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Figure 1: SimpleStrat recovers diversity when temperature scaling fails. For the prompt “Name
a U.S. state,” language models exhibit a strong bias toward “California.” Our method, SimpleStrat,
employs automatic stratification to uncover salient diversity dimensions (e.g., whether a state lies
east or west of the Mississippi River) and applies stratified sampling to achieve balanced and diverse
coverage across responses.

Abstract

Generating diverse responses from large language models (LLMs) is crucial for ap-
plications such as adversarial testing, search, and synthetic data generation, where
diversity provides distinct answers across generations. Previous approaches rely
solely on increasing the temperature, sacrificing quality. Furthermore, the model’s
next-token probabilities may not be representative of the true answer distribution.
To combat these challenges, we propose SimpleStrat, an alternative that uses the lan-
guage model itself to partition the solution space into strata from which to sample.
To measure resampling diversity, we introduce CoverageQA, a dataset of under-
specified questions with multiple equally plausible answers. We propose measuring
resampling diversity as the KL Divergence between the output distribution and the
uniform distribution over valid ground truth answers and use recall as an alternative
when assessing proprietary models. On CoverageQA, SimpleStrat improves diver-
sity across all temperatures, showing orthogonal benefits. Quantifiably, we achieve
as much as 2X better recall when applied to GPT-4o, and an average reduction
in KL divergence by 0.36 when applied to Llama 3. Furthermore, we show that
SimpleStrat achieves more resampling diversity at temperature T=0 than scaling
temperature to T=1 on creative writing, an open-ended domain. Implementation
and dataset available at https://github.com/jwong8314/simplestrat .

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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Figure 2: SimpleStrat workflow. SimpleStrat employs 3 phases: 1) auto-stratification to identify good
dimensions of diversity that divide the solution space into equal partitions, 2) heuristic estimation to estimate the
proportion of solutions in each stratum, and 3) probabilistic prompting where a concrete prompt is randomly
sampled from the prompt distribution specified by the previous two phases. Critically, diverse resampling comes
from both the random choice of prompt as well as the temperature of the LLM decoding.

1 Introduction.

Large language models (LLMs) are routinely resampled in order to get a wide set of plausible
generations. Three key settings where this is important are: 1) improving exploration for planning
and search (e.g. Tree-of-thought (Yao et al., 2024), AgentQ (Putta et al., 2024)), 2) generating inputs
for integration tests, especially for LLM systems Samvelyan et al. (2024), and 3) generating diverse
datasets for post-training (Dubey et al., 2024) and fine-tuning (Dai et al., 2023). These use cases
rely on resampling outputs to generate multiple plausible utterances in hopes of capturing multiple
answers and candidate solutions.
Naively, increasing temperature, a parameter that controllably flattens an LLM’s softmax, can
improve an LLM’s response diversity. However, temperature introduces two problems. First, higher
temperatures degrades generation quality. Recent evidence suggests removing temperature scaling
is desirable for multi-step reasoning to reduce errors compounding (Zhang et al., 2024). This is
especially critical in syntax sensitive settings like code generation where low temperatures (≤ 0.15)
are often used. Second, controlling for temperature does not necessarily improve diversity in the
answer space. In Figure 1, we illustrate increasing temperature does not always lead to meaningful
response diversity especially when the model suffers from severe mode collapse. When asked to
"Name a US State," the model heavily skews towards answering "California", high temperature only
marginally softens the skew while surfacing incorrect answers and hurting instruction following.
Our goal is to improve response diversity when resampling LLMs, even in cases of severe mode
collapse Lanchantin et al. (2025) in next-token probabilities without manual intervention. Our
analysis reveals that GPT-4 assigns 87% of its logit weight to "California" when prompted to name a
US state. This observed bias can be attributed to the worsening of calibration due to post-training as
reported in the GPT-4 tech report (OpenAI et al., 2024). This stark bias mirrors human cognitive bias,
exemplified by the blue-seven phenomenon—where individuals disproportionately select blue and
seven when asked to choose a random color and number (Towse et al., 2014). To counteract similar
biases in human populations, social scientists, particularly in political polling, employ stratified
sampling techniques (Simpson, 1951; Howell, 1992; Morris, 2022). We propose adapting this method
to address mode collapse in LLMs.
We propose SimpleStrat, a training-free sampling approach to increase diversity of responses. Sim-
pleStrat improves LLM generation diversity without compromising quality, yielding outputs that
better align with the task’s objective answer distribution. SimpleStrat consists of three stages: auto-
stratification, heuristic estimation, and probabilistic prompting. Even if a language model cannot
generate diverse solutions, we find that it can be prompted to identify useful partitions of the solution
space based on the user request. We call this process auto-stratification. In Fig. 1, SimpleStrat
identifies two semantically significant strata from user request, "Name a US State": "(East/West) of
the Mississippi River" and "(North/South) of the Missouri Compromise Line."
Next, the heuristic estimation computes the joint probabilities across all strata. Returning to Fig. 1,
SimpleStrat estimates the proportion of solutions in each four possible regions of the US. Finally,
SimpleStrat samples a stratum from the joint probability distribution and augments the original user
prompt with constraints based on the selected stratum. This prompt can then be used to sample
fully-formed answers to the user query. We note that this approach to repsonse diversity is orthogonal
to increasing temperature which also introduces variance to the generation.
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Response diversity is notoriously difficult to measure as it requires a notion of quality specific
to the application. Otherwise, random tokens present a trivial solution to achieving diverse yet
meaningless responses. On the extreme of measuring quality, question answering benchmarks capture
the quality of the responses but are carefully designed to only admit one valid solution. As such,
a fitting setting to measure diversity is required to have underspecified questions for which more
than one plausible answer exists. Distinct from ambiguous question answering where the goal is
to measure the model’s ability to ask clarifying questions, we seek questions where the quality of
the response can be independently verified without additional context. Based on these requirements,
we introduce CoverageQA, a benchmark of underspecified questions with on average 28.7 equally
plausible answers.
We adopt three measures of response diversity based on the setting: 1) In settings where the target
answer distribution and logits are available, we measure distributional diversity by computing the
Kullback-Leibler (KL) Divergence from the response distribution to the target answer distribution
over valid answers. By measuring diversity this way, we can both penalize models for producing
nonsense responses and missing valid responses. 2) In settings where we have only black-box access
to the model, the response distribution can be estimated only by sampling. Since the tail of the
distribution is inherently difficult to capture, recall and precision serve as a natural proxy for diversity
and quality. We call this coverage diversity. 3) Finally, in settings where exhaustively enumerating
valid solutions is infeasible, we cannot assess if valid responses are missing. As such, we propose
text embedding distance as a proxy for diversity. We assess SimpleStrat across these three settings:
measuring distributional diversity with Llama 3 and coverage diversity over Claude and GPT-4o with
prompts from CoverageQA as well as open-ended diversity with embedding distance on creative
writing prompts from WritingPrompts Fan et al. (2018).
When assessing distributional diversity, we show SimpleStrat samples from a less biased distribu-
tion by computing the response distribution of our method based on next-token probabilities. On
CoverageQA, SimpleStrat implemented on Llama 3 models demonstrate a substantial 0.36 average
reduction in KL Divergence, signifying a substantial decrease in dissimilarity between the model’s
response distribution and the target distribution. In the blackbox setting, we see as much as 2×
increase in recall, especially evident at low temperatures. These gains lead to a consistent increase in
diversity on top of temperature scaling, leading to improved diversity at all temperatures. Finally,
we consider the open-ended setting of creative writing. We measure diversity by resampling pairs
of creative writing story plots from WritingPrompts Fan et al. (2018) and see similar embedding
distances at temperature 0 sampling with SimpleStrat comparable to temperature 1 with standard
decoding. Crucially, these gains do not come at the expense of generation quality.
Concretely, our work contributes the following:

• CoverageQA dataset of 155 underspecified questions automatically generated from Wiki-
Data (Vrandečić & Krötzsch, 2014) automatically labeled with an average of 24.1 valid
solutions per question.

• We propose SimpleStrat a training-free approach for improving diversity with auto-
stratification and probabilistic prompting by introducing controlled randomness to the
prompting process.

• We demonstrate SimpleStrat improves diversity across several metrics and settings. On
CoverageQA, we achieve an average of 0.36 reduction in KL Divergence on Llama 3
models and as much as 2× recall for GPT-4o. Further on WritingPrompts Fan et al. (2018),
SimpleStrat shows similar pairwise embedding distance at temperature 0 as temperature 1
with standard sampling.

2 Related work.

Temperature Scaling. Going back as far as Platt scaling (Platt, 2000) and later applied to neural
networks (Hinton, 2015; Guo et al., 2017), temperature scaling controls the randomness of probability
distributions1. For dataset generation with LLMs, Chung et al. (2023) extends temperature-based
diversity by additionally downsampling previously sampled tokens. To address the decrease in quality,
they advocate for human intervention to manually filter out irrelevant diversity and manually fix
wrong answers in QA tasks. We show in our work that temperature scaling leaves much to be desired.

1Use of a temperature parameter goes back at least to Verhulst’s development of logistic regression in
response to Malthus’ An Essay on Principle of Population (Malthus, 1798; Verhulst, 1838).
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Improving Language Model Diversity with Search. In autoregressive generation, choices over
early tokens tend to have more impact on the eventual completion. Beam search ameliorates this
bias by allowing for multiple candidates in searching for the probability maximizing completion,
Maximum a Posteriori (Lowerre & Reddy, 1976). At the end of the search, beam search will have
multiple candidate solutions encountered during search. Diverse Beam Search (DBS) proposes
introducing an auxiliary dissimilarity objective quantifying the diversity among candidates in the
beam (Vijayakumar et al., 2016). Especially on the task of image captioning, DBS shows improve-
ment for discovering higher probability completions and discovering diverse continuations. Our
improvements are orthogonal to beam search and our in-context approach corrects for inaccuracies in
the modeled likelihoods of candidate solutions.
Other approaches (Samvelyan et al., 2024; Bradley et al., 2023; Novikov et al., 2025) based on
MAP-Elites (Mouret & Clune, 2015) require manual determined dimensions of relevant diversity and
discretization of the solution space into equally-sized bins. Diversity is then achieved by mutations
and evolutionary methods to cover adjacent bins. This search is potentially slow if the seed set of
solutions does not already provide coverage over the solutions space. Our approach does not need
seed solutions and avoids manually identifying dimensions of diversity. Instead, we rely solely on
capabilities within the model.
In-context Methods to Increase Diversity. When LLMs were first introduced, LMs were used
to augment existing datasets with more diversity (Wei & Zou, 2019; Ng et al., 2020; Dai et al.,
2023). As natural language is difficult to guarantee correctness, the space of augmentations is
conservatively limited to thesaurus-based synonym replacement. More recently, Language Model
Crossover proposes presenting a random subset of existing data points to an LLM and ask it to
hallucinate more data points that likely came from the same distribution Meyerson et al. (2023). This
is limited to combining aspects of existing data points into new generations. Although these methods
address the limitations of using the model’s token probabilities by in-context learning, they are
ineffective at generating meaningful diversity. They are limited to either a human-identified domains
of interest or trivial variations sourced from synonyms or random subsampling of the existing data.
Applications of Diversity. As shown by Raventós et al. (2024), dataset diversity is crucial for model
generalization. Below sufficient coverage of the desired task, the model will resort to memorization,
but when sufficient diversity is presented it will learn to generalize. As LLMs are increasingly
used for generating synthetic data (Dubey et al., 2024), methods for diversity will be critical. This
insight follows from extensive work demonstrating the benefits of data augmentation for bias mit-
igation (Sharmanska et al., 2020) and domain adaptation (Huang et al., 2018; Dunlap et al., 2023;
Trabucco et al., 2023).
In code and math applications, checking validity efficiently enables more aggressive augmentations.
One such augmentation for diversifying the languages supported by the model, data is translated to
different natural or programming language (Chen et al., 2023; Cassano et al., 2023). In other domains
such as images, text-to-image models have been used to diversify data into uncommon settings. In
the setting of diversifying an accumulating dataset, these methods can take advantage of an existing
source of variance (for translation) or a set of previously generated data points. Our primary focus is
on settings where SimpleStrat is unaware of past data samples to support a wider set of applications.
Ambiguous or Underspecified Datasets. ClariQ (Aliannejadi et al., 2020), CLAQUA (Xu et al.,
2019), and AmbigQA (Min et al., 2020) focus on assessing LM’s ability to formulate clarifying
questions. These questions tend to have only 2 candidate solutions, as there exists a ground truth
clarifying question whose answer fully specifies the question. Ambiguous Trivia QA (Kuhn et al.,
2022) also looks at under-specified questions but assumes a user has contextual information that’s
hidden. For instance, "Where in England was she born?" or "Who was the first woman to make a
solo flight across this ocean?". We distinguish our underspecified question setting in this paper as one
where the user is indifferent. In this setting, given an answer it should be easy to verify the answer is
correct without additional hidden context.
Coding datasets like Description2Code (Caballero et al., 2016), Wiki2SQL (Zhong et al., 2017),
SPIDER (Yu et al., 2019), code-contest (Li et al., 2022), Apps (Hendrycks et al., 2021), and Leetcode
Hard Shinn et al. (2023) admit multiple valid answers. However, the space of valid implementations
is infinite, making diversity difficult to measure, and good coding practices enforce preferences
among valid implementations. We additionally construct CoverageQA to have an exhaustive list of
ground-truth answers in order to measure the impact of diversity on coverage.
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3 Method

3.1 Workflow overview

As illustrated in Figure 2, SimpleStrat consists of three stages, 1) auto-stratification, 2) heuristic
estimation, and 3) probabilistic prompting. The outputs of the first two stages can be cached per
prompt to avoid recomputing partitions.

3.2 Auto-Stratification

For a given user request, ruser, we call S, the space of valid solutions. In many settings, the space
of potential solutions, S may be naturally partitioned based on geography, parity, or demographics.
The partition function, P : S → L, assigns any solution s from S to a partition label lj in L the set of
partition labels. Partition functions are most useful if they’re as balanced as possible. A balanced
partition function minimizes

imbalance(P,L) = max
l∈L

(|{s | P (s) = l}|)−min
l∈L

(|{s | P (s) = l}|)

. The goal of auto-stratification is to search for a set of partition functions P = {P1, P2, ..., Pn}, that
are balanced. Traditionally, in settings where there are oft-overlooked or a large or infinite number
of valid solutions, stratified sampling can ensure our limited budget of samples covers the space of
solutions.
Based on this insight, we prompt the language model to identify promising dimensions of diversity.
Concretely, the language model proposes good clarifying questions that will potentially eliminate
half of the potential solutions based on the user request. These clarifying questions tend to align with
semantically significant differences. In the running example, when asked, "Name a US State," the
states can be partitioned based on East or West of the Mississippi River. See App. E for full prompt.

3.3 Heuristic estimation

As previously observed in Zou et al. (2022); Yan et al. (2023); Halawi et al. (2024), LLMs can
used in forecasting to estimate well-calibrated probabilities of events that have not yet occured. For
forecasting, the model’s success benefits substantially from having updated news through web search.
Although unnecessary for the offline benchmarks we consider, this may be helpful for accurate
estimation depending on the application. However, as our goal is diversity, we stand to benefit even
from coarse-grain approximate proportions. We employ a similar reasoning template as Halawi et al.
(2024) to estimate the proportion of valid solutions that lies within each strata.

In heuristic estimation, we look to estimate the joint distribution for each stratum, l⃗ = [l1, l2, l3, ...]. For-
mally, we define the weighted-stratification as W = (P, ρ), where ρ(⃗l) = Prs∼S [P1(s) = l1,j , P2(s) =
l2,j , P3(s) = l1,j , ...] for P identified in auto-stratification. To improve scalability, we assume the parti-
tion functions are independent and multiply the marginal probabilities to get the joint probabilities
associated with each stratum.

ρ(l1, l2, ..., lm) =
∏
i

ρi(li) (1)

We ask the LLM for each lj , to estimate the marginal proportion of solutions this holds for. As
this may not add up to 1, we normalize the estimates to form a proper probability distribution. For
simplicity, we focus in this work on settings where all solutions in the solution space are equally likely.
As noted in Sec. 3.2, we encourage the LLM to propose balanced partitions. However, heuristic
estimation allows us to support imbalanced partitions by reweighing the sampling to favor strata with
more potential solutions. More details on prompting in App. F. In Fig. 2, the LLM determines the
joint probabilities across two strata, the Mississippi River and the Missouri Compromise Line.

3.4 Probabilistic Prompting.

Post heuristic estimation, a set of strata are sampled from the joint probability distribution in Eqn. 1.
This implicitly forms a probabilistic prompt, which specifies a distribution over concrete language
model prompts. After a prompt is sampled, the LLM is then used to sample from within the stratum.
Back to Fig. 2, East and South are sampled from the Mississippi and Missouri strata respectively,
augmenting the final prompt with diverse specifications.
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Formally, call l⃗ a stratum defined by choices of li,j for each Pi across all i. Call Prompt a function
that maps the stratum, l⃗, to a concrete prompt, Prompt(⃗l). The probabilities of the prompt distribution
are defined by Pr[Prompt(⃗l)] = ρ(⃗l). We then compute the probability of a solution as follows:

Pr[s] =
∑
l⃗

Pr[Prompt(⃗l)] Pr[s | Prompt(⃗l)]

=
∑
l⃗

ρ(⃗l) Pr[s | Prompt(⃗l)].
(2)

The specific language model’s next-token probabilities define Pr[s | Prompt(⃗l)].
As the probabilistic prompt is in a human readable form, the user can inspect the properties and the
proportions and modify it to adjust for unwanted bias or remove unwanted factors. For instance,
when proposing English baby names, we may want the model to propose male vs female names
equally often, even though there are more female than male baby names 2. This interpretability and
controllability is a major advantage of SimpleStrat in practice.

4 CoverageQA Dataset

4.1 Overview

We wish to evaluate generation diversity in settings where 1) user requests have more than one
distinct correct answer, 2) and answers are equally likely, and 3) answers do not require hidden
or implicit context to verify. These three features allow us to measure diversity quantitatively in
terms of language model ability to represent the target distribution when resampled. The second
condition makes the evaluation easier, reducing the problem to a measure of coverage over the
solution space. Unfortunately, existing benchmarks discussed in Sec. 2 do not suffice. As such,
we introduce CoverageQA for assessing the language model generation diversity. The dataset
consists of two splits: CoverageQA-Curated, manually curated naturally underspecified questions,
and CoverageQA-Wikipedia an auto-generated dataset of underspecified questions.

4.2 CoverageQA-Wikipedia Approach

To generate CoverageQA-Wikipedia, we leverage the Wikidata knowledge base which contains all
relational mappings between entities and properties in Wikipedia. Our generation process starts with
an initial item-property pairing and a constraint on the number of correct answers. We then perform a
recursive search through Wikidata to find all sets of item-property constraints and their corresponding
answers that meet our criteria. These constraints are subsequently transformed into natural language
questions using GPT-4.
Consider an initial pairing of the Wikidata item "country" with the property "instance of". We might
specify that we want between 20 and 40 valid answers. Our search would then yield a set of all
constraints from the knowledge base that fit the initial conditions, such as "instance of country, located
in Europe, uses Euro as currency". GPT-4 would convert this into a natural language question like
"Name a country located in Europe that uses the Euro as its currency."
This approach has several advantages: 1) it allows us to create a diverse and extensive benchmark
that can be easily updated with weekly updates to Wikidata, 2) it allows us to arbitrarily specify the
size of the solution space as constraints can be added or removed to form; and 3) this process in
principle can curate a large dataset with little manual effort or supervision. In the initial instantiation
of CoverageQA-Wikipedia dataset, we publish 145 questions across 6 domains, corresponding to
a different initial seed item-property pair. To ensure quality, we employ both automatic filters
(e.g., excluding certain generic properties) and manual curation to remove redundant or unsuitable
questions. This dataset can be substantially expanded as we only used 4 domains, but we leave this
for future work. For details on the dataset breakdown and details on the question generation process,
see Appendix A.

6



0.15 0.55 0.75 1 1.25 1.5
Temperature

0

20

40

60

80

100

Co
un

t

GPT-4o

0.15 0.55 0.75 1 1.25 1.5
Temperature

0

20

40

60

80

100

Co
un

t

SimpleStrat (GPT-4o)

Erie Huron Michigan Ontario Superior Invalid

Lakes
Erie
Huron
Michigan
Ontario
Superior
Invalid

Figure 3: Diversity scaled with temperature. We show 100 resamples of "Name one Great Lake in the
United States." On the left, we show the result of resampling GPT-4o 100 times per temperature. In contrast to
SimpleStrat on the right, GPT-4o at temperature 1.5 still only samples Lake Huron once and never samples
Lake Ontario. SimpleStrat improves the diversity across all temperatures.

5 Results

5.1 Measuring Diversity

We consider three measures of diversity. In the setting where we have access to all ground truth
answers, we can measure distributional diversity when the model weights are available and coverage
diversity when blackbox. Without a comprehensive list of valid solutions, we rely on embedding
distance to measure open-ended diversity.
Distributional diversity. For models with accessible softmax next-token probabilities, we can
compute the probability of each solution in the solution space. We then define distributional diversity
as the distributional distance between the response distribution implied by the sampling process and
logits and the ground-truth distribution derived from these probabilities. For our baseline, we prompt
the models and directly compute Pr[s|Prompt(⃗l)] for each solution, s. This is simply the product
of the individual next-token probabilities. For SimpleStrat, the probability involves the next-token
probability conditioned on the probability the prompt is selected. Formally, the probability an answer
is sampled by SimpleStrat can be computed based on Eqn.2. The next-token probability based
response distribution Pr[s|Prompt(⃗l)] computed just as the baseline, and we do a sum weighted by
the joint probabilities assigned in heuristic estimation. We assign the remaining probability density to
an "Invalid" category to form a proper distribution. The probabilistic formulation allows us to easily
compute the response distribution of SimpleStrat. Note that by design the ground-truth distribution
for CoverageQA is uniform over valid solutions and zero elsewhere.
Coverage diversity. In setting where we do not have access to the next-token distribution, we
evaluate diversity by resampling responses to CoverageQA 100 times per question. This allows us to
empirically observe the diversity in the form of coverage. We call this coverage diversity. To measure
coverage, we report the recall: unique valid solutions divided by total valid solutions on the reference
solutions. This is not to be confused with a notion of recall where we might measure how many valid
solutions a classifier recognizes as valid. To ensure this does not come at the cost of quality, we also
show precision is not reduced. We show an ablation of just asking the model to propose criterion
without 20 questions formulation in Fig. 4. We see little improvement from only allowing the model
to propose a set of criterion and then applying the uniform sampling like AttrPrompt (Yu et al., 2023)
Open-ended diversity. For many compelling applications of diversity, a goal of diverse generation is
to identify solutions not previously known to the user. In these open-ended settings, it’s often the
case that the space of valid solutions cannot be exhaustively enumerated. In this work, we consider
creative writing prompts as an example of this setting. We ask the model to provide plot outlines to
make comparison easier to decouple high level creative choices from stylistic choices. We measure
diversity by sampling a pair of story plots outline based on the same prompt and measuring the
cosine distance of the plots’ embeddings. Unlike CoverageQA, writing a high quality plot is a
more challenging, longer context task. As such, we assess the model’s quality by spell-checking

2As reported in Wilson (2016), there are 18,993 unique names for girls and 13,959 for boys in 2015 report by
Social Security Administration.
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Figure 5: WritingPrompts Diversity. On creative
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and quality by checking for format adherence. Sim-
pleStrat especially improves the diversity at low tem-
peratures achieving at T=0 the same diversity as T=1
for base GPT-4o.

for non-standard English words and adherence to a three act outline given in the prompt. These
simple checks do not aspire to capture all aspects of quality but are sufficient to capture the quality
degradation characteristic of high temperature. See App. H for more details.

5.2 Qualitative Example

Consider the question "Name one Great Lake in the United States." as shown in Fig. 3. We see that
temperature scaling with GPT-4o results in a strong preference/bias for Lake Erie. This is certainly a
correct continuation and under the language modeling objective should be incentivized. Increasing
the temperature helps sample the next most likely candidate solutions more often. However, even
when increasing the temperature past 1 there is still incomplete coverage over the solutions space.
Specifically, Huron is only seen once out of 100 samples at 1.5 temperature, and Lake Ontario is never
observed. This is undesirable if the data is used to propose candidate plans, generate test cases, or
generate training data. Further, the model has a strong persistent preference for Lake Erie potentially
leading to undesired biases in downstream use cases.
In Fig. 3, we observe a much more uniform distribution over valid solutions when using SimpleStrat.
Notably, we observe full coverage over all 5 Great Lakes. At lower temperatures, there is still a
preference for a single lake over the others, in this case Lake Huron. However, this is less pronounced
at higher temperature showing the orthogonal benefit of SimpleStrat.

5.3 Coverage Diversity on Proprietary Models

We first assess coverage diversity, specifically, the model’s ability to recall all the valid solutions
upon resampling. This measure is clearly impacted by temperature as temperature zero or greedy
decoding of LLMs leads to a single deterministic result. We compare the coverage diversity (recall)
of SimpleStrat, GPT-4o, and Claude 3.5 Sonnet as a function of temperature. We sweep over
temperatures from 0 to 1.5. SimpleStrat with GPT-4o leads to an improvement to recall across
all temperatures as shown in Fig.4. Compared to prior work, AttrPrompt, SimpleStrat provides
substantially more diversity when applied to the same underlying model (Yu et al., 2023). SimpleStrat
scales well with temperature showing gains across all temperatures. The recall importantly does not
come at the expense of quality as measured by precision as in App. D.
Ablations. We conduct two ablations to evaluate key design choices. First, we remove the 20
Questions framing (20Q Abl.) and directly ask the model for partitions. Second, we test a single-
stage version (Single Prompt Abl.) that combines all instructions into one prompt using the 20

3Claude does not allow for temperatures above 1.

8



1 2 3 4 5
KL Divergence (SimpleStrat)

1

2

3

4

5

KL
 D

iv
er

ge
nc

e 
(B

as
el

in
e)

Improvement

KL Divergence Meta-Llama-3-70B-Instruct

Figure 6: KL divergence on individual question
from CoverageQA Wikipedia. For each question in
CoverageQA, we compare the KL divergence from ref-
erence distribution of Llama-3 with and without Sim-
pleStrat. Lower divergence indicates closer alignment
with the desired uniform distribution, arrow indicates
direction of maximum improvement from baseline

Ground Truth Answers0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ob

ab
ilit

y

Target Probability

Ca
lif

or
ni

a
W

es
t V

irg
in

ia
De

la
wa

re
Co

lo
ra

do
Oh

io
Pe

nn
sy

lv
an

ia
M

on
ta

na
Ke

nt
uc

ky
Ne

w 
Yo

rk
No

rth
 D

ak
ot

a
Te

nn
es

se
e

Ve
rm

on
t

In
va

lid
Ne

va
da

Ok
la

ho
m

a
Or

eg
on

In
di

an
a

Ar
izo

na
M

iss
ou

ri
No

rth
 C

ar
ol

in
a

Target Probability

Ca
lif

or
ni

a
Al

as
ka

Or
eg

on
Fl

or
id

a
Ok

la
ho

m
a

Oh
io

Ne
va

da
Te

xa
s

Ne
br

as
ka

Al
ab

am
a

M
on

ta
na

Co
lo

ra
do

M
ai

ne
Ill

in
oi

s
Ar

izo
na

Ut
ah

Id
ah

o
M

ich
ig

an
Ge

or
gi

a
De

la
wa

re

Question: Name a US state.
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Figure 7: Distributional Diversity Comparison. We
show the a posterior probability as defined by next-
token probabilities for ground truth answers on Llama
3.1 70B. SimpleStrat provides meaningful improve-
ment to the sampling distribution both for values pre-
viously overrepresented in the distribution and those
previously underrepresented.

Table 1: Performance of Different Prompting Strategies across Temperature Settings (GPT-4o)
Temp. GPT-4o (std) SimpleStrat (std) 20Q Abl. (std) Single Prompt Abl.(std)

0 0.0646 (0.0011) 0.2423 (0.0050) 0.1215 (0.0021) 0.0019 (0.0008)
0.25 0.0849 (0.0016) 0.2669 (0.0022) 0.1405 (0.0028) –
0.5 0.1204 (0.0036) 0.3017 (0.0043) 0.1660 (0.0025) –
0.75 0.1497 (0.0046) 0.3433 (0.0067) 0.1821 (0.0336) –
1.0 0.1871 (0.0071) 0.3884 (0.0094) 0.2381 (0.0049) 0.0272 (0.0014)
1.25 0.2280 (0.0053) 0.4250 (0.0062) 0.2872 (0.0065) –
1.5 0.2676 (0.0059) 0.4634 (0.0085) 0.3304 (0.0104) –

Questions framing. Results in Table 1 show that the single-prompt setup performs significantly worse
than the baseline GPT-4o, suggesting that more tokens do not necessarily improve diversity and
that our gains are not due to prompt complexity alone. This supports the intuition that probabilistic
prompting—via “coin flips”—introduces beneficial randomness. The 20 Questions ablation further
confirms our 20 question framing provides better partitions.

5.4 Distributional diversity with Llama 3

We use Llama 3 models to measure distributional diversity by analyzing logits for all valid answers.
This isn’t feasible with GPT-4o or Claude 3.5 Sonnet, since estimating true probabilities would
require heavy sampling. Although GPT models can output log probabilities, they report these only
for the tokens in the observed generation trace, rather than for all possible continuations.
Across both 8B and 70B Llama models, SimpleStrat achieves an average reduction in KL divergence
from uniform of 1.14 compared to the baseline on the curated CoverageQA dataset. For the general
CoverageQA dataset, the reduction is 0.36. These results indicate that SimpleStrat produces a
response distribution closer to the ground truth distribution than the baseline method.
Additionally, we analyze per-question KL divergence with the scatter plot in Fig 6. It shows
KL divergence values for SimpleStrat (y-axis) versus the baseline (x-axis) for each question in the
CoverageQA Wikipedia dataset. Points above the diagonal line represent questions where SimpleStrat
outperforms the baseline by yielding a lower KL divergence. Points tend to fall near or above this
line, indicating SimpleStrat produces more uniform samples on CoverageQA.
As shown in Fig. 7, Llama 3.1’s base distribution is heavily biased toward its preferred answer (e.g.,
“California,” as shown also in Fig. 1). Thus, it is not surprising that we observed little diversity when
simply increasing temperature. In contrast, SimpleStrat provides a much more uniform distribution.
The overrepresented solutions are adjusted to be lower and the underrepresented solutions are adjusted
to be higher. For more examples, see App. G.
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Table 2: We assess distributional diversity as measured by KL Divergence. Smaller KL divergence is closer to
uniform. We see improvement to distributional diversity for both 8B and 70B as well as Llama-3 and Llama-3.1.

Model CoverageQA-Curated CoverageQA-Wiki

Baseline SimpleStrat Baseline SimpleStrat

Llama-3-8B-Instruct 2.78 1.74 2.75 2.47
Llama-3.1-8B-Instruct 2.47 1.19 2.60 2.39
Llama-3-70-Instruct 3.24 2.17 3.28 2.73
Llama-3.1-70-Instruct 2.70 1.54 2.78 2.38

5.5 Open-ended Diversity.

Fig. 5 shows SimpleStrat shifts the curve to the right, affording diversity while maintaining the same
quality. We provide a coarse grain measure of diversity by measuring the proportion of plots from the
100 random prompts taken from WritingPrompts that do not have formatting errors or more than 20%
of words outside of the English dictionary. As we are asking for an outline, format errors we check
for include proper monotonic numbering and providing the number of requested chapters to the story.
Notably, at temperature zero, we achieve the same diversity as temperature scaling to temperature 1.
This suggests we get diversity for free without sacrificing quality.

6 Limitations and Future Work

While SimpleStrat demonstrates empirical gains, its effectiveness depends on the model’s ability to
identify meaningful axes in auto-stratification and estimate accurate joint probabilities. As LLMs
improve in forecasting and external data integration, we expect these estimates to become more
reliable. Our prototype focuses on the model’s intrinsic capabilities, but potential biases—such as
those related to race or gender—may influence stratification and estimation. For critical applications,
the probabilistic prompt distribution should therefore be carefully reviewed. Finally, because Cover-
ageQA consists of short responses, evaluation is simplified; however, we anticipate SimpleStrat will
have the greatest impact in low-temperature, multi-step reasoning tasks (Zhang et al., 2024).
As research on learning beyond demonstrations and reinforcement learning accelerates, methods
that promote diversity—such as SimpleStrat—are poised to become central to discovering novel
solutions, strategies, and ideas. Wherever diversity is currently achieved through temperature scaling,
SimpleStrat provides a more semantically grounded alternative. Task-proposing agents like InSTA
and Explorer, for instance, could leverage SimpleStrat to explore websites more effectively and
generate a broader range of trajectories for web agent training (Trabucco et al., 2025; Pahuja et al.,
2025). Similarly, AlphaEvolve employs evolutionary strategies to tackle optimization problems and
references “stochastic formatting” as a way to introduce variance into prompts—likely an early form
of probabilistic prompting akin to the approach described in this work (Novikov et al., 2025).

7 Conclusion

In this paper, we propose SimpleStrat which offers an innovative alternative by leveraging the LLM
itself to partition the solution space into distinct strata. We call this process auto-stratification.
Specifically, we reframe the stratification problem to the imperfect information game of 20 questions
and show that this framing produces strata that are both balanced and orthogonal. At inference time,
a random stratum is selected, and a sample is drawn from within that stratum. This method achieves
greater diversity while maintaining quality, unlike simply increasing temperature.
To quantitatively measure diversity, we introduced the CoverageQA dataset, which consists of
underspecified questions with multiple equally valid answers. We measure diversity with three
metrics: for open-source models, we measure distributional difference with KL Divergence and for
proprietary models, we measure coverage over the set of ground-truth solutions. In the open-ended
setting without access to the ground truth distribution, we rely on distance in embedding space to
measure diversity. Our rigorous evaluation on both proprietary and open-source LLMs demonstrated
that SimpleStrat achieves significantly higher recall and produces answer distributions closer to
uniform compared to traditional temperature-based sampling methods.
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A CoverageQA Dataset

Generation Procedure
To generate the questions, we manually came up with initial item and property pairings to run the
recursive search. We constrain the recursive search to yield between 20-40 possible answers to keep
the questions within common and relevant categories. We found that with fewer than 20 answers,
the questions become too obvious, while with more than 40, they tend to get too specific and stray
from general knowledge. The recursive search first finds all items that satisfy the initial conditions,
then iteratively adds properties in steps until either the maximum depth (number of constraints) is
reached or the number of answers falls outside the desired range. We blacklist properties that are
detrimental to high-quality question generation, such as an item’s presence in a specific database,
numeric properties like population, and properties that introduce high ambiguity. We then manually
evaluate the generated conditions and answers to ensure they meet our criteria. With an appropriate
initial condition, one query can generate hundreds of valid constraints that can later be turned into
questions. Finally, we use GPT-4 to convert these constraints into natural language.

B Results on Curated CoverageQA

We manually curate questions with known solutions sets such as NFL teams and USA state capitals.
This bank serve as a split to validate results on less synthetic sources that are more common knowledge.
We see even stronger performance improvement on this set in Fig. 8
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Figure 8: We see even stronger improvements on the manually curated CoverageQA set.

C Experimental Setup

For our evaluation, we use proprietary models, gpt-4o-2024-08-06 and claude-3.5-sonnet-20240620.
We use open-source models from the Llama 3 and 3.1 families. The inference of these models were
run on 8 A100-80GB GPUs. CoverageQA Wikipedia is based on the snapshot from 07-03-2024. For
text embeddings, we use 3rd generation embedding from OpenAI.

Table 3: CoverageQA Domains
Domain Question Count Average Number of Answers
General Knowledge (Curated) 10 64.1
US National Parks 5 11
Geography Questions 74 27.5
Periodic Table Elements 11 24.2
Physic Nobel Laureates 31 16.8
Famous Athletes 18 9
Musical Instruments 6 10
Total 155 24.1
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D Precision

We show precision in Fig. 9 to emphasize that the precision does not change substantially as a result
of our method. Precision is calculated over the set of 100 attempts how many are in the ground truth.
Recall as mentioned is calculated as how many unique ground truth solutions were observed in the
100 attempts. The reduced precision can be attributed to cases where the Heuristic Estimation is
ineffective. This can lead to settings where a stratum has no valid solution. Because the constraints
are added as additional conditioning, the model now has a competing objective to obey the constraints
vs the original instruction. As such, infeasible requests lead to best effort solutions that are incorrect.
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Figure 9: Precision scaled with temperature. There is a fixed minor reduction of 10% to precision when using
SimpleStrat. This indicates the improved diversity does not come at a significant cost to precision.
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E Auto-stratification Prompt

We provide the full prompt in Tbl. 4. To improve prompt adherence, we provide one in context
example in the form of one simulated round of multi-turn conversation, i.e. we provide an example
set of reasoning following the template.

System Prompt:
You’re a helpful brainstorming assistant that is careful to consider all factors to a problem.

User:
I am tasked with the following request:
% User Request
Help me brainstorm how to respond to the user request by providing a list of True/False properties the solution may or may
not have. Use the following step-by-step to come up with good properties:

1. If you were playing 20 questions, what’s a good first question to ask that would split the possibilities in half?

List at least 5 questions and their corresponding properties.

Question: <Description>

2. Rewrite each question as a True/False property that’s true for one half and false for the other.

Question: <Description>

True/False Property: <Property Description>

3. For each property, come up with an example that would satisfy the property.

Property: <Description>

Example: <Description>

Is it a valid answer to the user’s request? <Yes/No>

4. For each property, come up with an example that would not satisfy the property.

Property: <Description>

Example: <Description>

Is it a valid answer to the user’s request? <Yes/No>

5. Does the property mention a candidate answer in it?

Property: <Description>

Does the property mention a candidate answer in it? <Yes/No>

6. For each property, list whether we should include it or not in the final list of properties. Do not include ones
where an example from above is not valid or if it mentions a candidate answer in it.

Property: <Description>

Include in final list? <Yes/No>

Final List of True/False Properties:

1. <Property Description 1>

2. <Property Description 2>

Ensure all properties are listed are sentences that are either True or False
Table 4: Full prompt for Auto-stratification.
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System Prompt:
You are an expert superforecaster, familiar with the work of Tetlock and others. Your mission is to generate accurate
predictions for forecasting questions. Aggregate the information provided by the user. Make sure to give detailed reasoning.

User:
I am tasked to estimate the probability that a random solution to "User Request" has the following property "Partitioning
Property"
Instructions:

1. Provide at least 3 reasons why the answer might be no.

{ Insert your thoughts }

2. Provide at least 3 reasons why the answer might be yes.

{ Insert your thoughts }

3. Rate the strength of each of the reasons given in the last two responses. Think like a superforecaster (e.g. Nate
Silver).

{ Insert your rating of the strength of each reason }

4. Aggregate your considerations.

{ Insert your aggregated considerations }

5. Output your answer (a number between 0 and 1) with an asterisk at the beginning and end of the decimal.

{ Insert your answer }

Table 5: Prompt for Partition-specific Heuristic Estimation.

F Heuristic Estimation Prompt

We first take each partition function from auto-stratification and estimate a starting probability with
the prompt in Table 5. This prompt is heavily inspired by Halawi et al. (2024). We then collect all the
proportions and pass it through a final Heuristic Estimation prompt to remove redundant properties
(negations for instance) and give the model a chance to correct any incorrect probabilities. See Table 6
for full prompt. Finally, we ask the model to select at most 3.
Note that for performance reasons, we estimate the marginal probabilities and make a simplifying
assumption of independence. This is not strictly true if one partition function is the negation of
the other. This leads potential stratum assigned positive probability but actually the stratum has
no solutions. Otherwise, there would be 2# of Partition Functions strata to estimate probabilities of. Further,
LLMs seem less reliable when asked to estimate fine-grained probabilities, whereas most marginal
probabilities are by design close to 0.5.
Formally, if P = ¬Q, the the stratum P ∧Q has zero probability, even though we assumed it to be
Pr[P ] ∗ Pr[Q]. We handle approximation error in estimating the true prompt distribution by allowing
the model to reply "Invalid" to trigger a resample. With this adjustment, the probabilistic prompt
distribution is maintained for this extreme case. This correction however does not ameliorate potential
issues with
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(b) Llama 3.1 70B

Figure 10: KL divergence from uniform for Baseline vs SimpleStrat on CoverageQA Wikipedia. Lower
divergence indicates closer alignment with the desired uniform distribution, arrow indicates direction of maximum
improvement from baseline

System Prompt:
You are an expert superforecaster, familiar with the work of Tetlock and others. Your mission is to generate accurate
predictions for forecasting questions. Aggregate the information provided by the user. Make sure to give detailed reasoning.

User:
I’m playing a game where my friend has been tasked to:
"User Request"
I have the following Y/N statements I can ask my friend. I have probabilities that I think it’s true: % Insert numbered list
of partitions and proportions.
Instructions:

1. For each Y/N statement, is it redundant with another statement?

Y/N statement: <description>

Is redundant? <Y/N: Explanation>

2. Are any of the probabilities in accurate? If it’s sufficiently accurate just report back the same value.

Y/N statement: <Description>

Is accurate? <Y/N: Explanation>

Probability: <Probability>

3. Pick at most three statements that are least redundant and pair well together. Prefer ones that are closest to 50%
for most information.

Final List of True/False Properties:

1. <Y/N Properties> :: <Probability>

2. <Y/N Properties> :: <Probability>

Table 6: Prompt for Final Heuristic Estimation.

G Additional Plots: Distributional Analysis with Llama

We provide additional examples in Fig 15 and scatter plots for Llama 3 in Fig 10a, Fig 10b, and
Fig 11.
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Figure 11: KL divergence from uniform for Baseline vs SimpleStrat on CoverageQA Wikipedia. Additional
plots for Llama 3 8B and 70B models
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SimpleStrat Llama 3.1-8B
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(a) Llama 3.1 8B.
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(b) Llama 3.1 70B.

Figure 12: Distributional Diversity Comparison. We show the response probability as defined by next-
token-probabilities for the top 20 ground truth answers on Llama 3.1. For both 8B and 70B, SimpleStrat
provides meaningful improvement to the response distribution both for values previously over-represented in the
distribution and those previously underrepresented.

H Judging Plot Outlines

For this task, we ask the model to generate outlines guided by the format shown in Table 7. Notably,
we ask for three acts to prevent the outlines from getting too long. To check for validity, we use
pyspellcheck to assess if there are over 20% words not in the English dictionary and ensure that there
are three acts and a THE END to finish the story. The last condition protects against the case where the
model rambles on incoherently and produces what is definitely not a sensible outline. With spelling
alone, we can already see the degradation of the model due to temperature (Fig. 13). Finally, we see
formatting is not affected by SimpleStrat and largely tracks the temperature used to sample from the
language model (Fig. 14).
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Figure 13: WritingPrompts Diversity. On creative
writing prompts, we generate pairs of plot outlines.
We measure diversity with embedding cosine dis-
tance and quality proxied by spelling. SimpleStrat
especially improves the diversity at low temperatures
achieving at T=0 the same diversity as T=1 for base
GPT-4o.
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Figure 14: Impact of temperature on formatting
(including spelling). It’s interesting to see that the
impact of SimpleStrat is negligible compared to tem-
perature. We see the SimpleStrat closely follows the
expected quality degradation based on the temperature
of the model generating the final outline.
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System Prompt:
Format:

**Title**: <TITLE>

**Setting**: <SETTING>

**Characters**: <CHARACTERS>

**Act 1:** <ACT 1 TITLE>
1. <Content>
2. <Content>
3. <Content>
...

**Act 2:** <ACT 2 TITLE>
1. <Content>
2. <Content>
3. <Content>
...

**Act 3:** <ACT 3 TITLE>
1. <Content>
2. <Content>
3. <Content>
...

THE END

User:
Write a 3 part story outline based on the following prompt:
"User Request"

Table 7: Prompt for Plot Outlines.
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Question: Name a periodic element.
SimpleStrat Llama 3.1-70B
Llama 3.1-70B

(f) Llama 3.1 70B

Figure 15: Baseline vs SimpleStrat Probability Distributions This figure shows the answer distributions for 4
additional questions from CoverageQA curated. Each row represents a different question, showing distributions
for Llama 3.1 8B and 70B.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper does not over claim in the abstract or introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: As discussed in the paper body, the dimensions of diversity identified by
the model may be influenced by biases in the pretraining or post-training of the models.
However, these biases would also exist in the models before the introduction of SimpleStrat.
Our design in fact directly exposes biases via the dimensions of diversity. This may allow
practitioners to combat these biases by adjusting the prompt distribution. These corrections
are guaranteed to apply once applied as the randomness associated with sampling constraints
occurs outside of the model’s control.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: No proofs are critical to the correctness of the work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide relevant code for all experiments in the supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The supplemental provides all the relevant code for replication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All relevant parameters have been provided, especially temperature. Further,
the code has been included to ensure replicability.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Proper statistical singificance has been considered.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We use a limited 8xA100 machine for inference of Llama models. Otherwise,
API calls were made.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No legal or ethical violoations were made in the creation of this paper.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: By design, our method allows practitioners to inspect the identified axis of
diversity. As such in critical applications, it’s important that potential biases in the model are
inspected before deployment. If not done, the model may identify dimensions of diversity
that are not desirable such as gender or race.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Increasing the temperature reduces the model’s predictability. This can lead
to a less reliable system if not careful. We recommend manually inspecting the model’s
inferred dimensions of diversity to ensure the model has not made poor calibration due to
bias (exemplified by the baby names example) or choosing to split on semantic dimensions
that may be problematic in the domain. As with all language model technology care should
be taken before deploying. Our models under test have safety guardrails provided by the
model providers themselves.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The code is original. The models evaluated have been documented.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Relevant code has been included in the supplemental material for reproducibil-
ity as well as the data generated.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing was done in this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: There were no participants in this work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This work does not use the language model as part of the core research. The
dataset is manually verified to ensure correctness is not subject to LLM judgment.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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