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Abstract

Recent benchmarks reveal that models for single-
cell perturbation response are often outperformed
by simply predicting the dataset mean. We
trace this anomaly to a metric artifact: control-
referenced deltas and unweighted error met-
rics reward mode collapse whenever the con-
trol is biased or the biological signal is sparse.
Large-scale in silico simulations and analysis of
two real-world perturbation datasets confirm that
shared reference shifts, not genuine biological
change, drives high performance in these evalua-
tions. We introduce differentially expressed gene
(DEG)–aware metrics, weighted mean-squared
error (WMSE) and weighted delta R2 (R2

w(∆))
with respect to all perturbations, that measure er-
ror in niche signals with high sensitivity. We fur-
ther introduce negative and positive performance
baselines to calibrate these metrics. With these
improvements, the mean baseline sinks to null per-
formance while genuine predictors are correctly
rewarded. Finally, we show that using WMSE as a
loss function reduces mode collapse and improves
model performance.

1. Introduction
In recent years, technological breakthroughs in experimental
methodologies have catalyzed the emergence of large-scale,
publicly available, single-cell RNA sequencing (scRNA-
seq) perturbation datasets (Peidli et al., 2024), which cap-
ture phenotypic changes of individual cells under specific
perturbations. Models trained on these datasets to predict
perturbation responses may unlock virtual molecule and ge-
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Figure 1. (A) Under increasing amounts of systematic control bias,
the Pearson correlation between ∆p and ∆all increases artificially.
(B) True biological signal is diluted in scRNA-seq data causing
mode collapse in model predictions. Introducing biologically
aware weights (WMSE) ameliorates this problem. (C) We intro-
duce metrics with a performance scale calibrated by negative and
positive baselines. We also find that WMSE as a training objective
improves model performance compared to MSE.

netic perturbation screening capabilities, which could yield
novel therapeutics that reverse disease and restore cell func-
tion. In recent years, researchers have proposed a diverse
array of perturbation-response models leveraging various
learning paradigms, including optimal transport (CellOracle
(Kamimoto et al., 2023)), prior knowledge graph learning
(GEARS (Roohani et al., 2024)), and transformer-based
foundation models (scGPT (Cui et al., 2024), scFoundation
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(Hao et al., 2024)).

However, recent benchmarking studies have reported that
naïve predictors such as linear models often outperform
these sophisticated architectures (Li et al., 2024a; Wu et al.,
2024; Csendes et al., 2025; Li et al., 2024b; Bendidi et al.,
2024; Wenteler et al., 2024; Ahlmann-Eltze et al., 2024).
Even more concerning, a mean baseline, consisting of pre-
dicting the average of all perturbed cells in the training set
(disregarding any individual perturbation label), not only
achieves high performance in current metrics but actually
outperforms most deep learning architectures without any
learning taking place (see 2.3 for examples).

Motivated by these troubling results, our goal in this work
was to answer a simple question: “why does the mean base-
line perform well on standard perturbation response model
metrics?”. To answer this, we used simulated data as a
discovery tool to understand the different dataset factors
that can influence mean baseline performance and then con-
firmed our findings on two of the most commonly used
benchmarking datasets (Norman et al., 2019; Replogle et al.,
2022). We highlight the impact of systematic control bias
(Fig. 1A) on inflating mean baseline performance and the
impact of signal dilution (Fig. 1B) on contributing to mode
collapse in model predictions. To address these issues, we
introduce Weighted MSE (WMSE) and R2

w(∆), alternative
metrics that are sensitive to differentially-expressed gene
(DEG) signals against all perturbations (not control), and
give null performance under mode collapse to the mean. We
calibrate these metrics by introducing negative and positive
baselines, including a novel technical duplicate baseline
(Fig. 1C) which gives a realistic estimate of optimal perfor-
mance given the intrinsic variance of the dataset. Moreover,
we show that WMSE can be used as a training loss to prevent
mode collapse and improve model performance (Fig. 1C).

Together, these advances allow more transparent
assessment of perturbation-response models and pro-
vide a general strategy for improving model perfor-
mance. The code to replicate our results is available
at https://github.com/shiftbioscience/
ICML2025_pertmodel_metrics.

2. Background
2.1. Single-cell Perturbation Data

Single-cell RNA sequencing (scRNA-seq) measures the
abundance of RNA transcripts in thousands-to-millions of
individual cells, producing a gene-by-cell count matrix X ∈
Ng×nT . Owing to low capture efficiency and drop-out, X
is sparse (typically > 90% zeros), and is modeled well by
a negative-binomial distribution. Standard pre-processing
includes library-size normalization, log1p transformation,
and feature selection of ∼ 2–5k most highly variable genes.

Large-scale perturbation screens combine CRISPR or chem-
ical interventions with scRNA-seq, yielding paired con-
trol–perturbation observations suitable for supervised learn-
ing. The screening technology Perturb-seq knocks out,
represses (CRISPRi) or activates (CRISPRa) target genes
prior to measurement of gene expression (Dixit et al., 2016).
Perturb-seq datasets are often used to train perturbation-
response models that aim to generalize to unseen perturba-
tions or tissue types, with the hope of enabling large-scale in
silico screens where millions of perturbations can be tested
without the need for costly and time-consuming wet lab
experiments.

2.2. Perturbation-Response Models

Predictive models fall into four archetypes. (i) Simple lin-
ear baselines: ridge or principal-component regression that
extrapolate additively from control and single-perturbation
means. (ii) Autoencoder-based models: scGen, CPA and
scVI fine-tune autoencoders to encode a cell and an inter-
vention; counterfactuals are obtained by vector arithmetic
in latent space (Lotfollahi et al., 2019; 2023; Lopez et al.,
2018); (iii) Prior knowledge graph learning: GEARS learns
gene embeddings on a co-expression graph and perturba-
tion embeddings on a gene-ontology graph, then decodes
their interaction to predict expression shifts (Roohani et al.,
2024). (iv) Transformer-based foundation models: scGPT
(Cui et al., 2024) and scFoundation (Hao et al., 2024) pre-
train on millions of cells and adapt to perturbation tasks via
conditioning tokens. Although every paradigm reflects key
assumptions and inductive biases, they all strive to learn a
conditional generation function X̂p = f(p,Xc) that pre-
dicts how the control cell population Xc would respond to
perturbation p.

2.3. Pitfalls of Common Performance Metrics

Performance is generally quantified at the “pseudobulk” (ag-
gregation of single cells) level after averaging all ground
truth and predicted cell profiles per perturbation. This ag-
gregation helps with the sparsity of scRNA-seq data and
turns the task into an average effect prediction problem. Al-
though numerous metrics have been introduced, the two
most reported ones are MSE (or MAE) and Pearson(∆).
While MSE is defined as the average L2 error, Pearson(∆)
aspires to capture perturbation effects with respect to a con-
trol mean profile µc. For a single perturbation with average
profile µp and predicted profile µ̂p, Pearson(∆) is defined
as r(µp − µc, µ̂p − µc) = r(∆p, ∆̂p), which aims to assess
whether predicted changes from control are in the same
direction as in real data.

Although intuitive, Pearson(∆) faces two main limitations:
(i) it does not consider the scale of change and hence pre-
dictions that do not capture the dynamic range of the true
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Table 1. Parameter space used for simulation and real data experiments.

Parameter Effect Range Simulation Range Norman19 Range Replogle22

g Number of genes in the dataset Linear: 1000− 8192 log2: 2− 8192 log2: 2− 8192
n0 Number of control cells log: 10− 8192 log2: 1− 8192 log2: 1− 8192
np Number of cells per perturbation log: 10− 256 log2: 2− 256 log2: 2− 64
k Number of perturbations per dataset log: 10− 2000 log2: 1− 175 log2: 1− 1334
β Amount of systemic bias in the control Linear: 0− 2 Linear: 0− 2 Linear: 0− 2
δ Probability of perturbing a gene Linear: 0.001− 0.1 Quantiles: 0− 1 Quantiles: 0− 1
ϵ Multiplicative effect of perturbations log: 1.2− 5.0 Quantiles: 0− 1 Quantiles: 0− 1
µl Library size scaling (Data quality) log: 0.2− 5.0 Deciles: 0− 1 Deciles: 0− 1

∆p signal can still perform well on this metric, and (ii)
it heavily relies on the definition of a control population
which might be biased depending on the dataset or the per-
turbation type. If that is the case, a mean baseline will
perform quasi-optimally because the effect of having any
perturbation dominates over the unique effect of a specific
perturbation (Fig. 1A). On the other hand, the MSE suffers
from signal dilution. As illustrated in Fig. 1B, MSE treats
every error equally. Thus, it provides low error estimates for
predictions that fail to capture important, low-dimensional
biological changes but accurately track the general data
distribution (e.g., the mean baseline). To address these prob-
lems, prior work has computed these metrics only on a
subset of perturbation-specific DEGs, genes which change
expression significantly as a result of a perturbation when
compared to a control population. However, if used as
an optimization approach, this requires sparse supervision
which causes issues with genes not commonly recognized
as DEGs (e.g., a gene only detected once as upregulated in
a single training perturbation will systematically be learned
as highly expressed). And second, this filtering makes per-
formance metrics blind to true negatives (perturbations with
no DEGs).

Multiple recent benchmarks that employ these and other
metrics have independently found that predicting the mean
baseline (the mean of all perturbed cells; µall) often
matches or surpasses state-of-the-art models. Li et al.
(2024a) assessed ten methods across multiple modeling
tasks where the mean baseline achieved the lowest MAE(∆)
and nearly the highest Pearson(∆). Analyzing four Perturb-
seq datasets, Csendes et al. (2025) found that the mean
baseline exceeds scGPT and scFoundation on Pearson(∆).
Wenteler et al. (2024) showed that the mean baseline tracks
top-20 DEG effects as closely as scGPT, Geneformer, or
UCE (Cui et al., 2024; Theodoris et al., 2023; Rosen et al.,
2023). Finally, Ahlmann-Eltze et al. (2024) reported that
four foundation and two deep-learning models fail to beat a
mean baseline in evaluations across multiple datasets.

3. Methods
3.1. In silico Simulations

We model synthetic datasets containing n0 control cells and
k perturbations with a constant number of np observed cells
per perturbation. Each cell is represented by a random raw
count vector X ∈ Rg where each component represents
the observed expression of a single gene in that cell under
a unique perturbation. Mathematically, we model the ex-
pression value Xp

i,j of the ith gene of perturbation p in the
specific cell j as a negative binomial with a fixed per-gene
dispersion and variable mean:

Xp
i,j ∼ NB

(
µp
i,j , θi

)
(1)

Where θi is the fixed dispersion of gene i and µp
i,j captures

the simulated perturbation effects as follows:

Perturbations: µp
i,j = ljα

p
i (µ

c
i + βλi) (2)

Control: µc
i,j = ljµ

c
i (3)

µc
i being the average of control expression, λi a scalar sym-

bolizing a realistic systematic bias between the control pop-
ulation and all other perturbations (only depends on the
gene), β a global dataset parameter controlling the severity
to which λi is applied (zero for a perfectly centered con-
trol), αp

i a multiplicative effect on gene i associated with
perturbation p, and lj the library size component and affects
every gene of the cell j equally. Both αp

i and lj are random
variables by themselves distributed as shown:

αp
i ∼


1, P = 1− δ

1/ϵ, P = δ/2

ϵ, P = δ/2

(4)

lj ∼ LogNormal(µl, σ
2
l ) (5)

Here, δ represents the average probability of perturbing a
gene, ϵ > 1 the strength of the effect, and µl, σ

2
l the mean

3



Diversity by Design: Addressing Mode Collapse Improves scRNA-seq Perturbation Modeling on Well-Calibrated Metrics

and variance of the library size scaling factor. All δ, ϵ, µl, σ
2
l

are constant for the entire dataset. Following reasonable
priors, we define λi = µall

i − µc
i as the difference between

the average perturbed expression and the control expres-
sion in the Norman19 dataset which is also used to estimate
θi, µ

c
i , and σ2

l . Given this setup, we perform random sam-
pling to generate an array of synthetic datasets from the
parameter space in Table 1. Following standard process-
ing, every synthetic dataset is library-size normalized to 104

counts per cell and log1p transformed. We generated 104

synthetic datasets and evaluated Pearson(∆) and MSE on 4
gene sets: (1) all genes, (2) affected genes, which reflects
the true simulated perturbed genes (αp

i ̸= 1), (3) observed
DEGs vs control and (4) observed DEGs vs the rest of the
perturbations.

3.2. Real Data Experiments

To evaluate the realism of our simulated results, we created
analogous experiments in real-world data. We processed
and analyzed two datasets commonly used in benchmarks:
(1) Norman19, a CRISPRa Perturb-seq dataset with genes
activated alone or in combos of two (Norman et al., 2019)
and (2) Replogle22, a genome-wide CRISPRi Perturb-seq
dataset (Replogle et al., 2022). Datasets were randomly
downsampled such that each perturbation label had the same
number of cells (256 for Norman19 and 64 for Replogle22).
For both datasets, we selected the top 8192 highly-variable
genes using the highly_variable_genes function
from the scanpy package (Wolf et al., 2018). We then used
the rank_genes_groups function from scanpy with the
t-test_overestim_var method to calculate DEGs
with respect to the control cells (DEGs vs Control) and with
respect to all other perturbations (DEGs vs Rest). A detailed
description of the experiments performed on real data is
provided in Appendix A and high-level parameter ranges
are available in Table 1.

3.3. Proposed Metrics

3.3.1. WEIGHTED DELTA R2: R2
w(∆)

Given a set of positive weights {wi} that add to one, average
perturbed expression levels {µall

i }, ground truth expression
levels {µp

i } and pseudobulked predicted values {µ̂p
i }, i ∈

{1, 2, . . . , g} with g the number of genes in the dataset, we
define R2

w(∆) for a single perturbation as follows:

R2
w(∆) = 1−

∑
i wi(∆i − ∆̂i)

2∑
i wi(∆i − ∆̄w)2

(6)

∆̄w =

g∑
i=1

wi∆i (7)

Where ∆i = µp
i −µall

i and ∆̂i = µ̂p
i −µall

i represent the real

and predicted changes from the average of all perturbed cells
respectively. Note that reference values for delta computa-
tion µall

i are the center of all perturbed cells in the dataset
instead of the traditional definition which computes against
the control population µc

i . We propose R2
w(∆) as a signif-

icantly more stringent alternative to Pearson(∆) with the
following four advantages. (i) As a goodness of fit metric,
the scale and dynamic range of the predictions does matter.
It is not enough to estimate the direction of change as with
Pearson(∆). (ii) Because we set the reference to the mean
of all perturbed cells in the dataset, there is, by definition, no
systematic bias that can inflate metrics unintentionally. (iii)
Because of the properties of R2, any constant average pre-
dictions (µ̂p = µall) will yield a strictly negative result for
any specific perturbation (see Appendix B for derivation).
(iv) This metric, while still computing in full transcriptomic
space, can prioritize more biologically significant genes like
DEGs by changing the weights definition.

3.3.2. WEIGHTED ERROR: WMSE

We propose to evaluate the perturbation prediction task with
a modified version of the classical MSE regression metric
defined as follows for a single perturbation:

WMSE =

g∑
i=1

wi(µ
p
i − µ̂p

i )
2 (8)

While simple, this modification of regular MSE addresses
the main pitfalls of error metrics currently used in the task
(see 2.3). Unlike standard MSE, WMSE allows for gene
signal prioritization, such as for perturbation-specific DEGs.
In other words, WMSE is more sensitive to perturbation-
specific signals, which is particularly important given that
only a small proportion of genes change meaningfully in
response to each perturbation (Nadig et al., 2025). Moreover,
WMSE can directly replace MSE as training loss for many
models allowing for biologically meaningful supervision.

3.3.3. WEIGHTS DEFINITION

Although the weight set {w1, w2, . . . , wg} may be arbi-
trarily chosen to highlight any biologically relevant sig-
nal on the data, here we choose the weights to priori-
tize perturbation-specific DEGs. This intuitively assigns
higher importance to genes that change meaningfully in
a perturbation while still allowing consideration of the
whole transcriptome. Our weight computation proce-
dure for a single perturbation is the following: (i) we
determine t−scores for every gene with respect to the
rest of the perturbed cells in the dataset (using scanpy’s
sc.tl.rank_genes_groups (Wolf et al., 2018) func-
tion with method='t-test_overestim_var' and
reference='rest') (ii) we apply an absolute value
transformation, (iii) we perform min-max normalization to
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Table 2. Pearson correlations between metric performance of the mean baseline (µ̂p = µall) and dataset parameters in simulation
experiments. Correlation values lower than −0.2 are highlighted in blue and higher than 0.2 are highlighted in red.

Metric Gene Group ϵ g np β δ n0 k µl

All -0.32 0.00 0.28 0.54 -0.28 -0.48 -0.10 0.03
Affected -0.25 -0.08 0.06 0.12 -0.09 -0.14 -0.68 -0.01

DEGs vs Control -0.50 -0.03 0.00 0.45 -0.28 -0.39 -0.23 -0.13Pearson(∆) (↑)

DEGs vs Rest -0.33 -0.04 0.20 0.35 0.00 -0.40 -0.43 -0.03

All 0.45 -0.44 -0.35 0.04 0.42 -0.01 0.02 -0.17
Affected 0.83 -0.42 -0.02 0.03 0.01 0.01 0.05 -0.02

DEGs vs Control 0.70 -0.46 -0.25 0.01 -0.06 0.06 0.05 -0.12MSE (↓)

DEGs vs Rest 0.67 -0.48 -0.26 0.03 -0.08 0.01 0.04 -0.14

the [0, 1] range, (iv) we square the weights to accentuate
differences, and (v) we normalize the whole weight set to
add up to 1. The key differentiator of this method is the use
of all other perturbed cells as reference for DEG calculation
(DEGs vs Rest) instead of the experiment’s control (DEGs
vs Control). This selection ensures the prioritized genes
are the ones that make that perturbation unique from all the
others without introducing control bias.

3.4. Technical Duplicate Baseline

scRNA-seq perturbation data poses multiple challenges for
reproducible perturbation modeling, such as low capture,
difficult annotation of perturbed cells, low perturbation ef-
ficiency, and high dimensionality which all contribute to
high variance in average effect estimation for any given per-
turbation. To address this problem, we propose a technical
duplicate baseline which tries to answer a simple question:
“how would a technical duplicate of the dataset perform in
predicting a mean perturbation effect?”. Achieving this
level of performance for a model would mean that its predic-
tion errors are comparable to the variance of the experiment
itself, defining a performance ceiling. We compute this base-
line by randomly dividing the population of cells receiving a
perturbation in half and using one half of the cells to predict
the other half.

3.5. MSE vs WMSE Training

To assess whether WMSE can serve not only as an eval-
uation metric but also as a useful learning objective, we
retrained GEARS from scratch with default hyperparam-
eters under three loss functions: (i) its original loss, (ii)
the standard (unweighted) MSE, and (iii) WMSE. For Nor-
man19 we train GEARS for the combination prediction task
using all single perturbations and half of the combination
perturbations for training and validation with the remaining
half of combinations for testing. For Replogle22 we perform
the unseen gene prediction task where half the data is used
for training and validation and the remaining perturbations

are used for testing. In both cases, we train two GEARS
models to get predictions for the all combinations or all
unseen genes.

4. Experimental Results
4.1. In silico Screen

We ran an in silico screen as a discovery tool to pinpoint
the factors that inflate mean-baseline performance (results
summarized in Table 2). As expected, both perturbation
effect size (ϵ) and gene perturbation probability (δ) gener-
ally decrease baseline performance. This is expected as
stronger perturbations give more distinct signals and thus
µall (mean of all perturbed cells) is a worse approximation
of any individual µp (mean of specific perturbation). Simi-
larly, the number of genes g reduced all error metrics due
to library size normalization (more genes imply generally
lower values post normalizing to 104 counts). And finally,
the number of cells per perturbation np also increased per-
formance, likely due to less sparsity in every pseudobulk µp

estimation.

Apart from these effects, three parameters strongly modu-
lated Pearson(∆): the magnitude of control bias (β), the
number of control cells (n0), and the total number of per-
turbations (k). An in-depth analysis of control bias influ-
ence is provided in the following while additional results
concerning n0 and k are provided in Appendices C and D
respectively.

4.2. Control Bias β

Systematic bias is readily apparent when evaluating DEGs
against control. This is illustrated in the Norman19 dataset
in which a substantial proportion of DEGs are shared across
multiple perturbations (Fig. 2A and Supplemental Figs.
5B,5C,5D,5E). Notably, the Replogle22 dataset has fewer
cells per perturbation (64 compared to 256 in Norman19),
and thus less power to detect DEGs. Yet, we still observe
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Figure 2. (A) Trinary (up, down, or unchanged) clustermap of significant DEGs for each perturbation compared to control. (B) Schematic
showing high correlation between ∆p and ∆all due to the systematic bias of µc. (C) Pearson(∆) performance of the mean baseline (µall)
under increasing control bias (β) in simulations. Trend line shows moving average. (D) Pearson(∆) performance of µall under increasing
β in the Norman19 dataset (β = 0 no control bias, β = 1 exact dataset control bias, β = 2 double the dataset control bias). Trend line
shows mean and 95% CI of the mean. (E) Same as (D) in the Replogle22 dataset.

that many DEGs are conserved across perturbations in this
dataset (Supplemental Fig. 5A). As shown in Fig. 2B, we hy-
pothesized that the high performance of the mean baseline
on Pearson(∆) could be explained if the effect of any pertur-
bation (compared to the control mean) is similar to the effect
of all perturbations compared to control. Under this hypoth-
esis, the global expression difference (∆all = µall − µc)
becomes highly correlated with perturbation-specific differ-
ences (∆p = µp − µc) as the distinction between perturbed
and control states dominates the more subtle differences
among perturbations. In our simulations, control bias (β)
showed a high correlation with mean baseline (µall) per-
formance on Pearson(∆) (Fig. 2C, r = 0.54). This be-
havior was also observed in real data when introducing or
removing control bias, with even stronger correlations of
0.63 and 0.58 in the Norman19 (Fig. 2D) and Replogle22
(Fig. 2E) datasets, respectively. These findings suggest that
even a modest control bias leads to increased mean base-
line performance on the Pearson(∆) metric without any
actual learning taking place. Moreover, the Norman19 and
Replogle22 datasets are not considered poor-quality and,
indeed, are used widely for model benchmarking (Wu et al.,
2024; Li et al., 2024a; Csendes et al., 2025; Li et al., 2024b;
Bendidi et al., 2024; Wenteler et al., 2024; Ahlmann-Eltze
et al., 2024). Addressing control bias is likely not a matter
of picking better datasets but rather picking a better refer-

ence. Instead of using non-targeting (NT) control cells, a
more unbiased analysis might leverage all perturbed cells as
the reference for DEG analysis and ∆-based performance
metrics.

4.3. DEG Score-weighted MSE (WMSE)

While many perturbations strongly impact the transcriptome,
leading to a large number of DEGs, most perturbations
do not (Supplemental Fig. 5E). To address the problem of
DEG signal dilution in perturbation modeling, we propose
an MSE weighted by the strength of perturbation-specific
DEGs (calculated with respect to all other perturbations; “vs
Rest”) (see 3.3.2). To evaluate the sensitivity of MSE and
WMSE to niche DEG signals, we computed both metrics
under two scenarios: for each perturbation we compared
the perturbation mean (µp) with (1) the mean of all per-
turbed cells (µall), or (2) µall∗ in which we artificially set
the gene expression of µall to be identical to µp for the top
25 perturbation-specific DEGs (approximately 0.3% of all
genes). Despite the small modification, it alters the most im-
portant perturbation-specific signals. As expected, WMSE
was significantly more sensitive to the niche DEG signals in
µall∗ in both datasets compared with MSE (Fig. 3). Overall,
these findings highlight the utility of DEG-aware metrics to
capture perturbation-specific signals.
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Figure 3. Weighted MSE is sensitive to differences in niche per-
turbation signals. (A) Violin plot showing MSE between true
perturbation profiles µp and two possible predictions: the mean
baseline µall and a modified version µall∗ which sets the top 25
DEGs to be perfectly predicted. (B) Same as (A) but MSE was
weighted by the normalized DEG score (WMSE). (C-D) Same as
(A-B) but for the Replogle22 dataset.

4.4. Improved Metrics with Scale Calibration

As discussed above (see 2.3), common perturbation mod-
eling metrics have multiple drawbacks: (1) MSE/MAE di-
lutes DEG signals (and filtering to top-k DEGs requires
arbitrary cutoffs and cannot measure non-DEG errors), and
(2) Pearson(∆) is sensitive to control bias and cannot mea-
sure whether predicted effects have a similar dynamic range
to true perturbation effects. The result is that current metrics
often cannot detect mode collapse of perturbation models
(i.e., they predict µall regardless of perturbation label). To
address these limitations we introduce two metrics (see 3.3):
WMSE and DEG score-weighted R2(∆) (R2

w(∆)) in which
µall is the ∆ reference. Moreover, current benchmarking
metrics often lack scale calibration, as negative and positive
performance baselines are often not included. To address
this limitation, we implement µc and µall as biased and un-
informative negative baselines, respectively, and introduce
a technical duplicate baseline that simulates ideal model

Figure 4. DEG score-weighted loss reduces mode collapse and
improves model performance (Norman19). (A) WMSE between
prediction and ground-truth perturbation mean. X labels: µc (con-
trol mean), µall (mean of all perturbed cells), predictions from
GEARS model with MSE or WMSE loss, and technical duplicate
baseline. Means between GEARS MSE/WMSE compared with
paired t-test. (B) Same as (A) but for R2

w(∆̂
p,∆p), the DEG score-

weighted R2 between predicted (∆̂p) vs ground-truth perturbation
effect (∆p). For ∆ calculations, µall is the reference. (C) Same
as (B) but with Pearson correlation and filtering to only include
perturbation-specific DEGs (vs Rest). (D) Plot showing the top
2048 highly-variable genes ranked by variance in the ground truth
pseudobulked dataset.

performance (see 3.4).

As shown in Supplemental Fig. 6, our baselines reveal that
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DEG-based weighting greatly expands the dynamic range
of each metric and reinstates a coherent ranking: the bi-
ased control prediction performs worst, the mean baseline
has null performance, and the technical duplicate baseline
establishes the upper bound. Without weighting, this or-
der collapses; in Replogle22, for instance, the technical
duplicate performs worst on both MSE and R2(∆) despite
being the most informative predictor. The apparent anomaly
highlights the signal-dilution problem. Technical duplicate
estimates are derived from only half the cells in each pertur-
bation (32 in Replogle22) and therefore carry more sampling
noise than the population means returned by the baselines.
Metrics that treat all genes uniformly reward this noise re-
duction, even though it is biologically irrelevant. Once genes
are re-weighted by their perturbation-specific DEG statistics
(WMSE, R2

w(∆)), the technical duplicate’s superior capture
of genuine signal outweighs its higher variance, whereas
models that regress toward the dataset mean lose ground. In-
deed, for a weak perturbation such as MRPL23, unweighted
∆ vectors from the two technical duplicate halves show vir-
tually no correlation, yet restricting the comparison to the
five true DEGs restores a strong correspondence, precisely
the behavior our weighting scheme is designed to reward
(Supplemental Fig. 7).

4.5. MSE vs WMSE Training

With our calibrated metrics, we evaluated the performance
of a well-established perturbation model, GEARS (Supple-
mental Fig. 6). We found that GEARS displays decent per-
formance in the combo-prediction task (Norman19), which
requires extrapolating from single-gene effects to two-gene
combos. However, GEARS struggles to outperform the
µall baseline in the more difficult unseen gene prediction
task (Replogle22), as it involves zero-shot predictions in
a noisier dataset (Supplemental Fig. 6). We hypothesized
that, especially for the unseen gene task, GEARS may be
experiencing mode collapse during training due to its un-
weighted MSE loss. To test this, we retrained GEARS with
either MSE or WMSE loss on both datasets and evaluated
its performance (Fig. 4, Supplemental Fig. 8).

On Norman19, the null (µall) baseline yields strictly nega-
tive R2

w(∆) values that cluster near zero; thus any positive
score indicates genuine learning. Switching the training
objective from MSE to WMSE reduces the test-set WMSE
by a factor of 2.5 and lifts the median R2

w(∆) from −0.068
to 0.555, bringing GEARS to within striking distance of
the technical duplicate baseline. The same trend appears
in Pearson(∆) computed after filtering to DEGs (vs Rest)
(Fig. 4C), a metric whose definition contains no weighting
and thus rules out information leakage from the training
weights. Gene-wise variance profiles (Fig. 4D) reveal the
likely source of this performance gain: WMSE penalizes
mode collapse, so predictions recover much of the true per-

turbation variance instead of shrinking toward the dataset
mean.

In the more difficult unseen gene prediction task (Re-
plogle22), WMSE again outperforms MSE on every
weighted metric (though this improvement is smaller com-
pared to the combo task) (Supplemental Fig. 8). When eval-
uation is restricted to the top 5% of perturbations ranked by
DEG count (Supplemental Fig. 9), WMSE-trained GEARS
overtakes the baseline, demonstrating that the model can
capture perturbation-specific effects once the biological sig-
nal is strong enough. Moreover, we found that gene-wise
variances align far more closely with ground truth when
WMSE is used (Supplemental Fig. 8D), suggesting again
that performance gains likely result from amelioration of
mode collapse.

Taken together, these results indicate that DEG-based
weighting steers optimization towards sparse, high-variance
predictions that better reflect real perturbation effects, while
simultaneously aligning with an intuitive calibration in
R2

w(∆): null predictors cluster near zero, ordinary learning
objectives improve modestly, and WMSE moves perfor-
mance toward the empirical ceiling set by technical dupli-
cate baseline. The unseen combo task (Norman19) is an
easier task because information about all single genes is
provided to models during training, and thus there is some
data leakage when predicting unseen gene combo effects at
test time. While this may inflate our estimation of WMSE-
driven gains on that task, the parallel improvement in the
Replogle22 zero-shot setting confirms that weighting does
provide a genuine generalization advantage. Embedding this
inductive bias more explicitly in future architectures should
help models remain competitive even when perturbations
are weak or data quality is suboptimal.

5. Conclusion
Recent benchmarks reveal that predicting the perturbed
dataset mean often performs much better than expected with-
out any learning taking place and often surpasses fitted mod-
els’ performance on common evaluation metrics. From our
analyses on in silico and real-world datasets, we traced this
behavior to bias in control cells and metric artifacts that re-
ward mode collapse. Our conclusions produced a four-step
remedy: (i) use the mean of all perturbed cells to remove sys-
tematic control bias in ∆ and DEG calculations; (ii) adopt
DEG-score weighted metrics (∆R2

w, WMSE) that penalize
mode collapse while retaining transcriptome-wide coverage;
(iii) calibrate all metrics with negative (µc), null (µall), and
positive (technical duplicate) baselines; and (iv) implement
DEG-aware optimization objectives (e.g., WMSE). Under
this protocol, the mean baseline falls to null performance
and models that capture perturbation-specific effects rise to
the top.
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Broader Impact
Accurate in silico perturbation response models can shorten
drug-discovery cycles, cut laboratory costs, and reduce ani-
mal use by flagging promising candidates before any wet-lab
work. Metrics that reward degenerate averages, however,
risk elevating brittle models that provide uninformative pre-
dictions. By reducing reference bias, implementing cali-
brated, DEG-aware metrics, and introducing an optimization
approach that penalizes mode collapse, our work enables
scientists to avoid misleading metric artifacts and steer their
resources toward building and evaluating better perturbation
response models.
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A. Simulation on Real Data
For every parameter in the simulated data, we designed real data experiments as follows:

• g: In a log2 sequence from 2-8192, we randomly downsampled the data to N genes.

• n0: In a log2 sequence from 1-8192, we randomly downsampled the control cell population to N cells.

• np: In a log2 sequence from 2-256 (for Norman19) and 2-64 (for Replogle22), we randomly selected N cells for each
perturbation label.

• k: In a log2 sequence from 1-175 (for Norman19) and 1-1334 (for Replogle22), we randomly selected N perturbations.
We repeated downsampling with 10 random seeds.

• β: We calculated the ∆ between the mean of all perturbed cells (µall) and the mean of the control cells (µc). We then
created synthetic control data by interpolating in equivalent steps of 0.1∆ between µall (0∆) and µc (1∆), terminating
the interpolation at 2∆.

• δ: Because there was no real-data equivalent of this simulated parameter, we mimicked it by downsampling the data
to include perturbations with variable numbers of detected DEGs. We first ranked perturbations by the number of
significant DEGs detected. We then downsampled the data by selecting perturbations in 20% quantile windows of
normalized ranks (0−0.2, 0.1−0.3, ...) such that 0−0.2 had the weakest perturbations and 0.8−1.0 had the strongest.

• ϵ: To evaluate perturbation strength, we downsampled each dataset via the following procedure. For each perturbation,
we ranked all genes by their absolute t-test metric score (obtained during DEG calculations). Ranks were binned into
10% quantiles. Data were downsampled to generate one dataset per decile such that each perturbation only contained
the genes within the relevant DEG quantile. Thus, for quantile 0− 0.1, the data contained only the least differentially
expressed genes within each perturbation, and for 0.9− 1.0 the data contained the most.

• µl: Within each perturbation, cells were ranked by library size, and the ranks were binned into deciles. Data were
downsampled by selecting only cells belonging to each decile in sequence (0− 0.1, 0.1− 0.2, ...).

Table 3. Pearson correlations between metrics and simulation parameters. Comparison between real data experiments and simulation
experiments for all the genes. Correlation values lower than −0.2 are highlighted in blue and Correlation values higher than 0.2 are
highlighted in red.

Metric Dataset ϵ g np β δ n0 k µl

Norman19 - 0.36 0.39 0.63 -0.19 -0.64 -0.09 -0.09
Replogle22 - 0.10 0.27 0.58 -0.06 -0.74 -0.03 0.07Pearson Delta
Simulation -0.32 0.00 0.28 0.54 -0.28 -0.48 -0.10 0.03

Norman19 - 0.21 -0.74 - 0.70 - - -0.42
Replogle22 - 0.17 -0.85 - 0.63 - - -0.58MSE
Simulation 0.45 -0.44 -0.35 0.04 0.42 -0.01 0.02 -0.17

B. Upper Bounds of R2
w(∆) Under Constant µ̂p = µall Predictions

Given the definition of the metric:

R2
w(∆) = 1−

∑
i wi(∆i − ∆̂i)

2∑
i wi(∆i − ∆̄w)2

(9)

∆̄w =

g∑
i=1

wi∆i (10)

∆i = µp
i − µall

i (11)

∆̂i = µ̂p
i − µall

i (12)
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Under a constant prediction µ̂p
i = µall

i any predicted delta becomes ∆̂i = 0 and the overall metric reduces to:

R2
w(∆) = 1−

∑
i wi∆

2
i∑

i wi(∆i − ∆̄w)2
(13)

(14)

Which can be easily shown to be negative by expanding
∑

i wi(∆i − ∆̄w)
2 as follows:

∑
i

wi(∆i − ∆̄w)
2 =

∑
i

wi∆
2
i − 2∆̄w

∑
i

wi∆i + ∆̄2
w

∑
i

wi (15)

Because the set {wi} is normalized to add up to one and under the definition of ∆̄w the expression can be reduced to:

∑
i

wi(∆i − ∆̄w)
2 =

∑
i

wi∆
2
i − 2∆̄2

w + ∆̄2
w (16)

=
∑
i

wi∆
2
i − ∆̄2

w (17)

Then, rewriting the original metric value under the expansion we get:

R2
w(∆) = 1−

∑
i wi∆

2
i∑

i wi∆2
i − ∆̄2

w

(18)

(19)

From which the rightmost fraction is clearly bounded to be positive (the original fraction was between squared quantities)
and greater or equal than 1 making R2

w(∆) ≤ 0 under the constant prediction case for any perturbation.

C. Control Bias and Number of Control Cells (n0)
• Having observed this control bias, we questioned whether better sampling of the control population might be sufficient

to reduce it by better approximating the center of the data (Supplemental Fig. 5F).

• We simulated increasingly higher numbers of control cells and found this reduced the predicting accuracy of the dataset
mean (indicating a most robust control) (Supplemental Fig. 5G). However, the simulation also demonstrated that there
are diminishing returns from continuing to sample the control population beyond 1000 cells. A similar effect was
observed in both the Norman19 and Replogle22 dataset (Supplemental Fig. 5H and Supplemental Fig. 5I). These results
highlight that, while greater sampling of the control cell population is sufficient to reduce bias, it cannot eliminate it.
Thus, metrics which hinge upon the presence of an unbiased control cell population are fundamentally confounded by
these effects. This poses a particular challenge for metrics based on deltas (such as the Pearson(∆)) and DEGs, when
deltas and DEGs are calculated with respect to the control cell population. This is a common practice in the field today,
as evidenced by the widespread use of these metrics in recent papers (Gong et al., 2023; Istrate et al., 2024; Roohani
et al., 2024; Cui et al., 2024; Li et al., 2024a; Wenteler et al., 2024; Tang et al., 2024; Csendes et al., 2025).

D. Number of perturbations (k)
• Another interesting finding of our simulation was a high Pearson(∆) performance of the mean baseline for truly affected

genes under a very low number of perturbations (around 0.6 in the lower k limit on Supplemental Fig. 5K).
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• We hypothesize this is explained by the sparsity of the true biological differences when perturbations occur in non-
overlapping genes. As exemplified on Supplemental Fig. 5J for a single perturbation, if this perturbation uniquely
shows up-regulation of gene 1 and gene 2 and we are under the low k regime, then the mean baseline µall will pick up
some signal from it and correlating r(∆p,∆all) will yield a positive results. This behavior is direct consequence of
Pearson(∆) focusing on direction changes rather that dynamic range. Note that because of the low probability of gene
perturbation in simulation and sparsity of biological signal in the real data, this behavior is the rule rather than the
exception.

• Confirming our result and explanation when sub-sampling perturbations in the real data under 10 different seeds we get
the same trend when analyzing Pearson (∆) only on DEGs vs the Rest of perturbations which are a proxy of the real
affected genes and are the ones that make every perturbation different from every other (Supplemental Figs. 5L and
5M).

• As the number of perturbations in the dataset increases the probability of overlap between perturbed genes increases
while also the pulling effect of a single perturbation on the mean baseline is significantly reduced. In other words µall

is closer to the origin of the plot in Supplemental Fig. 5J reducing artificial performance inflation of the mean baseline
as observed with simulations and real data.

E. Supplemental figures
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Figure 5. Supplemental figure accompanying Figure 2. (A) Trinary (up, down, or unchanged) clustermap of significant differentially
expressed genes of every perturbation against the control population for the Replogle22 dataset. Genes and perturbations were down-
sampled randomly (to 256 and 2048 respectively) due to restrictions in plotting software. (B) Rank plot showing the percentage of
perturbations detecting each DEG (vs Control) in the Norman19 dataset. Annotation shows the top shared genes and the number of
genes shared by most perturbations (61). (C) Scatter plot (with density histogram) showing the percentage of perturbations detecting
each DEG (vs Control) compared with the percentage of perturbations detecting each DEG (vs all other perturbations). (D) Histogram
showing distribution in terms of number of significant DEGs per perturbation in the Norman19 dataset. (E) Same as (D) but for DEGs
calculated with respect to all other perturbations (vs Rest). (F) Diagram showing the effect of increasing the number of control cells (n0)
on improving estimation of the control mean (µc) also reducing systematic bias. (G) Plot showing the effect of increasing control cell
number (n0) on Pearson(∆p,∆all), which is the similarity between µp − µc and µall − µc, in simulated data. (H-I) Same as (G), but in
real datasets Norman19 and Replogle22 respectively. (J) Plot illustrating the biasing of µall by a strong perturbation µp. The effect of this
bias is to increase the similarity in direction between ∆p and ∆all, especially when the dataset contains fewer perturbations in the first
place to moderate this single-perturbation influence. (K) Plot showing the effect of number of perturbations in a simulated dataset (k) on
the Pearson(∆p,∆all). (L-M), same as (K) except in real datasets and with 10 random seeds for selection of k perturbations.
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Figure 6. DEG-aware metrics, elimination of control bias, and addition of negative and positive baselines provide greater sensitivity and
calibration to assess perturbation response model performance. (A) In the Norman19 dataset, MSE between ground truth and baselines or
model predictions. µc (control cell mean), µall, GEARS model predictions, and technical duplicate baseline are shown. (B) Same as (A)
but measuring error with DEG score-weighted MSE (WMSE) instead of MSE. (C-D) Same as (A-B) but using R2(∆p, ∆̂p) and DEG
score-weighted R2

w(∆
p, ∆̂p) as the error metric, where ∆̂p is µ̂p − µall and ∆p is µp − µall. (E-F) Same as (C-D) except with Pearson

instead of R2 and filtering for DEGs (per perturbation) instead of weighting by DEG score. (G-L) Same as (A-F) but for the Replogle22
dataset in which the task was prediction of unseen single genes.
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Figure 7. Effect of perturbation strength (measured by number of significant DEGs) on R2
w(∆

p, ∆̂p) metric in technical duplicate baseline.
(A) Scatter plots showing correlation between perturbation effects (∆ = µp − µall) when using the first half of the data to predict the
second half for MRPL23 with and without filtering for only MRPL23-specific DEGs. DEG-weighted and regular R2 shown, along with
Pearson correlation. (B) Same as (A) for CDC16. (C) Same as (A) for GINS4. (D) Same as (A) for STX5.

Figure 8. Supplemental figure accompanying Fig. 4. DEG score-weighted loss reduces mode collapse and improves model performance
(Replogle22). (A) WMSE between prediction and ground-truth perturbation mean (µp). X labels: µc (control mean), µall (mean of all
perturbed cells), predictions from GEARS model with MSE or WMSE loss, and technical duplicate baseline. Means between GEARS
MSE/WMSE compared with paired t-test. (B) Same as (A) but for R2

w(∆̂
p,∆p), the DEG score-weighted R2 between predicted (∆̂p) vs

ground-truth perturbation effect (∆p). For ∆ calculations, µall is the reference. (C) Same as (B) but with Pearson correlation and filtering
to only include perturbation-specific DEGs (vs Rest). (D) Plot showing the top 2048 highly-variable genes ranked by variance in the
ground truth pseudobulked dataset. Includes variances for the Technical Duplicate, GEARS MSE/WMSE predictions.
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Figure 9. DEG score-weighted loss improves model performance on unseen gene prediction task, especially for stronger perturbations.
(A) Performance of baselines and GEARS perturbation prediction (with MSE or WMSE loss), compared using WMSE metric vs ground
truth perturbation mean (µp), grouped by the quantile range of perturbations tested (quantile ranges based on number of DEGs for each
perturbation). Paired t-test conducted for each quantile range between GEARS with MSE vs GEARS with WMSE loss, with t-score
and p value shown on plot. Median of each prediction within each quantile range also shown. (B) Same as (A) but for R2

w(∆
p, ∆̂p)

(DEG score-weighted R2 between predicted vs ground-truth perturbation effect). (C) Same as (B) but for Pearson correlation with data
filtered to only include perturbation-specific DEGs (vs Rest). Note that the 0-25% quantile is missing because there were no DEGs for
perturbations in this quantile.
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