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Abstract

Despite the success of spoken language un-
derstanding (SLU) in high-resource languages,
achieving similar performance in low-resource
settings, such as zero-shot scenarios, remains
challenging due to limited labeled training data.
To improve zero-shot cross-lingual SLU, re-
cent studies have explored code-switched sen-
tences containing tokens from multiple lan-
guages. However, vanilla code-switched sen-
tences often lack semantic and grammatical
coherence. We ascribe this lack to two is-
sues: (1) randomly replacing code-switched
tokens with equal probability and (2) disregard-
ing token-level dependency within each lan-
guage. To tackle these issues, in this paper,
we propose a novel method termed SOGO, for
zero-shot cross-lingual SLU. First, we use a
saliency-based substitution approach to extract
keywords as substitution options. Then, we
introduce a novel token-level alignment strat-
egy that considers the similarity between the
context and the code-switched tokens, ensur-
ing grammatical coherence in code-switched
sentences. Extensive experiments and analy-
ses demonstrate the superior performance of
SOGO across nine languages on MultiATIS++.

1 Introduction

Acting as the interface between users and machines,
spoken language understanding (SLU) is crucial in
task-oriented dialogue systems (Qin et al., 2021;
Chen et al., 2022; Zhu et al., 2023b; Cheng et al.,
2023c). While joint training models have led to sig-
nificant advancements, most existing models rely
on annotated training data, limiting their scalability
to low-resource languages. To this end, zero-shot
cross-lingual SLU gains increasing attention.

Existing works have shown the effectiveness
of Multilingual BERT (mBERT) in multilingual
corpus pre-training, enabling promising zero-shot
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cross-lingual SLU (Deshpande et al., 2022; Cheng
et al., 2023b; Zhu et al., 2023a). Therein, Qin et al.
(2020) extended this concept to a code-switched
setting, aligning the source language with multi-
ple target languages. Qin et al. (2022) incorporate
contrastive learning to achieve fine-grained cross-
lingual transfer. Based on this, Liang et al. (2022)
further propose a multi-level contrastive learning
framework for explicit alignment of utterance-slot-
word structure in cross-lingual SLU.

However, most above-mentioned models adopt
code-switching methods, which often lack both se-
mantic coherence and grammatical coherence. This
can be attributed to two main issues: (1) Current
approaches overlook the importance of individual
words in a sentence, as they are randomly replaced
with equal probability, potentially introducing un-
necessary translation burden and noise that affects
semantic coherence. (2) Code-switched sentences
comprising tokens from multiple languages may
lack grammatical coherence, as token-level depen-
dencies within each language are disregarded.

To address these issues, we propose a novel
framework dubbed SOGO for enhancing code-
switching. Concretely, we first employ a saliency-
based substitution approach to identify keywords
with high saliency scores. These keywords are
then replaced with their target language equiva-
lents using bilingual dictionaries, to generate code-
switched sentences. Notably, unlike the approach
by Liu et al. (2020), our SOGO framework requires
only a single training process for multiple target
languages. Then, we devise a novel token-level
alignment strategy to bridge the gap between origi-
nal context and code-switched tokens. By mapping
code-switched tokens back to the original context,
SOGO minimizes the impact of token substitutions
on token-level coherence, thus maintaining consis-
tent contextual space within each language.

Experimental results on MultiATIS++ (Xu et al.,
2020) demonstrate that employing code-switching
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Figure 1: (a) Our proposed gradient-based substitution in SOGO. The code-switched dictionary comprised
of salient words has the capacity to more accurately characterize the common semantic space and facilitate the
acquisition of semantic connections among different languages by the model. (b) The main architecture of SOGO.
We perform token-level alignment in lower six layers of mBERT to enhance the grammatical coherence of the
code-switched sentence.

with SOGO leads to significant performance im-
provement compared to baseline models. Further-
more, we demonstrate the compatibility of SOGO

with other existing SLU structures.

2 Method

We describe problem formulation (§2.1) and back-
bone model (§2.2) for zero-shot cross-lingual SLU
first, before describing SOGO (§2.3). The main
architecture of SOGO is illustrated in Figure 1.

2.1 Problem Formulation

Given each input sentence xtgt in a target language,
zero-shot cross-lingual SLU means the SLU model
is trained in a source language dataset S, e.g.,
{English}, and directly applied to other target lan-
guages datasets T , e.g., {Chinese, Japanese}:

(oItgt, o
S
tgt) = f(xtgt), (1)

where f(·) is the trained model. oItgt represents
an intent label and oStgt represents a slot sequence.
Note that T may consist of multiple tgt languages.

2.2 Backbone Model

For each input sentence x, we follow Qin et al.
(2022); Liang et al. (2022) to utilize bilingual dic-
tionaries (Lample et al., 2018) to generate its corre-
sponding multi-lingual one x′. Following previous
studies, we select mBERT (Devlin et al., 2019)

as our sentence encoder. Formally, the input of
mBERT is formulated as follows:

x′ = ([CLS], x′1, . . . , x
′
n, [SEP]), (2)

where [CLS] denotes the special symbol for rep-
resenting the whole sequence, and [SEP] can be
used for separating non-consecutive token se-
quences (Devlin et al., 2019).

Intent Detection. We feed the sentence represen-
tation h′CLS generated from mBERT into a classifica-
tion layer to obtain oI : oI = softmax(W Ih′CLS +
bI), where W I and bI are tunable parameters.

Slot Filling. We use the hidden state to predict
each slot: oSt = softmax(WSh′t + bS), where
h′t denotes the representation of word x′t. Note
that mBERT tokenizes words into subwords (Wang
et al., 2019), so we adopt the first sub-token’s rep-
resentation as the whole word representation.

Training and Inference. Following previous
works, the loss function for intent detection (LI )
and slot filling (LS) are optimized jointly by cor-
responding cross-entropy loss. Finally, the total
training loss is the weighted sum of two losses:

L = λILI + λSLS , (3)

where λI and λS denote two hyper-parameters.
During inference, we do not use any code-

switched sentences.



2.3 SOGO

Saliency-based Substitution. Intuitively, each
word in a sentence contributes differently, and we
refer to words with significant impact as keywords.
Given a vocabulary set V containing v words, we
can identify a salient subset of keywords K ⊆ V
to generate code-switched sentences. In our work,
gradient-based saliency scores (Li and Yu, 2015;
Denil et al., 2014; Arras et al., 2019) are used to
select keywords, which has been proven effective
in many other tasks (Yang et al., 2022; Lai et al.,
2021; Lei et al., 2023). Methodologically, let xn
denotes the n-th sentence from S, Lŷn is the loss
between model’s prediction of slot filling ŷn and
the golden label yn. For each token wi,n ∈ xn, the
saliency score is defined as:

Sxn(wi,n) = −∇hi,n
Lŷn × hi,n, (4)

where hi,n represents the embedding of wi,n. Note
that mBERT tokenizes words into subwords, so
we calculate the average of the subword saliency
scores for each word to obtain the final score. In
this manner, the gradient signifies the degree to
which a word embedding influences the final deci-
sion, while the input considers both the sign and
magnitude of the input (Shrikumar et al., 2017).

Equation 4 assesses the local significance of a
token within a sentence. However, our objective is
to contrust a global keyword subset K from S. Fol-
lowing Yuan et al. (2020), we aggregate all saliency
scores for the token wi occurring in S. We then
multiply these scores with the inverse document
frequency (IDF) (Robertson, 2004) of the token wi:

S(wi) = log N
|{x∈S:wi∈x}| ·

∑
x∈S:wi∈x Sx(wi),

(5)
in which N is the total number of words in S. The
IDF term balances word frequency and saliency
scores by assigning words with high document fre-
quency a lower weight and vice versa.

Finally, top-k salient words are chosen to com-
pose the code-switched dictionary K. We opt for
the dictionary K as a replacement strategy instead
of random word substitution in sentences.

Token-level Alignment. To further align the
space of all hidden states in the code-switched sen-
tence, inspired by attention-based alignment meth-
ods Zhu et al. (2023c); Feng et al. (2022), we map
the code-switched sentence to the original sentence
by calculating the similarity between substituted

hidden states and original hidden states. The simi-
larity scores are then used as weights to aggregate
the embedding of original hidden states, reflecting
the calculated potential for substituted hidden states
in the code-switched sequence. To be specific, for
each hidden state h′i in h′, the similarity score is
calculated as Vaswani et al. (2017):

score′i = h′i · h
⊤
. (6)

The final potential of the code-switched token
h̃′i is the weighted sum of its corresponding h:

αi,t =
exp(score′i,t)∑
t′ exp(score′i,t′)

, h̃′i =
∑
t

αi,t · ht.

(7)
Note that we only employ the alignment in

lower six layers to better align the representations
for switched tokens due to their superior syntax-
capturing ability (Jawahar et al., 2019; Rogers et al.,
2020). Eventually, the loss function for each sub-
task L∗ (∗ ∈ [I, S]) in Equation 3 is rewritten as:

L∗ =
L(h′∗, y∗) + L(h∗, y∗)

2
, (8)

in which y∗ denotes golden label of each task.
When ∗ denotes I , we employ mean pooling strat-
egy on representations of all tokens instead of using
hCLS and h′CLS for intent detection, considering the
close relationship of the two tasks.

3 Experiments

3.1 Experimental Setting

Dataset and Metrics. We conduct our experi-
ments on the latest multilingual benchmark dataset
MultiATIS++ (Xu et al., 2020),1 which consists
of nine languages: English (en), Spanish (es), Por-
tuguese (pt), German (de), French (fr), Chinese
(zh), Japanese (ja), Hindi (hi), and Turkish (tr). The
details of MultiATIS++ are shown in Appendix A.

Following Li et al. (2021), we evaluate the per-
formance of intent prediction using accuracy, slot
filling using F1 score, and the sentence-level se-
mantic frame parsing using overall accuracy.

Implementation Details. We adopt two baseline
models as the backbone, i.e., CoSDA (Qin et al.,
2020) and GL-CLEF (Qin et al., 2022). Follow-
ing previous works, the random rate α for token
substitution is set to 0.2. AdamW (Loshchilov and

1https://github.com/amazon-science/multiatis

https://github.com/amazon-science/multiatis


Model en de es fr hi ja pt tr zh Avg.
In

te
nt

A
cc

mBERT♡ (Devlin et al., 2019) 98.54 95.40 96.30 94.31 82.41 76.18 94.95 75.10 82.53 88.42
ZSJoint3 (Chen et al., 2019) 98.54 90.48 93.28 94.51 77.15 76.59 94.62 73.29 84.55 87.00
CoSDA♡ (Qin et al., 2020) 95.74 94.06 92.29 77.04 82.75 73.25 93.05 80.42 78.95 87.32

SOGO CoS (Ours) 98.54 96.97 98.12 96.33 82.76 76.41 97.18 82.96 85.77 90.56
GL-CLEF♡ (Qin et al., 2022) 98.77 97.53 97.05 97.72 86.00 82.84 96.08 83.92 87.68 91.95

SOGO GL (Ours) 98.89 98.45 98.15 97.74 83.87 84.75 97.73 85.53 89.10 92.69
LAJ-MCL3 (Liang et al., 2022) 98.77 98.10 98.10 98.77 84.54 81.86 97.09 85.45 89.03 92.41

Sl
ot

F1

mBERT♡ (Devlin et al., 2019) 95.11 80.11 78.22 82.25 26.71 25.40 72.37 41.49 53.22 61.66
ZSJoint3 (Chen et al., 2019) 95.20 74.79 76.52 74.25 52.73 70.10 72.56 29.66 66.91 68.08
CoSDA♡ (Qin et al., 2020) 92.29 81.37 76.94 79.36 64.06 66.62 75.05 48.77 77.32 73.47

SOGO CoS (Ours) 95.46 84.12 83.84 83.46 57.63 65.78 80.27 55.13 79.56 76.14
GL-CLEF♡ (Qin et al., 2022) 95.39 86.30 85.22 84.31 70.34 73.12 81.83 65.85 77.61 80.00

SOGO GL (Ours) 95.42 87.46 87.01 84.45 74.25 76.69 83.91 67.04 78.53 81.64
LAJ-MCL3 (Liang et al., 2022) 96.02 86.59 83.03 82.11 61.04 68.52 81.49 65.20 82.00 78.23

O
ve

ra
ll

A
cc

mBERT♡ (Devlin et al., 2019) 87.12 52.69 52.02 37.29 4.92 7.11 43.49 4.33 18.58 36.29
ZSJoint3 (Chen et al., 2019) 87.23 41.43 44.46 43.67 16.01 33.59 43.90 1.12 30.80 38.02
CoSDA♡ (Qin et al., 2020) 77.04 57.06 46.62 50.06 26.20 28.89 48.77 15.24 46.36 44.03

SOGO CoS (Ours) 88.35 61.43 58.30 56.37 19.70 27.65 60.43 19.30 50.17 49.08
GL-CLEF♡ (Qin et al., 2022) 88.02 66.03 59.53 57.02 34.83 41.42 60.43 28.95 50.62 54.09

SOGO GL (Ours) 90.54 72.26 61.05 57.88 39.90 46.95 64.23 29.14 51.31 57.02
LAJ-MCL3 (Liang et al., 2022) 89.81 67.75 59.13 57.56 23.29 29.34 61.93 28.95 54.76 52.50

Table 1: Major results (%) on MultiATIS++. Higher is better in all columns. Results with ♡ are taken from Qin et al.
(2022), and results with 3 are taken from Liang et al. (2022). SOGO CoS and SOGO GL can be directly compared to
CoSDA and GL-CLEF. Note that LAJ-MCL is not open-source.

Hutter, 2019) is used to train SOGO with a learn-
ing rate of 5e-6. The coefficients in Equation 3
are λI and λS , where the best ones are selected by
searching a combination with the following ranges:
{0.8, 0.9, 1.0, 1.1, 1.2}. All experiments are con-
ducted on a single TESLA-V100. The experimen-
tal results of our method are averaged over five
runs with different random seed to ensure the final
reported results are statistically stable.

3.2 Major Results

From the major results in Table 1, we have the fol-
lowing observations: (1) SOGO CoS outperforms
CoSDA significantly. This is because that code-
switched sentences generated by performing salient
word substitution and token-level alignment main-
tain better syntactic and semantic consistency than
those generated by random substitution. (2) Both
SOGO CoS and SOGO GL beat their counterparts
with 5.05% and 2.93% average improvement in
overall accuracy, respectively. This demonstrates
that SOGO can be integrated into existing SLU
models, orthogonal of other structures. Notably,
the gain in slot filling is more significant than in
intent detection, further validating the effective-
ness of token-level alignment. (3) As LAJ-MCL is
not open-source, we implemented two versions of

SOGO, referred to as SOGO CoS and SOGO GL, to
compare with LAJ-MCL. Remarkably, SOGO GL
outperformed the competitive LAJ-MCL in overall
accuracy across 8/9 languages. This highlights the
significant potential of our SOGO when combined
with existing SLU models.

3.3 Further Analysis

Ablation Study. We conduct an ablation study
to explore the effect of each component in SOGO.
The results are illustrated in Figure 2, which show
that each proposed component (i.e., saliency-based
substitution and token-level alignment) contributes
to the performance positively. It is obvious that the
proposed saliency-based substitution has a strong
ability to pick out important words to boost perfor-
mance. Moreover, our token-level alignment has
shown greater relative importance of the switched
tokens than the vanilla code-switching method. It
indicates that such substituted tokens significantly
contribute to SOGO’s prediction.

Analysis of Saliency-based Substitution. To ex-
plore the potential of saliency-based substitution,
we perform experiments on SOGO CoS of differ-
ent strategies with respect to different keyword re-
placement rate k

v (cf. Figure 3, where k denotes
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Figure 2: Ablation experiments. “SbS” and “TlA” de-
note saliency-based substitution and token-level align-
ment, respectively.

the number of keywords, and v denotes the total
number of words.). We find the performance of
randomly selecting keywords significantly declines
as k

v decreases, whereas our saliency-based substi-
tution continues to perform well even with only 1%
of keywords. This is because saliency-based sub-
stitution prioritizes the most indicative keywords
for code-switching. As k

v increases, the additional
keywords become less indicative and might even
have a negative effect on the model’s performance.
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Figure 3: Overall Accuracy of SOGO CoS in different
replacement rate of keywords k

v . Random denotes se-
lecting keywords randomly, while Saliency denotes
selecting keywords via saliency-based substitution.

Analysis of Token-level Alignment. To verify
whether token-level alignment preserves a context
space to keep grammatical coherence, we plot the
degree of dispersion among tokens within a random
sentence in Figure 4. Concretely, we retrieve the to-
ken embedding from intermediate (sixth) layers for
both switched and original tokens and utilize top
features calculated from PCA (Abdi and Williams,
2010). From Figure 4, we can conclude that SOGO

CoS has shown a more compact space for the origi-
nal tokens, where switched tokens are also inside
the context space. In contrast, the vanilla code-

switching method entirely separates the substituted
tokens apart from the original context.
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Figure 4: Token-Level density of SOGO CoS during
training procedure.

4 Conclusion

We proposed a novel semantics-coherent and
grammar-coherent method (SOGO) to enhance
code-switching for zero-shot cross-lingual SLU.
Specifically, we utilized saliency-based substitu-
tion to replace keywords for better semantic coher-
ence in the shared space. Besides, we introduced an
alignment strategy to map the code-switched tokens
to original contexts, which solves the grammatical
incoherence of code-switching. Experiments on
MultiATIS++ showed that code-switching based
methods with SOGO obtained competitive perfor-
mance compared to counterpart baselines.

Limitations

By applying saliency-based substitution and token-
level alignment, SOGO achieves significant im-
provement on the benchmark datasets. Neverthe-
less, we summarize two limitations for further dis-
cussion and investigation by other researchers:

(1) Like other code-switching methods, the per-
formance of the model still relies heavily on the
correctness of the bilingual dictionary (Fazili and
Jyothi, 2022; Whitehouse et al., 2022). In the
future, we continue to enhance the performance
of zero-shot cross-lingual SLU by refining code-
switching techniques (Cheng et al., 2023a).

(2) SOGO should further leverage language-
independent information (Yu et al., 2021), such
as dependency relations and POS tags, to ensure
syntactic invariance for cross-lingual transfers.
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A Dataset

MixATIS++ is an extension of Multilingual ATIS
(Table 2). Human-translated data for six languages
including Spanish (es), German (de), Chinese (zh),
Japanese (ja), Portuguese (pt), French (fr) are added
to Multilingual ATIS which initially has Hindi (hi)
and Turkish (tr). There are 4,478 utterances in the
train set, 500 in the valid set, and 893 in the test
set, with 18 intents and 84 slots for each language.

Language Utterances Intent Slot
#Train #Valid #Test types types

hi 1,440 160 893 17 75
tr 578 60 715 17 71
others 4,488 490 893 18 84

Table 2: Statistics of MultiATIS++.

B Experiment Details

Following the zero-shot setting, we fine-tune the
model on en training set and use en validation set
for the hyper-parameters search. The best model
checkpoint is decided by the overall accuracy on
en validation set. Our code is based on PyTorch
and Transformers2.

C Baselines

We compare our model to the following baselines.

mBERT. mBERT3 follows the same model archi-
tecture as BERT (Devlin et al., 2019), but instead
of training only on monolingual English data, it is
trained on the Wikipedia pages of 104 languages
with a shared word piece vocabulary, allowing the
model to share embeddings across languages.

ZSJoint. Chen et al. (2019) propose a zero-shot
SLU model, which is trained on the en training
set and directly applied to the test sets of target
languages.

SoSDA. Qin et al. (2020) propose a data augmen-
tation framework to generate multi-lingual code-
switching data to fine-tune mBERT, which encour-
ages the model to align representations from the
source and multiple target languages.

2https://github.com/huggingface/transformers
3https://github.com/google-research/bert/blob/

master/multilingual.md

https://github.com/huggingface/transformers
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md


GL-CLEF. Qin et al. (2022) introduce a con-
trastive learning framework to explicitly align rep-
resentations across languages for zero-shot cross-
lingual SLU.

LAJ-MCL. Liang et al. (2022) proposes a multi-
level contrastive learning framework for zero-shot
cross-lingual SLU.

D Generalizability of SOGO

We investigate the potential of the proposed model
for other tasks through an additional set of experi-
ments. Following Qin et al. (2020), we conduct ad-
ditional experiments for natural language inference
using XNLI (Conneau et al., 2018), which includes
15 languages. We directly input pairs of sentences
into the mBERT encoder, and a task-specific clas-
sification layer is employed for classification. The
models are evaluated based on classification accu-
racy (ACC), and the results are presented in Table 3.

Model Avg.

CoSDA_XLM-based (Conneau and Lample, 2019) 75.3
+ SOGO (Ours) 77.4

CoSDA_mBERT-based (Wu and Dredze, 2019) 69.7
+ SOGO (Ours) 71.9

Table 3: Natural language inference experiments.


