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ABSTRACT

Multi-Agent reinforcement learning has received lot of attention in recent years and have
applications in many different areas. Existing methods involving Centralized Training
and Decentralized execution, attempts to train the agents towards learning a pattern of
coordinated actions to arrive at optimal joint policy. However if some agents are stochastic
(noisy) in their actions to varying degrees, the above methods provides poor coordination
among agents. In this paper we show how the stochasticity of agents, which could be a
result of malfunction or aging of robots, can add to the uncertainty in coordination and
thereby contribute to unsatisfactory global rewards. In such a scenario, the deterministic
agents have to understand the behavior and limitations of the stochastic agents while the
stochastic agents have to plan taking in cognizance their own limitations. Our proposed
method, Deep Stochastic Discounted Factor (DSDF), tunes the discounted factor for the
agents by using a learning representation of uncertainty to update the utility networks of
individual agents. DSDF also helps in imparting an extent of reliability in coordination
thereby granting stochastic agents tasks which are immediate and of shorter trajectory with
deterministic ones taking the tasks which involve longer planning. Results on benchmark
environments shows the efficacy of the proposed approach when compared with existing
deterministic approaches.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has been applied to wide variety of applications which involve
collaborative behavior such as in Traffic management (Chu et al., 2019), power distribution (Nasir & Guo,
2019), fleet management (Lin et al., 2018) etc. There are different methods to encourage this collaboration
among agents. While a set of algorithms focus on learning centralized policies (Jaques et al., 2019; Moradi,
2016), some others learn decentralized policies (Zhang et al., 2018). To improve the performance of the
decentralized policies, some works leveraged centralized training while learning these policies (Tan, 1993;
Rashid et al., 2018; Mahajan et al., 2019). In literature these methods are known as centralized training and
decentralized execution (CTDE) methods.

Subsequently, there are many CTDE methods which are proposed for obtaining collaborative multi-agent
policy. These include preliminary methods like IQL (Tan, 1993; Xu et al., 2021) which has challenges dealing
with non-stationarity and then extends to more recent methods like COMA (Foerster et al., 2018), VDN
(Sunehag et al., 2017), QMiX (Rashid et al., 2018), MAVEN (Mahajan et al., 2019), QTRaN (Son et al.,
2019) etc. In some other works we can also find some of the variants of these methods like (Xu et al., 2021;
Rashid et al., 2020).

All these methods generally assume the agents behave exactly the way as the policy instructed it. However
in many cases, the agents can behave inconsistently/stochastically i.e. sometimes they execute the actions
different from the actions given by the policy. The degree of inconsistency can be different for different
agents i.e. the probability of executing an action different from that of policy can vary. In the rest of the paper,
we call the stochastic agents with the term noisy/degraded agents. This is a common phenomena in industries
where agents (machines etc.) may undergo wear and tear and subsequently are degraded which can result in
noisy actions. To explain it better let us consider the following example.

Consider the case of soccer match wherein one or more players are injured and hence their movement and
precision(for taking long shots) are impacted. Let us assume that these players cannot be replaced and all the
players have similar skills. So the intuitive team strategy would be to let the injured players operate within a
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small radius and just perform small distance passes while leaving the dribbling/running with the ball to other
fit players. Effectively, injured players take simpler short term objectives (passing the ball) while other fit
players take relatively longer and complex goals (like dodging the opponent and running with the ball for
longer distances). This in turn means all the players would need to refactor their look-ahead strategy and
re-tune the respective policies such that reward of overall joint policy is maximized. Such refactoring would
also be essential in a robotic environment, like robots coordinating in a warehouse or in an Industry 4.0 use
case for assembly line manufacturing, where some of the robots may get degraded due to wear-n-tear over
time. Maintenance or replacement for robots is a costly process and needs to be done even when one of the
many robots is slightly degraded in its abilities. The concept described here could enable continuation of
the manufacturing process as one robot adjusts to other’s short commings. This in turn saves cost, increases
efficiency and partially contribute to reducing the carbon footprint by increasing lifetime of a robot.

In the context of RL, the refactoring of look-ahead strategy for each robot can be achieved by adjusting
the discounted factor. For example, noisy (inconsistent) agents should use lower discounted factor i.e. they
should plan for short-term rewards as they are uncertain on the future whereas the good and accordant agents
should use higher discounted factor i.e. they should plan for long-term rewards. However the choice of tuning
of discounted factor for each agent is non-trivial. Since the discounted factor of one agent will have an effect
on another agent’s strategy, such a tuning can only be done based on a unified representation of state of the
environment and differential capabilities of other agents.

Hence in this work we propose an efficient representation which could help all the agents to automatically
understand an effective discounted factor. We call this method as Deep Stochastic Discounted Factor (DSDF)
method, which predicts the discounted factor based on a hypernetwork based Learning representation. The
method leverages observation space of the agents and state of the environment. The proposed method
computes the discounted factor for all agents simultaneously and thereby promotes effective cooperation in
context of the degraded scenario. More details on the method are proposed in Section 3.

In addition, we also came with an iterative penalization method which will penalize the discounted factor by
a factor for each agent based on the noisy action. It should be noted that this method does not consider the
dependency of other agents in tuning the discounted factor .

We make an assumption here that the change in the agent’s noisy behavior can be a represented by a step
function rather than being a continuous one. That means the noisy agents would retain their performance
until certain threshold of further degradation. For each such threshold breach, the agents will require a
bit of retraining, however the discounted factor learning representation does not need any retraining. The
quantification of the threshold is not part of this paper and left for future work.

2 BACKGROUND

In this work, we assume a fully cooperative multi-agent task which is described with a decentralized
partially observable Markov decision process (Dec-POMDP) which is defined with a tuple G =<
S,U, P, r, Z,O,N, γ > where s ∈ S describes the state of the environment Bernstein et al. (2002). At each
step in time, each agent i out of these N agents will take an action ai and for all the agents the join action is
represented by U . Due to the applied actions, the system will transit to P (s′|s,U) : S×U× S −→ [0, 1].
All the agents share common reward function r(s,U : S×U ∈ R and γ : N × 1 −→ [0, 1] is the discounted
factor chosen for N agents.

Here we consider the environment is partially observable in which agent draws individual observation z ∈ Z
according to a observation space O(s, a) : S×A −→ Z. Each agent can have their own observation history
τi ∈ τ : (Z×U which influences the underlying stochastic policy πi(ui|τ i). The joint policy π has a join

action-value function Qπ(st, ut) = Est+1:∞,ut:∞ [Rt|St, ut], where Rt =

∞∑
i=0

γirt+i.

3 PROPOSED METHOD

In this section, we describe the proposed approach which leads to a significantly improved joint policy even
when some agents are noisy and degraded. An important assumption here is “All the agents are conformal
and accordant with policy while starting the experiment. However, after a while, some of the agents
degrade and we need to retrain the policy from scratch so that we address these noisy agents. During
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the execution phase also we assume the same agents are noisy with same degree of degradation. This
is required to circumvent the usage of continuous learning during execution which is outside the scope
of this paper."

The proposed approach is explained in context of QMIX (Rashid et al., 2018) as base collaborative mechanism
between agents since QMIX is considered as one of state of art collaborative mechanism. But, DSDF can
be extended to any other collaborative mechanisms which satisfies centralized training and decentralized
execution.

As discussed, we propose to compute the discounted factor for each agent based on the current observation
and also the global state of the environment. We propose two methods to compute the optimal γi value for
agent i. (i) Iterative penalization method where we penalize the discounted factor of each agent for every
noisy action taken and (ii) DSDF- A hypernetwork based representation of system to compute the appropriate
discounted factors for each agent. For this we train a fully connected neural network which will output the
discounted factor values for each agent i. In both the above cases, the computed discounted factor is fed
to the individual utility networks and used to compute the y, where y = r + Qtot(s

′,u, θ−, γ), where θ−
is the target network. The previous equation can be rewritten as y = r + Qtot(s

′,u, θ−, γi), where γi is
the discounted factor chosen for the ith agent. Now, we update both the utility networks, mixing network
(hypernetwork to be exact) using the different discounted factors for each agent.

3.1 PROPOSED METHODS TO CALCULATE APPROPRIATE γ FOR ALL THE AGENTS

In this work, we propose two methods to compute the appropriate γ for all the agents.

3.1.1 ITERATIVE PENALIZATION METHOD

In this method, we assume the discounted factor is 1 for all the agents during the starting of the experiment
i.e. during retraining from scratch. If the action executed by the agent i is different from that of action given
by the policy we will penalize the discounted factor for the agent i by a factor P . At every one time step,
with every mismatch we will decrease the discounted factor with the factor P . Now, we will use the latest
discounted factor at the time step to compute the utility function. Finally, we use the regular QMIX approach
to update the utility networks and mixing networks.

The penalization factor P should decrease with time steps just like we do in exploration factor in ε-greedy
method. The choice of optimal value for P can be itself posed as optimization problem which is out of scope
of the paper. However, the method proposed in Section 3.1.2 does not require any hyperparameter selection.

3.1.2 DEEP STOCHASTIC DISCOUNTED FACTOR (DSDF) METHOD

In this case, we propose a method to compute the appropriate γi, i = 1, · · · , N using a trained network.
The proposed method is shown the Figure 1.

The idea is to utilize the agent local observations ot,i and global state st at time instant t of the environment
to compute the discounted factor for individual agents. The reason behind is explained below:

Since we assume the underlying collaborative mechanism works for accordant agents, the only issue behind
poor global return is the degradation of some agents and the noise in action selection. Each agent have their
perspective of the global state in form of local observations. Hence local observations will have an idea
on the noise in the degraded agents and we need to estimate the discounted factor depending on the local
observations and also the global state of the environment.

Returning to the main discussion, we use the local observations of agents to estimate the discounted factors
using a fully connected network θγ . However, we require additional information about the global state to the
process. Since the local observations and global state are in different scale, we cannot combine together in
same network. Also, we have non-negativity constraint on the γ values which is enforced by training the θγ
using the concept of hypernetwork as described in (Ha et al., 2016).

The local observations of all N agents are sent to the network θγ which will compute the discounted factor
values γi, i = 1, · · · , N . We utilize the hypernetwork θh to estimate the network weights θγ . The training
process to update the θh is explained below.
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Figure 1: Proposed DSDF approach. The individual target Q-values are multiplied with predicted discounted
values and combined with reward obtained from environment. Finally we use this value to update the N
utility networks and mixing network (In case of QMIX approach)

The θh, θu (utility networks) and θm (mixing hypernetwork) are interlinked with each other. The general loss
function of QMIX is

L(θ) =

B∑
t=1

(
yt −Qtot(τ,u, s : θ

)
) (1)

where θ is the set of parameters of N utility agents (θu,i, i = 1, · · · , N) and mixing hypernetwork θm,
computed over B episodes. Now, if we expand yt

yt = r + γ max
u′

Qtot(τ
′,u′, s′ : θ−) (2)

Now, instead of using single γ value we will take the γ inside the equation and we use the mixing network
function to calculate the value of Qtot

yt = r + max
u′

g(u′, s′, γiQu,i, θtot) (3)

Here g(.) is the mixing network architecture which is parametrized by θtot, Qu,i is the individual utility
function of agent i. Now, we will replace the γi with output of the network θγ . The replaced equation is

yt = r + max
u′

g(u′, s′, fγ(ot1, · · · , otN , θγ)Qu,i, θtot)

= r + max
u′

g(u′, s′, fγ(ot1, · · · , otN , fh(θh, s
′))Qu,i, θtot) (4)

where fγ is the discounted factor hyper network which is parametrized by θγ and fh is the hypernetwork
function which is parametrized by θh.

Replacing the value of ytoti from equation 11 with that of equation 6 we obtain the loss function as

L(θ, θh) =

B∑
t=1

(
rt + max

u′
g(u′, s′, fγ(ot1, · · · , otN , fh(θh, s

′))Qu,i, θ)−Qtot(τ,u, s : θ
)

(5)

There are two unknown parameters in the above equation (i) θ, (ii) θh. Since the parameters are interdependent
on each other i.e. θh on θ and vice-versa, we need to solve them iteratively. For every B samples, first we will
update the hyper network θh for fixed θ and then update θ for the computed θh. So at each step we update the
both θh and θ iteratively.
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Algorithm 1 DSDF method to estimate discounted factor with QMIX

Require: Initialize parameter vector θh, hypernetwork parameters and θ (agents utility networks, maxing
network, hyper network), Learning rate← αγ and αθ, B ← {}

Require: step = 0, θ− = θ
while step < stepmax do
t = 0, s0 = Initial state
while t 6= terminal and t < episode limit do

for each agent i do
τ it = τ it−1 ∪ {(ot, ut−1}
ε = epsilon-schedule (step)

uta =

 argmax
ui
t

Q(τ it , u
i
t) with probability 1− ε

randint(1, |U |) with probability ε
end for
st+1 = p(st+1|st,ut)
B = B ∪ {(st,ut, rt, st+1}
t = t+ 1, step = step+ 1

end while
if |B| > batch-size then

b← random batch of episodes from B
if θh not converged then

Update θh = θh − αγOθh(∆Qtot)
2

end if
Update θγ = fγ(O, θh), where O is the set of observations for all agents in the sampled batch.
Update Qtot using the latest updated θγ .
Update θ = θ − αθOθ(∆Qtot)2

end if
if update-interval steps have passed then
θ− = θ

end if
end while

An important point to note here is that θ needs to be updated for every batch of samples as each batch will
have new information on the environment. However in real world the degree of degradation might become
stationary after some time (an injured soccer player or a robot degrades till a point but holds on to the level
of degradation). Consequently the noise in the degraded agents may remain constant for a while. Hence
the θγ network will converge after some iterations once it has figured out the right values of discounted
factor. Hence at that point there is no need to update the θγ and θh. However it should be noted that the
discounted factor value will change depending on the local observations and state of the environment during
the execution. Please refer to Figures 2a, 2b and 2c, where training of θγ is done on one experiment (one
scenario of degradation) and the other experiments used the same θγ .

We can also apply the proposed DSDF approach to the case where all the agents are deterministic. In this
case, we expect it will give improved performance when compared with existing method (like QMIX) as it
will dynamically tune the discounted factor γ for each agent, based on its local observation also, rather than
using constant γ for all the agents.

The proposed DSDF method to estimate the discounted factor with existing QMIX method is explained in
algorithm 1. It has the following two advantages when compared with iterative penalization method.

1. DSDF method can dynamically change the discounted factor whereas the simpler method of
penalizing it will only decrease it. Also, for the accordant agents, the discounted factor is always 1
and hence it may degrade those agents performance for accidental deviation.

2. DSDF method calculates the discounted factor of an agent relative to other agents. Hence it can
consider complex interactions between agents while deciding discounted factor for the agents.
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4 RESULTS AND DISCUSSION

The proposed approach is validated on two different benchmark environments (i) SMAC (Samvelyan et al.,
2019b) and (ii) Modified lbForaging (Papoudakis et al., 2020). To induce the degradation/noise in the agents,
a noisy component is added which will decide whether to execute the action given by the policy or to take a
random action from set of valid actions.

4.1 DESCRIPTION OF THE ENVIRONMENTS

4.1.1 STARCRAFT ENVIRONMENT

SMAC (Samvelyan et al., 2019b) simulates the battle scenarios of a popular real-time strategy game StarCraft
II. In this challenge, a team of units, each controlled by an agent observes other units within a fixed radius
and takes actions based on their local observations. These agents are trained to solve challenging combat
scenarios known as maps. Similar state space, observation space, action space and reward are used as with
the (Rashid et al., 2018). The results were compared on three different set of maps (i) 2s_3z, (ii) 8m and (iii)
1c_3s_5z.

For each map, 10 different sets of experiments were performed with different number of noisy agents
in each experiment and with varying degree of degradation values. For each experiment, the probabilistic
degradation values β were assigned to the agents, as shown in the Figures 2a, 2b and 2c.

Here β means the agent will perform actions given by the policy with 1 − β probability and will perform
random actions with β probability. The degradation value of 0 implies the agent is good or accordant with
policy. It should be noted that the experiments also included the case where all the agents are accordant to
demonstrate the applicability of the proposed approach to general case where there are no noisy agents.
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Figure 2: Degradation values of agents considered in each experiment for SMAC

4.1.2 LBFORAGING ENVIRONMENT

This environment contains agents and food resources randomly placed in a grid world. The agents navigate in
the grid world and collect food resources by cooperating with other agents. The environment was modified by
adding a couple of additions to the environment as mentioned in the appendix A.

100 food resources were placed in the 30× 30 grid and 6 agents were chose to consume those resources. The
episode is terminated either when there are no food resources available in the grid or number of time steps
reached 500. Here out of 6 agents, three agents 3 are deterministic (1,3,4) and 3 are stochastic (2,5,6) with
degree of stochasticity of 0.2, 0.4 and 0.6 respectively. The targets were chosen for individual agents such
that there are exact amount of food resources available to achieve targets for all the agents.

4.2 RESULTS ON ENVIRONMENT

In this section, experiments were performed on the above two environments with proposed DSDF, iterative
penalization, QMIX and IQL. The pymarl library was utilized for the same (Samvelyan et al., 2019a).
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4.2.1 SMAC

To evaluate the performance of the agents here, the training was paused after every 100 episodes and testing
for 20 episodes. The plot of the % test winning episodes for the experiment index 1 (as per Figure 2a) is
shown in the Figure 3a. The discounted factor plot is not given for this example as the environment is complex
and will take many time instants to converge which makes the graph difficult to read.

Notably, the learning representation of discounted factor which is the key part of proposed DSDF approach
is trained only on the experiment 1 for each of the three map scenarios. For remaining 9 experiments, the
respective trained learning representation was utilized to provide discounted factor γi value for each agent i.

From the plot it can be seen that the IQL approach performed poorly since the two of the agents are noisy
and thus it resulted in poor collaboration between the agents. Although QMIX gave good performance
when compared with IQL, it also settled at around 40% winning rate. Both these methods performed below
expectation as they look too much into future with the choice of highest discounted factor (γ = 0.92) which
leads to poor planning.

The iterative penalization method improves the collaboration further to 60%, whereas the proposed DSDF
method improved collaboration by achieving the top value of 95%. The reason being the discounted factor is
being predicted by non-linear network which utilizes the complex interactions between agents to come with
an appropriate discounted factor value when compared to iterative penalization method.

For each experiment in all the three map scenarios, the proposed DSDF was evaluated along with the existing
methods. The plot of the % test wins (obtained at the time instant given next to the map names) obtained for
each experiment in respective map scenarios (i) 2s_3z (220× 104), (ii) 8m (200× 104) and (iii) 1c_3s_5z
(300 × 104) is shown in Figures 3b, 3c and 3d respectively. From the plots it is evident that the proposed
DSDF approach performs better than all the existing methods, which shows the efficacy of the proposed
DSDF approach. It is also evident that the proposed DSDF approach performs better even when composition
of noisy agents comprises about 75% of total number. In addition the iterative penalization method also
performs better than the existing methods. The proposed approach also performs well when compared with
QMIX for the case where all the agents are deterministic (experiment 2 for 2s_3z, experiment 5 for 8m and
experiment 4 for 1c_3s_5z) which shows the generalization of the approach. The reason is that the proposed
DSDF approach dynamically chooses the best discounted factor based on the agent’s degradation (current
capability of the agent) whereas the existing methods use constant discounted factor.

Since credit assignment of individual agents is a challenge in SMAC environment, the performance of
individual agents is not depicted. It is for this very reason, the results are then analyzed on the lbForaging
environment.

4.2.2 LBFORAGING

The individual targets for respective agents are 20, 20, 30, 60, 30 and 60. The sum of all food levels available
in the grid were restricted to a number T such that total sum of targets for individual agents is equal to T .
An important point to be noted that the value of T is not known to any agent during training or in
execution. Here the sum of targets is chosen to be T = 220. The setting necessitated the agents to collaborate
within themselves to reach their respective targets.

The predictions of the discounted factor values using DSDF method for all the time steps is shown in the
Figure 4a. As can be seen, the agents discounted factor changes whenever we update the discounted factor
network. From the plot, it can be observed that the values got almost saturated after some updates which
shows the hypernetwork is converging and hence after this time the discounted factor hyper network need not
be updated. It should be noted the discounted factor values will change (depending on the local observations
and state of the environment) with every batch of samples.

Also, it can be observed the discounted factor values for accordant agents are higher (>= 0.9) which suggests
the algorithm makes the respective utility functions depend more on the future values. This is quite evident as
these agents need to look more into future and decide current actions. On the other hand noisy agents should
choose lower discounted factor so that they won’t take future rewards into consideration. From Figure 4a, it
can be observed that the agents with high degree of degradation i.e. they have less probability of executing
actions given by the policy, uses less discounted factor. This is in accordance with the assumption that the
more the noise in the agents, the less the discounted factor value should be and vice-versa.

7



Under review as a conference paper at ICLR 2022

0 20 40 60 80 100 120 140 160 180 200 220
Time Instants (*10000)

0

20

40

60

80

100

%
 T
es
t 
w
in
s

(a) Time instant wise rewards for Experiment 1
for 2s_3z map

2 4 6 8 10
Experiment Index

0

20

40

60

80

100

Va
lu
e 
at
 2
.2
 M

ill
io
n 
ti
m
e 
st
ep

(b) % battles won for the case 2s_3z

2 4 6 8 10
Experiment Index

20

40

60

80

100

Va
lu
e 
at
 2
.0
 M

ill
io
n 
ti
m
e 
st
ep

(c) % battles won for the case 8m

2 4 6 8 10
Experiment Index

0

20

40

60

80

Va
lu
e 
at
 3
.0
 M

ill
io
n 
ti
m
e 
st
ep

(d) % battles won for the case 1c_3s_5z0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Episodes

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Ag
en

t 
2

DSDF Iterative Penalization QMIX IQL

Figure 3: Returns obtained for StarCraft environment for all the experiments for different map scenarios
along with confidence intervals. The dots in the figures 3b, 3c and 3d are connected for intuitive comparison.

The proposed DSDF approach outperforms the existing methods and iterative penalization technique.
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Figure 4: Returns obtained for lbForaging environment along with discounted factor prediction plot. The
advantage obtained using DSDF approach when compared with existing methods is not significant here since

the environment requires lesser collaboration between agents when compared with complex SMAC
environments. However, the results for this environment is depicted as credit assignment for individual agents

is possible here.

The performance of the individual agents are shown in Figure 5. In all the plots, first 10 indices correspond
to latest 10 training episodes and next indices correspond to 10 execution episodes. From the plots, it can
be concluded that accordant agents, except agent 4, trained using DSDF method reached their targets in
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Figure 5: Comparison of individual agents performance using proposed DSDF approach vs existing ap-
proaches for lbForaging environment. One can observe the deterministic agents achieved targets in almost
all the test episodes whereas the stochastic agents consumed more resources when compared with existing
methods. This confirmed our look-ahead strategy works better and results in good collaboration

all the execution episodes. On the other hand, the accordant agents trained with vanilla QMIX and IQL
have also reached their respective targets. The performance of the noisy agents trained using the proposed
DSDF method as well as iterative penalization method outperforms the vanilla QMIX and IQL. All the noisy
agents with smaller targets reached their respective targets while the agent with higher target settled closer to
the target value. For the case of accordant agents, the agents trained using proposed DSDF method either
performed better (Agent 3 and 4) or shown comparable performance (Agent 1) when compared with QMIX
and IQL. This could be attributed to the DSDF learning representation which helps accordant agents realize
the limitation of noisy agents and thereby assume additional work-load to compensate for underperformance
of noisy agents. On the other hand, the agents trained with iterative penalization method demonstrates at-par
performance with QMIX and IQl.

The mean reward obtained for every time step with 95% confidence interval during evaluation is shown in
Figure 4b. From the plot, it is evident that the proposed DSDF method resulted in higher average reward
when compared to iterative penalization method and other state-of-art methods. The agents trained with
iterative penalization method also fared comparably well when compared with QMIX and IQL methods.

5 CONCLUSION

In this paper, we propose a novel method, DSDF, to handle a mix of accordant and noisy agents which together
learns a collaborative joint policy. Along with the above, an Iterative Penalization method is proposed, which
though has lesser gains than DSDF. Our proposed methods can be combined with any state of art MARL
algorithms without much impact to existing computational complexity.

Our proposed method is tested on the two different environments and demonstrated clear improvement
in results when compared with QMIX and IQL methods both for individual and global returns. Future
directions include extending the technique to situations where environment might also be noisy in regions
(like oil patches on floor). To the best of our knowledge, this is the first time, such an interaction involving
degraded/noisy and accordant agents have been explored in context of multi-agent reinforcement learning.

The method could have significant usage in reducing maintenance cost for future Industry 4.0 scenario aided
by low-latency 5G communication where multiple robots might need to co-ordinate in a factory floor.
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Appendix
A MODIFICATIONS TO LBFORGAING ENVIRONMENT

The modifications to the environment are as follows.

1. We added two additional actions ’Carry on’ and ’Leave’ to the agents. The ’Carry on’ action
enables the agent to store the food resources which they can subsequently leave in another time
step and/or state for consumption of another agent. The ’Leave’ action enables to agent to drop the
resources which they consumed.

2. Each agent is given a target of the resources they need to consume. For this, we modify the reward
function by adding targets to the them. Our eventual goal is to ensure all agents reach their targets.
This means if some of the agents consumed in excess they must realize and give up the extra
resources for benefit of other agents.

B COMBINED LOSS FUNCTION USED IN THE WORK

The general loss function of QMIX is

L(θ) =

B∑
t=1

(
yt −Qtot(τ,u, s : θ

)
(6)

where θ = [θu,i ∀ i = 1, · · · , N , θtot] is the set of parameters of N utility agents and mixing network. Now,
if we expand yt

yt = r + γ max
u′

Qtot(τ
′,u′, s′ : θ−) (7)

Now, instead of using single γ value we will take the γ inside the equation to handle the stochastic agents

yt = r + max
u′

g(u′, s′, γiQu,i, θ
−
tot) (8)

with i ranges from 1, · · · , N . Here g(.) is the target network of mixing network architecture which is
parametrized by θ−tot, Qu,i is the individual utility function of agent i. The individual utility function can be
represented as

Qtu,i = fu,i(o
t
i, u

t−1
i , θ−u,i) (9)

where fu,i is the function of the ith utility network paramterized by θu,i.

Substituting equation 9 in equation 8 gives

yt = r + max
u′

g(u′, s′, γifu,i(o
t
i, u

t−1
i , θ−u,i), θ

−
tot) (10)

In the paper, the idea is to predict the γi ∀ i = 1, · · · , N and use them to scale the predicted Q-values of
individual agents from the network. Now, we will replace the γi with output of the network θγ . The replaced
equation is

yt = r + max
u′

g(u′, s′, fγ(ot1, · · · , otN , θγ)fu,i(o
t
i, u

t−1
i , θ−u,i), θ

−
tot)

= r + max
u′

g(u′, s′, fγ(ot1, · · · , otN , fh(θh, s
′))fu,i(o

t
i, u

t−1
i , θ−u,i), θ

−
tot) (11)
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where fγ is the discounted factor hyper network which is parametrized by θγ and fh is the hypernetwork
function which is parametrized by θh. The hypernetwork θh is

Replacing the value of ytoti from equation 11 with that of equation 6 we obtain the loss function as

L(θ, θh) =

B∑
t=1

(
rt + max

u′
g(u′, s′, fγ(ot1, · · · , otN , fh(θh, s

′))fu,i(o
t
i, u

t−1
i , θ−u,i), θ

−
tot)−Qtot(τ,u, s : θ

)
(12)

Replacing the agent utility networks function equation 9 in the equation 12 gives

L(θ, θh) =

B∑
t=1

(
rt + max

u′
g(u′, s′, fγ(ot1, · · · , otN , fh(θh, s

′))fu,i(o
t
i, u

t−1
i , θu,i), θ

−
tot)−Qtot(τ,u, s : θ

)
(13)

In QMIX, the θtot is computed by a separate hypernetwork which will update the weights from a hypernetwork.

In this work, we use the combined loss function in equation 13 to estimate the θ and θh.

C DETAILS OF THE NETWORKS USED IN SMAC ENVIRONMENT EXAMPLE

We used the exact QMIX network architectures for this environment as used in pymarl library (Rashid et al.,
2018).

D DETAILS OF THE NETWORKS USED IN LBFORAGING ENVIRONMENT EXAMPLE

Below are the details of the networks we used in the implementation example

Implementation details used in the paper

Environment Parameters

1. Number of agents - 6
2. Number of food resources - 100
3. Grid size - 30× 30

4. Sight - 10
5. Max Episode steps - 1000
6. Cooperation - True
7. Max player level - 20
8. Stochastic level of agents - [0,0.2,0,0,0.3,0.6]

Network Parameters

1. Agents utility networks are 3-layer networks. First layer of the network is MLP with 318 nodes
followed by GRU layer with final layer being MLP layer with 8 nodes output.

2. Mixing network is chosen as two layer fully connected network with 6 inputs nodes in the first layer
and eight output nodes in the last layer.
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3. Mixing hypernetwork is also chosen as two layers with 40-node first layer followed by another layer
matching mixing layer weights dimension.

4. Discounted factor network is also chosen as two layer network with 384 nodes in first node followed
by 6 output nodes in the last layer.

5. Discounted factor hypernetwork is chosen as two layers which will match the dimension of the
discounted factor network.

6. The learning rate for all the networks is chosen to be 0.96 since at this learning rate we achieved
good results.

7. Discounted factor values for the QMIX and IQL methods are chosen as 0.92. This value is obtained
after a grid search.
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