Y to denote the vari-
able we are assessing counterfactual invariance in, Z to
be the variable we are intervening on, and X to be the re-
maining covariates. We will use Y,Z and X to denote the
domains of the variables.

In reference to a causal graph we will use Pa(Y ) to denote
the causal parents of Y , De(Z) for the causal descendants
of Z, i.e. those variables, including Z, that can be reached
from Z via a directed path, and Nd(Z) for the variables
which are not descendants of Z.
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Structural Causal Models (SCM) (Peters et al., 2017)
A structural causal model is defined as a pair C := (S, PN)
where S is a collection of d structural assignments:

Xj := fj(Pa(Xj), Nj), j = 1, ..., d,

where Nj is the noise variable for generating Xj and PN =
PN1,...,Nd

is a distribution over the noise variables. In this
we will take all the noise variables to be independent1 and
will use N to refer to their domain. We define Y (z) to be the
variable Y when we intervene in the structural causal models
to set Z = z. Given the noise distribution, we may define
the distribution over arbitrary events, even counterfactual
ones, as just the sum over noise variables which permit such
an event. For example:

P (Y (z) = y, Y = y′) =
∑
n∈S

PN(n)

where S = {n ∈ N : Y (z,n) = y & Y (n) = y′}.

2.1. Definitions of Counterfactual Invariance

We now present a variety of different definitions of coun-
terfactual invariance, inspired existing definitions in the
literature. The first is in terms of almost sure equality and is
based upon Veitch et al. (2021):
Definition 2.1. A variable Y satisfies almost sure counter-
factual invariance (a.s.-CI) with respect to Z if:

Y (z)
a.s.
= Y (z′) for all z, z′.

Counterfactual invariance can also be defined in terms of
distributional equality, similar to Quinzan et al. (2022):
Definition 2.2. We say a variable Y satisfies distributional
counterfactually invariance (D-CI) conditional on some
set of variables W , with respect to Z, if:

P (Y (z)=y|W =w,Z=z)=P (Y (z′)=y|W =w,Z=z),

for all z, z′ and for almost all y, w.

Our definition deviates slightly from Quinzan et al. (2022)
as we enforce conditioning on the intervening variable. We
do this to ensure the definition is truly counterfactual in the
sense that we are always asking “what would have happened
had we intervened to set Z = z′, given that in reality Z = z.”
Finally we can define counterfactually invariant functions:
Definition 2.3 (Veitch et al. 2021). A function f : X → Y
is counterfactually invariant (F-CI) if the variable Ŷ :=
f(X) satisfies almost sure counterfactual invariance. That
is:

f(X(z))
a.s.
= f(X(z′)).

1In fact most results in this paper do not require full indepen-
dence and can be adapted to less restrictive counterfactual models;
see, for example, Robins & Richardson (2010).

Relationships Between Definitions We now give some
basic relationships between the definitions, with proofs in
the appendix:
Lemma 2.4. We have that a.s.-CI implies D-CI conditional
on any set of variables, but D-CI implies a.s.-CI only if the
conditioning set contains the outcome, Y .

This lemma allows us to equivalently define functional coun-
terfactual invariance in terms of distributional counterfactual
invariance, conditional on the function inputs. This is be-
cause conditioning on the inputs implicitly conditions on
the value of the function.
Corollary 2.5. A function f is F-CI if and only if Ŷ =
f(X) is D-CI conditional X .

This also shows that the definition presented in Kusner et al.
(2017) is equivalent to that presented in Veitch et al. (2021).

3. Counterfactual Invariance and the Causal
Graph

We first look at how counterfactual invariance relates to the
causal graph with the following lemma showing there can
be graphical implications of counterfactual invariance:
Lemma 3.1. If Y is a.s.-CI with respect to Z then there is
no edge from Z to Y .

However, as the following example shows, counterfactual
invariance does not lead to the absence of any other edges:
Example 3.1. Suppose we have the following causal model:

Z = NZ

X = 21{Z = 1}+NX

Y = 1{mod2(X) = 0}+NY ,

where all noise variables are Bernoulli with parameter 1
2 .

Under this model Y is almost surely counterfactually in-
variant but the causal graph is Z → X → Y . Therefore
counterfactual invariance does not imply the absence of any
edge besides Z → Y .

Moreover, counterfactual independence can be implied by
graph structure alone. Namely when there is no direct causal
path from the intervening variable to the outcome:
Lemma 3.2 (Kusner et al. 2017). If Y is not a causal de-
scendant of Z it is counterfactually invariant.

Therefore, in some cases, counterfactual invariance can be
read directly from the graph.

4. Counterfactual Invariance and Conditional
Independence

We now turn to the relationship between counterfactual in-
variance and conditional independence. This has received
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a large amount of attention as it is one of the only testable
implications of counterfactual invariance. In this section
we first give a selection of conditional independences im-
plied by the different forms of invariance before turning to
the reverse implication, can conditional independence tell
us anything about the degree of counterfactual invariance?
Finally for discrete models we give a more exact classifica-
tion of the counterfactually invariant functions in terms of
Nd(Z).

4.1. Invariance Implies Independence

We first give a selection of independences implied by coun-
terfactual invariance. In order to do we first need the defini-
tion of a valid adjustment set:
Definition 4.1. A set of variables S is known as a valid
adjustment set for the pair (Z, Y ) if:

P (Y (z)) =

∫
P (Y | s, z)P (s)ds.

This leads us to the following result for distributional coun-
terfactual invariance. The proof expands on that given in
Fawkes et al. (2022) and can be found in the appendix.
Lemma 4.2. Suppose Y is distributionally counterfactual
invariant conditional on some set W , such that there is
some valid adjustment set S ⊂ W for (Z, Y ). Then we
have Y ⊥ Z | S.

We can now apply the relationships between the definitions
that were given in Section 2 to get a set of independences
implied by the other forms of invariance.
Corollary 4.3. The following holds;

• if Y is a.s.-CI then Y ⊥ Z | S for any valid adjustment
set S for (Z, Y );

• if f is F-CI then f(X) ⊥ Z | S for any valid adjust-
ment set S for (Z, f(X))

For DAG models Shpitser et al. (2012) showed that valid
adjustment sets for (Z, Y ) can be classified as sets S which
satisfy:

• S blocks all non-directed paths from Z to Y .
• S does not contain any descendants of any nodes on a

direct path from Z to Y .

If we apply this graphical characterisation alongside Corol-
lary A.2 we can re-derive all the conditional independence
implications given in Veitch et al. (2021). Further, for more
general graphs the conditional independences implied by
counterfactual invariance can now be read directly from
the graph by finding the relevant adjustment sets. Finally,
our proof does not require the any measurability results of
additional variables as in Veitch et al. (2021), so we may
apply these results without having to rely on additional as-
sumptions like discrete Z.

4.2. But Independence Does Not Imply Invariance

The observational implications presented in the previous
section have lead to arguments that when we would like a
counterfactually invariant predictor, we should regularise
for the conditional independences implied by it. Whilst it is
true that variables not satisfying these independences cannot
be counterfactually invariant, it is not clear if satisfying
conditional independences can tell us anything about the
degree of counterfactual invariance.

In this section we study the question of how independence
affects invariance. We begin with with an example that
shows the difficulty of achieving counterfactual invariance
through independence alone.

Example 4.1. Suppose the only variables are Z, Y which
are binary and follow the DAG Z → Y . Now if we fix the
noise variable NY to a given value nY we have that Y is a
deterministic function of Z as:

Y = fY (Z, nY ).

So as the noise, NY , varies it corresponds to f switching be-
tween different deterministic functions from {0, 1} to {0, 1}.
Because of the finite domains it is possible to enumerate all
functions, f : {0, 1} → {0, 1}, as:

f0(z) = 0 f1(z) = 1

f2(z) = z f3(z) = 1− z.

This allows us to represent any possible structural causal
model as distribution over the functions {f0, f1, f2, f3} or
more simply as a distribution, P (ÑY ), over {0, 1, 2, 3}
where when ÑY = i we have that:

Y = f̃Y (Z, i) = fi(Z) (1)

for the new structural function f̃Y . This is known as the
function response framework (Balke & Pearl, 1994). Details
of this construction for more general discrete causal models
can be found in Section 3.4 of Peters et al. (2017).

Given an observational distribution, P (Y,Z), over Y, Z
we can find all possible SCMs that could give rise to this
observed distribution simply by finding all possible distri-
butions of ÑY that give P (Y | Z) under (1). To do this
let pij = P (Y = i | Z = j). Now the set of possible
distributions which comply with P (Y, Z) can be written as
probability vectors in a single free parameter λ as:

a(λ) =


0

1− p00 − p01
p00
p01

+ λ


1
1
−1
−1

 ,

where a(λ) = P (ÑY = i) and λ is constrained so that
λmin = max{0, p00+p01−1} and λmax = min{p00, p01}.
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We may now assess the degree of counterfactual invariance
across the causal models with the following:

P (Y (0) = Y (1)) = a(λ)0 + a(λ)1

= 1− p00 − p01 + 2λ,

where we have almost sure counterfactual invariance pre-
cisely when this quantity is equal to 1. We can see this is
only possible when p00 = p01, recovering the independence
requirement from Section 4.1. Letting p00 = p01 = p we
can see the set of observationally equivalent SCM is now
given by:

a(λ) =


0

1− 2p
p
p

+ λ


1
1
−1
−1

 ,

where almost sure counterfactual invariance occurs precisely
when λ = p. However, in this case λ can vary between
λmin = max{0, 2p − 1} and λmax = p, giving a whole
range of observationally equivalent SCMs which are not
counterfactually invariant. Furthermore we can see that
there is only one possible counterfactually invariant SCM
amongst the infinite observationally equivalent models.

This example demonstrates the difficulty of validating coun-
terfactual invariance from observational data alone, even in
the most simple of cases. Further, as we can embed ver-
sions of this example within more general structural causal
models this leads to more general results:

Proposition 4.4. For almost sure counterfactual invariance
we have that:

• No set of independences imply any bound on
P (Y (z) = Y (z′)), even if Y is binary.

• For discrete models, the counterfactually invariant
structural causal models have Lebesgue measure zero
within the models satisfying the set of independences
in Corollary A.2.

The Lebesgue measure zero result is similar to existing
results on the faithfulness assumption in causal inference.
The faithfulness assumption is common in causal discovery
as it states that any observed independences arise only from
graphical structure. A common justification for making
this assumption is that for discrete and Gaussian models
it is violated on a set of Lebesgue measure zero (Meek,
1995). Our result is similar to this, however in our case it
advises against concluding counterfactual invariance from
conditional independence alone.

Due to the relationship between definitions this also gives
us results for distributional and functional counterfactual in-
variance. We present the result for functional counterfactual
invariance with the distributional result in Appendix A.3.3:

Proposition 4.5. For non constant functions f we have that:

• No independences imply f is counterfactually invari-
ant.

• For f : X → {0, 1} no independences imply any
bound on P (f(X(z)) = f(X(z′)).

This suggests that whilst counterfactually invariant func-
tions must satisfy certain conditional independences, these
independences give little assurances as to the degree of
counterfactual invariance.

Moreover for discrete models we can more precisely char-
acterize the set of counterfactually invariant functions:

Proposition 4.6. For a given causal model let FCI be the
set of counterfactually invariant functions f : X → Y .
Supposing all the variables are discrete we have that for
almost all structural causal models:

FCI = {f : f is a function of Nd(Z) only.}

Alternatively stated, the set of causal models that admit a
counterfactually invariant function which takes a descen-
dant of Z as an input, has Lebesgue measure zero.

This suggests that when trying to build counterfactually in-
variant predictors from observational data alone it is almost
always impossible to do better than Lemma 3.2, the origi-
nal and most basic way to ensure counterfactual invariance
provided by Kusner et al. (2017).

A further implication of this statement is that if every vari-
able is a descendant of Z then for almost all causal models
the only counterfactually invariant functions are constant. In
the language of Veitch et al. (2021), this means the variable
X⊥

Z corresponding to the part of X not causally affected
by Z is almost surely constant. Whilst these results are
for discrete models it raises questions about which general
causal models admit non-constant counterfactually invariant
functions, and if these are in some cases ‘special exceptions’
as opposed to something that happens in general.

5. Conclusion
In this paper we have examined numerous different exist-
ing versions of counterfactual invariance. From here our
contributions were to analyse the relationship between coun-
terfactual invariance and the causal graph, provide a variety
of results on the implications between conditional inde-
pendence and counterfactual invariance. Finally we show-
cased that for discrete models counterfactually invariant
functions are almost always functions of a select few covari-
ates. This creates difficulties for finding counterfactually
invariant functions if many covariates causally depend on
the intervening variable.
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Peters, J., Bühlmann, P., and Meinshausen, N. Causal in-
ference by using invariant prediction: identification and
confidence intervals. Journal of the Royal Statistical So-
ciety. Series B (Statistical Methodology), pp. 947–1012,
2016.

Peters, J., Janzing, D., and Schölkopf, B. Elements of causal
inference: foundations and learning algorithms. The MIT
Press, 2017.

Quinzan, F., Casolo, C., Muandet, K., Kilbertus, N., and
Luo, Y. Learning counterfactually invariant predictors.
arXiv preprint arXiv:2207.09768, 2022.

Robins, J. M. and Richardson, T. S. Alternative graphi-
cal causal models and the identification of direct effects.
Causality and psychopathology: Finding the determi-
nants of disorders and their cures, 84:103–158, 2010.

Shpitser, I., VanderWeele, T., and Robins, J. M. On the va-
lidity of covariate adjustment for estimating causal effects.
arXiv preprint arXiv:1203.3515, 2012.

Veitch, V., D’Amour, A., Yadlowsky, S., and Eisenstein,
J. Counterfactual invariance to spurious correlations:
Why and how to pass stress tests. arXiv preprint
arXiv:2106.00545, 2021.



Results on Counterfactual Invariance

A. Proofs
A.1. Definitions of Counterfactual Invariance

Lemma 2.4. We have that a.s.-CI implies D-CI conditional on any set of variables, but D-CI implies a.s.-CI only if the
conditioning set contains the outcome, Y .

Proof. Firstly an almost sure equality of variables implies they are equal conditional on any event they must be almost surely
equal conditional on almost all w for any set W . Hence as almost sure equality implies any form of distributional equality.

Secondly we need to show that distributional counterfactual invariance does not imply almost sure counterfactual invariance,
unless W contains the outcome. First suppose W does not contain the outcome, then we can generate Y and Z from the
following model:

Z ∼ Ber

(
1

2

)
, UY ∼ Ber

(
1

2

)
, Y := Z ⊕ UY ,

where Ber(p) represents a Bernoulli random variable with probability of success p, and ⊕ represents addition modulo 2; all
other variables are generated independently. Then we have, conditional on any set W :

P (Y (z) | W = w,Z = z′) = P (Y (z) | Z = z′) =
1

2
.

So that P (Y (z) | W = w,Z = z′) = P (Y (z′) | W = w,Z = z′) and so we have distributional counterfactual invariance.
However we have P (Y (0) = Y (1)) = 0, so we do not satisfy almost sure counterfactual invariance.

For the final statement we require that if the conditioning set W contains the outcome variable Y then both forms of
counterfactual invariance are equivalent. For this we note that distributional equality implies:

P (Y (z) = y | W = w,Z = z) = P (Y (z′) = y | W = w,Z = z),

but

P (Y (z) = y | W = w,Z = z) = P (Y = y | W = w,Z = z)

= P (Y = y | Y = y′, Z = z)

= 1 {y = y′} .

Therefore for almost all w, z we have that:

P (Ŷ (z′) = y′ | W = w,Z = z) = 1,

implying that P (Y (z) = Y (z′) = 1 hence Ŷ (z)
a.s.
= Ŷ (z′).

Corollary 2.5. A function f is F-CI if and only if Ŷ = f(X) is D-CI conditional X .

Proof. We already have that almost sure counterfactually invariance implies distributional counterfactual invariance, so all
that remains to show is the other direction. For this we can apply the previous lemma, as if we condition on the inputs of f
we also condition on Ŷ .

A.2. Relationship between Counterfactual Invariance and Edges in a Causal Graph

Lemma 3.1. If Y is almost surely counterfactually invariant with respect to Z then there is no edge from Z to Y .

Proof. We use the definition of Bongers et al. (2021) which says that ‘Z is not a parent of Y ’ is equivalent to there being a
measurable function f̃Y such that:

fY (x, e) = f̃Y (x\Z , e)
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for almost all e,x, where fY (x, e) is the original structural equation for Y and x\Z is the covariates x without Z. But this
is equivalent to Y being distributionally counterfactual invariant conditional on e,x\Z as we can set:

f̃Y (x\Z , e) = E[Y | Pa(Y ) \ Z, z′, e] (2)

For some fixed z′.

First we can note that fY (x\Z , z
′, e) = f̃Y (x\Z , e) as we have specified all parts of the structural equation model for Y .

From here we have:

E[Y | Pa(Y ) \ Z, z′, e] = E[Y (z′) | Pa(Y ) \ Z, z′, e] (3)
= E[Y (z′) | Pa(Y ) \ Z, z, e] (4)
= E[Y (z) | Pa(Y ) \ Z, z, e] (5)
= E[Y | Pa(Y ) \ Z, z, e] (6)

(7)

Where the third line follows as Y (z′) ⊥ Z | Pa(Y ), e and then we apply distributional counterfactual invariance.

A.3. Relationship between Counterfactual Invariance and Conditional Independence

A.3.1. INVARIANCE IMPLIES INDEPENDENCE

Lemma A.1. 4.2 Suppose Y is distributionally counterfactual invariant conditional on some set W such that there is some
S ⊂ W that is a valid adjustment set for (Z, Y ). Then we have Y ⊥ Z | S.

Proof. As S is a valid adjustment set we have that Y (z′) ⊥ Z | S. Now we have:

P (Y = y | S = s, Z = z′) = P (Y (z′) = y | S = s, Z = z′)

= P (Y (z′) = y | S = s, Z = z)

= EP (W |S=s,Z=z)[P (Y (z′) = y | W,Z = z)

= EP (W |S=s,Z=z)[P (Y (z) = y | W,Z = z)]

= P (Y (z) = y | S = s, Z = z)

= P (Y = y | S = s, Z = z)

Therefore as P (Y = y | S = s, Z = z′) = P (Y = y | S = s, Z = z) we have Y ⊥ Z | S.

Corollary A.2. The following holds;

• If Y is a.s.-CI then Y ⊥ Z | S for any valid adjustment set S for (Z, Y )

• If f is F-CI then f(X) ⊥ Z | S for any valid adjustment set S for (Z, f(X))

Proof. These hold as any distribution satisfying almost sure counterfactual invariance will satisfy distributional counterfactual
invariance conditional on any set W , therefore the result in Lemma 4.2 can be applied for any valid adjustment set S.

A.3.2. BUT INDEPENDENCE DOES NOT IMPLY INVARIANCE

Proposition 4.4. For almost sure counterfactual invariance we have that:

• No set of independences imply any bound on P (Y (z) = Y (z′)), even if Y is binary.

• For discrete models, the counterfactually invariant structural causal models have Lebesgue measure zero within the
models satisfying the set of independences in Corollary A.2.
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Proof. For any set of variables V we can simply let Z, Y be as in example 4.1 and generate all other variables independently.
So we have:

Y = f̃Y (Z, ÑY ) (8)

Where if ÑY is equal to i, Y = f̃Y (Z, i) = fi(Z). The distribution P (ÑY ) over {0, 1, 2, 3} has probability vector which
lies in:

a(λ) =


0

1− 2p
p
p

+ λ


1
1
−1
−1

 (9)

Where P (Y (z) = Y (z′)) = a(λ)0+a(λ)1. If we let p = 1
2 we can see that λ can vary between [0, 1

2 ] with P (Y (z) = Y (z′))
taking all values in [0, 1]. Therefore we have constructed an example which satisfies all possible independences however
P (Y (z) = Y (z′)) is unconstrained.

For the second statement we use use a generalised version of the function response framework as is found in Peters et al.
(2017) or Gresele et al. (2022) so that the observable distribution over all variables V arises as:

P (V ) =
∑
e

P ((n))

n∏
i=1

1{vi = fi,ni
(pai)}, (10)

where ni indexes the possible functions from Pa(Vi) to Vi. Now we can relate any probability distribution P ((N)) with
some vector p ∈ ∆m−1 in the probability simplex where m = |N | and the entries of the probability vector are P (N = n).

Now all the conditional independence statements will correspond to polynomial constraints on the vector p as in Drton
et al. (2008). That is they will correspond to a set of functions {gi}ki=1 where gi : ∆

m−1 → R and k is the total number of
constraints where we require:

gi(p) = 0 (11)

Now let M denote the submodel of ∆m−1 that lies in the algebraic variety generated by {gi}ki=1, that is the submodel that
satisfies the conditional independence relationship. Now take a rational parameterisation of M, so some G : Θd → M
where Θd is some open set in Rd. From previously almost sure counterfactual invariance corresponds to:

P (Y (z) = Y (z′)) = 1 (12)

is a linear function in p ∈ M as:

P (Y (z) = Y (z′)) =
∑
n

Y (z,n)=Y (z′,n)

P (N = n). (13)

And is so a rational function in θ ∈ Θd. However from the previous example we know there exists a point θ0 ∈ Θd such
that G(θ0) is not counterfactually invariant. Therefore as this rational function is non-zero at some value it must be non zero
for almost all θ ∈ Θd (Lojasiewicz, 1964). This follows as any polynomial is either zero everywhere or on a set of measure
zero.

Hence amongst the set of models satisfying the conditional independence set (given by Θd) almost all SCM’s are not
counterfactually invariant.

Proposition 4.6. For a given causal model let FCI be the set of counterfactually invariant functions f : X → Y . Supposing
all the variables are discrete we have that for almost all structural causal models:

FCI = {f : f is a function of Nd(Z) only}. (14)

Alternatively stated, the set of causal models that admit a counterfactually invariant function which takes a descendant of Z
as an input, has Lebesgue measure zero.



Results on Counterfactual Invariance

Proof. As for previous proos for a given causal graph G all structural causal models can be associated with a point in the
probability simplex p ∈ ∆m−1. Now we work with the Lebesgue measure over ∆m−1.

Now suppose f : X → Y is some function which depends on a covariate that is a descendant of Z. We will show that for
almost all causal models this function is not counterfactually invariant. To do so we note that the counterfactual invariance
of f will again correspond to some polynomial in our probability distribution p. Hence as this polynomial is either zero
everywhere or almost nowhere we simply have to find a point p under which f is not counterfactually invariant.

To do this note f takes as input some variable D which is a descendant of Z. Hence there must be two values d, d′ such
that for a fixed value x\D of the other covariates X \D the function f changes value. Now we choose p such that V is
a deterministic function of Z that flips between d, d′ and all other covariates are set to x \D. Therefore as we intervene
on Z we change the value of f so under this structural causal model f is not counterfactually invariant, hence f is not
counterfactually invariant under almost all structural causal models.

Now we have that for each function f which depends on some descendants of Z it is counterfactually invariant on a set of
measure zero. We can take the union of these sets over all functions to get the set of structural causal models for which there
exists one counterfactually invariant function which depends on a descendant of Z. As this is the union of finitely many
measure zero subsets it is also measure zero we have that almost everywhere the set of counterfactually invariant functions
is:

FCI = {f : f is a function of Nd(Z) only.} (15)

A.3.3. DISTRIBUTIONAL INVARIANCE

In the previous section we demonstrated that almost sure independence is not implied or even bounded by any set of
independences. However distributional counterfactual invariance can be implied by conditional independence:

Lemma A.3. If W is a valid adjustment set then Y ⊥ Z | W is equivalent to Y being distributionally counterfactual
invariant conditional on W .

Proof. As W is a valid adjustment set we have that Y (z) ⊥ Z | W . Therefore we may write:

P (Y (z) | W = w,Z = z′) = P (Y (z) | W = w,Z = z) (16)
= P (Y | W = w,Z = z) (17)

For any z, z′. Therefore distributional counterfactual invariance simply corresponds to:

P (Y | W = w,Z = z′) = P (Y | W = w,Z = z) (18)

Which is exactly the conditional independence.

However this is a unique subset of distributional counterfactual invariance where the counterfactual distribution is identifiable
from the observational distribution. In general this is not possible and so we can recover similar results to the previous case:

Proposition A.4. Suppose there is some vertex w ∈ W such that w ∈ Pa(Y ) ∩De(Z) and Y ̸⊥ w. The for distributional
counterfactual invariance conditional on W we have all the results from almost sure invariance. That is:

• No additional independences imply distributional counterfactual invariance conditional on W .

• If Y is binary no additional independences are sufficient to bound:

|P (Y (z)=1|W =w,Z=z)− P (Y (z′)=1 | W =w,Z=z)|.

• For discrete models, the distributional counterfactual invariant structural causal models have Lebesgue measure zero
within the models satisfying any set of conditional independences.



Results on Counterfactual Invariance

Proof. The first follows as Y is allowed to depend arbitrarily on w we may simply set Y = w. Distributional counterfactual
invariance conditional on W then becomes almost sure counterfactual invariance of w by lemma 2.4. From here we can
apply proposition 4.4 to show the first two results, noting that the only dependence implied so far is between Y and w.
This leads to the final result as distributional counterfactual invariance is again a selection of polynomials in our parameter
vector.


