
Published in Transactions on Machine Learning Research (October/2024)

Hessian Free Efficient Single Loop Iterative Differentiation
Methods for Bi-Level Optimization Problems

Peiran Yu peiran.yu@uta.edu
Department of Computer Science and Engineering
University of Texas at Arlington

Junyi Li junyili.ai@gmail.com
Department of Computer Science
University of Maryland, College Park

Heng Huang heng@umd.edu
Department of Computer Science
University of Maryland, College Park

Reviewed on OpenReview: https: // openreview. net/ forum? id= X59U5CHnfr

Abstract

Bilevel optimization problems have been actively studied in recent machine learning re-
search due to their broad applications. In this work, we investigate single-loop methods
with iterative differentiation (ITD) for nonconvex bilevel optimization problems. For deter-
ministic bilevel problems, we propose an efficient single-loop ITD-type method (ES-ITDM).
Our method employs historical updates to approximate the hypergradient. More impor-
tantly, based on ES-ITDM, we propose a new method that avoids computing Hessians. This
Hessian-free method requires fewer backpropagations and thus has a lower computational
cost. We analyze the convergence properties of the proposed methods in two aspects. We
provide the convergence rates of the sequences generated by ES-ITD based on the Kurdyka-
Łojasiewicz (KL) property. We also show that the Hessian-free stochastic ES-ITDM has the
best-known complexity while has cheaper computation. The empirical studies show that
our Hessian-free stochastic variant is more efficient than existing Hessian-free methods and
other state-of-the-art bilevel optimization approaches.

1 Introduction

Bilevel optimization problems arise in various machine learning scenarios, including game theory Stackelberg
(1952), meta-learning (Franceschi et al., 2018; Zügner & Günnemann, 2019; Finn et al., 2017a; Snell et al.,
2017), hyperparameter optimization (Franceschi et al., 2017; Pedregosa, 2016; Grazzi et al., 2020; Mehra &
Hamm, 2021; Maclaurin et al., 2015), and reinforcement learning (Hong et al., 2020). Please refer to (Liu
et al., 2022b). A bilevel optimization problem involves two optimization problems, wherein one problem
(the upper-level problem) includes the solution of another optimization problem (the lower-level problem).
A typical formulation of this problem takes the following form:

min
x∈Rn

f(x) := F (x, y(x)),

s.t. y(x) ∈ arg min
y∈Rm

G(x, y), (1)

where F : Rn × Rm → R and G : Rn × Rm → R are continuously differentiable functions.

Gradient-based methods are popular for solving (1) due to their ease of implementation and efficiency. A
key issue in gradient-based methods is how to approximate the hypergradient ∇f . There are two prevailing

1

https://openreview.net/forum?id=X59U5CHnfr

Published in Transactions on Machine Learning Research (October/2024)

approaches in the current literature: iterative differentiation (ITD) that aims at approximating the Jacobian
of y(x) when calculating the hypergradient (Franceschi et al., 2017; 2018; Finn et al., 2017a; Liu et al., 2020;
Ghadimi & Wang, 2018; Ji et al., 2021; Rajeswaran et al., 2019) and approximate implicit differentiation
(AID) (Chen et al., 2022b; Ji et al., 2021; Li et al., 2022; Gould et al., 2016; Lorraine et al., 2020). The
framework of ITD-based methods are easier to understand. Also, compared with AID-based methods, ITD-
based methods dose not require solving an additional linear equation, which may have better accuracy in
computation. In this paper, we focus on the ITD approach.

In general, if we view y(x) as a function of x, ITD methods are designed based on the chain rule of the
gradient of F (x, y(x)), which has the following form:

∇f(x) = ∇xF (x, y(x)) − J(y(x))∇yF (x, y(x)). (2)

How to approximate the J(y(x)) is the key concern of ITD methods. In Ghadimi & Wang (2018), the closed
form of J(y(x)) was considered. Ghadimi & Wang (2018) showed that

J(y(x)) := −∇xyG(x, y(x))T ∇yyG(x, y(x))−1.

The method proposed in Ghadimi & Wang (2018) replaced (x, y(x)) in the above formula with (xl, yl+1),
where l is the iteration. Franceschi et al. (2017) provided forward and backward ways to approximate
J(y(xl)) directly. Ji et al. (2021) also used the backward way to approximate J(y(xl)). To reduce the time
and space complexity of estimating ∇f(xl), Shaban et al. (2019) proposed a truncated back-propagation
to approximate J(y(xl)). However, all above mentioned methods are double loop methods, which can be
sophisticated and computationally expensive.

To enhance the efficiency of ITD-based methods, single-loop techniques have been proposed in prior work
(Yang et al., 2021; Guo et al., 2021; Khanduri et al., 2021; Li et al., 2022; Chen et al., 2022a; Hong et al.,
2020). Guo et al. (2021) introduced SVRB, which updates yl+1 using a single gradient descent step. Chen
et al. (2022a) proposed STABLE, which updates x and y based on continuous-time dynamics. One chal-
lenge faced by SVRB and STABLE is the need to compute a matrix inverse in each iteration, which is
computational expensive. An alternative approach is to use the Neumann series, as seen in Khanduri et al.
(2021); Yang et al. (2021); Hong et al. (2020). In particular, the inverse ∇yyG(x, y)−1 is approximated by∑b

i=1 (I − ∇yyG(x, y))i with some b ∈ N+. The greater b is, the less error this approximation has. However,
if y is not a good approximation of y(x), which is likely the case for most existing single-loop methods that
only possess one inner loop to update y, the Neumann series approach to approximate J(y(x)) can still result
in significant errors. In this study, we introduce a novel approach for approximating the Jacobian J(y(x)).

Another limitation in many existing ITD-type methods relies heavily on the calculation of the Hessian, its
inverse, or the multiplication of the Hessian with a vector. These computations incur high computational
costs. Additionally, scenarios may arise where computing the Hessian of G is challenging or where G
lacks second-order differentiability. For instance, in cases where the lower-level problem involves robust
regression, G can take the form of the Huber loss, which is not twice differentiable (Huber, 1964; Hastie
et al., 2009). Consequently, there has been a pursuit of methods that avoid Hessian computation. Gu et al.
(2021) applied Gaussian smoothing (GS) techniques (Nesterov & Spokoiny, 2017), enabling their method
to bypass the computation of gradients of G. However, Gu et al. (2021) does not leverage any first-order
information from F and G, potentially leading to a larger discrepancy between the approximation and the
true hypergradient. Similarly, Sow et al. (2022) employed GS techniques to estimate the Jacobian of y(x).
Nevertheless, their resulting method needs to compute the full gradient of G, which is often impractical in
real-world applications. Additionally, the methods introduced in Gu et al. (2021); Sow et al. (2022) involve
a double-loop structure, which can be inefficient. Thus, in this work, we propose a stochastic single loop
method that avoids calculating the Hessian of G.

Another aspect that is overlooked in single-loop bilevel methods is the convergence analysis of the generated
sequences, specifically the convergence of (xl, yl). Sequential convergence holds significance as it illustrates
the method’s behavior in the long run. For example, it helps determine whether the accumulated point of the
generated sequence is a stationary point of (1), whether the generated sequence achieves global convergence,
and the its convergence rate. The third goal of this work is to provide sequential convergence guarantees for
the single-loop bilevel method.

2

Published in Transactions on Machine Learning Research (October/2024)

1.1 Main Contributions of Our Paper

In this paper, we propose efficient single loop ITD-type (ES-ITD) methods for the deterministic and stochastic
bilevel optimization problem (1) and (7). Our contributions are three fold:

• The proposed ES-ITD method makes use of much information about lower level updates as the
double loop method has but retains the single loop computation cost.

• We propose a computationally efficient Hessian free method for the stochastic bilevel optimization
problem (7). Based on a natural extension of ES-ITDM using the stochastic gradients or Hessians
of F and G, we use the Gaussian smoothing techniques to approximate the stochastic Hessian of G.
The resulting method is called Hessian free stochastic ES-ITD method (HF-SES-ITD). Compared
to current single loop method, HF-SES-ITD method only uses the first order information to approx-
imate the Jacobian of y(x). Compared with Hessian vector multiplication, our method is
much cheaper because it only needs computing gradient vector inner product.

• We provide convergence analysis of the proposed methods. For the deterministic method, we analyze
the convergence of the sequences {xl}, {yl} and {J l} generated by ES-ITDM, where J l is the
approximation of the Jacobian of y(xl). To this end, we propose a new potential function. We
show that the iterative value of the potential function is nonincreasing. After that, we show that the
successive changes of the generated sequence converge to zero. We show that any accumulation point
of {xl} is a stationary point of (1). Furthermore, under the Kurdyka-Łojasiewicz (KL) property, we
derive the convergence rates of {(xl, yl, J l)}. Especially, when the potential function is a KL function
with exponent 1

2 , we show that {(xl, yl, J l)} converges linearly. As far as we know, this is the
first work that provides the convergence rate of the sequences generated by single loop
methods. Compared with sequential convergence analysis for methods solving general nonconvex
optimization problems, the nested formula for updating J l+1 in our method makes a technical
challenge in our sequential convergence analysis nontrivial. We also give convergence guarantees of
the stochastic variant of ES-ITDM. We show the resulted method has a complexity of O(ϵ−2) to
reach an ϵ-stationary point under mild assumptions.

• We evaluate our methods via the hyper-parameters learning task. We first compare our methods
with the current Hessian-free methods (Gu et al., 2021; Sow et al., 2022). Then we compare our
methods with other popular single loop bilevel optimization methods in Franceschi et al. (2017);
Grazzi et al. (2020); Ji et al. (2021); Grazzi et al. (2020); Sow et al. (2022); Guo et al. (2021); Chen
et al. (2022a). In both comparisons, our stochastic Hessian free fully single loop method has better
performance in both time and accuracy.

Table 1: Comparisons between our method and ESJ , BA, ITD-Bio, FMM = Forward Mode Method, TTSA,
SUSTAIN, MRBO, SVRB, STABLE. HVM = Hessian Vector Multiplication; ds= diminishing stepsize; cs=
constant stepszise; ϵ denotes an (ϵ + variance errors)-accuracy for ∥∇f(xmaxiter)∥.

Methods Loops Use Matrix inverse Use HVM Sequential Convergence Complexity

Deterministic
Methods

ESJ Sow et al. (2022)

Double

No No O(ϵ−4) with ds
BA Ghadimi & Wang (2018) Yes O(ϵ−2) with cs

ITD-Bio Ji et al. (2021)

No

Yes

O(ϵ−2) with cs
FMM Franceschi et al. (2017)

ES-ITDM (Ours) Single Yes O(ϵ−2) with cs

Stochastic
Methods

TTSA Hong et al. (2020)

Single

O(ϵ−2.5) with ds
SUSTAIN Khanduri et al. (2021) O(ϵ−3) with ds

MRBO Yang et al. (2021) O(ϵ−3) with ds
SVRB Guo et al. (2021) Yes O(ϵ−3) with ds

STABLEChen et al. (2022a) O(ϵ−4) with ds
SES-ITDM with (S) No O(ϵ−2) with cs

SES-ITDM with (HF) No O(ϵ−2) with cs

2 Related Work

Comparisons between our methods and current ITD methods are summarized in Table 1.

3

Published in Transactions on Machine Learning Research (October/2024)

Bilevel Optimization Methods. When F and G in (1) are deterministic functions, Franceschi et al.
(2017); Ji et al. (2021) proposed double loop ITD methods for (1). Ji et al. (2021) used the backward way
to approximate J(y(xl)). For stochastic problem (7), Ghadimi & Wang (2018) introduced a double loop
method that solves the lower level subproblem with multiple stochastic gradient steps and replaces each
element in (2) with the stochastic gradients and Hessian. Besides double loop methods, single loop methods
were proposed in Yang et al. (2021); Guo et al. (2021); Khanduri et al. (2021); Li et al. (2022); Chen et al.
(2022a); Hong et al. (2020); Li & Huang (2024). Guo et al. (2021) presented SVRB which updates yl+1 using
one stochastic gradient descent step. SVRB employs the variance reduction on each element in the right-
hand side of (2).Chen et al. (2022a) proposed STABLE that updates x and y based on the continuous-time
dynamics.Also using Neumann series, Yang et al. (2021) designed a momentum-based stochastic single loop
method. Yu et al. (2024) considers adding dropout to address the overfitting problems in bilevel training
tasks.

Sequential Convergence Analysis. The sequential convergence analysis is a fundamental problem of first-
order methods. It has been investigated for nonconvex minimization problems (Bolte et al., 2014; Attouch
et al., 2010; Yu et al., 2021; Li & Pong, 2016). However, the sequential analysis of bilevel optimization
methods is still in its early stages. Chen et al. (2023) used the KL assumption to analyze the sequential
convergence of an AID-type method. However, they assume that the linear equation in their AID method
is solved exactly, which creates a gap between theory and practice. Additionally, the method they analyze
is a double-loop method, whereas ours is single-looped. Liu et al. (2022a) demonstrated that the sequence
generated by their proposed method accumulates at a stationary point. In our analysis, we further provide
the convergence rate of the generated sequence. Under the KL assumption, we show that it can converge
linearly, sublinearly, or finitely.

3 Notation and Preliminaries

In this paper, we denote Rn the n-dimensional Euclidean space with inner product ⟨·, ·⟩ and Euclidean norm
∥ · ∥. We denote the spectrum norm of a matrix A ∈ Rn×m as ∥A∥ and the Frobenius norm of A as ∥A∥F .
For a ramdom variable ξ defined on a probability space (Ξ, Σ, P), we denote its expectation as Eξ. Given
an event A, the conditional expectation of ξ is denoted as EA(ξ).

We say an extended-real-valued function f : Rn → [−∞, ∞] is proper if domf = {x ∈ Rn : f(x) < ∞}
is not empty and f never equals −∞. We say a proper function f is closed if it is lower semicontinuous.
A proper closed function is said to be level-bounded if for any a ∈ R, the set {x : f(x) ≤ a} is bounded.
For a function F : Rn+m → R, we denote the function F (x, y) with respect to y for a fixed x as F (x, ·)
and denote the function F (x, y) with respect to x for a fixed y as F (·, y). Following Rockafellar & Wets
(1998), the regular subdifferential of a proper function f at x ∈ domf is defined as ∂̂f(x) := {ξ ∈ Rn :
lim inf

z→x, z ̸=x

f(z)−f(x)−⟨ξ,z−x⟩
∥z−x∥ ≥ 0}. The subdifferential of f at x ∈ domf is defined by ∂f(x) := {ξ ∈ Rn :

∃xk with xk → x and f(xk) → f(x), ξk → ξ with ξk ∈ ∂̂f(xk), ∀k}. For x ̸∈ domf , we define ∂̂f(x) =
∂f(x) = ∅. We denote dom∂f := {x : ∂f(x) ̸= ∅}. We say x is a sationary point of f if 0 ∈ ∂f(x). For a
twice differential function F : Rm × Rn → R, we denote ∇xF (x, y) and ∇yF (x, y) as the partial gradients
∂F (x,y)

∂x and ∂F (x,y)
∂y correspondingly. We denote ∇xyF (x, y) := ∂2F (x,y)

∂x∂y and ∇yyF (x, y) := ∂2F (x,y)
∂y∂y . For a

function g(x) := Eξ∼P g(x; ξ) with distribution P , let S = {ξj}|s|
j=1 be a mini-batch of samples drawn from

P . We denote g(x; S) := 1
|S|
∑|S|

j=1 g(x; ξj).

Now, we first present the basic assumptions for (1).
Assumption 1. Consider (1). Suppose the following assumptions hold:

(i) Suppose F is Lipschitz continuous with modulus LF .

(ii) For any fixed x̄, ∇xF (x̄, ·) and ∇yF (x̄, ·) are Lipschitz continuous with modulus LF
12 > 0 and LF

22 > 0
respectively, i.e., for any y1 and y2, it holds that ∥∇xF (x̄, y1)−∇xF (x̄, y2)∥ ≤ LF

12 and ∥∇yF (x̄, y1)−
∇yF (x̄, y2)∥ ≤ LF

22.

4

Published in Transactions on Machine Learning Research (October/2024)

(iii) There exists CF
y > 0 such that ∥∇yF (x, y)∥ ≤ CF

y for any x and y.

(iv) For any fixed ȳ, ∇yF (·, ȳ) is Lipschitz continuous with modulus LF
21 > 0.

Assumption 2. Consider (1). Suppose the following assumptions hold:

(i) Denote z = (x, y). G is twice continuously differentiable in z. In addition, suppose ∇yG(x, ·) is
Lipschitz continuous with modulus LG > 0 for any x.

(ii) For any x, G(x, ·) is strongly convex with modulus µG.

(iii) For any x, ∇2
xyG(x, ·) and ∇2

yyG(x, ·) are Lipschitz continuous with modulus LGy
x

and LGy
y
.

(iv) For any y, ∇2
xyG(·, y) and ∇2

yyG(·, y) are Lipschitz continuous with modulus LGx
x

and LGx
y
.

(v) There exist CGxy > 0 and CGyy > 0 such that ∥∇2
xyG(x, y)∥ ≤ CGxy and ∥∇2

yyG(x, y)∥ ≤ CGyy for
any x and y.

4 Efficient Single Loop ITD Method for Deterministic Problem (1)

To develop the fully single loop method, we investigate a basic double loop ITD algorithm. At each iteration
l, let yl+1 = yl,K(xl), where yl,K(xl) is the output of Algorithm 1. Note that yl,K(xl) is a function of xl.

Algorithm 1 A gradient descent method for miny G(xl, y)
Input yl,0, γ > 0.
For k = 0, . . . , K − 1
Let yl,k+1(xl) = yl,k(xl) − γ∇yG(xl, yl,k).
Output yl+1 = yl,K(xl).

The double loop ITD method approximates the Jacobian of y(x) with the Jacobian of yl,K(xl). Using the
chain rule, we have the following formula for the Jacobian of yl,K(xl). 1

J(yl,K(xl)) = −
K−1∑
k=0

γ∇xyG(xl, yl,k(xl))×
K−1∏

s=k+1

(
I− γ∇yyG(xl, yl,s(xl))

)
. (3)

Then, at the outer loop, we let J l+1 = J(yl,K(xl)) and update xl+1 with

xl+1 = xl − β∇xF (xl, yl+1) + (J l+1)T ∇yF (xl, yl+1).

If K = 1, we get a single loop bilevel method. However, the resulting Jacobian approximation becomes
J(yl,1(xl)) = −γ∇xyG(xl, yl,0). ∇xyG(xl, yl,0) does not make use of previous information about the y
coordinate. Even if we choose yl,0 in Algorithm 1 to be the last update yl, J(yl,1(xl)) still does not make use
of the previous information such as {∇yyG(xl, yl)}l or {∇xyG(xl, yl)}l. Thus, simply changing the double
loop method to a single loop method by letting K = 1 will lose information in the previous iterates. However,
we notice that (3) implies

J(yl,K+1(xl))=J(yl,K(xl))
(
I−γ∇yyG(xl, yl,K(xl))

)
− γ∇xyG(xl, yl,K(xl)). (4)

Inspired by this, we update

J l+1 = J l
(
I − γ∇yyG(xl, yl)

)
− γ∇xyG(xl, yl) (5)

1We denote ΠK−1
s=k+1

(
I − γ∇yyG(xl, yl,s)

)
as I when K = 1 by convention

5

Published in Transactions on Machine Learning Research (October/2024)

and propose Algorithm 2. In this way, we make full use of the previous information to update the approxi-
mation of the Jacobian. (5) implies that

J l+1 = −
l∑

k=0
γ∇xyG(xk, yk)×

l∏
s=k+1

(I− γ∇yyG(xs, ys)) (6)

Comparing (6) with (3), there are the following differences:

• At iteration l, computing J(yl,K(xl))∇yF (xl, yl+1) based on (3) needs O(K2) Hessian-vector mul-
tiplications (HVM), where K is the iterations of the inner loop. The cost of each HVM is
O(max{n, m}) using the technic in Pearlmutter (1994). Here, We have two equivalent ways to
update J l+1∇yF (xl, yl+1): either by using (5) and making use of J l, or by using (6) without involv-
ing J l. When applying deduction (5) in the algorithm, we need n+1 HVM computations. However,
when using (5) to update J l+1, we must compute J l+1 = J l

(
I − γ∇yyG(xl, yl)

)
− γ∇xyG(xl, yl),

which involves an Rn×m ×Rm×m matrix operation. When calculating J l ×∇yyG(xl, yl), it requires n
HVM computations. Therefore, in each iteration, we actually need n +1 HVM computations, which
is less than O(k2). Thus, our method is advantageous when n + 1 ≤ k2. On the other hand, when
using (6), we require l2 HVM computations. In summary, our method outperforms the classical ITD
method when either n + 1 ≤ k2 or l2 < k2.

• The formula in (6) makes use of historical updates {x0, . . . , xl} and {y0, . . . , yl}, while (3) only
depends on {xl}. Although making use of historical updates requires more storage, (6) makes use
of more information to approximate the Jacobian of y(xl).

Algorithm 2 Efficient Single ITD Method (ES-ITDM) for (1)
1: Input: α, β, γ > 0, x0 ∈ Rn, y0 ∈ Rm, J0 ∈ Rn×m and N ∈ N+.
2: for l = 0, . . . , N − 1 do
3: Let yl+1 = yl − α∇yG(xl, yl).
4: Compute

∇̂f(xl)=∇xF (xl, yl+1)+(J l+1)T ∇yF (xl, yl+1).

with J l+1 be defined as in (6).
5: Let xl+1 = xl − β∇̂f(xl).
6: end for
7: Output (yN , xN).

5 Efficient Single Loop ITD Method for Stochastic Problem (7)

In many applications that involve bilevel optimization problems, we need to consider a stochastic bilevel
problem:

min
x∈Rn

f(x) := Eξ∼P F (x, y(x); ξ),

s.t. y(x) ∈ arg min
y∈Rm

Eη∼P ′G(x, y; η), (7)

where P and P ′ are distributions.

One natural idea is to replace the gradient/Hessian in Algorithm 2 with the mini-batch gradients/Hessian
of F and G. At iteration l, we draw a sample batch Sl. Then using

J̃ l+1 =−
l∑

k=0
γ∇xyG(xk,yk;Sl)×

l∏
s=k+1

(
I−γ∇yyG(xk, yk;Sl)

)
(8)

6

Published in Transactions on Machine Learning Research (October/2024)

to approximate J l+1 in (6).

Now, based on the mini-batch Hessian of G, we propose a Hessian-free approach to estimate the Hessian of
G. We present this approach as (HF) in Algorithm 3.

Algorithm 3 Hessian Free Stochastic efficient single loop stochastic ITD method (HF-SES-ITDM) for (7)
1: Input: α, γ, β, µ, ν > 0, x0 ∈ Rn, y0 ∈ Rm, N ∈ N+.
2: for l = 0, 1, 2, · · · , N do
3: Draw a sample batch Il change the notation in the proofs. Let yl+1 = yl − α∇yG(xl, yl; Il).
4: Draw a sample batch Bl and Sl. Compute

∇̂f(xl)= ∇xF (xl, yl+1; Bl) + (Ĵ l+1)T ∇yF (xl, yl+1; Bl),

with Ĵ l+1 defined in (11).
5: Let xl+1 = xl − β∇̂f(xl).
6: end for

The idea of Algorithm 3 is as follows. We aim to approximate ∇xyG(x, y; Sl) and ∇yyG(x, y; Sl) with the first-
order information of G. ∇xyG(x, y; Sl) and ∇yyG(x, y; Sl) consist of the gradients of {∇yj

G(xl, yl; Sl)}m
j=1

with respect to x and y. Inspired by Nesterov & Spokoiny (2017), we use Gaussian smoothing technique as
follows. Pick Q ∈ N, µ > 0 and ν > 0. For j = 1, . . . , Q, generate ul

j ∼ N (0, I) ∈ Rn and vl
j ∼ N (0, I) ∈ Rm.

For q = 1, . . . , m, let

∇x∇yq G(xl, yl; Sl) ≈ 1
Q

Q∑
j=1

∇yq
G(xl + µul

j , yl; Sl) − ∇yq
G(xl, yl; Sl)

µ
ul

j

and

∇y∇yq
G(xl, yl; Sl) ≈ 1

Q

Q∑
j=1

∇yq G(xl, yl + νvl
j ; Sl) − ∇yq G(xl, yl; Sl)

ν
vl

j .

Notice that the fractions in the above equalities are scalers of dimension 1. Now, we approximate
∇xyG(x, y; Sl) and ∇yyG(x, y; Sl) as follows:

∇xyG(xl, yl; Sl) =

 (∇x∇y1 G(xl, yl; Sl)T

...
(∇x∇ym G(xl, yl; Sl)T

 ≈ 1
µQ

Q∑
j=1

(
∇G(xl + µul

j , yl; Sl) − ∇G(xl, yl; Sl)
)

(ul
j)T

=: ∇̂xyG(xl, yl)

(9)

and

∇yyG(xl, yl; Sl) =

∇y∇y1 G(xl, yl; Sl)T

...
∇y∇ym G(xl, yl; Sl)T

 ≈ 1
νQ

Q∑
j=1

(
∇G(xl, yl + νvl

j ; Sl) − ∇G(xl, yl; Sl)
)

(vl
j)T

=: ∇̂yyG(xl, yl).

(10)

Now, we use

Ĵ l+1 = −
l∑

k=0
γ∇̂xyG(xk, yk)×

l∏
s=k+1

(
I− γ∇̂yyG(xk, yk)

)
(11)

to approximate J l+1 in (6).
Remark 1. Now we compare the computation cost of SES-ITDM and HF-SES-ITDM. The main cost is
computing

Dl := Ĵ l+1∇yF (xl, yl+1; Bl).

7

Published in Transactions on Machine Learning Research (October/2024)

Figure 1: Test Accuracy w.r.t. log10(Training Time) for the hyper-representation task. The top two plots are 5-way-
1-shot (left) and 5-way-5-shot (right), and the bottom two plots are 20-way-1-shot (left) and 20-way-5-shot (right).
Postfix of ESJ and HOZOJ methods is the number of queried noise vectors (Q).

When Ĵ l+1 is chosen as (8), computing Dl needs to compute the HVM. To this end, we need to compute
the gradient ∇yG first and then compute the HVM, which requires 2 backpropagation in implementation.
However, when Ĵ l+1 is chosen as (11), computing Dl only needs to compute the gradient ∇yG and one
vector inner product using the formulas (9) and (10). Thus, computing Dl only need 1 backpropagation in
implementation. When the dimension of parameters is large, this can save time compared to methods that
need to compute the gradients and HVM. However, computing Dl with Ĵ l+1 in (11) needs to calculate Q
times of gradients and inner products. Thus, there is a tradeoff between using (8) and (11).

6 Convergence Analysis

6.1 Convergence Analysis for Algorithm 2

Now we analyze Algorithm 2. We first give the following theorem that will be used in proving our main
convergence properties.
Theorem 1. Consider (1) and let Assumptions 1 and 2 hold. Let {(xl, yl, J l)} be generated by Algorithm
2. Suppose F is bounded from below. Suppose α ∈ (0, 1

µG
). Then there exist β > 0 and γ ∈ (0, 1

µg
), ∆ > 0

and δ ∈ (0, 1) such that

H l+1 ≤ H l − ∆∥xl − xl−1∥2 − δ∥y(xl) − yl+1∥2 − δ∥J(y(xl)) − J l+1∥2
F ,

where H l := H(xl, xl−1, yl+1, J l+1) with

H(x, x′, y, J) := f(x) + ∆∥x − x′∥2 + ∥y(x) − y∥2 + ∥J(y(x)) − J∥2
F .

Furthermore, {H l} is nonincreasing and there exists H∗ such that {H l+1} is convergent to H∗.

Thanks to Theorem 1, we now have the following observation indicating the limiting point of the generated
sequence satisfies the first order optimality condition of (1).

8

Published in Transactions on Machine Learning Research (October/2024)

Corollary 1. Let assumptions in Theorem 1 hold and suppose F is level-bounded. Then any accumulation
point x∗ of {xl} satisfies ∇f(x∗) = 0. In addition, any accumulation point y∗ of {yl} is an optimal solution
of the lower level problem in (1) defined with x∗.

Now, we show the global convergence properties of the sequences generated by Algorithm 2. To this end, we
introduce the Kurdyka-Łojasiewicz (KL) property.
Definition 1 (Kurdyka-Łojasiewicz Function). We say a proper closed function f : Rn → (−∞, ∞]
satisfies the Kurdyka-Łojasiewicz (KL) property at x̂ ∈ dom∂f with exponent ϑ ∈ [0, 1) if there are a ∈
(0, ∞], a neighborhood V of x̂ and a0 > 0 such that dist(0, ∂f(x)) ≥ a0(f(x) − f(x̂))ϑ for any x ∈ V with
f(x̂) < f(x) < f(x̂) + a. A proper closed function f satisfying the KL property with exponent ϑ ∈ [0, 1) at
every point in dom ∂f is called a KL function with exponent ϑ.

Many functions are KL functions. It is known that proper closed semi-algebraic functions (i.e., functions
whose graphs are unions and intersections of polynomial functions) satisfy the KL property, Attouch et al.
(2010); Li & Pong (2018); Attouch et al. (2013); Bolte et al. (2017). Semi-algebraic functions include widely
used losses such as quadratic loss, L2 loss, Huber loss, hinge loss, and 0-1 loss. KL property is a general
property in convergence analysis when the considered function is not smoothness.

Under the KL assumption, we have the following convergence rate of {(xl, yl, J l+1)} generated by 2.
Theorem 2. Consider (1). Let H be defined as in Theorem 1. Suppose assumptions in Theorem 1 hold and
F is level-bounded. Suppose H is a KL function with exponent ϑ, then

(i) when ϑ = 0, {(xl, yl, J l+1)} converges finitely;

(ii) when ϑ ∈ (0, 1
2], {(xl, yl, J l+1)} converges linearly;

(iii) when ϑ ∈ (1
2 , 1), {(xl, yl, J l+1)} converges sublinearly.

Remark 2. Note that, together with Corollary 1, Theorem 2 shows that the limiting point x∗, to which the
sequence xl converges, is a stationary point of (1). In addition, the limiting point y∗, to which the sequence
yl converges, is the optimal solution of the lower-level problem in (1) defined with x∗.
Remark 3. Since the lower-level problem is strongly convex, the lower-level minimizer is unique. When the
lower-level problem is semi-algebraic, and since y(x) is the infimum projection of a semi-algebraic function,
its graph is also the intersection of polynomial functions, making y(x) semi-algebraic, as well as its Jacobian
J(y(x)). If the upper-level objective is also semi-algebraic, then the potential function H is a KL function,
satisfying the assumption in Theorem 2.

6.2 Convergence Analysis for Algorithm 3

In this section, we make the following assumption.
Assumption 3. Consider (7). Suppose for any fixed y,

E∇xF (x, y; ξ) = ∇xF (x, y)
E∥∇xF (x, y; ξ) − ∇xF (x, y)∥2 ≤ σ2

B .

Suppose

E∥∇yG(x, y; ξ) − ∇yG(x, y)∥2 ≤ σ2
G,

E∥∇xyG(x, y; ξ) − ∇xyG(x, y)∥2 ≤ σ2
xy,

E∥∇yyG(x, y; ξ) − ∇yyG(x, y)∥2 ≤ σ2
yy.

Now, we present the short version of the convergence result of Algorithm 3.

9

Published in Transactions on Machine Learning Research (October/2024)

Figure 2: Test Accuracy w.r.t. log10(Training Time) for the hyper-representation task. Ablation study HF-SES-
ITDM behave when choosing different Q, ν and µ. As we can see, the greater Q is, the slower the algorithm is. But
when Q = 1, the accuracy is still competitive with the accuracy with greater Q’s

Theorem 3. Suppose Assumptions 1, 2 and 3 hold. Suppose α < 1
LG

. Let {xl} be generated by Algorithm 3
with Ĵ l+1 in Step 4 being generated by (11) based on Gaussian sampling. Suppose the optimal value for (7)
is f∗ > −∞. Then there exists β small enough such that

1
N + 1

N∑
l=0

E∥∇f(xl)∥2 ≤ 1
N + 1E1 + E2,

where

E1 = A1(CF
y)2 + A1(f(x0) − f∗) + A1∥y(x0) − y0∥2 + A1∥J(y(x0)) − ∇xyG(x0, y0)∥2

for some A1 > 0, E2 = A2 max{∆̄xy + ∆̄yy, σ2
B , σ2

G} for some A2 > 0 with ∆̄xy and ∆̄yy being the upper
bound of Evl,Sl|Rl∥∇xyG(xl, yl) − ∇̂xyG(xl, yl)∥2 and Evl,Sl|Rl∥∇yyG(xl, yl) − ∇̂yyG(xl, yl)∥2 respectively.

7 Experiments

In this section, we test the efficacy of the proposed algorithms: Algorithm 2 and Algorithm 3 on the hyper-
representation learning task Franceschi et al. (2018).2 Hyper-representation refers to a shared representation
(or shared deep neural network) across multiple tasks in a meta-learning framework. The parameters in
the shared representation are referred to as hyperparameters. Let ϕ(·; λ) denote the hyper-representation
mapping, parameterized by λ. When applying this to solve a specific classification task, a linear layer w
is added on top of the hyper-representation, and only the parameters w are trained, while the parameters
λ in the shared "hyper-representation" remain fixed. To train the parameters in the hyper-representation,
[Franceschi et al. (2018)] formulated it as the bilevel programming problem (1), where the upper-level
objective minimizes a validation loss, and the lower-level objective minimizes a task-specific training loss.
Specifically, we have the following problem:

min
λ

1
|DV,ξ|

∑
(xi,yi)∈DV,ξ

l((ω∗(λ))Tϕ(xi; λ), yi)

s.t. w∗(λ) = arg min
w

ltr(λ, w),

where

ltr(λ, w) := 1
|DT ,ξ|

∑
(xi,yi)∈DT ,ξ

l(ωT ϕ(xi; λ), yi) + C∥w∥2

2Our code is available at https://github.com/Peiran225/Bilevel_Hessian_free.

10

https://github.com/Peiran225/Bilevel_Hessian_free

Published in Transactions on Machine Learning Research (October/2024)

with l(·) denoting the cross entropy loss, DT ,ξ and DV,ξ being training and validation dataset for a randomly
sampled meta task. Here λ = {λi}i∈DT are hyper-representations and C ≥ 0 is a tuning parameter to
gaurantee the inner problem to be strongly convex. In experiment, we set C = 0.01. All experiments are
run over a machine with Intel Xeon Gold 6248 CPU and 4 Nvidia Tesla V100 GPUs. The code is written
with Pytorch.

In the task, we perform the hyper-representation learning task over the Omniglot dataset Lake et al. (2015),
the details of the ominiglot dataset and the formulation of our hyper-representation task are included in the
supplementary. In general the target of our task is to learn a useful hyper-representation such that we can
learn a linear classifier on top of it with a small number of samples and training cost.

We first compare our algorithms with two existing Hessian free methods, i.e. the HOZOJ Gu et al. (2021),
ESJ Sow et al. (2022) and F2SA in Kwon et al. (2023). HOZOJ is a hyper-parameter optimization method
which applies the evolution strategy over the hyper-gradient directly. ESJ applies the evolution strategy over
the Jacobian matrix. Kwon et al. (2023) view the bilevel problem as a constrained optimization problem and
use a penalty-type method that only requires the first-order information. As a comparison, our HF-SES-
ITDM instead approximates the second order derivatives ∇xyG and ∇yyG. The experimental results are
summarized in Fig. 1. We search hyper-parameters for all methods, and we find setting the outer learning
rate β = 0.1 and the inner learning rate α = 0.4 can get good performance for all methods. For F2SA, we set
the additional Lagrange multiplier as 2. We find the scale of the noise (µ and ν in HF-SES-ITDM and µ
in ESJ and HOZOJ) and the number of Gaussian vectors (Q) are very important for the model performance.

We also test HF-SES-ITDM with (11) being replaced by (8), which is named as SES-ITDM. As shown by
Fig. 1, HF-SES-ITDM greatly accelerates the SES-ITDM by avoiding computing the second derivatives
explicitly. Furthermore, the ESJ and HOZOJ methods need to query a relatively large amount of noise
vectors to get good performance. For example, in the 5 way 1 shot case, ESJ needs to query 50 noise vectors
to reach the same test accuracy as HF-SES-ITDM with Q = 1, and has longer running time cost. For
HOZOJ, we need to query at least 50 noise vector to get converged training, while for 100 and 500 noise
vectors, we still observe a great performance margin compared to our method. The need of many noise
vectors for ESJ and HOZOJ might come from the evolution strategy used in both methods to approximate
higher level properties, and thus lead to more noise.

Figure 2 shows how HF-SES-ITDM behave when choosing different Q, ν and µ. As we can see, the greater
Q is, the slower the algorithm is. But when Q = 1, the accuracy is still competitive with the accuracy with
greater Q’s.

8 Conclusions

In this paper, we focused on studying the bilevel optimization problem and proposed a new single-loop
ITD method that is more efficient in approximating the Jacobian of the lower-level solution with respect
to the upper-level variable. We proposed a Hessian-free stochastic bilevel optimization. Based on a natural
stochastic extension of ES-ITDM, we first proposed a Hessian-free stochastic ES-ITDM. This Hessian-free
variant eliminates the need to compute the Hessian vector multiplication, thus potentially leading to faster
implementation. We theoretically analyze the proposed methods. For the deterministic method, we investi-
gate the global convergence rates of the generated sequences. As for the stochastic method, we conducted
an analysis of its complexity. Our methods were validated using the hyper-representation learning task.
In experiments, our Hessian-free stochastic ES-ITDM demonstrated greater efficiency compared to existing
Hessian-free methods.

Acknowledgment

This work was partially supported by NSF IIS 2347592, 2347604, 2348159, 2348169, DBI 2405416, CCF
2348306, and CNS 2347617.

11

Published in Transactions on Machine Learning Research (October/2024)

References
Hédy Attouch and Jérôme Bolte. On the convergence of the proximal algorithm for nonsmooth functions

involving analytic features. Math. Program., 116(1-2):5–16, 2009.

Hédy Attouch, Jérôme Bolte, Patrick Redont, and Antoine Soubeyran. Proximal alternating minimization
and projection methods for nonconvex problems: An approach based on the kurdyka-lojasiewicz inequality.
Math. Oper. Res., 35(2):438–457, 2010.

Hédy Attouch, Jérôme Bolte, and Benar Fux Svaiter. Convergence of descent methods for semi-algebraic and
tame problems: proximal algorithms, forward-backward splitting, and regularized gauss-seidel methods.
Math. Program., 137(1-2):91–129, 2013.

Amir Beck. Chapter 10: The proximal gradient method. pp. 269–329, 2017.

Jérôme Bolte, Shoham Sabach, and Marc Teboulle. Proximal alternating linearized minimization for non-
convex and nonsmooth problems. Math. Program., 146(1-2):459–494, 2014.

Jérôme Bolte, Trong Phong Nguyen, Juan Peypouquet, and Bruce W. Suter. From error bounds to the
complexity of first-order descent methods for convex functions. Math. Program., 165(2):471–507, 2017.

Tianyi Chen, Yuejiao Sun, Quan Xiao, and Wotao Yin. A single-timescale method for stochastic bilevel
optimization. In International Conference on Artificial Intelligence and Statistics, AISTATS 2022, 28-30
March, 2022a.

Ziyi Chen, Bhavya Kailkhura, and Yi Zhou. A fast and convergent proximal algorithm for regularized
nonconvex and nonsmooth bi-level optimization. 2022b. URL https://doi.org/10.48550/arXiv.2203.
16615.

Ziyi Chen, Bhavya Kailkhura, and Yi Zhou. An accelerated proximal algorithm for regularized nonconvex and
nonsmooth bi-level optimization. Mach. Learn., 112(5):1433–1463, 2023. doi: 10.1007/s10994-023-06329-6.
URL https://doi.org/10.1007/s10994-023-06329-6.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August, 2017a.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August, 2017b.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse gradient-
based hyperparameter optimization. In Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel pro-
gramming for hyperparameter optimization and meta-learning. In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. 2018. URL https:
//arxiv.org/abs/1802.02246.

Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and Edison Guo.
On differentiating parameterized argmin and argmax problems with application to bi-level optimization.
2016. URL http://arxiv.org/abs/1607.05447.

Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration complexity of
hypergradient computation. In Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July, 2020.

12

https://doi.org/10.48550/arXiv.2203.16615
https://doi.org/10.48550/arXiv.2203.16615
https://doi.org/10.1007/s10994-023-06329-6
https://arxiv.org/abs/1802.02246
https://arxiv.org/abs/1802.02246
http://arxiv.org/abs/1607.05447

Published in Transactions on Machine Learning Research (October/2024)

Bin Gu, Guodong Liu, Yanfu Zhang, Xiang Geng, and Heng Huang. Optimizing large-scale hyperparameters
via automated learning algorithm. 2021.

Zhishuai Guo, Quanqi Hu, Lijun Zhang, and Tianbao Yang. Randomized stochastic variance-reduced meth-
ods for multi-task stochastic bilevel optimization. 2021. URL https://arxiv.org/abs/2105.02266.

Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, 2nd Edition. Springer Series in Statistics. Springer, 2009.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale framework for bilevel
optimization: Complexity analysis and application to actor-critic. 2020. URL https://arxiv.org/abs/
2007.05170.

Peter J. Huber. Robust estimation of a location parameter. Ann. Math. Statist., 35(1):73–101, 1964.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced design.
In Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July, 2021.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A near-
optimal algorithm for stochastic bilevel optimization via double-momentum. In Advances in Neural In-
formation Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021.

Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D. Nowak. A fully first-order method for
stochastic bilevel optimization. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engel-
hardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Research,
pp. 18083–18113. PMLR, 2023. URL https://proceedings.mlr.press/v202/kwon23c.html.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning through
probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Guoyin Li and Ting Kei Pong. Douglas-rachford splitting for nonconvex optimization with application to
nonconvex feasibility problems. Math. Program., 159(1-2):371–401, 2016.

Guoyin Li and Ting Kei Pong. Calculus of the exponent of kurdyka-łojasiewicz inequality and its applications
to linear convergence of first-order methods. Found. Comput. Math., 18(5):1199–1232, 2018.

Junyi Li and Heng Huang. Provably faster algorithms for bilevel optimization via without-replacement
sampling. arXiv preprint arXiv:2411.05868, 2024.

Junyi Li, Bin Gu, and Heng Huang. A fully single loop algorithm for bilevel optimization without hessian
inverse. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference
on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022.

Bo Liu, Mao Ye, Stephen Wright, Peter Stone, and Qiang Liu. Bome! bilevel optimization made
easy: A simple first-order approach. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave,
K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, Novem-
ber 28 - December 9, 2022, 2022a. URL http://papers.nips.cc/paper_files/paper/2022/hash/
6dddcff5b115b40c998a08fbd1cea4d7-Abstract-Conference.html.

Risheng Liu, Pan Mu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A generic first-order algorithmic
framework for bi-level programming beyond lower-level singleton. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July, 2020.

Risheng Liu, Jiaxin Gao, Jin Zhang, Deyu Meng, and Zhouchen Lin. Investigating bi-level optimization for
learning and vision from a unified perspective: A survey and beyond. IEEE Trans. Pattern Anal. Mach.
Intell., 44(12):10045–10067, 2022b.

13

https://arxiv.org/abs/2105.02266
https://arxiv.org/abs/2007.05170
https://arxiv.org/abs/2007.05170
https://proceedings.mlr.press/v202/kwon23c.html
http://papers.nips.cc/paper_files/paper/2022/hash/6dddcff5b115b40c998a08fbd1cea4d7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6dddcff5b115b40c998a08fbd1cea4d7-Abstract-Conference.html

Published in Transactions on Machine Learning Research (October/2024)

Tianxiang Liu, Ting Kei Pong, and Akiko Takeda. A refined convergence analysis of pdcae with applications
to simultaneous sparse recovery and outlier detection. Comput. Optim. Appl., 73(1):69–100, 2019.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by implicit
differentiation. In The 23rd International Conference on Artificial Intelligence and Statistics, AISTATS
2020, 26-28 August, Online [Palermo, Sicily, Italy], 2020.

Dougal Maclaurin, David Duvenaud, and Ryan P. Adams. Gradient-based hyperparameter optimization
through reversible learning. In Proceedings of the 32nd International Conference on Machine Learning,
ICML 2015, Lille, France, 6-11 July, 2015.

Akshay Mehra and Jihun Hamm. Penalty method for inversion-free deep bilevel optimization. In Asian
Conference on Machine Learning, ACML 2021, 17-19 November, 2021.

Yurii E. Nesterov and Vladimir G. Spokoiny. Random gradient-free minimization of convex functions. Found.
Comput. Math., 17(2):527–566, 2017.

Barak A. Pearlmutter. Fast exact multiplication by the hessian. Neural Comput., 6(1):147–160, 1994. doi:
10.1162/neco.1994.6.1.147. URL https://doi.org/10.1162/neco.1994.6.1.147.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016.

Aravind Rajeswaran, Chelsea Finn, Sham M. Kakade, and Sergey Levine. Meta-learning with implicit
gradients. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, Vancouver, BC, Canada, 2019.

R. Tyrrell Rockafellar and Roger J.-B. Wets. Variational Analysis, volume 317 of Grundlehren der mathe-
matischen Wissenschaften. Springer, 1998.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation for bilevel
optimization. In The 22nd International Conference on Artificial Intelligence and Statistics, AISTATS
2019, 16-18 April, Naha, Okinawa, Japan, 2019.

Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning. In Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, Long Beach, CA, USA, 2017.

Daouda Sow, Kaiyi Ji, and Yingbin Liang. A novel hessian-free bilevel optimizer via evolution strategies.
2022. URL https://arxiv.org/abs/2110.07004.

H. Von Stackelberg. The Theory of Market Economy. Oxford University Press, 1952.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Matching networks
for one shot learning. In Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10, Barcelona, Spain, 2016.

Bo Wen, Xiaojun Chen, and Ting Kei Pong. A proximal difference-of-convex algorithm with extrapolation.
Comput. Optim. Appl., 69(2):297–324, 2018.

Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimization. In Advances in
Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021.

Peiran Yu, Ting Kei Pong, and Zhaosong Lu. Convergence rate analysis of a sequential convex programming
method with line search for a class of constrained difference-of-convex optimization problems. SIAM J.
Optim., 31(3):2024–2054, 2021.

Peiran Yu, Junyi Li, and Heng Huang. Dropout enhanced bilevel training. In The Twelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?id=06lrITXVAx.

14

https://doi.org/10.1162/neco.1994.6.1.147
https://arxiv.org/abs/2110.07004
https://openreview.net/forum?id=06lrITXVAx

Published in Transactions on Machine Learning Research (October/2024)

Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta learning.
In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019.

15

Published in Transactions on Machine Learning Research (October/2024)

A Additional Preliminaries

For any matrices A and B, we denote trace(AT B) := ⟨A, B⟩. Given independent random variables ξ1, . . . , ξp

and a function f(ξ1, . . . , ξp), we denote the conditional expectation of g with respect to ξi as Eξi|Ag(ξ1, . . . , ξp).

Under Assumptions 1 and 2, we have the following properties (Lemma 2.1 and Lemma 2.2 in Ghadimi &
Wang (2018)) about f in (1).
Lemma 1. Consider (1) and suppose Assumptions 1 and 2 hold. Then y(x) is Lipschitz continuous
with Ly := CGxy

µG
. In addition, ∇f is Lipschitz continuous with modulus Lf := (LF

21+C)CGxy

µG
+ LF

12 +

CF
y

(
LGx

y
CF

y

µG
+ LGx

x
CGxy

µ2
G

)
, where C := LF

12 + LF
22

µG
+ CF

y

(
LG

y
x

CF
y

µG
+

LG
y
y

CGxy

µ2
G

)
.

Lemma 2. Consider (1) and suppose Assumption 2 holds. Then for any x, it holds that
J(y(x)) = −

(
∇2

yyG(x, y(x))
)−1 ∇2

xyG(x, y(x)) is Lipschitz continuous with modulus LJ :=
LGx

x
+LG

y
x

Ly

µG
+

(LGx
y

+LG
y
y

Ly)CGxy

µ2
G

. Also, for any x, it holds that ∥J(y(x))∥F ≤ MJ := CGxy

µG
.

Proof. By Lemma 2.1 of Ghadimi & Wang (2018), we have that

J(y(x)) = −
(
∇2

yyG(x, y(x))
)−1 ∇2

xyG(x, y(x)).

Thank to Lemma 1 and Assumption 2, it is easy to see that ∇2
xyG(x, y(x)) is Lipschitz continuous with

modulus LGx
x

+ LGy
x
Ly. Also, thanks to Lemma 1 and Assumption 2, we know that ∇2

yyG(x, y(x)) is
Lipschitz continuous with LGx

y
+ LGy

y
Ly. Thus, for any x1 and x2, it holds that

∥J(y(x1)) − J(y(x2))∥

≤ ∥
(
∇2

yyG(x1, y(x1))
)−1 ∇2

xyG(x1, y(x1)) −
(
∇2

yyG(x1, y(x1))
)−1 ∇2

xyG(x2, y(x2))∥

+ ∥
(
∇2

yyG(x1, y(x1))
)−1 ∇2

xyG(x2, y(x2)) −
(
∇2

yyG(x2, y(x2))
)−1 ∇2

xyG(x2, y(x2))∥

= ∥
(
∇2

yyG(x1, y(x1))
)−1 (∇2

xyG(x1, y(x1)) − ∇2
xyG(x2, y(x2))

)
∥

+ ∥
((

∇2
yyG(x1, y(x1))

)−1 −
(
∇2

yyG(x2, y(x2))
)−1
)

∇2
xyG(x2, y(x2))∥

= ∥
(
∇2

yyG(x1, y(x1))
)−1 (∇2

xyG(x1, y(x1)) − ∇2
xyG(x2, y(x2))

)
∥ + ∥Γ∇2

xyG(x2, y(x2))∥

≤ µ−1
G

(
LGx

x
+ LGy

x
Ly

)
∥x1 − x2∥ + µ−2

G

(
LGx

y
+ LGy

y
Ly

)
CGxy∥x1 − x2∥.

where Γ:=
(
∇2

yyG(x1, y(x1))
)−1(∇2

yyG(x2, y(x2)) − ∇2
yyG(x1, y(x1))

) (
∇2

yyG(x2, y(x2))
)−1. These together

with Assumption 2 (ii) and (iii) gives the Lipschitz continuity of J(y(x)).

On the other hand, using Assumption 2 (i) and (ii), we have

∥J(y(x))∥F ≤
∥∥∥(∇2

yyG(x, y(x))
)−1
∥∥∥ ∥∇2

xyG(x, y(x))∥ ≤ CGxy

µG
.

B Proofs for results in Section Convergence Analysis for Algorithm 2

B.1 Proofs for Theorem 1

To prove Theorem 1, we give the following lemmas first.
Lemma 3. Consider (1) and let Assumptions 1 and 2 hold. Let {(xl, yl, J l)} be generated by Algorithm 2.
Then, it holds that

∥∇f(xl) − ∇̂f(xl)∥2

≤
(
2(LF

12)2 + 4M2
J(LF

22)2) ∥y(xl) − yl+1∥2 + 4(CF
y)2∥J(y(xl)) − J l+1∥2

F .
(12)

16

Published in Transactions on Machine Learning Research (October/2024)

Proof. First, using the chain rule, we have that

∇f(xl) = ∇xF (xl, y(xl)) + (J(y(xl))T ∇yF (xl, y(xl)).

This together with the definition of ∇̂f(xl) in Algorithm 2, we have that

∥∇f(xl) − ∇̂f(xl)∥2

= ∥∇xF (xl, y(xl)) + (J(y(xl))T ∇yF (xl, y(xl)) − ∇xF (xl, yl+1) − (J l+1)T ∇yF (xl, yl+1)∥2

≤ 2∥∇xF (xl, y(xl))−∇xF (xl, yl+1)∥2

+2∥(J(y(xl))T∇yF (xl, y(xl))−(J l+1)T ∇yF (xl, yl+1)∥2.

(13)

For the first term in the above relation, we have that

∥∇xF (xl, y(xl) − ∇xF (xl, yl+1)∥2 ≤ (LF
12)2∥yl+1 − y(xl)∥2.

For the second term in (13), it holds that

∥J(y(xl))T ∇yF (xl, y(xl)) − (J l+1)T ∇yF (xl, yl+1)∥2

≤ 2∥J(y(xl))T ∇yF (xl, y(xl)) − J(y(xl))T ∇yF (xl, yl+1)∥2

+ 2∥J(y(xl))T ∇yF (xl, yl+1) − (J l+1)T ∇yF (xl, yl+1)∥2

= 2∥J(y(xl))T
(
∇yF (xl, y(xl)) − ∇yF (xl, yl+1)

)
∥2

+ 2∥(J(y(xl)) − J l+1)T ∇yF (xl, yl+1)∥2

≤ 2M2
J(LF

22)2∥y(xl) − yl+1∥2 + 2(CF
y)2∥(J(y(xl)) − J l+1)T ∥2,

(14)

where the last inequality is thanks to Lemma 2 and Assumptions 1 and 2.

Combining the above inequality with (14) and (13), we obtain that

∥∇f(xl) − ∇̂f(xl)∥2

≤ 2(LF
12)2∥yl+1 − y(xl)∥2 + 4M2

J(LF
22)2∥y(xl) − yl+1∥2 + 4(CF

y)2∥(J(y(xl)) − J l+1)T ∥2

≤
(
2(LF

12)2 + 4M2
J(LF

22)2) ∥y(xl) − yl+1∥2 + 4(CF
y)2∥J(y(xl)) − J l+1∥2.

Thus, the conclusion follows from the fact that ∥A∥ ≤ ∥A∥F for any matrix A.

Lemma 4. Consider (1) and let Assumptions 1 and 2 hold. Let s > 0. Let {(xl, yl, J l)} be generated by
Algorithm 2 Then, it holds that

∥(J(y(xl)) − J l+1)T ∥2
F ≤ 6(1 + 1

s2)
√

nγ2
(

L2
Gy

x
+ L2

Gy
y
M2

J

)
∥y(xl−1) − yl∥2

+ 3(1 + 1
s2)

√
n
((

2γ2L2
Gy

x
+ 2γ2L2

Gy
y
M2

J

)
L2

y + (1 − γµG)2L2
J

)
∥xl − xl−1∥2

+ (1 + s2)
√

n(1 − γµG)2∥J(y(xl−1)) − J l∥2
F .

(15)

17

Published in Transactions on Machine Learning Research (October/2024)

Proof. Using Step 4 of Algorithm 2 and the fact that J(y(xl)) = J(y(xl))(I − γ∇yyG(xl, y(xl))) −
γ∇xyG(xl, y(xl)), we have that

∥(J(y(xl)) − J l+1)T ∥2

≤∥J(y(xl))(I−γ∇yyG(xl, y(xl)))−γ∇xyG(x, y(xl))−J l(I−γ∇yyG(xl, yl))+γ∇xyG(xl, yl)∥2

(a)
≤ 3(1 + 1

s2)γ2∥∇xyG(xl, y(xl)) − ∇xyG(xl, yl)∥2

+ 3(1 + 1
s2)∥J(y(xl))(γ∇yyG(xl, yl) − γ∇yyG(xl, y(xl)))∥2

+ 3(1 + 1
s2)∥

(
J(y(xl)) − J(y(xl−1))

)
(I − γ∇yyG(xl, yl))∥2

+ (1 + s2)∥
(
J(y(xl−1)) − J l

)
(I − γ∇yyG(xl, yl))∥2

(b)
≤ 3(1 + 1

s2)γ2L2
Gy

x
∥y(xl) − yl∥2 + 3(1 + 1

s2)γ2L2
Gy

y
M2

J∥yl − y(xl)∥2

+ 3(1 + 1
s2)L2

J∥xl − xl−1∥2∥(I − γ∇yyG(xl, yl))∥2

+ (1 + s2)∥
(
J(y(xl−1) − J l

)
(I − γ∇yyG(xl, yl))∥2,

where (a) uses the fact that ∥a1 +a2 +a3 +a4∥2 ≤ (1+ 1
s2)∥a1 +a2 +a3∥2 +(1+s2)∥a4∥2 ≤ 3(1+ 1

s2)(∥a1∥2 +
∥a2∥2 + ∥a3∥2) + (1 + s2)∥a4∥2 for any matrices {a1, a2, a3, a4}, (b) uses Assumption 2 and Lemma 2. Using
Assumption 2, the above inequality can be further passed to

∥(J(y(xl)) − J l+1)T ∥2 ≤ 3(1 + 1
s2)γ2L2

Gy
x
∥y(xl) − yl∥2 + 3(1 + 1

s2)γ2L2
Gy

y
M2

J∥yl − y(xl)∥2

+ 3(1 + 1
s2)(1 − γµG)2L2

J∥xl − xl−1∥2 + (1 + s2)(1 − γµG)2∥J(y(xl−1)) − J l∥2

≤ 3(1 + 1
s2)

(
2γ2L2

Gy
x

+ 2γ2L2
Gy

y
M2

J

)
∥y(xl−1) − yl∥2

+ 3(1 + 1
s2)

(
2γ2L2

Gy
x

+ 2γ2L2
Gy

y
M2

J

)
L2

y∥xl − xl−1∥2

+ 3(1 + 1
s2)(1 − γµG)2L2

J∥xl − xl−1∥2 + (1 + s2)(1 − γµG)2∥J(y(xl−1)) − J l∥2

= 6(1 + 1
s2)γ2

(
L2

Gy
x

+ L2
Gy

y
M2

J

)
∥y(xl−1) − yl∥2

+ 3(1 + 1
s2)

((
2γ2L2

Gy
x

+ 2γ2L2
Gy

y
M2

J

)
L2

y + (1 − γµG)2L2
J

)
∥xl − xl−1∥2

+ (1 + s2)(1 − γµG)2∥J(y(xl−1)) − J l∥2,

where the last inequality uses Lemma 1. Then the conclusion follows from the fact that ∥A∥F ≤ ∥A∥ ≤ ∥A∥F

for any matrix A.

Now we are ready to present the detailed version of Theorem 1.
Theorem 4. Consider (1) and let Assumptions 1 and 2 hold. Suppose that F is bounded from below.
Let {(xl, yl, J l)} be generated by Algorithm 2. Let α ∈ (0, 1

µG
). Denote ζ̃ := 2µG

α−1+µG
. Let dy > 0 and

d2
y ∈ (0, 1

1−ζ̃
− 1). Denote ζ := (1 + d2

y)(1 − ζ̃). Let s > 0 and satisfies s2 < 1√
n(1−γµg)2 − 1. Let

r > 0 and satisfies r > max

 8(CF
y)2

1−(1+s2)
√

n(1−γµG)2 ,
4(LF

12)2+8M2
J (LF

22)2

ζ−6(1+s2)
√

n

(
L2

G
y
x

+L2
G

y
y

C2
Gxy

µ2
g

)
. Let (1 − 1

n) 1
µG

< γ <

min

√

ζ

6(1+s2)
√

n

(
L2

G
y
x

+L2
G

y
y

C2
Gxy

µ2
g

) , 1
µG

. Let δ > 0 and satisfies

δ < 1 − 4(LF
12)2 + 8M2

J(LF
22)2

r
− (1 − ζ) − 6(1 + 1

s2)
√

nγ2
(

L2
Gy

x
+ L2

Gy
y
M2

J

)
(16)

18

Published in Transactions on Machine Learning Research (October/2024)

and

δ < 1 −
8(CF

y)2

r
− (1 + s2)

√
n(1 − γµG)2. (17)

Denote

C2 := (1 + d−2
y)(1 − ζ̃)L2

y +3(1+ 1
s2)

√
n
((

2γ2L2
Gy

x
+2γ2L2

Gy
y
M2

J

)
L2

y +(1 − γµG)2L2
J

)
.

Let ∆ > 0 and suppose β is small enough such that

Lf +4r−2β−1

2 +C2 < −∆. (18)

Denote

H(x, x′, y, J) := f(x) + ∆∥x − x′∥2 + ∥y(x) − y∥2 + ∥(J(y(x)) − J∥2
F .

Then H l := H(xl, xl−1, yl+1, J l+1) is nonincreasing and

H l+1 ≤ H l − ∆∥xl − xl−1∥2 − δ∥y(xl) − yl+1∥2 − δ∥J(y(xl)) − J l+1∥2
F . (19)

Furthermore, there exists H∗ such that {H l+1} is convergent to H∗.

Proof. Using Lemma 1, we have that

f(xl+1) ≤ f(xl) +
〈
∇f(xl), xl+1 − xl

〉
+ Lf

2 ∥xl+1 − xl∥2

= f(xl) +
〈

∇̂f(xl), xl+1 − xl
〉

+ 1
2β

∥xl+1 − xl∥2

+
〈

∇f(xl) − ∇̂f(xl), xl+1 − xl
〉

+ Lf − β−1

2 ∥xl+1 − xl∥2

(a)
≤ f(xl) − 1

2β
∥xl+1 − xl∥2 +

〈
∇f(xl) − ∇̂f(xl), xl+1 − xl

〉
+ Lf − β−1

2 ∥xl+1 − xl∥2

= f(xl) +
〈

∇f(xl) − ∇̂f(xl), xl+1 − xl
〉

+ Lf − 2β−1

2 ∥xl+1 − xl∥2

≤ f(xl) + 2
r

∥∇f(xl) − ∇̂f(xl)∥2 + Lf + 4r − 2β−1

2 ∥xl+1 − xl∥2.

where (a) is because xl+1 is minimizer of minx

〈
∇̂f(xl), x − xl

〉
+ 1

2β ∥x − xl∥2 whose objective is strongly
convex. Using (12), the above inequality can be further passed to

f(xl+1) ≤ f(xl) + Lf + 4r − 2β−1

2 ∥xl+1 − xl∥2

+ 4(LF
12)2 + 8M2

J(LF
22)2

r
∥y(xl) − yl+1∥2 +

8(CF
y)2

r
∥J(y(xl)) − J l+1∥2

F .

(20)

On the other hand, recall that ζ̃ = 2µG

α−1+µG
. Thanks to the assumption that α < 1

µG
, we have that ζ̃ ∈ (0, 1).

Thanks to Assumption 2 (i) and (ii), it is easy to show (see Theorem 29 of Beck (2017)) that for l ≥ 0,

∥y(xl) − yl+1∥2 ≤ (1 − ζ̃)∥y(xl) − yl∥2

≤ (1 + d2
y)(1 − ζ̃)∥y(xl−1) − yl∥2 + (1 + d−2

y)(1 − ζ̃)∥y(xl) − y(xl−1)∥2

≤ (1 + d2
y)(1 − ζ̃)∥y(xl−1) − yl∥2 + (1 + d−2

y)(1 − ζ̃)L2
y∥xl − xl−1∥2

≤ (1 − ζ)∥y(xl−1) − yl∥2 + (1 + d−2
y)(1 − ζ̃)L2

y∥xl − xl−1∥2,

(21)

19

Published in Transactions on Machine Learning Research (October/2024)

where the third inequality follows from Lemma 1 and the last inequality is because the definition of ζ.
Thanks to the assumption that d2

y ∈ (0, 1
1−ζ̃

− 1), ζ ∈ (0, 1).

Summing (20), (15) with l = l + 1 and (21) with l = l + 1, we have that

f(xl+1) + ∥y(xl+1) − yl+2∥2 + ∥J(y(xl+1)) − J l+2∥2
F

≤ f(xl) + Lf + 4r − 2β−1

2 ∥xl+1 − xl∥2 + 4(LF
12)2 + 8M2

J(LF
22)2

r
∥y(xl) − yl+1∥2

+
8(CF

y)2

r
∥J(y(xl)) − J l+1∥2

F + (1 − ζ)∥y(xl) − yl+1∥2 + (1 + d−2
y)(1 − ζ̃)L2

y∥xl+1 − xl∥2

+ 6(1 + 1
s2)

√
nγ2

(
L2

Gy
x

+ L2
Gy

y
M2

J

)
∥y(xl) − yl+1∥2

+ 3(1 + 1
s2)

√
n
((

2γ2L2
Gy

x
+ 2γ2L2

Gy
y
M2

J

)
L2

y + (1 − γµG)2L2
J

)
∥xl+1 − xl∥2

+ (1 + s2)
√

n(1 − γµG)2∥J(y(xl)) − J l+1∥2
F

= f(xl)+
(
Lf + 4r − 2β−1

2 +C2

)
∥xl+1−xl∥2+

(
8(CF

y)2

r
+(1+s2)

√
n(1−γµG)2

)
∥J(y(xl))−J l+1∥2

F

+
(

4(LF
12)2 + 8M2

J(LF
22)2

r
+ (1 − ζ) + 6(1 + 1

s2)
√

nγ2
(

L2
Gy

x
+ L2

Gy
y
M2

J

))
∥y(xl) − yl+1∥2,

(22)

where C2 = (1 + d−2
y)(1 − ζ̃)L2

y + 3(1 + 1
s2)

√
n
((

2γ2L2
Gy

x
+ 2γ2L2

Gy
y
M2

J

)
L2

y + (1 − γµG)2L2
J

)
.

On the other hand, thanks to the assumption on γ, we have that ζ − 6(1 + s2)
√

nγ2
(

L2
Gy

x
+ L2

Gy
y

C2
Gxy

µ2
g

)
> 0.

Using the assumption on r, we know that

0 <
4(LF

12)2 + 8M2
J(LF

22)2

r
+ (1 − ζ) + 6(1 + 1

s2)
√

nγ2
(

L2
Gy

x
+ L2

Gy
y
M2

J

)
< 1.

In addition, thanks to assumption on s and γ, we have 0 < (1+s2)
√

n(1−γµG)2 < 1. Using the assumption
on r, we know

0 <
8(CF

y)2

r
+(1+s2)

√
n(1−γµG)2 < 1.

Therefore, there exists δ ∈ (0, 1) such that (16) and (17) holds.

Thus, using (16) and (17), (22) can be further passed to

f(xl+1) + ∥y(xl+1) − yl+2∥2 + ∥(J(y(xl+1)) − J l+2∥2
F

≤ f(xl) +
(

Lf + 4r − 2β−1

2 + C2

)
∥xl+1 − xl∥2 + ∥y(xl) − yl+1∥2 + ∥J(y(xl)) − J l+1∥2

F

− δ∥y(xl) − yl+1∥2 − δ∥J(y(xl)) − J l+1∥2
F .

(23)

Using (18), the inequality (23) can be further passed to

f(xl+1) + ∥y(xl+1) − yl+2∥2 + ∥J(y(xl+1) − J l+2∥2
F

≤ f(xl) − ∆∥xl+1 − xl∥2 + ∥y(xl) − yl+1∥2 + ∥J(y(xl)) − J l+1∥2
F

= f(xl) − ∆∥xl+1 − xl∥2 + ∆∥xl − xl−1∥2 + ∥y(xl) − yl+1∥2 + ∥J(y(xl)) − J l+1∥2
F

− ∆∥xl − xl−1∥2 − δ∥y(xl) − yl+1∥2 − δ∥J(y(xl)) − J l+1∥2
F .

Rearranging the above inequality we obtain
H l+1 = f(xl+1) + ∆∥xl+1 − xl∥2 + ∥y(xl+1) − yl+2∥2 + ∥J(y(xl+1) − (J l+2)T ∥2

≤ f(xl) + ∆∥xl − xl−1∥2 + ∥y(xl) − yl+1∥2 + ∥J(y(xl)) − J l+1∥2
F

− ∆∥xl − xl−1∥2 − δ∥y(xl) − yl+1∥2 − δ∥J(y(xl)) − J l+1∥2
F

= H l − ∆∥xl − xl−1∥2 − δ∥y(xl) − yl+1∥2 − δ∥J(y(xl)) − J l+1∥2
F .

20

Published in Transactions on Machine Learning Research (October/2024)

Since H l is nonincreasing, F is bounded from below and ∞ < F (xl, y(xl)) < Hk, we know that Hk is
convergent.

B.2 Properties of the limits of the generated sequences

The following corollary states the detailed version of Corollary 1.
Corollary 2. Let assumptions in Theorem 1 hold and suppose F is level-bounded. Then:

(i) liml→∞ ∥xl+1 − xl∥ = liml→∞ ∥y(xl) − yl+1∥ = liml→∞ ∥J(y(xl)) − J l+1∥F = 0. In addition, the
sequence {(xl, yl, J l+1)} is bounded.

(ii) Any accumulation point x∗ of {xl} satisfies ∇f(x∗) = 0. In addition, any accumulation point y∗ of
{yl} is an optimal solution of the lower level problem in (1) defined with x∗.

Proof. Noting that {H(xl+1, xl, yl+2, J l+2)} is nonincreasing, we know that

F (xl+1, y(xl+1)) = f(xl+1) ≤ H l ≤ H1 < ∞.

Since F is level-bounded, we have that {(xl+1, y(xl+1))} is bounded.

Summing (19) from l = 0 to N , we have that

HN+1 ≤ H0 − ∆
N+1∑
l=0

∥xl+1 − xl∥2 − δ

N+1∑
l=0

∥y(xl) − yl+1∥2 − δ

N+1∑
l=0

∥J(y(xl)) − J l+1∥2
F .

Rearranging the above inequality, we have that

∆
N+1∑
l=0

∥xl+1 − xl∥2 + δ

N+1∑
l=0

∥y(xl) − yl+1∥2 + δ

N+1∑
l=0

∥J(y(xl)) − J l+1∥2
F ≤ H0 − HN+1

≤ H0 − lim
l→∞

H l < ∞.

Taking the N in the above inequality to ∞, we have that liml→∞ ∥xl+1 −xl∥ = 0, liml→∞ ∥y(xl)−yl+1∥ = 0
and liml→∞ ∥J(y(xl)) − J l+1∥F = 0. This together with the boundedness of {(xl+1, y(xl+1))} and the
continuity of y(x) and J(y(x)) w.r.t x guaranteed by Lemma 1 and Lemma 2, we have that {yl} and {J l+1}
are bounded.

For (ii), since xl+1 is the minimizer of minx

〈
∇̂f(xl), x − xl

〉
+ 1

2β ∥x − xl∥2, it holds that

0 ∈ β∇̂f(xl) + (xl+1 − xl) ⇔ ∇f(xl) − ∇̂f(xl) − 1
β

(xl+1 − xl) ∈ ∇f(xl).

Thus, using (12), we have that

∥∇f(xl)∥ ≤ ∥∇f(xl) − ∇̂f(xl)∥ + 1
β

∥xl+1 − xl∥

≤
√(

2(LF
12)2 + 4M2

J(LF
22)2

)
∥y(xl) − yl+1∥2 + 4(CF

y)2∥J(y(xl)) − J l+1∥2
F + 1

β
∥xl+1 − xl∥

≤
√

2(LF
12)2 + 4M2

J(LF
22)2∥y(xl) − yl+1∥ + 2CF

y ∥J(y(xl)) − J l+1∥F + 1
β

∥xl+1 − xl∥,

(24)

where the second inequality uses (12).

21

Published in Transactions on Machine Learning Research (October/2024)

Now let {(xlj , ylj)} be the subsequence of {(xl, yl)} such that limj(xlj , ylj) = (x∗, y∗). Using Lemma 1, we
have that,

∥∇f(x∗)∥ = lim
j

∥∇f(xlj)∥ ≤ lim
j

√
2(LF

12)2 + 4M2
J(LF

22)2∥y(xlj) − ylj+1∥

+ 2CF
y ∥J(y(xlj)) − J lj+1∥F + 1

β
∥xlj+1 − xlj ∥ = 0,

where the last equality uses (i). Thus ∇f(x∗) = 0.

Finally, let y∗ be an accumulation point of {yl}. Then, we have

∥y∗ − y(x∗)∥ ≤ lim
l

∥y∗ − yl+1∥ + ∥yl+1 − y(xl)∥ + ∥y(xl) − y(x∗)∥

≤ lim
l

∥y∗ − yl+1∥ + ∥yl+1 − y(xl)∥ + Ly∥xl − x∗∥ = 0

where the second inequality use Lemma 1 and the last equality uses (i). Therefore, we have y∗ is a solution
of the lower level problem defined by x∗.

B.3 Proofs of Theorem 2

To prove Theorem 2, we first prove the following lemma.
Lemma 5. Let assumptions in Corollary 2 hold.

(i) Denote the set of accumulation points of {(xl, xl−1, yl+1, J l+1)} as Ω. Then Ω is bounded and H is
constant on Ω.

(ii) It holds that

dist(0, ∂H(xl+1, xl, yl+2, J l+2))≤
(√

2(LF
12)2+4L2

y(LF
22)2+2(Ly +1)

)
∥y(xl+1)−yl+2∥

+ (2LF + 2(LJ + 1))∥J(y(xl+1))−J l+2∥F + 1
β

∥xl+2−xl+1∥ +
√

2∆∥xl+1 − xl∥.

(25)

Proof. First, the boundedness of Ω follows from Corollary 2. Now, let (x∗, x∗∗, y∗, y∗∗, J∗) be any point
in Ω. Then there exists a sequence {(xlj , xlj−1, ylj+1, J lj+1)}j such that limj(xlj , xlj−1, ylj+1, J lj+1) =
(x∗, x∗∗, y∗∗, J∗). Thanks to Lemmas 1 and Lemma 2, we have that H is continuous. Thus,

H(x∗, x∗∗, y∗∗, J∗) = lim
j

H(xlj , xlj−1, ylj+1, J lj+1) = H∗,

where the last inequality uses Theorem 4.

Now we prove (ii). Denoting Z := (x, x′, y, J) and using Corollary 10.9 of Rockafellar & Wets (1998), we
have that

∂ZH(x, x′, y, J) ⊇ ∂̂ZH(x, x′, y, J)

= ∂̂Zf(x) + ∂̂Z
∆
2 ∥x − x′∥2 + ∂̂Z∥y(x) − y∥2 + ∂̂Z∥J(y(x)) − J∥2

F

=

∇f(x)

0
0
0

+

∆(x − x′)

−∆(x − x′)
0
0

+

u1
0
u2
0

+

u3
0
0
u4

 ,

(26)

where (u1, u2) ∈ ∂̂(u1,u2)∥y(x) − y∥2 and (u3, u4) ∈ ∂̂(u3,u4)∥J(y(x)) − J∥2
F and the second equality uses

Proposition 10.5 Rockafellar & Wets (1998).

22

Published in Transactions on Machine Learning Research (October/2024)

Using the definition of regular subgradient, we have that

0 ≤ lim inf
(x′,y′)̸=(x,y),(x′,y′)→(x,y)

∥y(x′) − y′∥2 − ∥y(x) − y∥2 − ⟨(u1, u2), (x′, y′) − (x, y)⟩
∥(x′, y′) − (x, y)∥

= lim inf
(x′,y′) ̸=(x,y),(x′,y′)→(x,y)

(∥y(x′) − y′∥ + ∥y(x) − y∥)(∥y(x′) − y′∥ − ∥y(x) − y∥)
∥(x′, y′) − (x, y)∥

− lim sup
(x′,y′) ̸=(x,y),(x′,y′)→(x,y)

⟨(u1, u2), (x′, y′) − (x, y)⟩
∥(x′, y′) − (x, y)∥

≤ lim inf
(x′,y′) ̸=(x,y),(x′,y′)→(x,y)

(∥y(x′) − y′∥ + ∥y(x) − y∥)(∥y(x′) − y′ − y(x) + y∥)
∥(x′, y′) − (x, y)∥

− lim sup
(x′,y′) ̸=(x,y),(x′,y′)→(x,y)

⟨(u1, u2), (x′, y′) − (x, y)⟩
∥(x′, y′) − (x, y)∥

≤ lim inf
(x′,y′) ̸=(x,y),(x′,y′)→(x,y)

(∥y(x′) − y′∥ + ∥y(x) − y∥)(∥y(x′) − y(x)∥ + ∥y − y′∥)
∥(x′, y′) − (x, y)∥

− lim sup
(x′,y′) ̸=(x,y),(x′,y′)→(x,y)

⟨(u1, u2), (x′, y′) − (x, y)⟩
∥(x′, y′) − (x, y)∥

≤ lim inf
(x′,y′) ̸=(x,y),(x′,y′)→(x,y)

(∥y(x′) − y′∥ + ∥y(x) − y∥)
(

∥y(x′) − y(x)∥
∥x′ − x∥

+ ∥y − y′∥
∥y′ − y∥

)
− lim sup

(x′,y′) ̸=(x,y),(x′,y′)→(x,y)

⟨(u1, u2), (x′, y′) − (x, y)⟩
∥(x′, y′) − (x, y)∥

≤ lim inf
(x′,y′) ̸=(x,y),(x′,y′)→(x,y)

(∥y(x′) − y′∥ + ∥y(x) − y∥) (Ly + 1) − ⟨(u1, u2), (x′, y′) − (x, y)⟩
∥(x′, y′) − (x, y)∥

This together with Lemma 1 gives

0 ≤ 2(Ly + 1)∥y(x) − y∥ − lim sup
(x′,y′)̸=(x,y),(x′,y′)→(x,y)

⟨(u1, u2), (x′, y′) − (x, y)⟩
∥(x′, y′) − (x, y)∥ ,

Thus, we deduce that ∥(u1, u2)∥ ≤ 2(Ly + 1)∥y(x) − y∥. Similarly, we have that ∥(u3, u4)∥ ≤ 2(LJ +
1)∥J(y(x)) − J∥F . Combining two facts with (26), we have that

dist(0, ∂H(xl+1, xl, yl+2, J l+2))
≤ ∥∇f(xl+1)∥ +

√
2∆∥xl+1 − xl∥ + 2(Ly + 1)∥y(xl+1) − yl+2∥

+ 2(LJ + 1)∥J(y(xl+1)) − J l+2∥F

≤
√

(LF
12)2 + 4L2

y(LF
22)2∥y(xl+1) − yl+2∥2 + 2CF

y ∥J(y(xl+1)) − J l+2∥2
F + 1

β
∥xl+2 − xl+1∥

+
√

2∆∥xl+1 − xl∥ + 2(Ly + 1)∥y(xl+1) − yl+2∥ + 2(LJ + 1)∥J(y(xl+1)) − J l+2∥F

=
(√

2(LF
12)2 + 4L2

y(LF
22)2 + 2(Ly + 1)

)
∥y(xl+1) − yl+2∥

+ (2CF
y + 2(LJ + 1))∥J(y(xl+1)) − J l+2∥F + 1

β
∥xl+2 − xl+1∥ +

√
2∆∥xl+1 − xl∥,

where the second inequality uses (24).

Now we are ready to prove Theorem 2.

Proof. Denote Zl = (xl, xl−1, yl+1, J l+1). Note that to show the convergence of {(xl, yl, J l)}, it is sufficient
to show the same convergence of {Zl}.

We first show that {Zl} is convergent when H is KL. Suppose there exists l̄ ∈ N+ such that H l = H l̄. Then
thanks to Theorem 4, we know that H l = H∗, ∥xl+1 − xl∥ = ∥y(xl) − yl+1∥ = ∥J(y(xl)) − J l+1∥ = 0 for all

23

Published in Transactions on Machine Learning Research (October/2024)

l ≥ l̄. This implies that {Zl+1} converges finitely to (xl̄, xl̄, y(xl̄), J(xl̄)). Thus, in the rest of the proof, we
only consider the case where H l > H∗ for all l.

Since H is a KL function and thanks to Lemma 5, H is constant on Ω, using Lemma 6 of Bolte et al. (2014),
there exist ϵ > 0 and a function ϕ : [0, a) → [0, ∞) with ϕ(0) = 0 such that

ϕ′(H(Z) − H∗)dist(0, ∂H(Z)) ≥ 1

when Z ∈ {Z : dist(Z, Ω) < ϵ} ∩ {Z : H∗ < H(Z) < H∗ + ε}. Since Ω is the set of accumulation points of
Zl, we know that there exists l1 such that dist(Zl, Ω) < ϵ when l ≥ l1. In addition, using Theorem 4, we
know that there exists l2 such that H(zl) < H∗ + ε when l ≥ l2. Thus, when l ≥ max{l1, l2}, we have that

ϕ′(H(Zl) − H∗)dist(0, ∂H(Zl)) ≥ 1. (27)

Using the concavity of ϕ, it holds that(
ϕ(H l − H∗) − ϕ(H l+1 − H∗)

)
dist(0, ∂H(Zl))

≥ ϕ′(H l − H∗)dist(0, ∂H(Zl))
(
H l − H l+1)

≥ H l − H l+1,

(28)

where the last inequality uses (27) and Theorem 4. Now, we denote Dl
1 = ∥xl − xl−1∥, Dl

2 = ∥y(xl) − yl+1∥,
Dl

3 = ∥J(y(xl)) − J l+1∥F , Al = Dl
1 + Dl

2 + Dl
3. Combining these definitions with (28), (19) and (25), we

obtain that

min{∆, δ}(Al)2 ≤ 3 min{∆, δ}((Dl
1)2 + (Dl

2)2 + (Dl
3)2)

≤ 3∆∥xl − xl−1∥2 + 3δ∥y(xl) − yl+1∥2 + 3δ∥J(y(xl)) − J l+1∥2
F

(19)
≤ H l − H l+1

(28)
≤ ϕ

(
(H l − H∗) − (H l+1 − H∗)

)
dist(0, ∂H(Zl))

(25)
≤ ϕ

(
(H l − H∗) − (H l+1 − H∗)

)(
C1Dl+1

2 + C̃1Dl+1
3 + 1

β
Dl+1

1 +
√

2∆Dl
1

)
≤ max{C1, C̃1,

1
β

,
√

2∆}ϕ
(
(H l − H∗) − (H l+1 − H∗)

) (
Al+1 + Al

)
where C1 :=

√
2(LF

12)2 + 4M2
J(LF

22)2 + 2(Ly + 1) and C̃1 := 2CF
y + 2(LJ + 1). Rearranging the above

inequality and taking square root on both sides, we have that

Al ≤

√
2 max{C1, C̃1, 1

β ,
√

2∆}
min{∆, δ}

ϕ ((H l − H∗) − (H l+1 − H∗)) ·
√

Al+1 + Al

2

≤
max{C1, C̃1, 1

β ,
√

2∆}
min{∆, δ}

ϕ
(
(H l − H∗) − (H l+1 − H∗)

)
+ Al+1 + Al

4 .

Rearranging the above inequality, we have that

1
2Al ≤

max{C1, C̃1, 1
β

,

√
2∆}min{∆, δ}ϕ

(
(H l − H∗) − (H l+1 − H∗)

)
+ 1

4
(
Al − Al+1) . (29)

Summing the above inequality from any l
¯

≥ max{l1, l2} + 2 and recalling H l is convergence to H∗ given by
Theorem 4, we obtain that

∞∑
l=l

¯

Al ≤ 2
max{C1, C̃1, 1

β ,
√

2∆}
min{∆, δ}

ϕ(Hl
¯ − H∗) + 1

2Al
¯ < ∞, (30)

24

Published in Transactions on Machine Learning Research (October/2024)

Thanks to the Lipschitz continuity of y(x) and J(y(x)) guaranteed by Lemmas 1 and 2, we have that
∞∑
l=l

¯

∥(xl, yl, J l) − (xl−1, yl−1, J l−1)∥ ≤
∞∑
l=l

¯

(
∥xl − xl−1∥ + ∥yl − yl−1∥ + ∥J l − J l−1∥F

)
≤

∞∑
l=l

¯

(
Dl

1 + Dl−1
2 + Dl−2

2 + ∥y(xl−1) − y(xl−2)∥ + Dl−1
3 + Dl−2

3 + ∥J(xl−1) − J(xl−2)∥F

)
≤

∞∑
l=l

¯

(
Dl

1 + Dl−1
2 + Dl−2

2 + LyDl−1
1 + Dl−1

3 + Dl−2
3 + LJDl−1

1
)

≤ max{1, Ly, LJ}

 ∞∑
l=l

¯

3Al + 2Al
¯
−1 + Al

¯
−2

 < ∞,

(31)

where the last inequality uses (30). This inequality implies that the sequence {(xl, yl, J l)} and {Zl} are
convergent.

Now, we show the convergence rate when H is a KL function with exponent ϑ. First, when ϑ = 0, there
exists l̄ such that H l == H∗ when l ≥ l̄. In fact, suppose to the contrary that H l > H∗ for some l > l̄. Since
Zl is convergent (denote liml Zl = Z∗) and H l is nonincreasing thanks to Theorem 4, noting that ϕ(s) = cs
and the KL inequality holds for large l, it holds that dist(0, ∂H(Zl)) ≥ 1

c , contradicting (25). Thus, there
exists l̄ such that H l == H∗ when l ≥ l̄ and recalling the arguments in the beginning of this theorem, we
have {Zl} converges finitely.

Finally, we consider the case where ϑ ∈ (0, 1) and H l > H∗ for all l. Denote Bl =
∑∞

k=l Ak, which is well
defined thanks to (31). Then, for any l > l

¯
using (29)

Bl ≤
∞∑

k=l

(
2 max{C1, C̃1, 1

β ,
√

2∆}
min{∆, δ}

ϕ
(
(Hk − H∗) − (Hk+1 − H∗)

)
+ 1

2

∞∑
k=l−2

(
Ak − Ak+1))

≤ 2
max{C1, C̃1, 1

β ,
√

2∆}
min{∆, δ}

ϕ(H l − H∗) + 1
2Al−2

= 2
max{C1, C̃1, 1

β ,
√

2∆}
min{∆, δ}

ϕ(H l − H∗) + 1
2(Bl−2 − Bl−1)

≤ 2
max{C1, C̃1, 1

β ,
√

2∆}
min{∆, δ}

ϕ(H l − H∗) + 1
2(Bl−2 − Bl).

Now, following the classical steps for analyzing the convergence rate under the KL assumptions see (Attouch
et al. (2010); Attouch & Bolte (2009); Liu et al. (2019); Wen et al. (2018) for examples, we have

(i) Bl converges linearly when ϑ ∈ (0, 1
2].

(ii) Bl convergence sublinearly when ϑ ∈ (1
2 , 1).

This together with

∥(xl ,̄ yl ,̄ J l)̄ − (x∗, y∗, J∗)∥ ≤
∞∑
l=l

¯

∥(xl, yl, J l) − (xl−1, yl−1, J l−1)∥

≤ max{1, MJ , LJ}

 ∞∑
l=l

¯

3Al + 2Al
¯
−1 + Al

¯
−2

= max{1, MJ , LJ}

(
3Bl

¯ + 2Al
¯
−1 + Al

¯
−2
)

≤ 2 max{1, MJ , LJ}Bl
¯
−2

25

Published in Transactions on Machine Learning Research (October/2024)

guaranteed by the convergence of {(xl, yl, J l)} and (31), we obtain the same convergence rate of (xl ,̄ yl ,̄ J l)̄
as Bl.̄ This completes the proof.

B.4 Details of results in Section Convergence Analysis for Algorithms 3

Lemma 6. Consider (1) and suppose Assumptions 1, 2 and 3 hold. Let {(xl, yl)} be generated by algorithm
3. Denote ζ̃s := µG−2c2

1
2α + µG

2
with c ∈

(
0,
√

µg

2

)
. Denote ζs := 1 − (1 + d2

ys
)(1 − ζ̃s) with dys

∈ (0,
√

1
1−ζ̃s

− 1).
Suppose α < 1

LG
. Let x−1 = x0 and pick any{u−2, u−1} ⊆ Rn and {v−2, v−1} ⊆ Rm. Let S−1, S−2, B−1

and B−2 be any sample batches. Then ζs ∈ (0, 1) and for any l ≥ 0,

ER̃l∥yl+1 − y(xl)∥2 ≤ (1 − ζs)ER̃l−1∥y(xl−1) − yl∥2

+ (1 + d−2
ys

)(1 − ζ̃s)ERl−1L2
y∥xl − xl−1∥2 + 2c−2

(µG

2 + 1
2α)

σ2
G

(32)

or equivalently,

ER̃l−1∥y(xl−1) − yl∥2 ≤ 1
ζs

(
ER̃l−1∥y(xl−1) − yl∥2 − ER̃l∥yl+1 − y(xl)∥2)

+
(1 + d−2

ys
)(1 − ζ̃s)

ζs
L2

yERl−1∥xl − xl−1∥2 + 1
ζs

2c−2

µG

2 + 1
2α

σ2
G.

(33)

Proof. Thanks to Assumption 2, for l ≥ 0, we have that

G(xl, yl+1) ≤ G(xl, yl) +
〈
∇yG(xl, yl), yl+1 − yl

〉
+ LG

2 ∥yl+1 − yl∥2

= G(xl, yl) +
〈
∇yG(xl, yl; Sl), yl+1 − yl

〉
+ 1

2α
∥yl+1 − yl∥2

+
〈
∇G(xl, yl) − ∇yG(xl, yl; Sl), yl+1 − yl

〉
+

LG − 1
α

2 ∥yl+1 − yl∥2

≤ G(xl, yl) +
〈
∇yG(xl, yl; Sl), y(xl) − yl

〉
+ 1

2α
∥y(xl) − yl∥2 − 1

2α
∥y(xl) − yl+1∥2

+
〈
∇yG(xl, yl) − ∇yG(xl, yl; Sl), yl+1 − yl

〉
+

LG − 1
α

2 ∥yl+1 − yl∥2

≤ G(xl, yl) +
〈
∇yG(xl, yl; Sl), y(xl) − yl

〉
+ 1

2α
∥y(xl) − yl∥2 − 1

2α
∥y(xl) − yl+1∥2

+ 2
c2 ∥∇yG(xl, yl) − ∇yG(xl, yl; Sl)∥2 + 2c2∥y(xl) − yl∥2 +

LG − 1
α

2 ∥yl+1 − yl∥2,

where the second inequality is because yl+1 in Step 3 of Algorithm 2 is the minimizer of arg min G(xl, yl) +〈
∇yG(xl, yl; Sl), yl+1 − yl

〉
+ 1

2α ∥yl+1 − yl∥2 and the objective of this subproblem is strongly convex with
modulus 1

α . Taking the conditional expectation of Sl on both sides of the above inequality and recalling
Assumption 3, for l ≥ 0, we have that

ESl|Rl−1G(xl, yl+1) ≤ G(xl, yl) +
〈
∇yG(xl, yl), y(xl) − yl

〉
+ 1

2α
∥y(xl) − yl∥2

− ESl|Rl−1
1

2α
∥y(xl) − yl+1∥2 + 2

c2 σ2
G + 2c2∥y(xl) − yl∥

+ ESl|Rl−1
LG − 1

α

2 ∥yl+1 − yl∥2

≤ G(xl, y(xl))− µG

2 ∥y(xl)−yl∥2+ 1
2α

∥y(xl)−yl∥2−ESl|Rl−1
1

2α
∥y(xl)−yl+1∥2

+ 2
c2 σ2

G + 2c2∥y(xl) − yl∥ + ESl|Rl−1
LG − 1

α

2 ∥yl+1 − yl∥2,

26

Published in Transactions on Machine Learning Research (October/2024)

where the second inequality uses the strong convexity of G(x, ·). Rearranging the above inequality, for l ≥ 0,
it holds that

ESl|Rl−1(G(xl, yl+1) − G(xl, y(xl))) ≤ −µG

2 ∥y(xl) − yl∥2 + 1
2α

∥y(xl) − yl∥2

− ESl|Rl−1
1

2α
∥y(xl) − yl+1∥2 + 2

c2 σ2
G + 2c2∥y(xl) − yl∥

+ ESl|Rl−1
LG − 1

α

2 ∥yl+1 − yl∥2.

(34)

Since G(x, ·) is strongly convex with modulus µG and y(xl) is arg miny G(xl, y) by definition, for l ≥ 0, we
have

ESl|Rl−1
µG

2 ∥yl+1 − y(xl)∥2 ≤ ESl|Rl−1(G(xl, yl+1) − G(xl, y(xl)))

≤ −µG

2 ∥y(xl) − yl∥2 + 1
2α

∥y(xl) − yl∥2 + 2c2∥y(xl) − yl∥

− ESl|Rl−1
1

2α
∥y(xl) − yl+1∥2 + 2

c2 σ2
G + ESl|Rl−1

LG − 1
α

2 ∥yl+1 − yl∥2

≤ −µG

2 ∥y(xl) − yl∥2 +
(

1
2α

+ 2c2
)

∥y(xl) − yl∥2 − ESl|Rl−1
1

2α
∥y(xl) − yl+1∥2 + 2

c2 σ2
G,

where the second inequality uses (34) and the third inequality is because the assumption that LG − 1
α < 0.

Rearranging the above inequality and dividing both sides with µG

2 + 1
2α , for l ≥ 0, we obtain that

ESl|Rl−1∥yl+1 − y(xl)∥2 ≤ (1 − ζ̃s)∥y(xl) − yl∥2 + 2
c2(µG

2 + 1
2α)

σ2
G,

where ζ̃s = µG−2c2

1
2α + µG

2
∈ (0, 1) thanks to the assumption that 0 < c <

√
µg

2 and α < 1
LG

. Now taking the
expectation on {Rl−1} on both sides, for l ≥ 0, we have that

ER̃l∥yl+1 − y(xl)∥2 ≤ (1 − ζ̃s)ERl−1∥y(xl) − yl∥2 + 2
c2(µG

2 + 1
2α)

σ2
G

≤ (1 + d2
ys

)(1 − ζ̃s)ERl−1∥y(xl−1) − yl∥2 + (1 + d−2
ys

)(1 − ζ̃s)ERl−1∥y(xl) − y(xl−1)∥2

+ 2
c2(µG

2 + 1
2α)

σ2
G

≤ (1 + d2
ys

)(1 − ζ̃s)ERl−1∥y(xl−1) − yl∥2 + (1 + d−2
ys

)(1 − ζ̃s)ERl−1L2
y∥xl − xl−1∥2

+ 2
c2(µG

2 + 1
2α)

σ2
G

= (1 − ζs)ER̃l−1∥y(xl−1) − yl∥2 + (1 + d−2
ys

)(1 − ζ̃s)ERl−1L2
y∥xl − xl−1∥2

+ 2
c2(µG

2 + 1
2α)

σ2
G,

where the third inequality uses Lemma 1 and the last inequality uses the definition of ζs. Thanks to the
assumption that d2

ys
< 1

1−ζ̃s
− 1, we have that 0 < ζs < 1.

Rearranging the above inequality, we have that

ER̃l−1∥y(xl−1) − yl∥2 ≤ 1
ζs

(
ER̃l−1∥y(xl−1) − yl∥2 − ER̃l∥yl+1 − y(xl)∥2)+

+
1 + d−2

ys

ζs

(
1 − ζ̃s

)
L2

yERl−1∥xl − xl−1∥2 + 1
ζs

2
c2(µG

2 + 1
2α)

σ2
G.

27

Published in Transactions on Machine Learning Research (October/2024)

Next we estimate ∇̂xyG(xl, yl) and ∇̂yyG(xl, yl). We first present the following basic properties shown in
Nesterov & Spokoiny (2017), see equation (21), Lemma 3 and Lemma 5 in Nesterov & Spokoiny (2017)
respectively.
Lemma 7. Let h : Rn → R be a differentiable function with L-Lipschitz gradient. Define hµ(x) = Eu[h(x +
µu)], where µ > 0 and u is a standard Gaussian random vector. We have that:

(i) hµ is differentiable and ∇hµ(x) = Eu∇̂h(x, u), where ∇̂h(x, u) = h(x+µu)−h(x)
µ u.

(ii) ∥∇hµ(x) − ∇h(x)∥ ≤ µ2

2 L(n + 3) 3
2 .

(iii) Eu

∥∥∥∇̂h(x, u)
∥∥∥2

≤ 4(n + 4)∥∇hµ(x)∥2 + 3µ2L2(n + 4)3.

Now we bound nabla ∇xyG and ∇xyG.
Lemma 8. Consider (1) and let Assumptions 2 and 3 hold. Let {(xl, yl)} be generated by Algorithm 3.
Denote

∆xy = 2m

Q2

((
2Q2 + 4Q(4n + 15)

) µ4

4 L2
Gx

x
(n + 3)3 + 6Qµ2L2

Gx
x
(n + 4)3

)
+

C2
Gxy + σ2

yy

Q
8(4n + 15)

and

∆yy = 2m

Q2

((
2Q2 + 4Q(4m + 15)

) µ4

4 L2
Gy

y
(m + 3)3 + 6Qµ2L2

Gy
y
(m + 4)3

)
+ 4(4m + 15)

C2
Gyy + σ2

yy

Q
.

Then it holds that

Eul,Sl|Rl−1∥∇xyG(xl, yl) − ∇̂xyG(xl, yl; Sl)∥2. ≤ 2σ2
xy + ∆xy

and

Evl,Sl|Rl−1∥∇yyG(xl, yl) − ∇̂yyG(xl, yl; Sl)∥2 ≤ 2σ2
yy + ∆yy for ∇̂yyG(xl, yl).

Proof. Thanks to Assumption 3, it holds that
Eul|R̃l∥∇xyG(xl, yl) − ∇̂xyG(xl, yl; Sl)∥2

≤ 2Eul|R̃l∥∇xyG(xl, yl) − ∇xyG(xl, yl; Sl)∥2

+ 2Eul|R̃l∥∇xyG(xl, yl; Sl) − ∇̂xyG(xl, yl; Sl)∥2

≤ 2σ2
xy + 2Eul|R̃l∥∇xyG(xl, yl; Sl) − ∇̂xyG(xl, yl; Sl)∥2.

(35)

By the definition of ∇xyG(xl, yl; Sl) and ∇̂xyG(xl, yl), we have that

Eul|R̃l∥∇xyG(xl, yl; Sl) − ∇̂xyG(xl, yl)∥2

≤
m∑

i=1
Eul|R̃l

∥∥∥∥∥∥ 1
|Sl|

|Sl|∑
r=1

∇x(∇yi
G(xl, yl; ξr

S)) − 1
Q

Q∑
j=1

δj
yi

ul
j

∥∥∥∥∥∥
2

≤
m∑

i=1

1
|Sl|

|Sl|∑
r=1

Eul|R̃l

∥∥∥∥∥∥∇x(∇yi
G(xl, yl; ξr

S)) − 1
Q

Q∑
j=1

δj
yi

ul
j

∥∥∥∥∥∥
2

=
1

Q2

|Sl|

r=|Sl|,
i=m∑
r=1,
i=1

Eul|R̃l

∥∥∥∥∥∥
Q∑

j=1

(
∇x(∇yiG(xl, yl; ξr

S))−δj
yi

ul
j

)∥∥∥∥∥∥
2

.

(36)

28

Published in Transactions on Machine Learning Research (October/2024)

where {ξr
S}|Sl|

r=1 are the elements in Sl. Denoting

∇µ
yi

G(x, yl; ξr
S) := Eul|R̃l∇µ

yi
G(x + µul, yl; ξr

S),

we have that,

Eul|R̃l

∥∥∥∥∥∥
Q∑

j=1

(
∇x(∇yi

G(xl, yl; ξr
S)) −

∇yiG(xl + µul
j , yl; ξr

S) − ∇yiG(xl, yl; ξr
S)

µ
ul

j

)∥∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∥
Q∑

j=1

(
∇x(∇yi

G(xl, yl; ξr
S)) − ∇x(∇µ

yi
G(xl, yl; ξr

S))
)∥∥∥∥∥∥

2

+ 2Eul|R̃l

∥∥∥∥∥∥
Q∑

j=1

(
∇x(∇µ

yi
G(xl, yl; ξr

S)) −
∇yi

G(xl + µul
j , yl; ξr

S) − ∇yi
G(xl, yl; ξr

S)
µ

ul
j

)∥∥∥∥∥∥
2

= 2Q

Q∑
j=1

∥∥∇x(∇yi
G(xl, yl; ξr

S)) − ∇x(∇µ
yi

G(xl, yl; ξr
S))
∥∥2

+ 2Eul|R̃l

∥∥∥∥∥∥
Q∑

j=1

(
∇x(∇µ

yi
G(xl, yl; ξr

S)) −
∇yiG(xl + µul

j , yl; ξr
S) − ∇yiG(xl, yl; ξr

S)
µ

ul
j

)∥∥∥∥∥∥
2

.

(37)

For the first term in the above inequality, using Lemma 7 (ii) together with Assumption 2 (i), we have that

∥∥∇x(∇yiG(xl, yl; ξr
S)) − ∇x(∇µ

yi
G(xl, yl; ξr

S))
∥∥2 ≤ µ4

4 L2
Gx

x
(n + 3)3. (38)

For the second term in (37), denote

rj := ∇x(∇µ
yi

G(xl, yl; ξr
S)) −

∇yiG(xl + µul
j , yl; ξr

S) − ∇yiG(xl, yl; ξr
S)

µ
(ul

j).

Then we have

∥∥∥∥∥∥
Q∑

j=1

(
∇x(∇µ

yi
G(xl, yl; ξr

S)) −
∇yiG(xl + µul

j , yl; ξr
S) − ∇yiG(xl, yl; ξr

S)
µ

ul
j

)∥∥∥∥∥∥
2

=
Q∑

j=1

∥∥∥∥∥∇x(∇µ
yi

G(xl, yl; ξr
S))−

∇yi
G(xl + µul

j , yl; ξr
S)−∇yi

G(xl, yl; ξr
S)

µ
ul

j

∥∥∥∥∥
2

+2
∑

j1<j2

⟨rj1 , rj2⟩ .

(39)

Thanks to Lemma 7 (i) and that ul
j1

and ul
j2

are independent, we have that

Eul
j1

,ul
j2

|R̃l

∑
j1<j2

⟨rj1 , rj2⟩ = 0, ∀ j1 ̸= j2.

29

Published in Transactions on Machine Learning Research (October/2024)

Thus, taking expectation of ul, (39) can be further passed to

Eul|R̃l

∥∥∥∥∥∥
Q∑

j=1

(
∇x(∇µ

yi
G(xl, yl; ξr

S)) −
∇yiG(xl + µul

j , yl; ξr
S) − ∇yiG(xl, yl; ξr

S)
µ

ul
j

)∥∥∥∥∥∥
2

=
Q∑

j=1
Eul

j
|R̃l

∥∥∥∥∥∇x(∇µ
yi

G(xl, yl; ξr
S)) −

∇yi
G(xl + µul

j , yl; ξr
S) − ∇yi

G(xl, yl; ξr
S)

µ
ul

j

∥∥∥∥∥
2

(a)=
Q∑

j=1

Eul
j
|R̃l

∥∥∥∥∥∇yi
G(xl + µul

j , yl; ξr
S) − ∇yi

G(xl, yl; ξr
S)

µ
ul

j

∥∥∥∥∥
2

−
∥∥∇x(∇µ

yi
G(xl, yl; ξr

S))
∥∥2

(b)
≤

Q∑
j=1

(
4(n + 4)

∥∥∇x(∇µ
yi

G(xl, yl; ξr
S))
∥∥2 + 3µ2L2

Gx
x
(n + 4)3 −

∥∥∇x(∇µ
yi

G(xl, yl; ξr
S))
∥∥2)

=
Q∑

j=1

(
(4n + 15)

∥∥∇x(∇µ
yi

G(xl, yl; ξr
S))
∥∥2 + 3µ2L2

Gx
x
(n + 4)3

)

≤
Q∑

j=1
(2(4n + 15)

∥∥∇x(∇µ
yi

G(xl, yl; ξr
S)) − ∇x(∇yiG(xl, yl; ξr

S))
∥∥2

+
Q∑

j=1
2(4n + 15)

∥∥∇x(∇yi
G(xl, yl; ξr

S))
∥∥2 +

Q∑
j=1

3µ2L2
Gx

x
(n + 4)3

≤
Q∑

j=1

(
2(4n + 15)

(
µ4

4 L2
Gx

x
(n + 3)3

)
+2(4n + 15)

∥∥∇x(∇yiG(xl, yl; ξr
S))
∥∥2+3µ2L2

Gx
x
(n + 4)3

)
,

(40)

where (a) is because Eul
j
|R̃l

∥∥∥∥∇x(∇µ
yi

G(xl, yl; ξr
S)) − ∇yi

G(xl+µul
j ,yl;ξr

S)−∇yi
G(xl,yl;ξr

S)
µ ul

j

∥∥∥∥2
is the variance of

∇yi
G(xl+µul

j ,yl;ξr
S)−∇yi

G(xl,yl;ξr
S)

µ ul
j , (b) uses Lemma 7 (iii) and the last inequality uses Lemma 7 (ii) and

Assumption 2 (i).

Now, combining (37), (38) and (40), we have that

Eul|R̃l

∥∥∥∥∥∥
Q∑

j=1

(
∇x(∇yi

G(xl, yl; ξr
S)) −

∇yiG(xl + µul
j , yl; ξr

S) − ∇yiG(xl, yl; ξr
S)

µ
ul

j

)∥∥∥∥∥∥
2

≤ 2Q

Q∑
j=1

µ4

4 L2
Gx

x
(n + 3)3 + 2

Q∑
j=1

2(4n + 15)
(

µ4

4 L2
Gx

x
(n + 3)3

)

+ 2
Q∑

j=1
2(4n + 15)

∥∥∇x(∇yiG(xl, yl; ξr
S))
∥∥2 + 2

Q∑
j=1

3µ2L2
Gx

x
(n + 4)3

=
(
2Q2 + 4Q(4n + 15)

) µ4

4 L2
Gx

x
(n + 3)3 + 6Qµ2L2

Gx
x
(n + 4)3

+ 4Q(4n + 15)
∥∥∇x(∇yi

G(xl, yl; ξr
S))
∥∥2

.

30

Published in Transactions on Machine Learning Research (October/2024)

This together with (36) gives

Eul|R̃l∥∇xyG(xl, yl; Sl) − ∇̂xyG(xl, yl; Sl)∥2

≤ 1
|Sl|Q2

|Sl|∑
r=1

m∑
i=1

(
2Q2 + 4Q(4n + 15)

) µ4

4 L2
Gx

x
(n + 3)3 + 1

|Sl|Q2

|Sl|∑
r=1

m∑
i=1

6Qµ2L2
Gx

x
(n + 4)3

+ 1
|Sl|Q2

|Sl|∑
r=1

m∑
i=1

4Q(4n + 15)
∥∥∇x(∇yiG(xl, yl; ξr

S))
∥∥2

= m

|Sl|Q2

|Sl|∑
r=1

(
2Q2 + 4Q(4n + 15)

) µ4

4 L2
Gx

x
(n + 3)3 + m

|Sl|Q2

|Sl|∑
r=1

6Qµ2L2
Gx

x
(n + 4)3

+ 4(4n + 15) 1
|Sl|Q

|Sl|∑
r=1

m∑
i=1

∥∥∇x(∇yi
G(xl, yl; ξr

S))
∥∥2

.

Taking the conditional expextion of Sl on both side of the above inequality, recalling Assumption 2 (i) and
Assumption 3, we have that

Eul,Sl|Rl−1∥∇xyG(xl, yl; Sl) − ∇̂xyG(xl, yl; Sl)∥2

≤ m

Q2

((
2Q2 + 4Q(4n + 15)

) µ4

4 L2
Gx

x
(n + 3)3 + 6Qµ2L2

Gx
x
(n + 4)3

)
+

C2
Gxy + σ2

xy

Q
4(4n + 15).

This together with (35), we have

Eul,Sl|Rl−1∥∇xyG(xl, yl) − ∇̂xyG(xl, yl; Sl)∥2

≤ 2σ2
xy + 2m

Q2

((
2Q2 + 4Q(4n + 15)

) µ4

4 L2
Gx

x
(n + 3)3 + 6Qµ2L2

Gx
x
(n + 4)3

)
+

C2
Gxy + σ2

xy

Q
8(4n + 15).

In the same way, we can calculate that

Eul,Sl|Rl−1∥∇yyG(xl, yl) − ∇̂yyG(xl, yl; Sl)∥2

≤ 2σ2
yy + 2m

Q2

((
2Q2 + 4Q(4m + 15)

) µ4

4 L2
Gy

y
(m + 3)3 + 6Qµ2L2

Gy
y
(m + 4)3

)
+ 4(4m + 15)

C2
Gyy + σ2

yy

Q
.

Next we bound of ∥J(y(xl)) − Ĵ l+1∥2.
Lemma 9. Assume assumptions in Lemma 8 hold. Denote τ = 1 − (1 + c2

J)(1 + d2
J)(1 − γµG)2 with

dJ ∈ (0,
√

1
(1−γµ2

G
)2 − 1) and cJ ∈ (0,

√
1

(1+d2
J

)(1−γµG)2 − 1). Suppose γ ∈ (0,
√

1
µG

). Denote Cx := 3(1 +

c2
J)(1+d−2

J)(1−γµG)2L2
J +
(

4(1 + c−2
J)L2

Gy
x

+ 6(1 + c2
J)(1 + d−2

J)L2
Gy

y
M2

J

)
L2

y. Denote Cy :=4(1+c−2
J)L2

Gy
x

+
6(1+c2

J)(1+d−2
J)L2

Gy
y
M2

J . Let ι ∈ (0, τ). Then, ι ∈ (0, 1) and it holds that

ERl∥J(y(xl)) − Ĵ l+1∥2 ≤ Cyγ2ERl−1∥y(xl−1)−yl∥2 +Cxγ2ERl−1∥xl−xl−1∥2

+ ∆H + (1 − ι)ERl−1∥J(y(xl−1)) − Ĵ l∥2 + ∆L,
(41)

31

Published in Transactions on Machine Learning Research (October/2024)

where ∆H = 2(1+c−2
J)γ2 (2σ2

xy + ∆xy

)
and ∆L := 6(1+c2

J)(1+d−2
J)γ2 (2σyy + ∆yy) M2

J when ∇̂xyG(xl, yl)
and ∇̂yyG(xl, yl) are generated by (ii) of Step 4 of Algorithm 3, γ <

√
τ−ι
W with W := 6(1 + c2

J)(1 +
d−2

J)(2σ2
yy + ∆yy).

Proof. First, using the facts that J(y(xl)) = J(y(xl))(I − γ∇yyG(x, y(x))) − γ∇xyG(x, y(xl)) and Ĵ l+1 =
Ĵ l
(
I − γ∇̂yyG(xl, yl)

)
− γ∇̂xyG(xl, yl), we have that

∥J(y(xl)) − Ĵ l+1∥2

≤ (1 + c−2
J)γ2∥∇xyG(xl, y(xl)) − ∇̂xyG(xl, yl)∥2

+ (1 + c2
J)∥J(y(xl))(I − γ∇yyG(xl, y(xl))) − Ĵ l

(
I − γ∇̂yyG(xl, yl)

)
∥2

≤ 2(1 + c−2
J)γ2∥∇xyG(xl, y(xl)) − ∇xyG(xl, yl)∥

+ 2(1 + c−2
J)γ2∥∇xyG(xl, yl) − ∇̂xyG(xl, yl)∥2

+ (1 + c2
J)∥J(y(xl))(I − γ∇yyG(xl, y(xl))) − Ĵ l

(
I − γ∇̂yyG(xl, yl)

)
∥2

(a)
≤ 2(1 + c−2

J)γ2L2
Gy

x
∥y(xl) − yl∥2 + 2(1 + c−2

J)γ2∥∇xyG(xl, yl) − ∇̂xyG(xl, yl)∥2

+ (1 + c2
J)∥J(y(xl))(I − γ∇yyG(xl, y(xl))) − Ĵ l

(
I − γ∇̂yyG(xl, yl)

)
∥2,

(42)

where (a) is thanks to Assumption 2(iii). Note that

∥J(y(xl))(I − γ∇yyG(xl, y(xl))) − Ĵ l
(

I − γ∇̂yyG(xl, yl)
)

∥2

≤ 3(1 + d−2
J)∥J(y(xl))(I − γ∇yyG(xl, y(xl))) − J(y(xl))(I − γ∇yyG(xl, yl)))∥2

+ 3(1 + d−2
J)∥J(y(xl))(I − γ∇yyG(xl, yl))) − J(y(xl−1))(I − γ∇yyG(xl, yl)))∥2

+ (1 + d2
J)∥J(y(xl−1))(I − γ∇yyG(xl, yl))) − Ĵ l(I − γ∇yyG(xl, yl)))∥2

+ 3(1 + d−2
J)∥Ĵ l(I − γ∇yyG(xl, yl))) − Ĵ l

(
I − γ∇̂yyG(xl, yl)

)
∥2

≤ 3(1 + d−2
J)γ2∥∇yyG(xl, y(xl)) − ∇yyG(xl, yl))∥2∥J(y(xl))∥2

+ 3(1 + d−2
J)∥I − γ∇yyG(xl, yl)∥2∥J(y(xl)) − J(y(xl−1))∥2

+ (1 + d2
J)∥I − γ∇yyG(xl, yl)∥2∥J(y(xl−1)) − Ĵ l∥2

+ 3(1 + d−2
J)γ2∥∇yyG(xl, yl) − ∇̂yyG(xl, yl)∥2∥Ĵ l∥2,

where the first inequality uses ∥a1 + a2 + a3 + a4∥2 ≤ (1 + d2
J)a2

1 + (1 + d−2
J)∥a2 + a3 + a4∥2 ≤ (1 + d2

J)a2
1 +

3(1 + d−2
J)∥a2∥2 + 3(1 + d−2

J)∥a3∥2 + 3(1 + d−2
J)∥a4∥2. Using Assumption 2 (ii), the above inequality can be

further passed to

∥J(y(xl))(I − γ∇yyG(xl, y(xl))) − Ĵ l
(

I − γ∇̂yyG(xl, yl)
)

∥2

≤ 3(1 + d−2
J)γ2∥∇yyG(xl, y(xl)) − ∇yyG(xl, yl))∥2∥J(y(xl))∥2

+ 3(1 + d−2
J)(1 − γµG)2∥J(y(xl)) − J(y(xl−1))∥2 + (1 + d2

J)(1 − γµG)2∥J(y(xl−1)) − Ĵ l∥2

+ 3(1 + d−2
J)γ2∥∇yyG(xl, yl) − ∇̂yyG(xl, yl)∥2∥Ĵ l∥2

≤ 3(1 + d−2
J)γ2L2

Gy
y
M2

J∥y(xl) − yl∥2 + 3(1 + d−2
J)(1 − γµG)2L2

J∥xl − xl−1∥2

+ (1 + d2
J)(1 − γµG)2∥J(y(xl−1)) − Ĵ l∥2 + 3(1 + d−2

J)γ2∥∇yyG(xl, yl) − ∇̂yyG(xl, yl)∥2∥Ĵ l∥2,

(43)

where the second inequality follows from Assumption 2 (iii) and Lemma 2.

32

Published in Transactions on Machine Learning Research (October/2024)

Plugging (43) into (42), we have that

∥J(y(xl)) − Ĵ l+1∥2 ≤ 2(1 + c−2
J)γ2L2

Gy
x
∥y(xl) − yl∥2 + 2(1 + c−2

J)γ2∥∇xyG(xl, yl) − ∇̂xyG(xl, yl)∥2

+ 3(1+c2
J)(1+d−2

J)γ2L2
Gy

y
M2

J∥y(xl)−yl)∥2+3(1+c2
J)(1+d−2

J)(1−γµG)2L2
J∥xl−xl−1∥2

+ (1 + c2
J)(1 + d2

J)(1 − γµG)2∥J(y(xl−1)) − Ĵ l∥2

+ 3(1 + c2
J)(1 + d−2

J)γ2∥∇yyG(xl, yl) − ∇̂yyG(xl, yl)∥2∥Ĵ l∥2

≤
(

4(1 + c−2
J)L2

Gy
x

+ 6(1 + c2
J)(1 + d−2

J)L2
Gy

y
M2

J

)
γ2∥y(xl−1) − yl∥2

+
(

4(1 + c−2
J)L2

Gy
x

+ 6(1 + c2
J)(1 + d−2

J)L2
Gy

y
M2

J

)
γ2∥y(xl−1) − y(xl)∥2

+
(
3(1 + c2

J)(1 + d−2
J)(1 − γµG)2L2

J

)
∥xl − xl−1∥2

+ 2(1 + c−2
J)γ2∥∇xyG(xl, yl) − ∇̂xyG(xl, yl)∥2

+ (1 + c2
J)(1 + d2

J)(1 − γµG)2∥J(y(xl−1)) − Ĵ l∥2

+ 3(1 + c2
J)(1 + d−2

J)γ2∥∇yyG(xl, yl) − ∇̂yyG(xl, yl)∥2∥Ĵ l∥2,

Using Lemma 1, the above inequality can be further passed to

∥J(y(xl)) − Ĵ l+1∥2

≤
(

4(1 + c−2
J)L2

Gy
x

+ 6(1 + c2
J)(1 + d−2

J)L2
Gy

y
M2

J

)
γ2∥y(xl−1) − yl∥2

+
(

4(1 + c−2
J)L2

Gy
x

+ 6(1 + c2
J)(1 + d−2

J)L2
Gy

y
M2

J

)
L2

yγ2∥xl−1 − xl∥2

+
(
3(1 + c2

J)(1 + d−2
J)(1 − γµG)2L2

J

)
∥xl − xl−1∥2

+ 2(1 + c−2
J)γ2∥∇xyG(xl, yl) − ∇̂xyG(xl, yl)∥2

+ (1 + c2
J)(1 + d2

J)(1 − γµG)2∥J(y(xl−1)) − Ĵ l∥2

+ 3(1 + c2
J)(1 + d−2

J)γ2∥∇yyG(xl, yl) − ∇̂yyG(xl, yl)∥2∥Ĵ l∥2

=
(
4(1 + c−2

J)L2
Gy

x
+ 6(1+c2

J)(1+d−2
J)L2

Gy
y
M2

J

)
γ2∥y(xl−1)−yl∥2+Cxγ2∥xl−xl−1∥2

+ 2(1 + c−2
J)γ2∥∇xyG(xl, yl) − ∇̂xyG(xl, yl)∥2 + (1 − τ)∥J(y(xl−1)) − Ĵ l∥2

+ 3(1 + c2
J)(1 + d−2

J)γ2∥∇yyG(xl, yl) − ∇̂yyG(xl, yl)∥2∥Ĵ l∥2

≤
(
4(1 + c−2

J)L2
Gy

x
+ 6(1+c2

J)(1+d−2
J)L2

Gy
y
M2

J

)
γ2∥y(xl−1)−yl∥2+Cxγ2∥xl−xl−1∥2

+ 2(1 + c−2
J)γ2∥∇xyG(xl, yl) − ∇̂xyG(xl, yl)∥2 + (1 − τ)∥J(y(xl−1)) − Ĵ l∥2

+ 6(1 + c2
J)(1 + d−2

J)γ2∥∇yyG(xl, yl) − ∇̂yyG(xl, yl)∥2∥J(y(xl−1)) − Ĵ l∥2

+ 6(1 + c2
J)(1 + d−2

J)γ2∥∇yyG(xl, yl) − ∇̂yyG(xl, yl)∥2∥J(y(xl−1))∥2

=
(
4(1 + c−2

J)L2
Gy

x
+ 6(1+c2

J)(1+d−2
J)L2

Gy
y
M2

J

)
γ2∥y(xl−1)−yl∥2+Cxγ2∥xl−xl−1∥2

+ 2(1 + c−2
J)γ2∥∇xyG(xl, yl) − ∇̂xyG(xl, yl)∥2

+ (1 − τ + 6(1 + c2
J)(1 + d−2

J)γ2∥∇yyG(xl, yl) − ∇̂yyG(xl, yl)∥2︸ ︷︷ ︸
A

)∥J(y(xl−1)) − Ĵ l∥2

+ 6(1 + c2
J)(1 + d−2

J)∥∇yyG(xl, yl) − ∇̂yyG(xl, yl)∥2∥J(y(xl−1))∥2,

(44)

where the equality uses the definitions of τ and Cx. Note that the assumptions on cJ , dJ and γ give that
τ ∈ (0, 1). Now we show that A satisfies

Eul|R̃lA ≤ 1 − ι. (45)

Using Lemma 8, we have that

Eul,Sl|Rl−1A ≤ 1 − τ + 6(1 + c2
J)(1 + d−2

J)γ2(2σ2
yy + ∆yy) = 1 − τ + γ2W ≤ 1 − ι,

33

Published in Transactions on Machine Learning Research (October/2024)

where the equality uses the definition of W and the second uses the assumption that γ <
√

τ−ι
W .

Therefore, (45) holds. Combining (45) with (44), we obtain

Evl,ul,Sl|Rl−1∥J(y(xl)) − Ĵ l+1∥2

≤
(
4(1 + c−2

J)L2
Gy

x
+ 6(1+c2

J)(1+d−2
J)L2

Gy
y
M2

J

)
γ2∥y(xl−1)−yl∥2+Cxγ2∥xl−xl−1∥2

+ 2(1 + c−2
J)γ2Evl,ul,Sl|Rl−1∥∇xyG(xl, yl) − ∇̂xyG(xl, yl)∥2

+ (1 − ι)∥J(y(xl−1)) − Ĵ l∥2

+ 6(1 + c2
J)(1 + d−2

J)Evl,ul,Sl|Rl−1∥∇yyG(xl, yl) − ∇̂yyG(xl, yl)∥2∥J(y(xl−1))∥2

≤
(
4(1 + c−2

J)L2
Gy

x
+ 6(1+c2

J)(1+d−2
J)L2

Gy
y
M2

J

)
γ2∥y(xl−1)−yl∥2+Cxγ2∥xl−xl−1∥2

+ ∆H + (1 − ι)∥J(y(xl−1)) − Ĵ l∥2 + ∆L,

where the last inequality uses Assumption 2 (i), Lemma 8 and the definition of ∆H and ∆L.

Taking expectation on both side with Rl−1, we obtain

ERl∥J(y(xl)) − Ĵ l+1∥2 = ERl−1Evl,ul,Sl|Rl−1∥J(y(xl)) − Ĵ l+1∥2

≤
(
4(1 + c−2

J)L2
Gy

x
+ 6(1+c2

J)(1+d−2
J)L2

Gy
y
M2

J

)
γ2ERl−1∥y(xl−1)−yl∥2

+Cxγ2ERl−1∥xl−xl−1∥2 + ∆H + (1 − ι)ERl−1∥J(y(xl−1)) − Ĵ l∥2 + ∆L.

Before showing the details of Theorem 3. We first give the following lemma that estimates the error between
∇f(xl) and ∇̂f(xl).
Lemma 10. Suppose assumptions in Lemmas 6 and 9 hold. Then it holds that

ERl∥∇f(xl) − ∇̂f(xl)∥2

≤

(
4(LF

12)2 + 4M2
J(LF

22)2 +
16σ2

B + 16(CF
y)2

ι
Cyγ2

)
ER̃l∥y(xl) − yl+1∥2

+
16σ2

B + 16(CF
y)2

ι
Cxγ2ERl∥xl+1 − xl∥2

+
16σ2

B + 16(CF
y)2

ι
∆l +

16σ2
B + 16(CF

y)2

ι
(∆H + ∆L) + (4 + 8M2

J)σ2
B ,

where ∆l = ERl∥J(y(xl)) − Ĵ l+1∥2 − ERl+1∥J(y(xl+1)) − Ĵ l+2∥2.

Proof. First, using chain rule we have that

∇f(xl) = ∇xF (xl, y(xl)) + JT (y(xl))∇yF (xl, y(xl)).

This together with the definition of ∇̂f(xl), we have that

ERl∥∇f(xl) − ∇̂f(xl)∥2

≤ 2ERl∥∇xF (xl, y(xl)) − ∇xF (xl, yl+1; Bl)∥2

+ 2ERl∥JT (xl)∇yF (xl, y(xl)) − (Ĵ l+1)T ∇yF (xl, yl+1; Bl)∥2.

(46)

For the first term in (46), we have that

ERl∥∇xF (xl, y(xl)) − ∇xF (xl, yl+1; Bl)∥2

≤ 2ER̃l∥∇xF (xl, y(xl))−∇xF (xl, yl+1)∥2+2ER̃lEBl|R̃l∥∇xF (xl, yl+1)−∇xF (xl, yl+1; Bl)∥2

≤ 2(LF
12)2ER̃l∥y(xl)−yl+1∥2+2σ2

B ,

(47)

34

Published in Transactions on Machine Learning Research (October/2024)

where the last inequality uses Assumptions 1 (i) and 3.

For the second term in (46), it holds that

ERl∥J(y(xl))T ∇yF (xl, y(xl)) − (Ĵ l+1)T ∇yF (xl, yl+1; Bl)∥2

≤ 2ER̃l∥J(y(xl))T ∇yF (xl, y(xl)) − J(y(xl))T ∇yF (xl, yl+1)∥2

+ 2ERl∥J(y(xl))T ∇yF (xl, yl+1) − (Ĵ l+1)T ∇yF (xl, yl+1; Bl)∥2

≤ 2ER̃l∥J(y(xl))T ∇yF (xl, y(xl)) − J(y(xl))T ∇yF (xl, yl+1)∥2

+ 4EU l,V l,Sl
0,Bl−1

0
EBl|U l,V l,Sl

0,Bl−1
0

∥J(y(xl))T ∇yF (xl, yl+1) − J(y(xl))T ∇yF (xl, yl+1; Bl)∥2

+ 4EU l,V l,Sl
0,Bl−1

0
EBl|U l,V l,Sl

0,Bl−1
0

∥J(y(xl))T ∇yF (xl, yl+1; Bl) − (Ĵ l+1)T ∇yF (xl, yl+1; Bl)∥2

≤ 2ER̃l∥J(y(xl))T ∇yF (xl, y(xl)) − J(y(xl))T ∇yF (xl, yl+1)∥2

+ 4EU l,V l,Sl
0,Bl−1

0
EBl|U l,V l,Sl

0,Bl−1
0

∥J(y(xl))T ∇yF (xl, yl+1) − J(y(xl))T ∇yF (xl, yl+1; Bl)∥2

+ 4EU l,V l,Sl
0,Bl−1

0
EBl|U l,V l,Sl

0,Bl−1
0

∥J(y(xl))T − (Ĵ l+1)T ∥2∥∇yF (xl, yl+1; Bl)∥2

(a)
≤ 2ER̃l∥J(y(xl))T ∇yF (xl, y(xl)) − J(y(xl))T ∇yF (xl, yl+1)∥2

+ 4EU l,V l,Sl
0,Bl−1

0
EBl|U l,V l,Sl

0,Bl−1
0

∥J(y(xl))T ∇yF (xl, yl+1) − J(y(xl))T ∇yF (xl, yl+1; Bl)∥2

+ 4EU l,V l,Sl
0,Bl−1

0
∥J(y(xl))T − (Ĵ l+1)T ∥2(2σ2

B + 2(CF
y)2)

(b)
≤ 2ER̃l∥J(y(xl))T ∥2(LF

22)2∥y(xl) − yl+1∥2

+ 4EU l,V l,Sl
0,Bl−1

0
EBl|U l,V l,Sl

0,Bl−1
0

∥J(y(xl))T ∇yF (xl, yl+1) − J(y(xl))T ∇yF (xl, yl+1; Bl)∥2

+ 4EU l,V l,Sl
0,Bl−1

0
∥J(y(xl))T − (Ĵ l+1)T ∥2(2σ2

B + 2(CF
y)2)

(c)
≤ 2ER̃l∥J(y(xl))T ∥2(LF

22)2∥y(xl) − yl+1∥2 + 4EU l,V l,Sl
0,Bl−1

0
∥J(y(xl))T ∥2σ2

B

+ 4EU l,V l,Sl
0,Bl−1

0
∥J(y(xl))T − (Ĵ l+1)T ∥2(2σ2

B + 2(CF
y)2)

≤ 2M2
J(LF

22)2ER̃l∥y(xl) − yl+1∥2 + 4M2
Jσ2

B

+ 4EU l,V l,Sl
0,Bl−1

0
∥J(y(xl))T − (Ĵ l+1)T ∥2(2σ2

B + 2(CF
y)2)

= 2M2
J(LF

22)2ER̃l∥y(xl) − yl+1∥2 + 4M2
Jσ2

B

+ 4ERl∥J(y(xl))T − (Ĵ l+1)T ∥2(2σ2
B + 2(CF

y)2),

(48)

where (a) is thanks to Assumptions 1 and 3, (b) is thanks to Assumption 1, (c) uses assumption 3, and the
last inequality is thanks to Lemma 2.

Now using Lemma 9 and the definition of ∆l, (48) can be further passed to

ERl∥J(y(xl))T ∇yF (xl, y(xl)) − (Ĵ l+1)T ∇yF (xl, yl+1; Bl)∥2

≤ 2M2
J(LF

22)2ER̃l∥y(xl) − yl+1∥2 + 4M2
Jσ2

B +
8σ2

B + 8(CF
y)2

ι
Cyγ2ERl∥y(xl) − yl+1∥2

+
8σ2

B +8(CF
y)2

ι
Cxγ2ERl∥xl+1 − xl∥2 +

8σ2
B + 8(CF

y)2

ι
∆l +

8σ2
B + 8(CF

y)2)
ι

(∆H + ∆L).

35

Published in Transactions on Machine Learning Research (October/2024)

Combining this with (46) and (47), we have that

ERl∥∇f(xl) − ∇̂f(xl)∥2

≤ 4(LF
12)2ER̃l∥y(xl) − yl+1∥2 + 4σ2

B + 4M2
J(LF

22)2ER̃l∥y(xl) − yl+1∥2 + 8M2
Jσ2

B

+
16σ2

B + 16(CF
y)2

ι
Cyγ2ER̃l∥y(xl) − yl+1∥2 +

16σ2
B + 16(CF

y)2

ι
Cxγ2ERl∥xl+1 − xl∥2

+
16σ2

B + 16(CF
y)2

ι
∆l +

16σ2
B + 16(CF

y)2

ι
(∆H + ∆L)

=
(

4(LF
12)2 + 4M2

J(LF
22)2 +

16σ2
B + 16(CF

y)2

ι
Cyγ2

)
ER̃l∥y(xl) − yl+1∥2

+
16σ2

B + 16(CF
y)2

ι
Cxγ2ERl∥xl+1 − xl∥2

+
16σ2

B + 16(CF
y)2

ι
∆l +

16σ2
B + 16(CF

y)2

ι
(∆H + ∆L) + 4σ2

B + 8M2
Jσ2

B .

Now we the details of Theorem 3.
Theorem 5. Suppose assumptions in Lemmas 6 and 9 hold. Denote

Dx := 1
2β

− β
8σ2

B + 8(CF
y)2

ι
Cxγ2 − Lf

2

and

Dy := β

2

(
4(LF

12)2 + 4M2
J(LF

22)2 +
16σ2

B + 16(CF
y)2

ι
Cyγ2

)
.

Suppose β is small enough such that Dx − (1+d−2
ys

)Dy(1−ζ̃s)
ζs

L2
y ≥ 0. Then

1
N + 1

N∑
l=0

E∥∇f(xl)∥2 ≤ 1
N + 1

2
β

(
f(x0) − f∗ + (CF

y)2)
+ 1

N + 1

(
2Dy

ζsβ
(1 − ζs) +

2(8σ2
B + 8(CF

y)2)
ι

Cyγ2

)
∥y(x0) − y0∥2

+ 1
N + 1

2Dy

ζsβ

2c−2

(µG

2 + 1
2α)

σ2
G + 1

N + 1
2(8σ2

B + 8(CF
y)2)

ι
∥J(y(x−1)) − Ĵ0∥2

+ N + 2
N + 1

16σ2
B + 16(CF

y)2

ι
(∆H + ∆L) + 4σ2

B + 8M2
Jσ2

B + 1
ζs

4Dyc−2

µGβ
2 + β

2α

σ2
G.

Proof. Thanks to Lemma 1, we have that

f(xl+1) ≤ f(xl) +
〈
∇f(xl), xl+1 − xl

〉
+ Lf

2 ∥xl+1 − xl∥2

= f(xl) − β
〈

∇f(xl), ∇̂f(xl)
〉

+ Lf

2 ∥xl+1 − xl∥2

= f(xl) − β

(
1
2∥∇f(xl)∥2 + 1

2∥∇̂f(xl)∥2 − 1
2∥∇f(xl) − ∇̂f(xl)∥2

)
+ Lf

2 ∥xl+1 − xl∥2

= f(xl) − 1
2β∥∇f(xl)∥2 + 1

2β∥∇f(xl) − ∇̂f(xl)∥2 +
(

Lf

2 − 1
2β

)
∥xl+1 − xl∥2,

36

Published in Transactions on Machine Learning Research (October/2024)

where the first equality and last equality use Step 7 of Algorithm 3. Taking expectation w.r.t Rl, we have
that

ERlf(xl+1) ≤ ERl−1f(xl) − 1
2βERl−1∥∇f(xl)∥2 + ERl

1
2β∥∇f(xl) − ∇̂f(xl)∥2

+
(

Lf

2 − 1
2β

)
ERl∥xl+1 − xl∥2.

Using Lemma 10, the above inequality can be further passed to

ERlf(xl+1) ≤ ERl−1f(xl) − 1
2βERl−1∥∇f(xl)∥2

+ β

2

(
4(LF

12)2 + 4M2
J(LF

22)2 +
16σ2

B + 16(CF
y)2

ι
Cyγ2

)
ER̃l∥y(xl) − yl+1∥2

+ β
8σ2

B + 8(CF
y)2

ι
Cxγ2ERl∥xl+1 − xl∥2

+ β
8σ2

B + 8(CF
y)2

ι
∆l +

(8σ2
B + 8(CF

y)2)β
ι

(∆H + ∆L) + (2 + 4M2
J)βσ2

B

+
(

Lf

2 − 1
2β

)
ERl∥xl+1 − xl∥2

= ERl−1f(xl) − 1
2βERl−1∥∇f(xl)∥2 + DyER̃l∥y(xl) − yl+1∥2 − DxERl∥xl+1 − xl∥2

+ β
8σ2

B + 8(CF
y)2

ι
∆l +

(8σ2
B + 8(CF

y)2)β
ι

(∆H + ∆L) + (2 + 4M2
J)βσ2

B ,

where the last inequality uses the definition of Dx and Dy.

Using (33), the above inequality can be further passed to

ERlf(xl+1) ≤ ERl−1f(xl) − 1
2βERl−1∥∇f(xl)∥2 + Dy

ζs

(
ER̃l∥y(xl) − yl+1∥2 − ER̃l+1∥yl+2 − y(xl+1)∥2)

+
(1 + d−2

ys
)Dy(1 − ζ̃s)
ζs

L2
yERl∥xl+1 − xl∥2 + Dy

ζs

2c−2

µG

2 + 1
2α

σ2
G − DxERl∥xl+1 − xl∥2

+ β
8σ2

B + 8(CF
y)2

ι
∆l +

(8σ2
B + 8(CF

y)2)β
ι

(∆H + ∆L) + (2 + 4M2
J)βσ2

B

= ERl−1f(xl) − 1
2βERl−1∥∇f(xl)∥2 + Dy

ζs

(
ER̃l∥y(xl) − yl+1∥2 − ER̃l+1∥yl+2 − y(xl+1)∥2)

−

(
Dx −

(1 + d−2
ys

)Dy(1 − ζ̃s)
ζs

L2
y

)
ERl∥xl+1 − xl∥2 + Dy

ζs

2c−2

µG

2 + 1
2α

σ2
G

+ β
8σ2

B + 8(CF
y)2

ι
∆l +

(8σ2
B + 8(CF

y)2)β
ι

(∆H + ∆L) + (2 + 4M2
J)βσ2

B .

Thanks to the assumption that β is small enough such that Dx − (1+d−2
ys

)Dy(1−ζ̃s)
ζs

L2
y ≥ 0, the above inequality

can be further passed to

ERlf(xl+1) ≤ ERl−1f(xl) − 1
2βERl−1∥∇f(xl)∥2 + Dy

ζs

(
ER̃l∥y(xl) − yl+1∥2 − ER̃l+1∥yl+2 − y(xl+1)∥2)

+ Dy

ζs

2c−2

µG

2 + 1
2α

σ2
G + β

8σ2
B + 8(CF

y)2

ι
∆l +

(8σ2
B + 8(CF

y)2)β
ι

(∆H + ∆L) + (2 + 4M2
J)βσ2

B

37

Published in Transactions on Machine Learning Research (October/2024)

Rearranging the above inequality, it holds that

ERl−1∥∇f(xl)∥2 ≤ 2
β

(
ERl−1f(xl) − ERlf(xl+1)

)
+ 2Dy

ζsβ

(
ER̃l∥y(xl) − yl+1∥2 − ER̃N+1∥yl+2 − y(xl+1)∥2)

+ 2
8σ2

B + 8(CF
y)2

ι
∆l +

16σ2
B + 16(CF

y)2

ι
(∆H + ∆L) + 4σ2

B + 8M2
Jσ2

B + 1
ζs

4Dyc−2

µGβ
2 + β

2α

σ2
G.

Taking expectation on Rl and R̃l, we have that

E∥∇f(xl)∥2 ≤ 2
β

(
Ef(xl) − Ef(xl+1)

)
+ 2Dy

ζsβ

(
E∥y(xl) − yl+1∥2 − E∥yl+2 − y(xl+1)∥2)

+ 2
8σ2

B + 8(CF
y)2

ι
∆l +

16σ2
B + 16(CF

y)2

ι
(∆H + ∆L) + 4σ2

B + 8M2
Jσ2

B + 1
ζs

4Dyc−2

µGβ
2 + β

2α

σ2
G.

Summing the above inequality from l = 0 to N , we have that

N∑
l=0

E∥∇f(xl)∥2 ≤ 2
β

(
Ef(x0) − Ef(xN+1)

)
+ 2Dy

ζsβ

(
E∥y(x0) − y1∥2 − E∥yN+2 − y(xN+1)∥2)

+
16σ2

B + 16(CF
y)2

ι

(
E∥J(y(x0)) − Ĵ1∥2 − E∥J(y(xN+1)) − ĴN+2∥2

)
+ (N + 1)

16σ2
B + 16(CF

y)2

ι
(∆H + ∆L) + 4(N + 1)σ2

B + 8(N + 1)M2
Jσ2

B

+ N + 1
ζs

4Dyc−2

µGβ
2 + β

2α

σ2
G

≤ 2
β

(
f(x0) − Ef(xN+1)

)
+ 2Dy

ζsβ
E∥y(x0) − y1∥2

+
16σ2

B + 16(CF
y)2

ι
E∥J(y(x0)) − Ĵ1∥2

+ (N + 1)
16σ2

B + 16(CF
y)2

ι
(∆H + ∆L) + 4(N + 1)σ2

B + 8(N + 1)M2
Jσ2

B

+ N + 1
ζs

4Dyc−2

µGβ
2 + β

2α

σ2
G.

(49)

Now we define x−2 = x−1 = x0 and y−1 = y0. Let {u−1
1 , . . . , u−1

Q , u−2
1 , . . . , u−2

Q } be any vectors in Rn

and {v−1
1 , . . . , v−1

Q , v−2
1 , . . . , v−2

Q } be any vectors in Rm. Let S−1, S−2, B−1, B−2 be full batches. Then since
{x−1, x−2} are deterministic, using (41), using Lemma 1, we have that

E∥∇f(x−2)∥2 = ∥∇f(x−1)∥2 ≤ (CF
y)2.

Using this together, (41) with l = 1 and the fact that x−1 = x0 and y−1 = y0, we have that

E∥∇f(x−1)∥2 +
2(8σ2

B + 8(CF
y)2)

ι
E∥J(y(x0)) − Ĵ1∥2 ≤ (CF

y)2 +
2(8σ2

B + 8(CF
y)2)

ι

(
Cyγ2) ∥y(x−1) − y0∥2

+
8(2σ2

B + 2(CF
y)2)(1 − ι)

ι
E∥J(y(x−1)) − Ĵ0∥2 +

2(8σ2
B + 8(CF

y)2)
ι

(∆H + ∆L)

≤ (CF
y)2 +

2(8σ2
B + 8(CF

y)2)
ι

(
Cyγ2) ∥y(x−1) − y0∥2

+
2(8σ2

B + 8(CF
y)2)

ι
∥J(y(x−1)) − Ĵ0∥2 +

2(8σ2
B + 8(CF

y)2)
ι

(∆H + ∆L),

38

Published in Transactions on Machine Learning Research (October/2024)

where the last inequality follows from the fact that ι ∈ (0, 1) and the fact that Ĵ0 is deterministic. This
implies

2(8σ2
B + 8(CF

y)2)
ι

E∥J(y(x0)) − Ĵ1∥2 ≤ (CF
y)2 +

2(8σ2
B + 8(CF

y)2)
ι

(
Cyγ2) ∥y(x−1) − y0∥2

+
2(8σ2

B + 8(CF
y)2)

ι
∆−1 +

2(8σ2
B + 8(CF

y)2)
ι

(∆H + ∆L).
(50)

On the other hand, using (32), it holds that

E∥y1 − y(x0)∥2 ≤ (1 − ζs)∥y(x−1) − y0∥2 + (1 + d−2
ys

)(1 − ζ̃s)L2
y∥x0 − x0−1∥2 + 2c−2

(µG

2 + 1
2α)

σ2
G. (51)

Sum (50), (51) and (49), we have that

N∑
l=0

E∥∇f(xl)∥2 ≤ 2
β

(
f(x0) − Ef(xN+1)

)
+ 2Dy

ζsβ

(
(1 − ζs)∥y(x−1) − y0∥2 + (1 + d−2

ys
)(1 − ζ̃s)L2

y∥x0 − x0−1∥2 + 2c−2

(µG

2 + 1
2α)

σ2
G

)
+ (CF

y)2 +
2(8σ2

B + 8(CF
y)2)

ι

(
Cyγ2) ∥y(x−1) − y0∥2 +

2(8σ2
B + 8(CF

y)2)
ι

∆−1 +
2(8σ2

B + 8(CF
y)2)

ι
(∆H + ∆L)

+ (N + 1)
16σ2

B + 16(CF
y)2

ι
(∆H + ∆L) + 4(N + 1)σ2

B + 8(N + 1)M2
Jσ2

B + N + 1
ζs

4Dyc−2

µGβ
2 + β

2α

σ2
G.

Since f is lower bounded by f∗, x−1 = x0 and ∆−1 = ∥J(y(x−1)) − Ĵ0∥2 by the definition of ∆l in Lemma
10, the above inequality can be further passed to

N∑
l=0

E∥∇f(xl)∥2 ≤ 2
β

(
f(x0) − f∗)+ 2Dy

ζsβ

(
(1 − ζs)∥y(x0) − y0∥2 + 2c−2

(µG

2 + 1
2α)

σ2
G

)

+ (CF
y)2 +

2(8σ2
B + 8(CF

y)2)
ι

(
Cyγ2) ∥y(x0) − y0∥2 +

2(8σ2
B + 8(CF

y)2)
ι

∥J(y(x−1)) − Ĵ0∥2

+ (N + 2)
16σ2

B + 16(CF
y)2

ι
(∆H + ∆L) + 4(N + 1)σ2

B + 8(N + 1)M2
Jσ2

B + N + 1
ζs

4Dyc−2

µGβ
2 + β

2α

σ2
G.

Dividing the above inequality on both sides by N + 1, and rearranging terms, we obtain

1
N + 1

N∑
l=0

E∥∇f(xl)∥2 ≤ 1
N + 1

2
β

(
f(x0) − f∗ + (CF

y)2)
+ 1

N + 1

(
2Dy

ζsβ
(1 − ζs) +

2(8σ2
B + 8(CF

y)2)
ι

Cyγ2

)
∥y(x0) − y0∥2

+ 1
N + 1

2Dy

ζsβ

2c−2

(µG

2 + 1
2α)

σ2
G + 1

N + 1
2(8σ2

B + 8(CF
y)2)

ι
∥J(y(x−1)) − Ĵ0∥2

+ N + 2
N + 1

16σ2
B + 16(CF

y)2

ι
(∆H + ∆L) + 4σ2

B + 8M2
Jσ2

B + 1
ζs

4Dyc−2

µGβ
2 + β

2α

σ2
G.

39

Published in Transactions on Machine Learning Research (October/2024)

C Additional Experimental Details

The code is available in a anonymous way at https://anonymous.4open.science/r/Bilevel_ITD-5F46/. The
formulation of the hyper-representation task is as follows:

min
λ

lval

(
λ, w∗(λ)

)
= E[lval

(
λ, w∗(λ)

)
; ξ)] = 1

|DV,ξ|
∑

(xi,yi)∈DV,ξ

l((ω∗
λ)T ϕ(xi; λ), yi)

s.t. w∗(λ) = arg min
w

ltr(λ, w) := 1
|DT ,ξ|

∑
(xi,yi)∈DT ,ξ

l(ωT ϕ(xi; λ), yi) + C∥w∥2,

where l(·) denotes the cross entropy loss, DT ,ξ and DV,ξ are training and validation dataset for a randomly
sampled meta task. Here λ = {λi}i∈DT are hyper-representations and C ≥ 0 is a tuning parameter to
gaurantee the inner problem to be strongly convex. In experiment, we set C = 0.01.

The Omniglot dataset includes 1623 characters from 50 different alphabets and each character consists of
20 samples. We follow the experimental protocols of Vinyals et al. (2016) to to divide the alphabets to
train/validation/test with 33/5/12, respectively. We perform N -way-K-shot classification, more specifically,
for each task, we randomly sample N characters from the alphabet over that client and for each character,
we sample K samples for training and 15 samples for validation. We augment the characters by performing
rotation operations (multipliers of 90 degrees). We use a 4-layer convolutional neural networks and each
convolutional layer has 64 filters of 3×3 and is followed by batch-normalization layers Finn et al. (2017b).
The parameters of convolutional layers are treated as hyper-representation and the last linear layer is the
fined tune inner parameters. For all experiments, we use mini-batch size 4, outer learning rate 0.1, inner
learning rate 0.4, perform 4 inner gradient steps. In particular, for F2SA, we set the Lagrange multiplier as
2.

40

	Introduction
	Main Contributions of Our Paper

	Related Work
	Notation and Preliminaries
	Efficient Single Loop ITD Method for Deterministic Problem (1)
	Efficient Single Loop ITD Method for Stochastic Problem (7)
	Convergence Analysis
	Convergence Analysis for Algorithm 2
	Convergence Analysis for Algorithm 3

	Experiments
	Conclusions
	Additional Preliminaries
	Proofs for results in Section Convergence Analysis for Algorithm 2
	Proofs for Theorem 1
	Properties of the limits of the generated sequences
	Proofs of Theorem 2
	Details of results in Section Convergence Analysis for Algorithms 3

	Additional Experimental Details

