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ABSTRACT

Existing visual foundation model-based methods (e.g., SAM) for multi-class med-
ical image segmentation typically face a trade-off between insufficient semantic
information and spatial prompt interference, while extending SAM with fully au-
tomated semantic segmentation compromises its inherent interactive prompting
capabilities. To bridge the semantic specificity gap, we propose SPG-SAM (Seman-
tic Prompt Graph learning for SAM), a novel framework that seamlessly integrates
spatial and semantic prompting for efficient and accurate multi-class medical image
segmentation. SPG-SAM introduces dedicated semantic prompts to complement
SAM’s spatial prompts, establishing an explicit mapping between object locations
and semantic categories. Furthermore, we introduce a semantic prompt graph learn-
ing module that employs a graph attention network to explicitly model anatomical
priors and structural relationships among medical objects. This design enables
cross-category feature interaction, mitigates prompt interference, and facilitates
accurate and efficient multi-class segmentation within the SAM-based paradigm.
Experimental results demonstrate that SPG-SAM achieves average Dice coeffi-
cients of 94.27% and 91.83% on the abdominal multi-organ segmentation (BTCV)
and pelvic target segmentation (PelvicRT) tasks, respectively, outperforming the
second-best state-of-the-art baselines by 2.1% and 3.65%. Code available at XXX.

1 INTRODUCTION

Medical image segmentation classifies pixels or voxels in modalities like CT, MRI, and ultrasound
into predefined anatomical or lesion regions (e.g., organs, tumors), serving as a fundamental medical
image analysis task (Litjens et al., 2017; Wang et al., 2022; Norouzi et al., 2014; Azad et al., 2024;
Siddique et al., 2021). The Segment Anything Model (SAM) (Kirillov et al., 2023) introduced
prompt learning in open-set visual segmentation, establishing a ”visual foundation model + interactive
prompting” framework that sparked a new era in foundation model-based medical image segmentation.
However, SAM and similar models, trained mainly on natural images, exhibit significant performance
gaps in medical imaging (Ravi et al., 2024; Chen et al., 2023; Wu et al., 2025; Lin et al., 2024).
They lack intrinsic understanding of medical imaging physics and anatomical constraints, often
misinterpreting complex tissues, and their single-target segmentation struggles with multi-target
medical scenarios, such as multi-organ localization in abdominal or pelvic CT scans (Du et al., 2020;
Liu et al., 2021; Yuan et al., 2023).

To address these, approaches like MedSAM (Ma et al., 2024) and SAMed (Zhang & Liu, 2023)
adapt SAM via domain-specific pretraining or mask decoder modifications for semantic segmentation.
Yet, they treat multi-class segmentation and interactive prompting as conflicting goals: SAM’s
prompts support only single-target annotation without semantics, while multi-class requires explicit
semantic constraints. Maintaining SAM’s interaction demands multiple prompts for multi-organ
tasks, reducing clinical efficiency; fully automated semantic segmentation loses fine-grained user
control vital in medicine (Zhang & Liu, 2023; Li et al., 2023).

We propose SPG-SAM (Semantic Prompt Graph learning for SAM), a framework integrating spatial
and semantic prompts to enable efficient, accurate multi-class medical segmentation while preserving
interactivity. Semantic prompts complement SAM’s spatial prompts by explicitly mapping locations
to semantic categories, allowing the model to identify both where and what in dense, multi-structure
scenarios. This dual prompting mitigates interference and leverages SAM’s design strengths.
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Further, SPG employs a Graph Attention Network (GAT) (Velickovic et al., 2017) to model inter-
class anatomical relations as nodes and weighted edges, using semantic prompts as contextual
priors. Multi-layer attention learns semantic correlations among adjacent anatomical structures,
enabling cross-category knowledge transfer and enhancing segmentation robustness in ambiguous or
overlapping regions.

The main contributions of our work are summarized as follows (the key architectural difference
between our method and prior methods is also highlighted in Figure 6 in the Appendix):

• We propose SPG-SAM, a novel SAM-based medical image segmentation framework that
introduces semantic prompts alongside spatial prompts to enable accurate and efficient multi-
class segmentation while preserving SAM’s interactive control.

• We further enhance semantic understanding through semantic prompt graph learning, which
leverages a graph attention network to model inter-class relationships among medical targets,
capturing anatomically informed priors and facilitating cross-category feature interaction.

• Our approach achieves state-of-the-art performance on multiple multi-class medical image
segmentation benchmarks, including the BTCV (Landman et al., 2015) and PelvicRT datasets,
delivering 2.1% and 3.65% improvements in Dice score for segmentation accuracy, respectively.

2 RELATED WORK

2.1 MEDICAL IMAGE SEGMENTATION METHODS

Early studies used CNNs (LeCun et al., 1998), with U-Net (Ronneberger et al., 2015) excelling in
localization via skip connections. Later models like TransUNet (Chen et al., 2021) and SwinUNet
(Cao et al., 2022) added Transformer attention to improve segmentation of irregular organs. Yet, they
still struggle with semantic reasoning and generalization in multi-class tasks (Zhou et al., 2019; Xiao
et al., 2018; Guan et al., 2019). Recent advances in foundation models, particularly the SAM, have
revolutionized visual segmentation by introducing a promptable architecture that flexibly adapts to
various open-set segmentation tasks, significantly enhancing the model’s applicability across different
scenarios. In the field of medical image segmentation, to bridge the inherent gap between medical
and natural images, existing adaptation methods primarily fall into two categories: fine-tuning SAM
on large-scale medical datasets while retaining the single-class segmentation paradigm (Azad et al.,
2023; Cheng et al., 2023), and modifying SAM’s decoder to enable multi-class prediction (Zhang
& Liu, 2023; Li et al., 2023). Although these approaches improve SAM’s applicability in medical
imaging, they either sacrifice interactivity or fail to model cross-category dependencies, leading to
prompt interference issues in multi-organ segmentation.

2.2 GRAPH ATTENTION NETWORKS

Graph Attention Networks (GATs) (Velickovic et al., 2017) overcome the limitations of traditional
Euclidean data modeling by introducing self-attention mechanisms on graph-structured data. Unlike
graph convolutional networks (GCNs) (Kipf & Welling, 2016), which use fixed-weight neighborhood
aggregation, GATs dynamically compute attention coefficients between nodes, enabling adaptive
feature propagation based on node importance. This architecture has been applied in medical image
analysis tasks to capture structured information from anatomical priors or multi-scale features (Foo
et al., 2022; Zhang, 2023). However, existing methods often treat inter-class relationships as static or
task-specific attributes, limiting their generalization across diverse anatomical structures.

3 METHOD

3.1 OVERVIEW

To address the semantic underspecification issue in SAM while preserving its interactive prompting
capability, we introduce SPG-SAM, which supplements categorical information as semantic prompts
to bridge the semantic specificity gap. Furthermore, we leverage these semantic prompts through a
graph attention network, explicitly modeling anatomical priors and structural relationships between
medical objects. The main structure of our proposed SPG-SAM is illustrated in Figure 1.
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Figure 1: The SPG-SAM framework comprises three stages. Stage 1: Prompt Encoding and Visual
Feature Extraction. Spatial prompts Ei

p and category embeddings Ei
c are coupled via a joint encoder

to form semantic-spatial embeddings Epc (Ei
p +Ei

c → Epc), while the image encoder extracts visual
features I . Stage 2: Semantic Prompt Graph Learning and Anatomical Constraint Modeling. The
GAT-based SPG module interacts Epc with visual features to dynamically construct an anatomical
adjacency matrix Aij . Cross-category relationships are modeled through node collaboration T ′′

i ,
with a category pruning strategy (Aij ∈ {0, 1}) suppressing interference from missing categories.
Stage 3: Multi-target Collaborative Decoding. Features T ′′

i are mapped via MLPi to T ′′′
i , then

matrix-multiplied with I⊤ to generate multi-channel logits, and finally activated by Sigmoid to output
anatomically constrained multi-category segmentation masks Mpred.

3.2 AUGMENTING SPATIAL PROMPTS WITH SEMANTIC PROMPTS

The original spatial prompts (e.g., points, bounding boxes) in SAM lack semantic information, leading
to ambiguous localization, mutual interference among multi-class instances, and erroneous activation
in multi-class segmentation scenarios. SPG-SAM addresses this through a coordinated encoding
scheme that integrates spatial prompts in native coordinate systems with semantic prompts. This
framework employs pseudo-prompt filling for missing semantics to maintain consistent mapping
relationships, while implicitly establishing topological correlations between geometric cues and
semantic categories to enhance segmentation specificity.

Pseudo-Prompt Filling for Missing Classes In a given medical segmentation task, the target
categories are typically predefined and remain fixed. However, not all categories are consistently
present in every image (e.g., each 2D slice within a 3D volume), leading to missing prompts for
absent classes. To ensure that each category receives appropriate guidance prompts corresponding
to fixed output channels, SPG-SAM employs pseudo-prompts to compensate for missing entries.
Specifically, when a particular class is absent, we supplement it with a fixed pseudo-prompt (i.e.,
p−1) as its category-specific prompt for that image, which is then fed into the prompt encoder along
with other prompts:

Ei
p = Encprompt(pi), pi =

{
pi i ∈ C′

p−1 i /∈ C′ (1)

where Ep is the spatial prompt embeddings, C′ denotes present categories, pi represents class-
specific sparse prompts, and Encprompt(·) is the original prompt encoder. This guarantees a stable
spatial-semantic mapping.

Semantics Encoding Medical anatomical categories exhibit explicit definitions and fixed cardinal-
ity, demonstrating strong target-specific guidance. To incorporate target-specific semantic information

3
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as supplementary guidance for existing spatial prompts, we introduce a category encoder Enccat(·)
that transforms categorical information into semantic embeddings:

Ei
c = Enccat(Ci; θcat), ∀i ∈ {1, . . . , N} (2)

where N represents the total number of target classes, and Enccat(·) is the category encoder. We con-
struct semantic prompt embeddings Ec as supplementary semantic-layer guidance to spatial prompts.
The constructed Ec possesses three essential characteristics: 1) Cardinality equivalence to the medical
structures in the target dataset, ensuring one-to-one correspondence; 2) All Ec maintain a unified
embedding dimension dc, compatible with the embedding space of spatial prompts; 3) Learnable
parameters optimized through backpropagation to adaptively meet segmentation requirements.

Semantic Prompt Construction To guide the prompts for segmenting specific organs or lesions, we
design a prompt coupling strategy inspired by SAM’s classification mechanism for prompt categories.
The spatial prompt embedding Ep is integrated with its corresponding category embedding to generate
the spatial-category embedding Epc:

Epc =

Nn

i=1

(
Ei

c + Ei
p

)
. (3)

The processed and concatenated spatial-category embedding incorporates explicit target category
information, thereby distinguishing it from other prompts. Through this approach, we introduce
“category” as a semantic prompt type for SPG-SAM while coupling it with spatial prompts. This
strategy enhances the correspondence between prompts and their target segmentation categories,
enabling the spatial-category embedding to replace raw prompts in subsequent decoding steps.

3.3 SEMANTIC PROMPT GRAPH LEARNING

Graph Structure Medical images from the same series often exhibit similar anatomical relation-
ships, such as fixed categories of medical objects, stable relative positions of objects, and regular
co-occurrence patterns. The entire 2D medical image can be abstracted as a fully connected undi-
rected graph G = (V,E), where the vertices V represent the various medical objects to be segmented,
and the potential relationships between objects form the edge set E. The number of vertices in the
graph G remains constant, and the meaning of each vertex is fixed, while the edge weights can be
dynamically adjusted based on the relationships between adjacent objects. In our framework, each
vertex in the graph (representing a type of medical object) is connected to its neighboring vertices via
weighted edges. This connection effectively expresses their interdependence and spatial relationships.

Prompt Graph Learning To enhance the utilization of global structural information from the
images, SPG-SAM introduces a semantic prompt graph learning module to learn the implicit rela-
tionship graph Gir = (Vir, Eir) between various medical objects. Here, Vir is the set of all mask
tokens T for medical objects to be segmented, and Eir does not need to be predefined but is implicitly
generated through weight self-learning during network training.

During the construction of the graph Gir, we inject corresponding semantic information into the graph
attention mechanism (Velickovic et al., 2017; Li et al., 2019) to establish a deterministic mapping
relationship. By providing targeted category information as guidance, the originally directionally
ambiguous mask tokens acquire clear categorical meanings. Specifically, we concatenate the learnable
mask token Ti ∈ Rdt with the corresponding semantic prompt embeddings Ec along the last channel,
represented as:

T ′
i = [Ti||Ei

c], i ∈ {1, . . . , N} (4)

where T ′
i ∈ Rdt+dc , and dt and dc denote the vector lengths of Ti and Ei

c.

Subsequently, a shared self-attention mechanism is executed for each node, dynamically adjusting
the node’s features based on its adjacent nodes’ features, integrating global features into individual
node features. The self-attention mechanism for each node is:

T ′′
i =

Kn

k=1

σ

∑
j∈Ni

αk
ijW

kT ′
j

. (5)
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where σ(·) is a non-linear activation function, W ∈ Rdt×(dt+dc) is a mapping matrix ensuring
the output channel is consistent with the input mask token, and K is for the multi-head attention
mechanism. αij is the attention coefficient between nodes, expressed as:

αij = softmaxj(eij) =
exp(eij)∑

n∈Ni
exp(ein)

(6)

where Ni is the set of neighboring nodes of node i, and eij represents the correlation between different
objects using the scaled dot product: eij = (WqWT ′

i )
T · (WkWT ′

j), where Wq and Wk ∈ Rdt×dt

are query mapping matrix and key mapping matrix.

To capture richer semantic information, SPG-SAM adopts a multi-head attention mechanism, paral-
lelizing K independent attention mechanisms and concatenating the output features to form attention:
The generated attention T ′′

i is residually connected with the original mask token Ti to obtain an
enhanced mask token.

Category Pruning Since medical objects do not always appear in every image to be segmented, and
interactions should only occur between objects within the current image, SPG-SAM incorporates a
category pruning strategy within the graph attention mechanism to effectively eliminate the influence
of absent objects on present ones. Specifically, we construct a co-occurrence-based adjacency matrix
A to represent whether any two objects appear simultaneously.

When constructing the adjacency matrix, each element Aij indicates whether the two medical objects
i and j co-occur in the same image. If both objects appear together, then Aij = 1; otherwise,
Aij = 0. In this context, the attention generation process in Eq. (5) is updated to:

T ′′
i =

Kn

k=1

σ

∑
j∈Ni

Aijα
k
ijW

kT ′
j

 . (7)

This co-occurrence-based adjacency matrix not only provides the model with a clear category
relationship graph, optimizing the flow of information within the graph attention mechanism to ensure
that only relevant objects influence each other, thereby improving the accuracy and robustness of
the segmentation, but also reduces redundant computations through pruning, enhancing the model’s
focus on the categories that are actually present.

3.4 MULTI-CLASS PREDICTION MASK OUTPUT

In terms of architecture, we adopt a prediction head construction method similar to SAMed (Zhang &
Liu, 2023) to simultaneously output segmentation masks for different categories. Specifically, after
the fusion process, each updated mask token embedding is adjusted in channel size through a 3-layer
MLP:

T ′′′
i = MLPi(T

′′
i ), i ∈ {1, 2, . . . , N}. (8)

where the term MLPi represents the MLP corresponding to each mask token. Subsequently, T ′′′
i is

spatially dot-multiplied with the image embedding to obtain the predicted segmentation logits for the
corresponding class:

Mlogits,i = T ′′′
i · I⊤. (9)

Finally, the predicted segmentation logits for all classes are concatenated and passed through a
sigmoid function to produce the final segmentation result:

Mpred = Sigmoid(Mlogits), (10)

where Mlogits = [Mlogits,1,Mlogits,2, . . . ,Mlogits,n]. We employ the same loss function as in SAM
for training, which is formulated as follows:

L = αLBCE(Mlogits,Mgt) + (1− α)LDice(Mlogits,Mgt). (11)

Here, Mgt represents the ground truth corresponding to Mlogits, while LBCE and LDice denote the
binary cross-entropy loss and Dice loss, respectively, which are balanced with the hyperparameter α.

5
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Table 1: Performance on the BTCV dataset. SAM, MedSAM, and SAM-Med2D retain interactive
prompt functionality, with the prompt format being the ground truth bounding box of the target
segmentation region. Bold and underlined numbers indicate the best and second-best scores. Organ
abbreviations: Gallb. (Gallbladder), K(L) (Left Kidney), K(R) (Right Kidney), Pancr. (Pancreas),
Stom. (Stomach).

Methods
AVE
DSC
(%)

Aorta Gallb. K(L) K(R) Liver Pancr. Spleen Stom.

Unet (Ronneberger et al., 2015) 84.66 82.24 86.20 88.44 91.84 87.52 76.68 86.21 78.12
TransUnet (Chen et al., 2021) 82.46 86.22 87.42 87.91 86.62 88.16 56.12 87.48 79.76
SwinUnet (Cao et al., 2022) 84.16 84.30 88.67 92.58 89.01 89.81 57.03 90.24 81.66

MissFormer (Huang et al., 2021) 82.97 79.15 88.76 89.79 87.28 87.81 64.89 84.84 81.21
TransDeepLab (Azad et al., 2022) 84.29 85.95 86.86 90.89 88.31 88.73 60.75 89.84 83.01

HiFormer (Heidari et al., 2023) 84.08 86.61 90.01 86.85 86.85 90.34 58.91 89.58 83.48
DAEFormer (Azad et al., 2023) 84.41 83.34 88.66 89.30 89.54 90.77 67.37 89.45 76.87

SAM (Kirillov et al., 2023) 87.86 90.06 92.45 88.56 87.76 89.25 85.47 90.12 79.20
nnSAM (Li et al., 2023) 87.62 88.16 92.60 86.13 87.72 91.85 86.34 92.61 75.53

MedSAM (Ma et al., 2024) 90.44 91.17 91.67 91.95 91.95 93.70 87.36 91.17 84.55
SAM-Med2D (Cheng et al., 2023) 92.17 88.74 94.14 94.69 93.60 94.10 86.18 95.96 89.95
SAM2UNet (Xiong et al., 2024) 86.70 83.37 90.63 86.40 89.56 90.12 81.00 92.19 80.36

SPG-SAM (Ours) 94.27 93.30 96.42 95.05 94.34 94.60 92.55 96.50 91.36

Table 2: Performance on the PelvicRT dataset. The details are the same as in Table 1. Organ
abbreviations: CTV (Clinical Target Volume), FH(L) (Left Femoral Head), FH(R) (Right Femoral
Head), SI (Small Intestine).

Methods
AVE
DSC
(%)

Bladder Colon CTV FH(L) FH(R) Rectum SI

Unet (Ronneberger et al., 2015) 82.14 92.73 75.07 80.28 92.49 90.39 71.02 73.01
TransUnet (Chen et al., 2021) 87.17 96.02 72.58 83.69 95.03 93.67 91.57 77.61
SwinUnet (Cao et al., 2022) 84.65 93.72 68.88 79.25 93.14 94.11 85.68 77.75

MissFormer (Huang et al., 2021) 77.52 95.59 64.19 74.31 80.12 81.06 80.27 67.08
TransDeepLab (Azad et al., 2022) 83.81 90.00 71.23 75.79 94.35 92.24 90.14 72.90

HiFormer (Heidari et al., 2023) 86.90 95.42 73.12 80.54 95.72 96.03 91.20 76.24
DAEFormer (Azad et al., 2023) 81.72 91.12 68.10 77.15 82.71 85.48 90.74 76.77

SAM (Kirillov et al., 2023) 87.90 90.41 73.38 85.45 97.24 92.40 92.29 84.16
nnSAM (Li et al., 2023) 85.93 93.92 71.13 86.56 91.61 88.07 84.25 85.95

MedSAM (Ma et al., 2024) 88.18 95.07 76.73 83.21 96.50 97.44 89.09 79.23
SAM-Med2D (Cheng et al., 2023) 84.54 95.07 71.52 73.55 91.87 95.25 89.49 75.05
SAM2UNet (Xiong et al., 2024) 88.11 94.57 79.20 86.80 92.33 91.81 89.67 82.42

SPG-SAM (Ours) 91.83 95.85 85.97 87.62 95.00 97.87 95.57 84.90

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We evaluate our method on two multi-organ segmentation datasets: the BTCV and the
PelvicRT datasets (Landman et al., 2015). The evaluation covers 13 organs in BTCV and 7 anatomical
targets in PelvicRT, with performance measured using the mean Dice coefficient (more details in the
Appendix).

Implementation Details All experiments are conducted using the ViT-B variant of the SAM
model. Input images are resampled to 512×512 resolution before being fed into SPG-SAMs, while
predicted logits are resampled to their original dimensions to ensure spatial alignment with raw
images. Background classes are excluded from model predictions, and output channels are fixed to
predefined anatomical categories. The AdamW optimizer is employed with an initial learning rate

6
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(a) GT (b) HiFormer (c) DAE (d) SAM (e) MedSAM (f) Med2D (g) SPG-SAM

Figure 2: Ground-truth organ segmentation masks and visualization results from several SOTA
methods are shown, including HiFormer, DAEFormer (DAE), SAM, MedSAM, SAM-Med2D
(Med2D), and our proposed SPG-SAM.

of 0.0001, coupled with a cosine annealing scheduler over 50 training epochs. The loss function
incorporated a weighting factor α = 0.5, and the rank of LoRA is 8 (more details in the Appendix).

4.2 OVERALL PERFORMANCE

Quantitative Evaluation We compare SPG-SAM against state-of-the-art (SOTA) methods in
multi-class medical image segmentation, including traditional deep learning frameworks (UNet (Ron-
neberger et al., 2015), TransUnet (Chen et al., 2021), SwinUnet (Cao et al., 2022), MissFormer (Huang
et al., 2021), TransDeepLab (Azad et al., 2022), HiFormer (Heidari et al., 2023), DAE-Former (Azad
et al., 2023)) and SAM-based extensions (SAM (Kirillov et al., 2023), nnSAM (Li et al., 2023),
MedSAM (Ma et al., 2024), SAM-Med2D (Cheng et al., 2023)).

Experimental results on both BTCV and PelvicRT datasets, as shown in Table 1 and Table 2,
demonstrate that SPG-SAM exhibits strong competitiveness, setting new SOTA performance. Overall,
SAM-based methods surpass traditional approaches, with our method achieving the highest average
Dice Similarity Coefficient (DSC) and demonstrating outstanding performance across the majority
of medical object categories. While results for “femoral head left” and “small intestine” in the
PelvicRT dataset are slightly lower, the overall segmentation accuracy remains highly competitive.
For instance, the average DSC improves to 94.27% (BTCV) and 91.83% (PelvicRT), representing a
notable increase of 2.1% and 3.65%, respectively, over the second-best performing baselines.

These results indicate that the proposed SPG-SAM can effectively bridge its inherent knowledge
gap in medical imaging through rational integration and processing of semantic information. By
structurally capturing relationships between medical objects at the whole-image level, SPG-SAM
successfully leverages SAM’s inherent feature extraction capabilities to enhance prior knowledge
learning among medical objects, ultimately achieving performance improvement.

Qualitative Evaluation In Figure 2, we present segmentation mask visualizations of several major
methods. Compared with other approaches, SPG-SAM demonstrates significant advantages in
category sensitivity. For instance, in recognizing symmetric anatomical structures (left kidney &
right kidney, left femoral head & right femoral head), traditional segmentation models often confuse
isolated symmetrical objects due to insufficient spatial awareness, leading to channel misassignments.
SAM-based methods exhibit fewer recognition errors but suffer from increased interference between
prompts due to semantic loss, resulting in category over-segmentation (e.g., erroneously segmenting
non-existing classes, such as stomach and liver, as well as classes with irregular morphology, e.g.,
colon & small intestine). In contrast, SPG-SAM leverages both semantic and spatial information to
maintain strict sensitivity to existing classes while accurately localizing targets.

7
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Table 3: Ablation study on semantic prompts and
graph learning modules.

Prompt Method DSC (%)

Class
Tokens Graph Pruning BTCV PelvicRT

w/o

× × × 76.66 79.28
✓ × × 79.74 80.69
× ✓ × 80.94 80.52
✓ ✓ × 80.09 79.05
✓ ✓ ✓ 91.00 86.19

w/

× × × 87.86 87.90
✓ × × 92.57 88.58
× ✓ × 87.22 86.93
✓ ✓ × 92.35 91.95
✓ ✓ ✓ 94.27 91.83

Table 4: Impact of the prompt graph learning
module insertion position on segmentation
performance.

DSC(%) β α&β α

Aorta 93.76 91.16 93.30
Gallbladder 96.12 90.07 96.42
Kidney (L) 94.76 94.24 95.05
Kidney (R) 92.50 93.17 94.34

Liver 93.44 89.49 94.60
Pancreas 90.21 95.06 92.55
Spleen 95.40 93.17 96.50

Stomach 92.44 91.85 91.36

AVG 93.58 92.28 94.27

t-SNE Visualization To analyze the effectiveness of the semantic prompt graph learning structure
during the inference process, we perform a t-SNE visualization on the mask tokens involved in graph
attention, as shown in Figure 4. Here, Figure 4 (a) and (b) represent the visualization of mask tokens
in SAM before the cross-attention module and after the MLP, respectively, while Figure 4 (c) and
(d) represent the counterparts of SPG-SAM at the same positions. When comparing the figures,
it is evident that the distribution of most categories in SAM is relatively uniform without obvious
clustering, whereas SPG-SAM exhibits stronger clustering effects and the distinctions between
different categories are more pronounced. This highlights the effectiveness of the proposed semantic
prompt graph learning in accurately identifying object categories and adaptively facilitating inter-
and intra-category feature interactions.

4.3 ABLATION STUDY

Architecture Ablation As shown in Table 3, we systematically analyze the impacts of semantic
information (class tokens) and graph learning modules on SPG-SAM’s medical object segmentation
performance under different settings. Experiments demonstrate:

1) Without spatial prompts, when SPG-SAM degenerates into a traditional deep architecture, se-
mantic injection and inter-class graph modeling partially encode anatomical priors (79.28% DSC
on PelvicRT). However, fully-connected graph structures introduce interference between present
and absent classes, particularly in small-scale data scenarios (PelvicRT), where excessive atten-
tion to node relationships over feature learning causes a 0.23% DSC drop (79.28%→79.05%). A
category-based graph pruning strategy effectively suppresses noise from absent classes, focusing
graph attention on actual anatomical correlations, achieving over 7% DSC improvement across both
datasets(80.09%→91.00%, 79.05%→86.19%).

2) With precise spatial prompts, semantic information and spatial constraints form synergistic
enhancement: bounding boxes provide strong spatial priors for ROI feature extraction, while graph
learning filters anomalies through organ topology constraints (e.g., liver-gallbladder adjacency). Class
token integration boosts BTCV DSC by 5.13%(87.22%→92.35%), confirming that semantic context
interacts bidirectionally with spatial prompts via self-attention and cross-attention mechanisms to
correct semantic-spatial mapping deviations. Removing semantic information disrupts cross-category
anatomical correlations (92.35%→87.22%), while disabling sparse graph structures degrades overall
performance. This experimentally validates the necessity of tripartite coupling among semantic
guidance, spatial constraints, and graph structural reasoning.

Insertion Position of Graph Attention Network To find the optimal insertion point for the prompt
graph learning module in the mask decoder, we compare two positions: after the self-attention module
(α) and after the MLP (β), designing three configuration schemes (see Table 4 for details).

Experiments on the BTCV dataset demonstrate that single α-position insertion achieves the optimal
global performance (94.27% Avg DSC), outperforming the β-position by 0.69%, validating the
critical role of deep semantic guidance in multi-organ abdominal segmentation. Dual-position

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) SAM: Before CA (b) SAM: After MLP

(c) SPG-SAM: Before CA (d) SPG-SAM: After MLP

Figure 4: t-SNE visualization of mask token
embeddings before and after graph attention.
(a) and (c) represent the states before entering
cross attention, while (b) and (d) show the out-
puts after passing through the MLP.

(a) GT (b) a&b

Figure 5: Impact of graph attention module inser-
tion position on segmentation performance. (a)
Ground truth; (b) inserted at the dual position.
Red arrows mark under-segmentation and mis-
segmentation in (b).

insertion leads to a performance decline (92.28%), particularly for the gallbladder (96.42%→90.07%)
and liver (94.60%→89.49%), indicating that excessive graph structure attention may impair the
features of simple organs through noise interference. As shown in Figure 5, α&β dual-position
insertion causes over-segmentation in the gallbladder region, with DSC plummeting from 96.42% (α)
to 90.07%, suggesting that anatomical structure modeling requires maintaining feature consistency,
and complex interventions may weaken feature distinguishability. Comprehensive analysis confirms
that introducing semantic prompt map learning at the shallow layer (α) enables effective interaction
between mask tokens and image embeddings while avoiding inter-class noise from complex graph
structures. Therefore, the graph learning component is implemented only at the α-position.

Extended ablation results are provided in the Appendix, including experiments and analyses related
to the rank size in LoRA, computational efficiency analysis, and qualitative evaluation of interactive
prompts.

5 CONCLUSION

We propose SPG-SAM, a novel framework that integrates semantic prompt graph learning into the
SAM to address the challenges of multi-class medical image segmentation. Unlike existing SAM
adaptations that decouple spatial and semantic prompting, SPG-SAM dynamically models inter-class
anatomical relationships through a graph attention mechanism while preserving SAM’s interactive
spatial prompting capabilities. By unifying semantic guidance with spatial constraints and introducing
a category-aware graph pruning strategy, our method achieves robust segmentation performance even
for ambiguous or co-occurring medical targets. Furthermore, SPG-SAM maintains computational
efficiency and clinical practicality by avoiding iterative prompting and redundant computations.
It offers a promising direction for leveraging foundation models in medical imaging, balancing
automation with precise anatomical reasoning. However, SPG-SAM also has some limitations. For
instance, the computational complexity of the graph attention mechanism is relatively high, which
may increase training time and resource consumption on large-scale datasets. While SPG-SAM
performs well on existing datasets, its generalization capability across different medical imaging
modalities still requires further validation. These limitations need to be addressed in future research
to further enhance the practicality and adaptability of SPG-SAM.

9
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ETHICS STATEMENT

This work presents SPG-SAM, a framework for multi-class medical image segmentation that inte-
grates semantic prompt graph learning with the Segment Anything Model (SAM). While our research
demonstrates significant performance improvements in medical image analysis, we recognize several
ethical considerations that warrant careful attention as this technology progresses toward clinical
application.

Human Subjects Research and Data Privacy The datasets used in this study (BTCV and Pelvi-
cRT) consist of retrospective medical imaging data that were properly anonymized and curated for
research purposes. The PelvicRT dataset was collected from XX Hospital with appropriate ethical
approvals and patient consent for research use. We implemented strict data protection measures
throughout our research, ensuring that no personally identifiable information remains accessible.

Potential Clinical Applications and Harm Mitigation While SPG-SAM shows promising results
in medical image segmentation, we emphasize that this technology is intended to assist rather than
replace clinical expertise. The framework is designed to enhance physician efficiency by providing
accurate segmentation masks, but final diagnostic decisions should remain under human supervision.
We acknowledge that erroneous segmentation results could potentially lead to misdiagnosis if used
without proper clinical oversight. To mitigate this risk, we recommend implementing confidence
metrics and uncertainty quantification in clinical deployments.

Bias and Fairness Considerations Our experiments reveal that SPG-SAM achieves consistent
performance across multiple anatomical structures, but we note slight variations in performance for
certain organs (e.g., femoral head and small intestine in PelvicRT dataset). These variations may
reflect inherent challenges in segmenting particular anatomical structures rather than systematic
biases. However, we recognize that the training data may not fully represent the diversity of human
anatomy across different populations, age groups, and ethnicities. Future work should include more
diverse datasets to ensure equitable performance across all patient demographics.
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APPENDIX

A MULTI-CLASS MEDICAL IMAGE SEGMENTATION FRAMEWORK VIA
SEMANTIC PROMPT GRAPH LEARNING
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Figure 6: Comparison between SAM-based single-class seg-
mentation and SPG-SAM for multi-class segmentation: (1)
SAM-based single-class segmentation: Requires sequential
inference for all classes and lacks semantic awareness; (2)
SPG-SAM: Achieves multi-class segmentation through sin-
gle inference while enabling semantics-aware segmentation.

Figure 6 illustrates the architectural
differences between our method and
the original SAM in multi-class med-
ical image segmentation. As shown
in (1), SAM’s interactive architecture
inherently operates in a single-target
segmentation mode, where each in-
ference only yields a predicted mask
for one specific category. This ne-
cessitates sequential execution of in-
ferences for all potential medical ob-
jects during multi-class segmentation,
consuming substantial computational
resources and runtime. Meanwhile,
the lack of semantic information exac-
erbates inter-class conflict resolution.
Our proposed SPG-SAM addresses
these limitations by integrating spa-
tial prompts with semantic prompts
during the prompt initialization phase.
This mutual mapping mechanism en-
ables precise identification and lo-
calization of target medical objects,
replacing the original prompt mech-
anism in subsequent decoding pro-
cesses.The generated prompt embed-
dings, combined with image embed-
dings from the image encoder, are fed
into the mask decoder. Here, the se-
mantic prompt graph learning mod-
ule constructs anatomical relationship
graphs to extract anatomically con-
strained category-specific core fea-
tures, which actively participate in the
final mask generation process. This ar-
chitecture effectively encodes anatomical prior knowledge while maintaining segmentation efficiency
for complex multi-class scenarios.

B DATASETS

Our method is evaluated on the BTCV multi-organ segmentation dataset and our proprietary PelvicRT
dataset. The BTCV dataset originates from the 2015 MICCAI workshop titled Multi-Atlas Labeling
Beyond The Cranial Vault (BTCV), and we use its abdominal version. This dataset comprises 2,178
axial 2D abdominal CT images with a train/val/test split ratio of 1,555:338:285. Each image has
dimensions of 512×512 pixels, with at least one anatomical category present. The PelvicRT, collected
from XX Hospital, contains 474 lower-abdominal CT scan images encompassing 6 organs and 1
clinical target. The dataset is divided with a 9:1:1 ratio for train/val/test split, respectively. All images
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are resampled to 1024×1024 pixels, with each slice containing at least one annotated structure, which
is verified by at least two senior clinical specialists to ensure label reliability. For evaluation, the mean
Dice coefficient is calculated across all 13 BTCV organs (spleen, right kidney, left kidney, gallbladder,
esophagus, liver, stomach, aorta, inferior vena cava, portal vein and splenic vein, pancreas, right
adrenal gland, left adrenal gland) and 7 PelvicRT anatomical targets (bladder, colon, clinical target
volume, left femoral head, right femoral head, rectum, and small intestine).

C ADDITIONAL EXPERIMENTS

C.1 THE RANK OF LORA

In model fine-tuning, we employ LoRA to adapt the image encoder while conducting full-parameter
fine-tuning on both the prompt encoder and decoder. This approach preserves the original powerful
feature extraction capabilities of the image encoder while learning cross-domain medical imaging
knowledge, achieving superior fine-tuning results with relatively low computational demands. To
explore the optimal rank for the target scenario, we conducted experiments across two datasets.
Empirical results demonstrate that rank=8 delivers optimal performance as shown in Table 5. On the
BTCV dataset, rank variations exhibit limited impact on segmentation performance (with a narrow
range of 0.78%). However, excessively high ranks induced a 2.89% DSC degradation (91.83%
→ 88.94%) on PelvicRT, which we attribute to introduced noise interference and compromised
feature extraction capacity of the native SAM architecture. Conversely, insufficient ranks may lead
to inadequate medical feature learning. As visualized in Figure X, different anatomical structures
demonstrate heterogeneous rank sensitivity patterns: organs like the colon and spleen benefit from
higher ranks, whereas the small intestine and stomach achieve optimal learning at rank=1 with
performance degradation at larger ranks. The selected rank=8 represents the balanced configuration
that achieves cross-dataset effectiveness.

Table 5: Effect of LoRA rank selection on segmentation performance.

Datasets Rank size-DSC (%)

1 4 8 16

BTCV 93.95 93.49 94.27 94.21
PelvicRT 90.69 91.26 91.83 88.94

C.2 COMPUTATIONAL EFFICIENCY ANALYSIS

To comprehensively evaluate model performance, we provide detailed computational efficiency
metrics in a comparative analysis (see Table 6). The experiments use SPG-SAM as the baseline
model, with two control configurations: one removing the graph learning module (w/o Graph)
and another replacing it with a parameter-matched six-layer self-attention module (w/o Graph +
6×Self-Attention). The key findings are as follows:

The three architectures maintain highly consistent computational complexity (approximately 372
GFLOPs), indicating that module adjustments did not significantly affect the overall computational
load. Parameter analysis reveals that the baseline model and the self-attention replacement scheme
have identical parameter counts (98.7M), while removing the graph module reduces the count to
95.6M, demonstrating that the graph learning module itself contains approximately 3.1M trainable
parameters. Inference latency tests show that the graph module introduces only minimal overhead
of 4.9ms (baseline 315.5ms vs. 310.6ms without the module), with limited impact on inference
efficiency.

Critically, as shown in Table 6, the graph learning module plays an irreplaceable role in enhancing
model accuracy: the baseline achieves an average Dice coefficient of 94.27%, removing this module
results in a performance drop of 1.7 percentage points to 92.57%, while the parameter-matched
self-attention alternative only reaches 92.93%. This confirms that the performance improvement
stems not from increased parameter count but from the unique structural advantages of the graph
learning module.
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Table 6: Computational Efficiency and Performance Comparison of Model Variants. The graph learn-
ing module introduces minimal latency overhead (4.9ms) and a small number of parameters (3.1M)
but yields a critical and irreplaceable performance gain of +1.7% Dice, significantly outperforming a
parameter-matched self-attention alternative.

Configuration FLOPs
(GFLOPs)

Avg Inference
Latency (ms)

Trainable
Params

Non-trainable
Params

Total
Params

Model
Size (MB)

AVG
DSC
(%)

Baseline (with Graph) 372.13 315.5 9.1 M 89.7 M 98.7 M 394.955 94.27
w/o Graph 372.11 310.6 5.9 M 89.7 M 95.6 M 382.338 92.57

w/o Graph + 6×Self-Attention 372.27 - 9.1 M 89.7 M 98.7 M 394.994 92.93

C.3 QUALITATIVE EVALUATION OF INTERACTIVE PROMPTS

To further assess the model’s interactive capabilities, we provide a qualitative evaluation of its
performance under different prompt types. The experiments primarily utilized bounding box prompts,
derived from the minimum enclosing rectangle of the target. Additionally, we conducted experiments
with single-point and three-point prompts. The key results are as Table 7.

The results demonstrate that SPG-SAM not only successfully inherits SAM’s capability to support
multiple prompt types but also exhibits significant performance improvements across all prompting
schemes. Specifically: (1) Under the single-point prompt condition, SPG-SAM achieved an average
DSC improvement of 4.23% compared to the SAM baseline, with particularly notable enhancements
in complex structures such as the stomach (91.71% vs 84.33%) and pancreas (87.99% vs 79.67%);
(2) In the three-point prompt scheme, although both models experienced a slight decrease in overall
performance, SPG-SAM maintained a clear advantage (90.52% vs 86.46%); (3) Under the optimal
bounding box prompt condition, SPG-SAM achieved a top-tier performance of 94.27%, consistently
surpassing the baseline method across all anatomical structures. These findings demonstrate the
robustness and effectiveness of our method in various interactive scenarios, indicating its ability to
fully leverage diverse prompt information to enhance segmentation accuracy.

Table 7: Qualitative Comparison Under Various Interactive Prompts. SPG-SAM consistently out-
performs the SAM baseline across all prompt types (single-point/three-point/bounding box) and all
anatomical structures.

Methods Prompt
AVE
DSC
(%)

Aorta Gallbladder Kidney
(L)

Kidney
(R) Liver Pancreas Spleen Stomach

SAM
One point 87.35 89.51 94.47 86.31 86.01 89.92 79.67 88.61 84.33

Three points 86.46 88.44 91.81 84.65 85.49 89.28 82.66 87.86 81.46
Bounding Box 87.86 90.06 92.45 88.56 87.76 89.25 85.47 90.12 79.20

SPG-SAM
One point 91.58 92.75 95.56 91.82 89.04 89.96 87.99 93.81 91.71

Three points 90.52 91.67 94.08 92.27 92.56 92.74 86.66 92.02 82.16
Bounding Box 94.27 93.30 96.42 95.05 94.34 94.60 92.55 96.50 91.36

D STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

During the writing of this paper, the author utilized large language models GPT-4.1 from OpenAI
and Deepseek-R1 from Deepseek solely to assist and polish the English writing. Specifically, these
models were employed to check and correct grammatical errors, unnatural expressions, and minor
punctuation issues in the text originally drafted by the author. Additionally, the models helped to
rephrase sentences in order to improve clarity, fluency, and academic tone, while strictly preserving
the original technical meanings and scientific content. All core ideas, theoretical frameworks,
mathematical derivations, experimental designs, results, analyses, and conclusions are entirely the
author’s own work. The large language models were used only after the author had completed drafting
the core knowledge content, serving purely as writing assistance tools. All suggestions generated by
the models were rigorously reviewed, carefully verified, and edited by the author, who assumes full
responsibility for the entire content of the published work.
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