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Abstract

Large generative models are increasingly trained on synthetic data from earlier gen-
erations, raising concerns about model collapse, a progressive performance decline
consistently observed in empirical studies. However, theoretical understanding
of recursive training dynamics and their failure modes remains limited. In this
work, we theoretically show that recursive training inherently leads to exponential
error growth unless mitigated by sufficient real data. Addressing the growing
scarcity of real data, we introduce a self-verification mechanism enabling models to
filter their outputs based on internal confidence scores without external validation.
Through rigorous analysis, we derive finite-sample error bounds demonstrating
that self-verification alone can prevent collapse, even in fully synthetic training
regimes. Our theoretical framework extends to large language models (LLMs),
characterizing the conditions under which recursive training can maintain stability
without performance degradation.

1 Introduction

High-quality training data is a critical foundation for the remarkable success of large generative
models, such as LLMs [Fu et al., 2024a]. However, it is increasingly acknowledged that the pool of
publicly available, real-world data is nearing exhaustion [Villalobos et al., 2022]. As a result, the
training of modern LLMs increasingly relies on synthetic data produced by previous generations of the
models [Briesch et al., 2023, Martínez et al., 2023, Xing et al., 2025]. Moreover, even unintentionally,
models today are often trained on synthetic data, as many existing datasets are already polluted with
synthetic content [Schuhmann et al., 2022]. This paradigm, known as recursive synthetic data training,
has raised significant concerns regarding the risk of model collapse, a phenomenon characterized by
a drastic and often irreversible deterioration in model performance across generations [Shumailov
et al., 2024, Alemohammad et al., 2024a, Bertrand et al., 2024, Dohmatob et al., 2024b].

Numerous empirical studies have highlighted the potential risks associated with model collapse in
recursive training loops, including substantial reductions in output diversity [Guo et al., 2023, Zhu
et al., 2024], sharply increasing error rates [Dohmatob et al., 2024b,c], and the amplification of
biases [Wyllie et al., 2024]. To mitigate these risks, researchers have proposed various approaches,
such as incorporating sufficient real data [Alemohammad et al., 2024a], augmenting synthetic
datasets [Gerstgrasser et al., 2024], and introducing external verification mechanisms for synthesized
data [Feng et al., 2025, Firdoussi et al., 2025]. Nevertheless, despite these empirical advances, there
remains a notable gap in rigorous theoretical understanding of both the observed phenomena and the
underlying dynamics of recursive synthetic training loops.
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Initial theoretical explorations have started to address these gaps by analyzing population risk dynam-
ics under specific assumptions [Bertrand et al., 2024, Dohmatob et al., 2024a, Seddik et al., 2024]. For
instance, Bertrand et al. [2024] derived upper bounds on parameter deviations for likelihood-based
models when real data is incorporated, establishing convergence under strict statistical and optimiza-
tion assumptions. Further work by Fu et al. [2024b, 2025] relaxed these assumptions on error bounds
through more fine-grained analyses. Fu et al. [2024b] provided bounds on the Total Variation distance
for simplified diffusion models, linking distributional divergence to dataset size and the proportion
of real data. Complementing this, Fu et al. [2025] introduced the concept of recursive stability to
establish the first generalization error bounds. They demonstrated for transformer architectures that a
constant proportion of real data is sufficient to prevent model collapse.

More recently, theoretical studies focusing on verification strategies have gained particular atten-
tion [Feng et al., 2025, Firdoussi et al., 2025]. These works investigated Gaussian mixture models
with linear classifiers in non-recursive settings, modeling external verification of synthesized data as
Bernoulli random variables. In particular, Feng et al. [2025] demonstrated, in the infinite-sample limit,
that linear verifiers can significantly improve model robustness when training solely on synthetic
data, while Firdoussi et al. [2025] extended these findings to scenarios involving a mixture of real
and synthetic samples.

However, existing theoretical analyses suffer from critical limitations [Feng et al., 2025, Firdoussi
et al., 2025]. Current frameworks lack rigorous external verification and rely on simplified proba-
bilistic assumptions for data quality. These analyses remain narrowly focused on Gaussian mixture
models, limiting their applicability to broader generative models, particularly transformer-based
LLMs used in practice. Previous theoretical studies are also restricted to non-recursive training sce-
narios, whereas model collapse emerges specifically within recursive settings [Schaeffer et al., 2025].
Additionally, analyses typically rely on asymptotic regimes with infinite-sample assumptions, failing
to capture realistic finite-sample conditions relevant to actual deployment. This paper addresses these
gaps with the following contributions:

1. Unified Framework for Self-Verification in Recursive Training: We propose a general theoreti-
cal framework for recursive training with self-verification, where models filter their own outputs based
on internally estimated confidence scores. This approach removes the need for external verification
and enables model-internal quality control applicable to a broad class of generative architectures.

2. Finite-Sample Error Bounds Across Training Regimes: We provide rigorous finite-sample error
bounds across three recursive training regimes. First, we show that naive recursive training leads to
exponential error accumulation across generations. We then demonstrate that incorporating sufficient
real data mitigates this degradation. Most notably, we prove that self-verification alone suffices to
prevent model collapse, even in fully synthetic settings, by ensuring provable convergence of error.

3. Theoretical Guarantees for Transformer-Based LLMs: We extend our analysis to transformer-
based LLMs, establishing convergence guarantees for self-verification through recursive coverage
coefficient control and PAC-Bayesian analysis. Our results provide the first theoretical justification
for stable, fully synthetic recursive training in high-capacity transformer architectures.

2 Related Work

High-quality training data is essential to the success of large generative models. However, the vast
supply of human-annotated or naturally occurring data on the internet is nearing exhaustion [Villalobos
et al., 2022]. As a result, LLMs are increasingly trained on data generated by earlier versions of
themselves, forming recursive training loops, also known as self-consuming loops [Martínez et al.,
2023, Bohacek and Farid, 2023, Shumailov et al., 2024, Tao et al., 2024, Schaeffer et al., 2025]. Recent
high-profile research has highlighted the potential for dramatic degradation in model performance,
a phenomenon known as model collapse, which represents a critical challenge for the future of AI
development and deployment [Gibney, 2024, Alemohammad et al., 2024a, Dohmatob et al., 2024b].

Empirical studies have documented a number of alarming phenomena associated with model collapse
in recursive training loops, including a substantial reduction in output diversity [Guo et al., 2023,
Shumailov et al., 2024, Briesch et al., 2023, Zhu et al., 2024], rapidly increasing error rates [Fu
et al., 2024b], and bias amplification [Wyllie et al., 2024]. To mitigate these effects, prior work has
proposed several strategies, such as incorporating real data into training [Alemohammad et al., 2024a,
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Kanabar and Gastpar, 2025], enlarging synthetic datasets [Dohmatob et al., 2024a, Gerstgrasser
et al., 2024, Kazdan et al., 2024], or guiding the data generation process using reward or control
signals [Gillman et al., 2024, Alemohammad et al., 2024b, Feng et al., 2025, Firdoussi et al., 2025].

Despite the wealth of empirical investigations, theoretical understanding of recursive synthetic
training loops remains relatively limited [Bertrand et al., 2024, Dohmatob et al., 2024c, Fu et al.,
2024b, 2025, Seddik et al., 2024, Dey and Donoho, 2024]. A line of recent work has begun to explore
this direction by analyzing population risk dynamics under specific modeling assumptions, such as
linear contexts [Dohmatob et al., 2024a], Gaussian models [Shumailov et al., 2024, Alemohammad
et al., 2024a, Suresh et al., 2024, Jain et al., 2024], and asymptotic regimes [Marchi et al., 2024].
Furthermore, Bertrand et al. [2024] derived upper bounds on parameter drift in likelihood-based
models under strong statistical assumptions, while Fu et al. [2024b, 2025] relaxed these constraints
and provided generalization bounds for simplified diffusion and attention-based architectures.

Most closely related to our work are Feng et al. [2025] and Firdoussi et al. [2025], which introduce
verification strategies into training loops to prevent model collapse. These studies investigated
Gaussian mixture models with linear classifiers in non-recursive settings under the infinite sample
size assumption. They modeled external verification of synthesized data as Bernoulli random variables
and examined the impact on model performance. Specifically, Feng et al. [2025] demonstrated
that linear verifiers can provide feedback that improves the robustness of models trained on fully
synthesized data, while Firdoussi et al. [2025] extended these findings to mixed data scenarios.

Our work further advances this line of research by introducing the self-verification mechanism,
extending the theoretical framework to general architectures like transformers, analyzing error
accumulation in recursive settings, and deriving practical finite sample bounds.

3 Preliminary

In this section, we formalize the recursive training framework, where each model is trained on data
generated by its predecessor. We then outline the self-verification mechanism, which enables models
to evaluate and filter their own outputs to ensure stable training.

Recursive Training Loops. Let {Gt}Tt=0 be a sequence of models trained recursively. The initial
model G0 is trained on a real dataset S0 = {(x0,j , y

∗
0,j)}nj=1 ⊆ X ×Y , where x0,j are inputs sampled

from the data distribution and y∗0,j are ground-truth labels. For each generation t = 1, . . . , T , model
Gt is trained on a synthetic dataset St = {(xt,j , ŷt,j)}nj=1, where xt,j ∼ X and ŷt,j ∼ Gt−1(xt,j)
are labels predicted by the previous model. The process continues recursively until generation T .

Next, we introduce a structured framework that integrates self-verification into each training gen-
eration, consisting of two key components: (1) a confidence-guided filtering mechanism for self-
verification, and (2) a recursive training procedure leveraging verified data. Together, these compo-
nents enable robust self-evolution through selective data curation.

Self-Verification via Confidence-Guided Filtering. In the absence of external supervision, we
introduce a self-verification mechanism that allows the model to evaluate the quality of its own
outputs. The verification score is computed using a fixed evaluator G0, trained solely on the initial
real dataset, and reflects the alignment of a generated output with the base model’s inductive biases.
Formally, the score for output y given input x is defined as:

sverify(y | x) := log G0(y | x).

This design offers two main benefits: it anchors verification to a stable reference, mitigating distribu-
tional drift across generations, and acts as an implicit regularizer that discourages semantic deviation
from the base distribution.

Given an input xt,j , we sample N candidate outputs from the previous model Gt−1, denoted
{ŷt,j,k}Nk=1 ∼ Gt−1(· | xt,j). We then apply a verification-based filtering step that retains only
candidates whose scores fall within a margin γ > 0 of the highest score in the sampled set:

y+
t,j,γ =

{
ŷt,j,k

∣∣∣∣ sverify(ŷt,j,k | xt,j) ≥ max
1≤k′≤N

sverify(ŷt,j,k′ | xt,j)− γ

}
,
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A verification-weighted distribution over y+
t,j,γ is then defined via a softmax over the scores:

G∗
t,N (ŷ | xt,j) =

exp (sverify(ŷ | xt,j))∑
ŷ′∈y+

t,j,γ
exp (sverify(ŷ′ | xt,j))

, where ŷ ∈ y+
t,j,γ .

Then, a verified output ŷt,j is sampled from this distribution. This mechanism allows the model to
act as both generator and verifier, enforcing quality control in recursive training.

Recursive Training with Verified Data. The verified outputs from confidence-guided filtering are
used to construct the synthetic training set for the next generation. For each input xt,j , we sample a
verified target ŷt,j ∼ G∗

t,N (· | xt,j), forming the dataset St = {(xt,j , ŷt,j)}nj=1. The next model Gt is
trained by maximizing the log-likelihood over St:

Gt = argmax
G∈H

n∑
j=1

log G(ŷt,j | xt,j),

where H is the model hypothesis class. This process facilitates iterative self-improvement by
leveraging verified high-quality outputs for training.

4 Main Results: Understanding and Preventing Model Collapse

In this section, we present our theoretical analysis of model collapse in recursive synthetic training to
understand when and how this phenomenon can be prevented. We first demonstrate that, without
intervention, error accumulates exponentially across generations, leading to inevitable model collapse.
We then demonstrate that introducing real data mitigates this collapse. Finally, we prove that a
self-verification mechanism alone can prevent collapse, even under fully synthetic training.

4.1 Assumptions and Definitions

We begin by stating the core assumptions and definitions that underpin our analysis.
Assumption 1 (Confidence-Calibrated Agreement). Let G0 denote the base model trained on a
ground-truth real dataset S0 = {(xj , y

∗
j )}nj=1. For any input x ∈ X , define the verified high-

confidence prediction as: y+
γ = {y| sverify(y | x) ≥ maxy′∈Y sverify(y

′ | x)− γ} , where sverify is
chosen as log G0. Let y+t (x) = argmaxy∈Y Gt(y | x) denote the prediction of Gt. Then, we assume
the existence of a constant τ ∈ (0, 1) such that:

Px∼X
[
y+t (x) = y∗(x)

∣∣ Gt(y
+
γ (x) | x) ≥ 1− τ

]
≥ 1− ϵ(γ),

where ϵ(γ) is a function that controls the residual error, τ is a fixed constant representing the
confidence threshold, and y∗(x) denotes the ground-truth label.

As the filtering becomes more selective (γ → 0), we expect ϵ(γ) → 0 if the base model G0, trained on
a real dataset, is well-calibrated. This expectation is reasonable, as extensive prior work has explored
confidence calibration techniques that enable models to achieve well-calibrated predictions [Mehrtash
et al., 2020, Wang et al., 2021, Zhu et al., 2022, Liu et al., 2025]. Furthermore, similar assumptions
have been extensively employed in the literature on self-learning paradigms [Huang et al., 2025a,b].
Definition 1 (Minimum Confidence). Let y+t (x) = argmaxy∈Y Gt(y | x) denote the model’s
top prediction at generation t. We define the minimum confidence level of these predictions as:
C0 = minx∼X , t∈[0,T ] Gt

(
y+t (x) | x

)
.

The quantity C0 denotes the minimum confidence assigned by any model in the sequence to its
top prediction over the input distribution. Ensuring C0 > 0 guarantees that a non-trivial level of
certainty is maintained throughout the recursive training process. This assumption is standard in prior
works [Zhang et al., 2023, Huang et al., 2025a].
Definition 2 (Test Error). We define the test error of the final model GT after T recursive generations
as: Err(GT ) = Px∼X

[
y+T (x) ̸= y∗(x)

]
, where y+T (x) = argmaxy∈Y GT (y | x) is the model’s

prediction, and y∗(x) is the ground-truth label.

This metric provides a clear measure of model performance and serves as the foundation for analyzing
error propagation in recursive training.
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4.2 Model Collapse in Naive Recursive Training

We begin by analyzing the failure mode of naive recursive training, where models are trained solely
on synthetic data generated by their predecessors without any verification. In this setting, performance
inevitably degrades over generations, leading to eventual collapse. Our first theorem shows that
prediction errors propagate and amplify exponentially across recursive steps.
Theorem 1 (Error Propagation in Naive Recursive Training). Let {Gt}Tt=0 denote a sequence of
models trained via naive recursive training, where each Gt is trained solely on synthetic data
generated by its predecessor Gt−1, without any verification. Assume that for all t ∈ [1, T ], the Total
Variation (TV) distance between successive generations satisfies DTV (Gt(· | x),Gt−1(· | x)) ≍ DTV,
where DTV denotes the characteristic magnitude of distributional shift across generations. Define
the coverage coefficient as Cγ := Ex∼X

[
1/G0

(
y+
γ (x) | x

)]
. Suppose the final model GT satisfies

Assumption 1. Then the test error after T recursive steps satisfies:

Err(GT ) ≲ ϵ(γ) +
1

τ
·DTV +

(
Cγ +DTV log

1

DTV

)
·
(

1

2C0
+

1

2
log

1

C0

)T

. (1)

Remark 1. Exponential Error Amplification in Naive Recursive Training. This theorem un-
derscores the core limitation of naive recursive training: the prediction error grows exponentially
with the number of generations T when the condition 1

2C0
+ 1

2 log
1
C0

> 1 is met. Here, C0, defined
in Definition 1, denotes the minimum confidence assigned to the model’s top prediction across all
generations. In practice, C0 tends to be small, making the condition readily satisfied. Notably, when
C0 ≤ 0.5, the error term in Equation 1 exhibits exponential growth as T increases. This growth stems
from the fact that each model not only inherits information from its predecessor but also compounds
its biases and errors, leading to eventual model collapse.

This result aligns with prior theoretical works [Bertrand et al., 2024, Gillman et al., 2024], which
shows that recursive training without control leads to exponential error amplification. However, these
analyses directly assume upper bounds on optimization and statistical errors from finite sampling, and
typically posit unrealistic iterative retraining where each model inherits its predecessor’s parameters
and optimizer state [Schaeffer et al., 2025]. In contrast, we analyze training dynamics for specific
generative models, including Transformer-based LLMs (Appendix I, Theorem 7), under a more
practical setting where each model is trained from scratch on synthetic data.

The phenomenon of model collapse observed here is also consistent with empirical observations
in recursive training setups, where the absence of quality control mechanisms results in severe
performance degradation over successive generations [Shumailov et al., 2024, Alemohammad et al.,
2024a]. This theoretical result formalizes these observations, providing a rigorous explanation for the
inevitable instability in naive recursive training.

4.3 Mitigating Collapse with Real Data

A common approach to prevent model collapse is to inject real data during training. While this
strategy has been empirically validated in previous work [Alemohammad et al., 2024a], we provide a
theoretical characterization of how real data injection affects error propagation.
Theorem 2 (Error Propagation with Real Data). Let {Gt}Tt=0 be a sequence of models trained via
recursive training that incorporates a proportion α ∈ [0, 1] of real data Dreal = {(x, y∗)} at each
generation. The remaining 1−α proportion of the training data comes from synthetic data generated
by the previous model Gt−1. Suppose that the TV distance satisfies DTV (Gt(· | x),Gt−1(· | x)) ≍
DTV for all t, and that the final model GT satisfies Assumption 1. Assume α > 1− 1

2(1/C0−1) , Then
as T → +∞, the final error after T recursive steps satisfies:

Err(GT ) ≲ ϵ(γ) +
1

τ
·DTV +

1− α

C0
DTV log

1

DTV
.

Remark 2. Error Stabilization through Real Data Injection. This theorem demonstrates the
stabilizing effect of incorporating real data into recursive training loops. Specifically, when the
proportion of real data α satisfies the condition α > 1 − 1

2(1/C0−1) , the exponential error growth
observed in naive recursive training (Theorem 1) is mitigated. The resulting error bound becomes
stable as T → +∞, with the dominant terms depending on ϵ(γ), the total variation distance DTV,
and the proportion of synthetic data (1− α).
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Notably, as discussed in Assumption 1, ϵ(γ) can be made arbitrarily small through confidence
calibration techniques [Liu et al., 2025]. Meanwhile, the TV distance DTV can diminish under
certain theoretical conditions. Prior studies have shown that DTV(n) converges at a rate of O(n−1/4)
in diffusion models [Fu et al., 2024b], with similar rates established in GANs [Liang, 2021]. These
results suggest that as the number of training samples n increases, the distributional shift across
generations diminishes, further stabilizing the overall error bound.

The key insight from this result is that introducing even a modest fraction of real data, α > 1 −
1

2(1/C0−1) , fundamentally changes the error dynamics and ensures that the exponential amplification
factor from Theorem 1 is suppressed. From a practical perspective, this theorem underscores the
importance of incorporating real data in recursive training loops to ensure the long-term stability of
model performance. Even a small fraction of real data acts as a corrective mechanism, counteracting
the biases, distributional shifts, and errors introduced by synthetic data. This result also aligns with
prior empirical and theoretical findings [Briesch et al., 2023, Bertrand et al., 2024, Fu et al., 2024b,
2025, Seddik et al., 2024] that emphasize the critical role of real data in mitigating error propagation.
Remark 3. Limitations of Real Data Dependency and Motivation for Self-Verification. While
this result confirms the effectiveness of incorporating real data in preventing model collapse, it also
highlights a significant limitation: the approach relies on access to an ongoing stream of high-quality
real data. In many practical scenarios, such data may be scarce, expensive to obtain, or entirely
unavailable [Villalobos et al., 2022, Alemohammad et al., 2024a]. Furthermore, in publicly available
datasets, it may be challenging to accurately distinguish between real and synthetic data [Sadasivan
et al., 2023], which can undermine the stability of the training process.

This limitation motivates the need for alternative strategies like self-verification. By internally
validating and correcting the quality of synthetic data, a self-verification mechanism can prevent
error propagation across generations, offering a more resource-efficient and generalizable solution to
model collapse without depending on external data.

4.4 Mitigating Collapse through Self-Verification

Our next main contribution is to demonstrate that stable recursive training is possible without real
data or external supervision, by leveraging a self-verification mechanism. This builds on the insight
that a model’s verification ability often exceeds its generation capability [Weng et al., 2023, Huang
et al., 2025a], allowing it to effectively filter its own outputs. We then present our main theoretical
result, showing that self-verification can prevent model collapse:
Theorem 3 (Error Bound with Self-Verification). Let {Gt}Tt=0 be a sequence of models obtained via
recursive training with the self-verification mechanism described in Section 3. Assume that for all
t ∈ [1, T ], the TV distance satisfies DTV (Gt(· | x),Gt−1(· | x)) ≍ DTV. Suppose the final model
GT also satisfies Assumption 1. Then, after T recursive generations, the final model GT satisfies:

Err(GT ) ≲ ϵ(γ) +
1

τ
DTV +

(
1

NC0
log

1

C0

)T
Cγ

N
log

1

τ
+

(
1

N
+

1

NC0
DTV log

1

DTV

)
log

1

τ
.

Furthermore, if N > 1
C0

log
(

1
C0

)
, the exponential term vanishes as T → ∞, yielding:

Err(GT ) ≲ ϵ(γ) +
1

τ
DTV +

1

N

(
1 +

1

C0
DTV log

1

DTV

)
log

1

τ
. (2)

Remark 4. The Role of Self-Verification in Error Control. Theorem 3 demonstrates how self-
verification prevents the exponential error growth shown in Theorem 1 during recursive training loops.
Specifically, the method enforces quality control using a verification score sverify(y | x) = log G0(y |
x) which quantifies how well a generated output aligns with the distribution of the initial model. This
reference model, trained on real data, remains fixed across generations and serves as a stable anchor
for self-verification. By selecting outputs within a margin γ of the maximum score, the mechanism
creates a filtered subset of high-quality candidates for training. This anchoring to the initial model G0

prevents distributional drift from compounding, ensuring each recursive generation remains tethered
to a consistent inductive prior. As generations progress, outputs deviating from the original data
manifold are excluded, effectively suppressing error amplification even without external supervision.

Specifically, Theorem 3 establishes that the exponential decay term vanishes asymptotically when
N > log(1/C0)/C0, where N , as described in Section 3, represents the number of data samples
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used by the self-verification mechanism to select a subset of high-quality samples for training. This
condition highlights the importance of both the size of the data pool and the quality of the selected
samples in stabilizing the recursive training process. When this condition is met, the error bound
converges to an asymptotic form, ensuring that the error remains bounded even as T → ∞.

This result is particularly significant because it demonstrates that, through proper quality control
mechanisms performed entirely within the model itself, recursive training can achieve sustained
improvement without relying on real data or external verification. By leveraging self-verification to
prioritize reliable outputs and suppress low-quality generations, the training process becomes robust
to error amplification, enabling scalable and stable model development in resource-constrained or
fully synthetic environments.

Remark 5. Comparison with previous works. The study of model collapse in recursive training
loops was initiated by theoretical insights from Shumailov et al. [2024], Alemohammad et al. [2024a],
which analyzed simplified Gaussian models under fully synthetic data settings. Most closely related
to our work is the emerging line of research that introduces verification strategies into training loops to
prevent model collapse [Feng et al., 2025, Firdoussi et al., 2025]. Specifically, Feng et al. [2025] and
Firdoussi et al. [2025] investigated Gaussian mixture models with linear classifiers in non-recursive
settings. Their analysis examined how external verification of synthesized data influences model
performance as training dataset size approaches infinity. Feng et al. [2025] primarily demonstrated
that appropriate feedback mechanisms can significantly improve the robustness of models trained on
fully synthetic data, while Firdoussi et al. [2025] extended these findings to mixed data scenarios.

Our work makes significant theoretical advancements over Feng et al. [2025] and Firdoussi et al.
[2025] in several key aspects:

1. Self-Verification vs. External Verification: While prior work often relies on external verifiers to
guide data quality [Feng et al., 2025, Firdoussi et al., 2025], we propose a self-verification framework
in which models assess their own outputs. This intrinsic approach removes the reliance on external
quality signals, enables autonomous self-improvement. For advanced or superhuman models, internal
verification capabilities may surpass what weak external mechanisms can offer [Wang et al., 2025].

2. A General and Practical Theoretical Framework: Our work considers a more general and
practical theoretical framework compared to Feng et al. [2025] and Firdoussi et al. [2025], which
focused on Gaussian mixture models and linear classifiers. Importantly, we do not impose any
assumptions about data distribution, making our findings applicable to a wide range of real-world
scenarios. Moreover, our framework addresses more realistic language model settings, and in Section
5, we extend our theoretical results to Transformer-based LLMs, demonstrating their applicability to
modern and widely-used architectures.

3. Recursive Training vs. Non-Recursive Settings: While Feng et al. [2025] and Firdoussi et al.
[2025] investigated non-recursive training settings, our work tackles the more complex and challeng-
ing recursive training setup, which is the primary scenario in which model collapse occurs [Shumailov
et al., 2024, Alemohammad et al., 2024a, Schaeffer et al., 2025]. Recursive training involves com-
pounding errors and distributional shifts across multiple generations, making it significantly harder to
analyze theoretically. By addressing this setting, our work provides deeper insights into the dynamics
of recursive training loops and offers solutions that are more meaningful and impactful for preventing
model collapse in practical scenarios.

4. Finite-Sample Guarantees vs. Asymptotic Analyses: Prior work [Feng et al., 2025, Firdoussi
et al., 2025] primarily established asymptotic results under infinite-sample assumptions, limiting
their applicability to real-world training regimes. In contrast, we derive finite-sample generalization
bounds that remain valid under practical recursive training scenarios.

In summary, we advance the field by introducing self-verification, developing a general framework
applicable to transformer-based LLMs, analyzing recursive training dynamics, and deriving finite-
sample guarantees. These contributions mark a significant step toward understanding and mitigating
model collapse in generative models.

Remark 6. Proof Sketch of Theorem 3. Theorem 3 provides a recursive generalization bound for
self-verifying models under synthetic training, and shows how error amplification can be effectively
controlled through confidence-guided filtering. The key innovation lies in leveraging recursive
coverage coefficient control to quantify the reliability of verified data and to suppress error propagation
across recursive generations.
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Step 1: Verification-Induced Quality Control and Error Decomposition. We leverage the
verification score sverify(y | x) = log G0(y | x) to filter model outputs and restrict supervision to
high-quality generations. Let y+

γ (x) denote the verified candidate set, and define the confident
support region:

D+
1 :=

{
x ∈ X

∣∣G0(y
+
γ (x) | x) ≥ log(2/τ)/N

}
.

Using standard decomposition, the failure probability of the first-generation model can be split as:

Px∼X
[
G1(y

+
γ (x) | x) ≤ 1− τ

]
≤ Px∼X

[
G1(y

+
γ (x) | x) ≤ 1− τ, x ∈ D+

1

]
+ Px∼X

[
x /∈ D+

1

]
.

The first term is controlled via a Monte Carlo coverage argument and a TV distance bound between
G1 and the empirical verification distribution G∗

1,N , while the second is bounded using the expected
inverse coverage. This yields:

Px∼X
[
G1(y

+
γ (x) | x) ≤ 1− τ

]
≤ 4

τ
·DTV(G1,G∗

1,N ) +
Cγ

N
log

2

τ
,

with coverage coefficient Cγ := Ex

[
1/G0(y

+
γ (x) | x)

]
. This completes the base case.

Step 2: Recursive Coverage Propagation and Error Control. To extend the analysis across
generations, we study how coverage evolves recursively. Specifically, the coverage coefficient at
generation t satisfies the recurrence:

Ct+1 ≲ β + αCt, with α =
1

NC0
log

(
1

C0

)
, β =

1

N
+

DTV

NC0
log

(
1

DTV

)
,

where C0 is the minimum confidence. Solving this recurrence gives:

Ct ≲

(
1

NC0
log

(
1

C0

))t

· Cγ

N
+

1 + A
C0

log
(
1
A

)
N − 1

C0
log
(

1
C0

) .
Substituting this into the error bound completes the proof.

Key Insight: Recursive Coverage Coefficient Control. Unlike classical generalization bounds,
which depend solely on data size and model capacity, recursive synthetic training introduces a new
challenge: maintaining high-quality supervision under model-generated data. This requires bounding
the evolution of coverage across generations: Cγ,t := Ex

[
1/Gt(y

+
γ (x) | x)

]
, which quantifies the

expected inverse confidence over the verified candidate region. Intuitively, a smaller Cγ,t implies
that the model assigns higher probability mass to its own verified predictions, indicating better
self-consistency and internal alignment.

5 Application to Transformer-based LLMs

This section instantiates our theoretical framework on Transformer-based LLMs, which form the
foundation of modern commercial systems such as GPT-4 [Achiam et al., 2023], Claude [Anthropic,
2024], LLaMA [Touvron et al., 2023], and Gemini [Team et al., 2023]. Our formalization considers
token sequences St = (x1, . . . , xt) within a structured space S ⊆ X≤ℓ, where X represents the
token vocabulary and ℓ denotes maximum sequence length. The family of distributions induced
by the model is denoted as {GLLM

θ | θ ∈ ΘLLM}, where θ represents the model parameters. Then,
the initial model GLLM

θ0
is trained on a corpus of real token sequences {(x(j)

1 , . . . , x
(j)
ℓ )}mj=1 using

maximum likelihood estimation:

θ0 = arg max
θ∈ΘLLM

1

n

m∑
j=1

ℓ∑
t=1

log GLLM
θ (x

(j)
t+1 | S(j)

t ),

where S
(j)
t = (x

(j)
1 , . . . , x

(j)
t ) ∈ S represents each prefix sequence, and n = mℓ is the total sample

count. This initial model then participates in recursive training as described in Section 3, using
the verification score function defined as sverify(x | S) := log GLLM

θ0
(x | S). Then, We adopt the

standard Transformer architecture [Vaswani et al., 2017, Brown, 2020, Zhang et al., 2025, Hu et al.,
2024], consisting of D layers with multi-head self-attention (MHA) and feed-forward network (FFN)
modules. For input matrix X(0) ∈ RL×d, computation in layer t ∈ [D] follows:

Y (t) = Πnorm

[
MHA(X(t−1),W (t)) + γ

(t)
1 X(t−1)

]
, X(t) = Πnorm

[
FFN(Y (t), A(t)) + γ

(t)
2 Y (t)

]
,

8



where γ
(t)
1 , γ

(t)
2 ∈ [−1, 1] are residual weights, and Πnorm normalizes rows to the unit ℓ2-ball. The

FFN module is defined as FFN(Y (t), A(t)) = ReLU(Y (t)A
(t)
1 )A

(t)
2 , with A

(t)
1 ∈ Rd×dF and A

(t)
2 ∈

RdF×d. Token prediction logits are produced via Y (D+1) = softmax
(
I⊤LX(D)A(D+1)/(Lβ)

)
,

where IL ∈ RL is the all-ones vector, A(D+1) ∈ Rd×dy is the output projection, β ∈ (0, 1] controls
temperature, and dy is the output dimension.

For theoretical tractability, we assume uniformly bounded model parameters, as detailed in Ap-
pendix H. This standard assumption in Transformer analysis aligns with prior work [Li et al., 2023,
Hu et al., 2024, Zhang et al., 2025, Fu et al., 2025]. In Appendix I, Theorem 7 demonstrates how
naive recursive LLM training leads to exponential error growth, while Theorem 8 in Appendix J
shows how incorporating real data prevents this collapse. We now present our key contribution: error
bounds for LLMs with self-verification that maintain training stability without external real data.

Theorem 4 (Error Bound for Transformer-based LLMs with Self-Verification). Let GLLM
θt

(x | S)
denote the conditional generation distribution of a Transformer-based LLM at the t-th recursive
generation, where S ∈ S ⊆ X≤ℓ is a token prefix sequence and x ∈ X is the next token. Then, after
T recursive updates, the final prediction error is bounded with probability at least 1− δ:

Err(GLLM
θT ) ≲ ϵ(γ) +

(
1

τ
+

1

NC0
log

1

τ

)
log(nB̃)D̃√

n
log

1

δ
+

(
1

N
+

(
1

NC0
log

1

C0

)T
Cγ

N

)
log

1

τ
.

Furthermore, if N > 1
C0

log
(

1
C0

)
, the exponential term vanishes as T → ∞, yielding:

Err(GLLM
θT ) ≲ ϵ(γ) +

(
1

τ
+

1

NC0
log

1

τ

)
log(nB̃)D̃√

n
log

1

δ
+

1

N
log

1

τ
,

where n = mℓ is the total number of training samples, and D̃, B̃ reflect the model capacity and prior
radius respectively. A complete version of the theorem is presented as Theorem 5 in Appendix H.

Remark 7. Stabilizing Recursive Training of LLMs via Verification Mechanisms. This theorem
establishes that self-verification mechanisms, when incorporated into Transformer-based LLMs,
effectively eliminate the exponential error accumulation typically observed in recursive synthetic
training loops. Through rigorous analysis of the error bound, we identify three principal components
governing model performance: (i) the confidence-calibrated agreement error ϵ(γ), which can be
minimized when the verification slack parameter γ is sufficiently small, leveraging established
confidence calibration methods [Liu et al., 2025]; (ii) the statistical generalization gap, characterized
by log(nB̃)D̃/

√
n, where B̃ and D̃ represent the prior radius and effective dimensionality of the

model capacity—parameters that directly scale with the architectural complexity of Transformer
networks; and (iii) a recursive decay term determined by verification sampling intensity.

Notably, when the verification sample size exceeds the critical threshold N > log(1/C0)/C0, the
decay term asymptotically vanishes, enabling stable convergence of the training process regardless
of recursion depth. This result not only provides theoretical guarantees for the stability of recursive
training language models but also offers practical guidance for calibrating verification intensity based
on architectural complexity and confidence characteristics of specific Transformer implementations.

6 Conslusion

This paper establishes a theoretical foundation for understanding and mitigating model collapse in
recursive synthetic training. We demonstrate that naive recursive training leads to exponential error
growth, whereas incorporating a sufficient fraction of real data can stabilize performance. To address
scenarios where real data is scarce or unavailable, we propose a self-verification mechanism that
enables models to filter their own outputs based on internal confidence scores. Our analysis provides
finite-sample error bounds showing that self-verification alone is sufficient to prevent collapse. We
further extend these guarantees to Transformer-based LLMs, offering the first formal justification
for stable, fully synthetic training in high-capacity generative models. Overall, our framework paves
the way for principled and scalable self-evolution in future generations of LLMs without reliance on
external supervision.
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Appendix

A Overview

In this supplementary material, we provide additional details and complete proofs to support the
theoretical developments presented in the main paper. The appendix is organized as follows:

• Appendix B. Related Work: Self-Verification in LLMs.
We situate our work within the emerging literature on self-verification for LLMs, highlighting
key differences between our theoretically grounded, training-time framework and prior
prompt-based or post hoc empirical approaches.

• Appendix C. Limitations.
We discuss a primary limitation of our framework—its reliance on a single verification
strategy based on internal confidence scores—and outline possible extensions using richer
or more adaptive verification methods.

• Appendix D. Broader Impacts.
We outline the potential positive societal implications of our work, such as reducing depen-
dence on human-labeled data through self-verification, and note that our theoretical analysis
poses no immediate negative societal risks.

• Appendix E. Proof of Theorem 3: Error Bound with Self-Verification.
We present a detailed finite-sample analysis of recursive training with self-verification. The
proof introduces recursive coverage coefficients to quantify verification quality and demon-
strates how confidence-guided filtering prevents error amplification across generations.

• Appendix F. Proof of Theorem 1: Error Amplification in Naive Recursive Training.
We formalize the failure mode of naive recursive training without any verification and
prove that, under mild conditions, prediction error grows exponentially with the number of
generations.

• Appendix G. Proof of Theorem 2: Stabilization via Real Data Injection.
We analyze how introducing a fixed proportion of real data at each generation mitigates
exponential error growth, and derive sufficient conditions under which training remains
stable.

• Appendix H. Proof of Theorem 4: Theoretical Guarantees for Transformer-Based
LLMs with Self-Verification.
We extend our theoretical framework to Transformer-based language models, providing
generalization bounds under recursive training with self-verification, accounting for model
capacity and confidence calibration.

• Appendix I. Exponential Error Growth in Naive Recursive Training of Transformer-
Based LLMs.
We instantiate Theorem 1 in the Transformer setting and analyze how parameter confidence
bounds affect the rate of error amplification during unverified recursive training.

• Appendix J. Mitigating Collapse via Real Data in Recursive Training of Transformer-
Based LLMs.
We apply Theorem 2 to the Transformer case, showing that even limited real data injection
suffices to stabilize recursive training and suppress error accumulation in practical scenarios.

• Appendix K. Additional Experimental Analysis and Future Work.
We provide further empirical validation for our assumptions, present experimental results
demonstrating how self-verification prevents model collapse, and discuss potential directions
for future work.

This appendix provides the full mathematical foundations of our results and demonstrates their
applicability to modern high-capacity models used in practice.
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B Related Work: Self-Verification in LLMs

Recent research has explored self-verification as a means of improving LLM reasoning performance
during inference [Weng et al., 2023, Stechly et al., 2024, Ma et al., 2025, Lightman et al., 2023, Xu
et al., 2024, Kamoi et al., 2024, Tao et al., 2024]. Most existing approaches adopt a prompt-based
paradigm, where LLMs are instructed at inference time to critique or revise their own outputs [Huang
et al., 2023, Tyen et al., 2023, Zhang et al., 2024a], or are trained post hoc to mimic such behavior via
curated demonstrations or reinforcement learning [Saunders et al., 2022, Jiang et al., 2024, Kumar
et al., 2024, Zhang et al., 2024b, Ma et al., 2025]. While effective in certain settings, these methods
largely focus on empirical improvements, and rely on externally crafted prompts or behavior cloning
pipelines.

In contrast to these empirical efforts, our work develops a formal theoretical framework for self-
verification in recursive training settings. Rather than prompting models to verify at inference time,
we integrate self-verification directly into the training process via internal confidence-based filtering.
This allows us to establish provable error bounds, showing that self-verification alone can prevent
collapse under fully synthetic training. Furthermore, we extend these guarantees to Transformer-based
LLMs, providing the first formal justification of stable self-evolution in high-capacity models without
external supervision. Our contribution bridges a gap in the literature by grounding the concept of
self-verification in statistical learning theory, rather than relying on prompt design or behavioral
imitation.

C Limitations

A primary limitation of our framework lies in its reliance on a single verification strategy—confidence-
based filtering using a fixed base model. While effective in our theoretical setting, this approach
may be insufficient to capture semantic correctness in more complex tasks. Future work should
explore richer and more adaptive verification methods, such as ensemble-based voting or task-specific
evaluators, to enhance robustness.

D Broader Impacts

This work provides a theoretical foundation for stable and data-efficient training of language models
through self-verification, potentially reducing the reliance on large-scale human-labeled datasets
and enabling broader access to capable models. As a theoretical contribution, it does not pose any
immediate negative societal impacts.

E Proof of Theorem 3: Error Bound with Self-Verification

In this section, we present the proof of Theorem 3, which provides a finite-sample error bound
for recursive training with self-verification. Our analysis draws inspiration from the confidence
framework introduced in Huang et al. [2025a], but extends it to a more general recursive setting that
captures the dynamics of synthetic supervision over multiple generations.

The key insight lies in controlling the evolution of the recursive coverage coefficient, which measures
how well the model concentrates probability mass on its own verified predictions across generations.
While classical generalization bounds typically depend only on data size and model capacity, recursive
training introduces a new challenge: maintaining reliable supervision when the training data is
generated by the model itself. To formalize this, we define the recursive coverage coefficient as

Cγ,t := Ex∼X

[
1

Gt(y
+
γ (x) | x)

]
,

which captures the expected inverse confidence over the high-quality, self-verified region. A smaller
value of Cγ,t implies that the model assigns higher likelihood to its verified outputs, indicating better
internal consistency and semantic alignment.

By bounding the growth of this coefficient over generations, we are able to characterize how self-
verification mitigates error amplification and ensures stability, even under fully synthetic training.

14



The proof proceeds by decomposing failure events and recursively controlling the probability mass
over verified subsets.

Proof of Theorem 3. We begin by recalling that the initial model G0 is trained via maximum likeli-
hood estimation on a ground-truth dataset S0 = {(xj , y

∗
j )}nj=1, that is,

G0 = argmax
G∈H

n∑
j=1

log G(y∗j | xj),

where H denotes the model hypothesis class. The resulting model G0 encodes a set of inductive
biases aligned with human-annotated supervision, and serves as a fixed and calibrated reference
model in the recursive training pipeline.

Defining Confident Support Set D+
1

We define the subset of inputs with sufficient sample coverage as

D+
1 :=

{
x ∈ X

∣∣∣∣G0

(
y+
γ (x) | x

)
≥

log 2
τ

N

}
,

where the high-quality candidate set y+
γ (x) is defined based on the internal self-verification score

function:

y+
γ =

{
y

∣∣∣∣ sverify(y | x) ≥ max
y′∈Y

sverify(y
′ | x)− γ

}
,

with self-verification score function defined as sverify(y | x) := log G0(y | x). This gives:

y+
γ =

{
y

∣∣∣∣ log G0(y | x) ≥ max
y′∈Y

log G0(y
′ | x)− γ

}
=

{
y

∣∣∣∣G0(y | x) ≥ max
y′∈Y

γ′G0(y
′ | x)

}
, (3)

where γ′ = e−γ .

Decomposing the Probability of Low Confidence Generation

We aim to bound:

Px∼X
[
G1(y

+
γ (x) | x) ≤ 1− τ

]
≤ Px∼X

[
G1(y

+
γ (x) | x) ≤ 1− τ, x ∈ D+

1

]
+ Px∼X

[
x /∈ D+

1

]
. (4)

Bounding the First Term: Using Monte Carlo Estimate

For x ∈ D+
1 , we aim to show

G∗
1,N (y+

γ (x) | x) ≥ 1− τ/2.

Indeed, observe that y ∼ G∗
1,N (· | x) /∈ y+

γ (x) if and only if y1,1, . . . , y1,N ∼ G0(·) have y1,j /∈
y+
γ (x) for all j, since x ∈ D+

1 which happens with probability

(1− G0(y
+
γ (x) | x))N ≤ (1−

log 2
τ

N
)N . (5)

Then we show that:

(1−
log 2

τ

N
)N ≤ τ

2
,

To do so, we analyze its asymptotic behavior, and verify that it satisfies the above inequality. This is
now a typical exponential approximation problem, where the base

(
1− 1

N

)N
plays a key role. We

notice that:

lim
N→∞

(
1− 1

N

)N

=
1

e
,
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Thus, we get (
1−

log 2
τ

N

)N

=

(1− log 2
τ

N

) N

log 2
τ

log 2
τ

≤
(
1

e

)log 2
τ

=
τ

2
. (6)

Then, we obtain
(1− G0(y

+
γ (x) | x))N ≤ τ

2
,

Thus, we get
G∗
1,N (y+

γ (x) | x) ≥ 1− τ/2.

Bounding Discrepancy via Total Variation Distance

The total variation (TV) distance between two probability measures P and Q is defined as

DTV(P,Q) =
1

2

∑
y

|P (y)−Q(y)|.

Importantly, the TV distance provides a direct measure of the pointwise probability differences
between P and Q. In particular, for any measurable event A, the following inequality holds:

|P (A)−Q(A)| ≤ 2DTV(P,Q).

Specializing to singleton events {y}, it follows that∣∣G1(y | x)− G∗
1,N (y | x)

∣∣ ≤ 2DTV
(
G1(· | x),G∗

1,N (· | x)
)
.

Equivalently, we can lower bound the TV distance by

DTV
(
G1(· | x),G∗

1,N (· | x)
)
≥ 1

2

∣∣G1(y
+
γ (x) | x)− G∗

1,N (y+
γ (x) | x)

∣∣ .
From the definition of the set D+

1 , we know that for any x ∈ D+
1 ,

G∗
1,N (y+

γ (x) | x) ≥ 1− τ

2
.

Suppose that G1(y
+
γ (x) | x) ≤ 1− τ . Then it follows that∣∣G1(y

+
γ | x)− G∗

1,N (y+
γ | x)

∣∣ ≥ τ − τ

2
=

τ

2
.

Substituting back into the previous inequality, we conclude that for all x ∈ D+
1 ,

DTV
(
G1(· | x),G∗

1,N (· | x)
)
≥ τ

4
· I
{
G1(y

+
γ (x) | x) ≤ 1− τ

}
.

Thus, we get:

Px∼X
[
G1(y

+
γ (x) | x) ≤ 1− τ, x ∈ D+

1

]
≤ 4

τ
DTV

(
G1(· | x),G∗

1,N (· | x)
)

(7)

Bounding the Second Term: Using Markov’s Inequality

Let Cγ := Ex∼X

[
1

G0(y+
γ (x)|x)

]
. Then:

Px∼X [x /∈ D+
1 ] = Px∼X

[
G0

(
y+
γ (x) | x

)
<

log 2
τ

N

]
= Px∼X

[
log 2

τ

NG0

(
y+
γ (x) | x

) > 1

]

≤
log 2

τ

N
Ex∼X

[
1

G0

(
y+
γ (x) | x

)]

≤ Cγ

N
log

2

τ
. (8)
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Final Bound for G1

Substituting equalities 7 and 8 into 4, we obtain

Px∼X
[
G1(y

+
γ (x) | x) ≤ 1− τ

]
≤ 4

τ
DTV

(
G1(· | x),G∗

1,N (· | x)
)
+

Cγ

N
log

2

τ
. (9)

Recursive Bound for the Second Generation Model G2

Building upon the prior analysis, we now investigate how a self-verification mechanism can be
systematically employed to refine model training across generations. Specifically, we focus on
filtering the outputs generated by G1 through confidence-aware criteria, and subsequently utilizing
only the verified outputs to train the next-generation model G2. This recursive training framework
ensures that each successive model benefits from high-quality and semantically coherent supervision.

Definition of Verified Input Set for G2

We define the subset of inputs with sufficient verified coverage as:

D+
2 :=

{
x ∈ X

∣∣∣∣G1

(
y+
γ (x) | x

)
≥

log 2
τ

N

}
,

where the high-quality candidate set y+
γ (x) is defined based on the internal verification score function:

y+
γ =

{
y

∣∣∣∣ sverify(y | x) ≥ max
y′∈Y

sverify(y
′ | x)− γ

}
.

Bounding the Low-Confidence Region for G2

Following the same logic as in Eq. (7), we derive the following bound on the probability that G2

assigns low confidence to the verified candidate region:

Px∼X
[
G2(y

+
γ (x) | x) ≤ 1− τ, x ∈ D+

2

]
≤ 4

τ
DTV

(
G2(· | x),G∗

2,N (· | x)
)

(10)

Bounding the Failure Rate of Verified Samples

Similarly, we follow the derivation of Eq. (8) to obtain an upper bound on the probability that an
input falls outside the region D+

2 :

Px∼X [x /∈ D+
2 ] = Px∼X

[
G1

(
y+
γ (x) | x

)
<

log 2
τ

N

]
= Px∼X

[
log 2

τ

NG1

(
y+
γ (x) | x

) > 1

]

≤
log 2

τ

N
Ex∼X

[
1

G1

(
y+
γ (x) | x

)] (11)

The quantity Ex∼X

[
1

G1(y+
γ (x)|x)

]
captures the expected inverse confidence in the high-quality region

across all inputs, and plays a central role in the recursion.

To proceed, we introduce the variable:

Z(x) =
1

G1

(
y+
γ (x) | x

) .
Its expectation is computed via the tail-integral identity for nonnegative random variables:

Ex∼X [Z(x)] =

∫ ∞

0

P(Z(x) ≥ t) dt. (12)
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Since the posterior satisfies C0 ≤ G1

(
y+
γ (x) | x

)
≤ 1, it follows that

1 ≤ Z(x) =
1

G1

(
y+
γ (x) | x

) ≤ 1

C0
.

Hence,

P
(
Z(x) ≥ t

)
=

{
1, 0 ≤ t < 1,

0, t > 1
C0

.

Thus the integral in (12) reduces to

E
[
Z(x)

]
=

∫ 1

0

1 dt+

∫ 1
C0

1

P
(
Z(x) ≥ t

)
dt

= 1 +

∫ 1
C0

1

P
(
Z(x) ≥ t

)
dt.

Recall that Eq (9), for t ≥ 1, then we can deduce that:

Px∼X [Z(x) ≥ t] ≤ 4t

t− 1
DTV

(
G1(· | x),G∗

1,N (· | x)
)
+

Cγ

N
log

2t

t− 1

The rest of the proof proceeds by upper bounding this integral through a sharp relaxation using B(t),
characterizing tail probabilities of inverse confidence values, and leading to a recursive generalization
bound.

Explicit Upper Bound on Recursive Confidence

We define:
B(t) =

4t

t− 1
DTV

(
G1(· | x),G∗

1,N (· | x)
)
+

Cγ

N
log

2t

t− 1
.

Then we Upper bound for the tail probability via min{1, B(t)}. However, probabilities cannot exceed
1. Hence a tighter statement is

P(Z(x) ≥ t) ≤ min{1, B(t)}.

and therefore

E
[
Z(x)

]
= 1 +

∫ 1
C0

1

P
(
Z(x) ≥ t

)
dt ≤ 1 +

∫ 1
C0

1

min
{
1, B(t)

}
dt.

Since B(t) is monotonically decreasing for t ∈ (1+,+∞), we focus on the non-trivial case where
B
(

1
C0

)
< 1. In this setting, there exists a unique point t0 ∈

(
1, 1

C0

)
such that

B(t0) = 1 and B(t)

{
≥ 1, 1 ≤ t ≤ t0,

≤ 1, t0 ≤ t ≤ 1
C0

.

Consequently,

min
{
1, B(t)

}
=

{
1, t ∈ [ 1, t0],

B(t), t ∈ [ t0, 1/C0 ].

Hence,∫ 1
C0

1

min
{
1, B(t)

}
dt =

∫ t0

1

1 dt +

∫ 1
C0

t0

B(t) dt =
(
t0 − 1

)
+

∫ 1
C0

t0

B(t) dt. (13)

Then, we compute
∫

B(t) dt explicitly. Let us denote

B(t) = A
t

t− 1
+ C log

( 2t

t− 1

)
,
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where
A = 4DTV

(
G1(· | x),G∗

1,N (· | x)
)
, C =

Cγ

N
.

Then we decompose and integrate each part:∫
t

t− 1
dt =

∫ (
1 +

1

t− 1

)
dt = t+ ln

∣∣t− 1
∣∣+ constant,

∫
log
( 2t

t− 1

)
dt =

∫
log(2t) dt −

∫
log(t− 1) dt

=
[
t log(2t) − t

]
−
[
(t− 1) log(t− 1) − (t− 1)

]
+ constant

= t log(2t) − (t− 1) log
(
t− 1

)
+ constant.

Therefore,∫
B(t) dt = A

[
t+ ln

∣∣t− 1
∣∣] + C

[
t log(2t) − (t− 1) log

(
t− 1

)]
+ constant.

We shall denote a particular antiderivative by F (t). Then∫ 1
C0

t0

B(t) dt = F
( 1

C0

)
− F (t0),

where t0 is the unique solution to B(t0) = 1. Then we conclude the final upper bound. Combining
(13) with the preceding results, we see that whenever B( 1

C0
) < 1, we obtain∫ 1

C0

1

min
{
1, B(t)

}
dt =

(
t0 − 1

)
+
[
F
( 1

C0

)
− F (t0)

]
,

and thus

E
[
Z(x)

]
= 1 +

∫ 1
C0

1

P
(
Z(x) ≥ t

)
dt ≤ 1 +

(
t0 − 1

)
+
[
F
( 1

C0

)
− F (t0)

]
.

Recalling that Z(x) = 1/G1

(
y+
γ (x) | x

)
, we finally arrive at

Ex∼X

[ 1

G1

(
y+
γ (x) | x

)] ≤ 1 +
(
t0 − 1

)
+ F

( 1

C0

)
− F (t0),

which provides an explicit upper bound on the coverage coefficient in the regime B
(

1
C0

)
< 1. Here,

t0 ∈ (1, 1
C0

) is the unique point where B(t0) = 1, and F (·) is any antiderivative of B(·).

Then we further derive the explicit coverage coefficient upper bound. First evaluate F
(

1
C0

)
− F (t0).

From the explicit antiderivative, ignoring any additive constant (which cancels in the difference), we
get

F
( 1

C0

)
− F (t0) = A

[( 1

C0
− t0

)
+ ln

( 1
C0

− 1

t0 − 1

)]
+ C

[( 1

C0
log
( 2

C0

)
− t0 log(2t0)

)
−
(( 1

C0
− 1
)
log
( 1

C0
− 1
)
− (t0 − 1) log

(
t0 − 1

))]
.

Thus,

(t0 − 1) + F
( 1

C0

)
− F (t0) = (t0 − 1) + A

[ 1

C0
− t0 + ln

( 1
C0

− 1

t0 − 1

)]
+ C

[
. . .
]
,

where the bracket [. . . ] in the C-term is the obvious difference from above.

Then we incorporate the condition B(t0) = 1. Recall

B(t0) = A
t0

t0 − 1
+ C log

( 2 t0
t0 − 1

)
= 1.
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This equation confines t0 to the interval (1, 1
C0

). Although t0 generally cannot be expressed in an
elementary closed form, we can appropriately scale the equation to obtain an approximate range for
t0.

Moreover, elementary inequalities for log t imply

t− 1

t
≤ log t ≤ t− 1 for all t > 0,

and setting t = 2t0
t0−1 yields

1

2
+

1

2t0
≤ log

( 2t0
t0 − 1

)
≤ 1 +

2

t0 − 1
. (14)

Hence, from B(t0) = 1 we deduce two bracketing inequalities:

A
t0

t0 − 1
+ C

(
1 +

2

t0 − 1

)
≥ 1, (15)

A
t0

t0 − 1
+ C

(1
2
+

1

2t0

)
≤ 1. (16)

Next, we consider the non-trivial case that aligns more closely with practical scenarios, A and C are
small enough that A+ C < 1. Under that assumption, (15) and (16) is valid and yields an upper and
lower bound on t0. Thus

1 +
√
1− 2C + C2 + 2AC

2− (2A+ C)
≤ t0 ≤ 1 + C

1− (A+ C)
.

Thus,

t0 − 1 ≥ 1 +
√
1− 2C + C2 + 2AC

2− (2A+ C)
− 1

≥
√
1− 2C + C2 + 2AC − (1− C) + 2A

2− (2A+ C)

≥ 2A

2− (2A+ C)
. (17)

Our goal is to convert these into simpler numerical bounds on t0, which can then be substituted into
the final coverage coefficient bound

Cγ,1 = Ex∼X

[ 1

G1

(
y+
γ (x) | x

)] ≤ 1 +
(
t0 − 1

)
+
[
F
( 1

C0

)
− F (t0)

]
.

Thus, we get

Cγ,1 = Ex∼X

[ 1

G1

(
y+
γ (x) | x

)] ≤ t0 +
[
F
( 1

C0

)
− F (t0)

]
.

≤ t0 +A
[( 1

C0
− t0

)
+ ln

( 1
C0

− 1

t0 − 1

)]
(18)

+ C
[ ( 1

C0
log
( 2

C0

)
− t0 log(2t0)

)
−
(( 1

C0
− 1
)
log
( 1

C0
− 1
)
− (t0 − 1) log

(
t0 − 1

))]
.

≲ t0 +A
1

C0
log(

1

t0 − 1
) + C

1

C0
log(

1

C0
)

≲
1 + C

1− (A+ C)
+A

1

C0
log(

2− (2A+ C)

2A
) + C

1

C0
log(

1

C0
)

≲ 1 + C +A
1

C0
log(

1

A
) + C

1

C0
log(

1

C0
)

≲ 1 +A
1

C0
log(

1

A
) + C

1

C0
log(

1

C0
). (19)
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Final Bound for G2

Combining the bounds from (10) and (11), we obtain:

Px∼X
[
G2(y

+
γ (x) | x) ≤ 1− τ

]
≤ 4

τ
DTV

(
G2(· | x),G∗

2,N (· | x)
)
+

log 2
τ

N
Ex∼X

[
1

G1

(
y+
γ (x) | x

)]

≤ 4

τ
DTV

(
G2(· | x),G∗

2,N (· | x)
)
+

Cγ,1

N
log

2

τ
. (20)

where Cγ,1 is the bound derived above. This completes the recursive error bound analysis for the
second generation model.

Recursive Generalization Bounds for Arbitrary Generation t

We now extend our recursive analysis to arbitrary generation steps beyond t = 2. To simplify the
discussion and maintain consistency, we make the following assumption:

Assumption: Uniform Total Variation Distance

Without loss of generality, we assume that the total variation distance across all generations 1 ≤ t ≤ T
remains approximately the same, that is,

DTV
(
Gt(· | x),G∗

t,N (· | x)
)
≍ DTV.

This allows us to write for the second generation:

A2 = DTV
(
G2(· | x),G∗

2,N (· | x)
)
≍ DTV,

C2 =
Cγ,1

N
≲

1

N
+

1

N
A

1

C0
log

(
1

A

)
+

C

N
· 1

C0
log

(
1

C0

)
. (21)

Continuing this recursion, we arrive at:

Cγ,2 = Ex∼X

[ 1

G2

(
y+
γ (x) | x

)] ≲ 1 +A2
1

C0
log(

1

A2
) + C2

1

C0
log(

1

C0
) (22)

leading to:

A3 ≍ A2, (23)

C3 =
Cγ,2

N
≲

1

N
+

1

N
A2

1

C0
log

(
1

A2

)
+

C2

N
· 1

C0
log

(
1

C0

)
. (24)

This recurrence generalizes to all future generations:

At ≍ A, (25)

Ct ≲
1

N
+

1

N
A

1

C0
log

(
1

A

)
+

Ct

N
· 1

C0
log

(
1

C0

)
. (26)

Solving the Recurrence Relation

Given the following definitions:

α =
1

NC0
log

(
1

C0

)
, β =

1

N
+

A

NC0
log

(
1

A

)
,

we have the recurrence relation:
Ct ≲ β + αCt,

which can be solved as:

Ct ≲ (α)
t
C +

β

1− α

(
1− (α)

t
)
.
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Thus, we have:

Ct ≲

(
1

NC0
log

(
1

C0

))t

C +
1
N + A

NC0
log
(
1
A

)
1− 1

NC0
log
(

1
C0

) [1− ( 1

NC0
log

(
1

C0

))i
]
.

Now recall C =
Cγ

N . Under the assumption N > 1
C0

log
(

1
C0

)
, we conclude:

Ct ≤
(

1

NC0
log

(
1

C0

))t
Cγ

N
+

1 + A
C0

log
(
1
A

)
N − 1

C0
log
(

1
C0

) . (27)

Substituting this into the bound on Cγ,t, we get:

Cγ,t ≲ 1 +At
1

C0
log

(
1

At

)
+ Ct

1

C0
log

(
1

C0

)
≲ 1 +

1

C0
DTV log

(
1

DTV

)
(28)

+

( 1

NC0
log

(
1

C0

))t
Cγ

N
+

1 + A
C0

log
(
1
A

)
N − 1

C0
log
(

1
C0

)
 · 1

C0
log

(
1

C0

)
. (29)

Final Error Bound After T Recursive Generations

Thus, after T generations of the recursive training loop, we obtain

Px∼X
[
GT

(
y+
γ (x) | x

)
≤ 1− τ

]
≲

1

τ
·DTV +

Cγ,t

N
log(

1

τ
)

≲
1

τ
·DTV +

1

N
log(

1

τ
) +

1

NC0
log(

1

τ
)DTV log

1

DTV

+

( 1

NC0
log

(
1

C0

))t
Cγ

N
+

1 + A
C0

log
(
1
A

)
N − 1

C0
log
(

1
C0

)
 1

C0
log(

1

C0
)
1

N
log(

1

τ
)

≲
1

τ
·DTV +

1

N
log(

1

τ
) +

1

NC0
log(

1

τ
)DTV log

1

DTV

+

((
1

NC0
log

(
1

C0

))t
Cγ

N
+

1

C0
log(

1

C0
)
1

N2

)
log(

1

τ
)

≲
1

τ
·DTV +

(
1

N
+

1

NC0
DTV log

1

DTV
+

1

N2

1

C0
log(

1

C0
)

)
log(

1

τ
)

+

(
1

NC0
log(

1

C0
)

)t
Cγ

N
log(

1

τ
). (30)

Furthermore, we obtain:

Px∼X
[
GT

(
y+
γ (x) | x

)
≥ 1− τ

]
≳ 1− 1

τ
·DTV −

(
1

N
+

1

NC0
DTV log

1

DTV
+

1

N2

1

C0
log(

1

C0
)

)
log(

1

τ
)

−
(

1

NC0
log(

1

C0
)

)t
Cγ

N
log(

1

τ
). (31)
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Final Accuracy and Error Decomposition

Define y+T (x) = argmaxy GT (y | x). Then:

Acc(GT )

= Px∼X [y+T (x) = y∗(x)]

= Px∼X
[
y+T (x) = y∗(x)

∣∣ GT (y
+
γ (x) | x) ≥ 1− τ

]
· Px∼X

[
GT

(
y+
γ (x) | x

)
≥ 1− τ

]
≳ 1− ϵ(γ)− 1− ϵ(γ)

τ
·DTV −

(
1

NC0
log(

1

C0
)

)t
Cγ(1− ϵ(γ))

N
log(

1

τ
)

− (1− ϵ(γ))

(
1

N
+

1

NC0
DTV log

1

DTV
+

1

N2

1

C0
log(

1

C0
)

)
log(

1

τ
). (32)

Furthermore, we get

Err(GT )

= Px∼X [y+T (x) ̸= y∗(x)]

≲ ϵ(γ) +
1− ϵ(γ)

τ
·DTV +

(
1

NC0
log(

1

C0
)

)t
Cγ(1− ϵ(γ))

N
log(

1

τ
)

+ (1− ϵ(γ))

(
1

N
+

1

NC0
DTV log

1

DTV
+

1

N2

1

C0
log(

1

C0
)

)
log(

1

τ
)

≲
1

τ
·DTV +

(
1

N
+

1

NC0
DTV log

1

DTV
+

1

N2

1

C0
log(

1

C0
)

)
log(

1

τ
)

+

(
1

NC0
log(

1

C0
)

)t
Cγ

N
log(

1

τ
) + ϵ(γ). (33)

The proof is completed.

F Proof of Theorem 1: Error Amplification in Naive Recursive Training

In this section, we prove Theorem 1, which characterizes the failure mode of naive recursive
training—where each model is trained solely on synthetic data generated by its predecessor, without
any verification or quality control. The key result shows that prediction errors amplify exponentially
across generations, ultimately leading to model collapse.

This phenomenon stems from the accumulation of distributional shifts at each generation, which
progressively degrade supervision quality. Our analysis formalizes this effect by bounding the total
error in terms of the cumulative divergence between successive models. Even when per-step errors
are small, their unregulated propagation drives the model away from the original data distribution.

This negative result underscores the need for intervention—whether via real data, external feedback,
or self-verification—to stabilize recursive training. We now present the detailed proof.

Proof of Theorem 1. We establish our results by carefully analyzing the propagation of errors in a
recursive training paradigm without verification mechanisms. Our analytical approach parallels the
methodology used in Theorem 3, with critical distinctions reflecting the absence of quality control
measures.

Foundational Definitions and Decomposition

We begin by defining the subset of inputs with sufficient confidence under the base model:

D+
1 :=

{
x ∈ X

∣∣∣G0

(
y+
γ (x) | x

)
≥ 1− τ

2

}
,

where the high-quality candidate set y+
γ (x) is defined via the verification score function:

y+
γ =

{
y

∣∣∣∣ sverify(y | x) ≥ max
y′∈Y

sverify(y
′ | x)− γ

}
,
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with verification score function defined as sverify(y | x) := log G0(y | x).
To establish our primary results, we decompose the probability of low-confidence generation:

Px∼X
[
G1(y

+
γ (x) | x) ≤ 1− τ

]
≤ Px∼X

[
G1(y

+
γ (x) | x) ≤ 1− τ, x ∈ D+

]
+ Px∼X

[
x /∈ D+

1

]
. (34)

Analysis of Model Divergence via Total Variation Distance

To quantify the disagreement between consecutive model generations, we leverage the total variation
distance. For any input x and output y:

|G1(y | x)− G0(y | x)| ≤ 2DTV (G1(· | x),G0(· | x)) .

This inequality can be reformulated to establish a lower bound on the TV distance:

DTV (G1(· | x),G0(· | x)) ≥
1

2

∣∣G1(y
+
γ (x) | x)− G0(y

+
γ (x) | x)

∣∣ .
For inputs in the high-confidence region D+

1 , we have:

G0

(
y+
γ (x) | x

)
≥ 1− τ

2
.

When G1 assigns insufficient confidence to the optimal region, i.e., G1(y
+
γ (x) | x) ≤ 1 − τ , the

discrepancy between models is bounded below:∣∣G1(y
+
γ (x) | x)− G0

(
y+
γ (x) | x

)∣∣ ≥ τ − τ

2
=

τ

2
.

This allows us to express the probability of low confidence for inputs in D+
1 in terms of the TV

distance:

Px∼X
[
G1(y

+
γ (x) | x) ≤ 1− τ, x ∈ D+

1

]
≤ 4

τ
DTV (G1(· | x),G0(· | x)) . (35)

Characterizing the Complement Set via Inverse Confidence

Let Cγ := Ex∼X

[
1

G0(y+
γ (x)|x)

]
denote the expected inverse confidence under the base model.

Applying Markov’s inequality, we derive:

Px∼X [x /∈ D+
1 ] = Px∼X

[
G0

(
y+
γ (x) | x

)
< 1− τ

2

]
= Px∼X

[
2− τ

2G0

(
y+
γ (x) | x

) > 1

]

≤
(
1− τ

2

)
Ex∼X

[
1

G0

(
y+
γ (x) | x

)]
≤
(
1− τ

2

)
Cγ . (36)

Integrating equations (35) and (36) into (34), we establish the comprehensive bound for the first
generation:

Px∼X
[
G1(y

+
γ (x) | x) ≤ 1− τ

]
≤ 4

τ
DTV (G1(· | x),G0(· | x)) +

(
1− τ

2

)
Cγ . (37)

Recursive Analysis for the Second Generation Model G2

Following an analogous approach, we define the high-confidence region for the second generation:

D+
2 :=

{
x ∈ X

∣∣∣G1

(
y+
γ (x) | x

)
≥ 1− τ

2

}
,
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By symmetric reasoning, we obtain:

Px∼X
[
G2(y

+
γ (x) | x) ≤ 1− τ, x ∈ D+

2

]
≤ 4

τ
DTV (G2(· | x),G1(· | x)) . (38)

For the complement set:

Px∼X [x /∈ D+
2 ] = Px∼X

[
G1

(
y+
γ (x) | x

)
< 1− τ

2

]
≤
(
1− τ

2

)
Ex∼X

[
1

G1

(
y+
γ (x) | x

)] . (39)

Advanced Analysis of Expected Inverse Confidence

The expected inverse confidence Ex∼X

[
1

G1(y+
γ (x)|x)

]
represents a critical quantity for understanding

error propagation across generations. We analyze this quantity by introducing the random variable:

Z(x) =
1

G1

(
y+
γ (x) | x

) .
Utilizing the tail-integral identity for non-negative random variables:

E
[
Z(x)

]
=

∫ ∞

0

P
(
Z(x) ≥ t

)
dt

=

∫ 1

0

1 dt+

∫ 1
C0

1

P
(
Z(x) ≥ t

)
dt

= 1 +

∫ 1
C0

1

P
(
Z(x) ≥ t

)
dt.

From equation (37), for t ≥ 1, we derive:

Px∼X [Z(x) ≥ t] ≤ 4t

t− 1
DTV (G1(· | x),G0(· | x)) +

(
1

2
+

1

2t

)
Cγ .

Threshold-based Analysis of Inverse Confidence Distribution

We define the bounding function:

B(t) =
4t

t− 1
DTV (G1(· | x),G0(· | x)) +

(
1

2
+

1

2t

)
Cγ .

Since B(t) is monotonically decreasing for t > 1, we focus on the non-trivial case where B
(

1
C0

)
<

1, then there exists a unique threshold t0 ∈
(
1, 1

C0

)
such that:

B(t0) = 1 and B(t)

{
≥ 1, 1 ≤ t ≤ t0,

≤ 1, t0 ≤ t ≤ 1
C0

.

This threshold partitioning enables us to refine our expectation bound:

E
[
Z(x)

]
≤ 1 + (t0 − 1) +

∫ 1
C0

t0

B(t) dt.
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Explicit Evaluation of the Integral Term

For analytical tractability, we represent B(t) in the form:

B(t) = A
t

t− 1
+ C

1

t
+

Cγ

2
,

where:
A = 4DTV (G1(· | x),G0(· | x)) , C =

Cγ

2
.

This decomposition yields:

E
[
Z(x)

]
≤ t0 +

Cγ

2

(
1

C0
− t0

)
+

∫ 1
C0

t0

(
A

t

t− 1
+ C

1

t

)
dt.

Through careful integration and algebraic manipulation:∫ 1
C0

t0

A · t

t− 1
+ C · 1

t
dt = A

(
1

C0
− t0 + log

∣∣∣∣∣
1
C0

− 1

t0 − 1

∣∣∣∣∣
)

+ C log

(
1

C0t0

)
≲ A

(
1

C0
+ log

1

t0 − 1

)
+ C log

(
1

C0

)
.

Determining the Threshold Value t0

The threshold t0 is characterized by the equation B(t0) = 1. Under the reasonable assumption that
Cγ +A < 2, we can express t0 explicitly:

t0 =

√
(Cγ − 1)2 + 2ACγ + 1

2− (Cγ + 2A)
. (40)

This allows us to derive the lower bound:

t0 − 1 ≥ 2A

2− (2A+ Cγ)
. (41)

Analytical Expression for Expected Inverse Confidence

After substituting the threshold expressions and simplifying, we arrive at:

Ex∼X

[
1

G1

(
y+
γ (x) | x

)] ≤
1
2Cγ +A

C0
+A log

1

A
+

Cγ

2
log

1

C0
. (42)

Consolidated Bound for G2

Denoting Cγ,1 = Ex∼X

[
1

G1

(
y+
γ (x)|x

)] and combining equations (38) and (39), we establish:

Px∼X
[
G2(y

+
γ (x) | x) ≤ 1− τ

]
≤ 4

τ
DTV (G2(· | x),G1(· | x)) +

(
1− τ

2

)
Cγ,1. (43)

Generalization to Arbitrary Generations

To extend our analysis beyond the second generation, we assume uniform distributional shift across
generations:

DTV (Gt(· | x),Gt−1(· | x)) ≍ DTV,

This assumption enables us to derive the recursive relation:

Cγ,t ≤
Cγ,t−1 +A

C0
+A log

1

A
+ Cγ,t−1 log

1

C0

≤
(

1

C0
+ log

1

C0

)
Cγ,t−1

2
+A log

1

A
. (44)
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Solution to the Recursive Relation

We reframe this as a standard first-order linear recurrence relation:
Cγ,t ≤ αCγ,t−1 + β,

where α := 1
2

(
1
C0

+ log 1
C0

)
> 0 and β := A log 1

A . Crucially, α > 1, indicating exponential
growth.

Unrolling this recurrence yields:
Cγ,t ≤ αCγ,t−1 + β

≤ α (αCγ,t−2 + β) + β = α2Cγ,t−2 + αβ + β

≤ α3Cγ,t−3 + α2β + αβ + β

...

≤ αtCγ + β

t−1∑
k=0

αk.

Applying the formula for finite geometric series:
t−1∑
k=0

αk =
1− αt

1− α
.

This gives:

Cγ,t ≤ αtCγ +
β

1− α
(1− αt).

With simplification and substitution of our specific parameters:

Cγ,t ≲ (Cγ +A log
1

A
)

(
1

2C0
+

1

2
log

1

C0

)t

. (45)

Asymptotic Error Analysis After T Generations

Extending our analysis to the terminal generation T , we establish:

Px∼X
[
GT

(
y+
γ (x) | x

)
≤ 1− τ

]
≲

1

τ
·DTV + (Cγ +DTV log

1

DTV
)

(
1

2C0
+

1

2
log

1

C0

)T

.

(46)

Correspondingly, for the complementary event:

Px∼X
[
GT

(
y+
γ (x) | x

)
≥ 1− τ

]
≳ 1− 1

τ
·DTV − (Cγ +DTV log

1

DTV
)

(
1

2C0
+

1

2
log

1

C0

)T

.

(47)

Quantification of Model Accuracy and Error

For the final model GT , we define y+T (x) = argmaxy GT (y | x) as its preferred prediction. The
accuracy is then:
Acc(GT ) = Px∼X [y+T (x) = y∗(x)]

= Px∼X
[
y+t (x) = y∗(x)

∣∣ Gt(y
+
γ (x) | x) ≥ 1− τ

]
· Px∼X

[
GT

(
y+
γ (x) | x

)
≥ 1− τ

]
≳ (1− ϵ(γ)) ·

(
1− 1

τ
·DTV − (Cγ +DTV log

1

DTV
)

(
1

2C0
+

1

2
log

1

C0

)T
)

≳ 1− ϵ(γ)− 1− ϵ(γ)

τ
·DTV − (1− ϵ(γ))(Cγ +DTV log

1

DTV
)

(
1

2C0
+

1

2
log

1

C0

)T

.

(48)
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The corresponding error rate is:

Err(GT ) = Px∼X [y+T (x) ̸= y∗(x)]

≲ ϵ(γ) +
1

τ
·DTV + (Cγ +DTV log

1

DTV
)

(
1

2C0
+

1

2
log

1

C0

)T

. (49)

The critical observation is that if 1
2C0

+ 1
2 log

1
C0

> 1, the error term grows exponentially with T ,
inexorably leading to model collapse as T → ∞. This establishes the theorem.

G Proof of Theorem 2: Stabilization via Real Data Injection

In this section, we prove Theorem 2, which establishes that incorporating a sufficient proportion of
real data at each generation can prevent model collapse in recursive training. Unlike naive training
that relies exclusively on synthetic data, this hybrid strategy anchors the training distribution to
the ground-truth data manifold, thereby mitigating the accumulation of distributional shift across
generations.

The proof shows that even modest amounts of real data are sufficient to dominate the recursive
error dynamics and ensure bounded generalization error over time. This result provides a theoretical
justification for widely adopted empirical practices that mix real and synthetic data to maintain model
quality. We now present the formal derivation.

Proof of Theorem 2. We establish our results by analyzing the error propagation in a recursive training
paradigm that incorporates a proportion α of real data at each generation. The remaining 1 − α
proportion of data is generated synthetically by the previous model.

Foundational Definitions and Decomposition

Let the training dataset for generation t be a mixture of real data and synthetic data:

Dt = α · Dreal + (1− α) · Dsynthetic,

where Dreal = {(x, y∗) | x ∼ X , y∗ = ground-truth label} and Dsynthetic = {(x, ŷ) | x ∼ X , ŷ =
Gt−1(x)}.

We define the mixed distribution as Gmix
t = αG∗ + (1 − α)Gt−1, where G∗ represents the ground

truth real data distribution.

We define the subset of inputs with sufficient real-data confidence under the base model G0:

D+
t :=

{
x ∈ X

∣∣∣∣G0 (y
∗ | x) ≥ 1− τ

2(1− α)

}
,

where y∗ is the ground-truth label, and τ is the confidence threshold.

The probability of low-confidence generation at generation t can be decomposed as:

Px∼X [Gt(y
∗ | x) ≤ 1− τ ] ≤ Px∼X

[
Gt(y

∗ | x) ≤ 1− τ, x ∈ D+
t

]
+ Px∼X

[
x /∈ D+

t

]
. (50)

Analysis of Model Divergence via Total Variation Distance

To quantify the disagreement between consecutive model generations, we leverage the total variation
distance. For any input x and output y:∣∣G1(y | x)− Gmix

1 (y | x)
∣∣ ≤ 2DTV

(
G1(· | x),Gmix

1 (· | x)
)
.

This inequality can be reformulated to establish a lower bound on the TV distance:

DTV
(
G1(· | x),Gmix

1 (· | x)
)
≥ 1

2

∣∣G1(y
+
γ (x) | x)− Gmix

1 (y+
γ (x) | x)

∣∣ .
28



For inputs in the high-confidence region D+
1 , we have:

G0

(
y+
γ (x) | x

)
≥ 1− τ

2(1− α)
.

When G1 assigns insufficient confidence to the optimal region, i.e., G1(y
+
γ (x) | x) ≤ 1 − τ , the

discrepancy between models is bounded below:∣∣G1(y
+
γ (x) | x)− Gmix

1

(
y+
γ (x) | x

)∣∣ ≥ α+ (1− α)

(
1− τ

2(1− α)

)
− (1− τ) =

τ

2
.

This allows us to express the probability of low confidence for inputs in D+
1 in terms of the TV

distance:

Px∼X
[
G1(y

+
γ (x) | x) ≤ 1− τ, x ∈ D+

1

]
≤ 4

τ
DTV

(
G1(· | x),Gmix

1 (· | x)
)
. (51)

Characterizing the Complement Set via Inverse Confidence

Let Cγ := Ex∼X

[
1

G0(y+
γ (x)|x)

]
denote the expected inverse confidence under the base model.

Applying Markov’s inequality, we derive:

Px∼X [x /∈ D+
1 ] = Px∼X

[
G0

(
y+
γ (x) | x

)
< 1− τ

2(1− α)

]
= Px∼X

[(
1− τ

2(1− α)

)
1

G0

(
y+
γ (x) | x

) > 1

]

≤
(
1− τ

2(1− α)

)
Ex∼X

[
1

G0

(
y+
γ (x) | x

)]

≤
(
1− τ

2(1− α)

)
Cγ . (52)

Integrating equations (51) and (52) into (50), we establish the comprehensive bound for the first
generation:

Px∼X
[
G1(y

+
γ (x) | x) ≤ 1− τ

]
≤ 4

τ
DTV

(
G1(· | x),Gmix

1 (· | x)
)
+

(
1− τ

2(1− α)

)
Cγ . (53)

Recursive Analysis for the Second Generation Model G2

Following an analogous approach, we define the high-confidence region for the second generation:

D+
2 :=

{
x ∈ X

∣∣∣∣G1

(
y+
γ (x) | x

)
≥ 1− τ

2(1− α)

}
,

Then, we obtain:

Px∼X
[
G2(y

+
γ (x) | x) ≤ 1− τ, x ∈ D+

2

]
≤ 4

τ
DTV

(
G2(· | x),Gmix

2 (· | x)
)
. (54)

For the complement set:

Px∼X [x /∈ D+
2 ] = Px∼X

[
G1

(
y+
γ (x) | x

)
< 1− τ

2(1− α)

]
≤
(
1− τ

2(1− α)

)
Ex∼X

[
1

G1

(
y+
γ (x) | x

)] . (55)
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Advanced Analysis of Expected Inverse Confidence

The expected inverse confidence Ex∼X

[
1

G1(y+
γ (x)|x)

]
represents a critical quantity for understanding

error propagation across generations. We analyze this quantity by introducing the random variable:

Z(x) =
1

G1

(
y+
γ (x) | x

) .
Utilizing the tail-integral identity for non-negative random variables:

E
[
Z(x)

]
=

∫ ∞

0

P
(
Z(x) ≥ t

)
dt

=

∫ 1

0

1 dt+

∫ 1
C0

1

P
(
Z(x) ≥ t

)
dt

= 1 +

∫ 1
C0

1

P
(
Z(x) ≥ t

)
dt.

From equation (53), for t ≥ 1, we derive:

Px∼X [Z(x) ≥ t] ≤ 4t

t− 1
DTV

(
G1(· | x),Gmix

1 (· | x)
)
+

(
1− 1

2(1− α)
+

1

2(1− α)t

)
Cγ .

Threshold-based Analysis of Inverse Confidence Distribution

We define the bounding function:

B(t) =
4t

t− 1
DTV

(
G1(· | x),Gmix

1 (· | x)
)
+

(
1− 1

2(1− α)
+

1

2(1− α)t

)
Cγ .

Since B(t) is monotonically decreasing for t > 1, we focus on the non-trivial case where B
(

1
C0

)
<

1, then there exists a unique threshold t0 ∈
(
1, 1

C0

)
such that:

B(t0) = 1 and B(t)

{
≥ 1, 1 ≤ t ≤ t0,

≤ 1, t0 ≤ t ≤ 1
C0

.

This threshold partitioning enables us to refine our expectation bound:

E
[
Z(x)

]
≤ 1 + (t0 − 1) +

∫ 1
C0

t0

B(t) dt.

Explicit Evaluation of the Integral Term

For analytical tractability, we represent B(t) in the form:

B(t) = A
t

t− 1
+ C

1

t
+

(
1− 1

2(1− α)

)
Cγ ,

where:
A = 4DTV

(
G1(· | x),Gmix

1 (· | x)
)
, C =

Cγ

2(1− α)
.

This decomposition yields:

E
[
Z(x)

]
≤ t0 +

(
1− 1

2(1− α)

)
Cγ(

1

C0
− t0) +

∫ 1
C0

t0

(
A

t

t− 1
+ C

1

t

)
dt.
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Through careful integration and algebraic manipulation:∫ 1
C0

t0

A · t

t− 1
+ C · 1

t
dt = A

(
1

C0
− t0 + log

∣∣∣∣∣
1
C0

− 1

t0 − 1

∣∣∣∣∣
)

+ C log

(
1

C0t0

)
≲ A

(
1

C0
+ log

1

t0 − 1

)
+ C log

(
1

C0

)
.

Determining the Threshold Value t0

The threshold t0 is characterized by the equation B(t0) = 1. Then, we can express t0 explicitly:

t0 − 1 =
2A+ Cγ − 1 +

√(
Cγα
1−α + 1

)2
− 4

(
−A− Cγ +

Cγ

2(1−α) + 1
)
· Cγ

2(1−α)

−2A− 2Cγ +
Cγ

1−α + 2

=
2A+ Cγ − 1 +

√(
Cγα
1−α + 1

)2
+
(
2A+ 2Cγ − Cγ

1−α − 2
)
· Cγ

(1−α)

−2A− 2Cγ +
Cγ

1−α + 2
. (56)

This allows us to derive the lower bound:

t0 − 1 ≥ 2A

2− (2A+ Cγ)
. (57)

Analytical Expression for Expected Inverse Confidence

Let A = DTV
(
G1(· | x),Gmix

1 (· | x)
)
. After substituting the threshold expressions and simplifying,

we arrive at:

Ex∼X

[
1

G1

(
y+
γ (x) | x

)] ≤ 1 +

∫ 1
C0

1

4t

t− 1
A+

(
1− 1

2(1− α)
+

1

2(1− α)t

)
Cγdt

≲

(
1− 1

2(1− α)

)
Cγ

1

C0
+

A

C0
+A log

1

A
+

Cγ

2(1− α)
log

1

C0
. (58)

Consolidated Bound for G2

Denoting Cγ,1 = Ex∼X

[
1

G1

(
y+
γ (x)|x

)] and combining equations (38) and (39), we establish:

Px∼X
[
G2(y

+
γ (x) | x) ≤ 1− τ

]
≤ 4

τ
DTV (G2(· | x),G1(· | x)) +

(
1− τ

2(1− α)

)
Cγ,1. (59)

Generalization to Arbitrary Generations

To extend our analysis beyond the second generation, we assume uniform distributional shift across
generations:

DTV (Gt(· | x),Gt−1(· | x)) ≍ DTV,

This assumption enables us to derive the recursive relation:

Cγ,t ≤
Cγ,t−1 +A

C0
+A log

1

A
+

Cγ,t−1

1− α
log

1

C0

≤
((

1− 1

2(1− α)

)
1

C0
+

1

2(1− α)
log

1

C0

)
Cγ,t−1 +A log

1

A
. (60)

Assume α > 1− 1
2( 1

C0
−1)

, T → ∞, then we obtain:

Cγ,T ≲
1− α

C0
A log

1

A
(61)
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Asymptotic Error Analysis After T Generations

Extending our analysis to the terminal generation T , we establish:

Px∼X
[
GT

(
y+
γ (x) | x

)
≤ 1− τ

]
≲

1

τ
·DTV +

1− α

C0
DTV log

1

DTV
. (62)

Quantification of Model Accuracy and Error

For the final model GT , we define y+T (x) = argmaxy GT (y | x) as its preferred prediction. The
accuracy is then:

Acc(GT ) = Px∼X [y+T (x) = y∗(x)]

= Px∼X
[
y+t (x) = y∗(x)

∣∣ Gt(y
+
γ (x) | x) ≥ 1− τ

]
· Px∼X

[
GT

(
y+
γ (x) | x

)
≥ 1− τ

]
≳ (1− ϵ(γ)) ·

(
1− 1

τ
·DTV − 1− α

C0
DTV log

1

DTV

)
≳ 1− ϵ(γ)− 1− ϵ(γ)

τ
·DTV − (1− ϵ(γ))

1− α

C0
DTV log

1

DTV
. (63)

The corresponding error rate is:

Err(GT ) = Px∼X [y+T (x) ̸= y∗(x)]

≲ ϵ(γ) +
1

τ
·DTV +

1− α

C0
DTV log

1

DTV
. (64)

Conclusion

The inclusion of real data at each generation mitigates error accumulation, ensuring that the model
maintains stability over recursive generations. This completes the proof.

H Proof of Theorem 4: Theoretical Guarantees for Transformer-Based LLMs
with Self-Verification

In this section, we prove Theorem 4, which extends our self-verification framework to autoregressive
Transformer-based LLMs. This result establishes that, even in high-capacity architectures, self-
verification can effectively prevent error amplification across recursive training generations.

To enable this analysis, we assume that the Transformer model parameters are uniformly bounded, a
standard condition in prior theoretical studies [Li et al., 2023, Hu et al., 2024, Zhang et al., 2025, Fu
et al., 2025] as follows:

Assumption 2 (Bounded Parameters [Zhang et al., 2025]). The parameter space Θ of the Transformer
model is constrained as:

Θ =

{
θ

∣∣∣∣ ∥∥∥A(D+1),⊤
∥∥∥
1,2

≤ BA, max
{
|γ(t)

1 |, |γ(t)
2 |
}
≤ 1,

∥∥∥A(t)
1

∥∥∥
F
≤ BA,1,

∥∥∥A(t)
2

∥∥∥
F
≤ BA,2,∥∥∥W (t)

Q,i

∥∥∥
F
≤ BQ,

∥∥∥W (t)
K,i

∥∥∥
F
≤ BK ,

∥∥∥W (t)
V,i

∥∥∥
F
≤ BV for all t ∈ [D], i ∈ [h]

}
,

where h denotes the number of attention heads, and BA, BA,1, BA,2, BQ, BK , BV > 1 are pre-
specified constants.

Under this assumption, we then present the complete theorem statement characterizing the final test
error after T recursive steps.

Theorem 5 (Error Bound for Transformer-based LLMs with Self-Verification). Let GLLM
θt

(x | S)
denote the conditional generation distribution of a Transformer-based LLM at the t-th recursive
generation, where S ∈ S ⊆ X≤ℓ is a token prefix sequence and x ∈ X is the next token. Then, after
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T recursive updates, the final prediction error is bounded with probability at least 1− δ:

Err(GLLM
θT ) ≲ ϵ(γ) +

(
1

τ
+

1

NC0
log

(
1

τ

))√
1

n
log(nB̃)D̃ log

1

δ

+

(
1

N
+

1

N2C0

)
log

(
1

τ

)
+

(
1

NC0
log

(
1

C0

))T
Cγ

N
log

(
1

τ

)
. (65)

Furthermore, if N > 1
C0

log
(

1
C0

)
, then as T → ∞, the exponential decay term vanishes, and we

obtain the bound:

Err(GLLM
θT ) ≲ ϵ(γ) +

(
1

τ
+

1

NC0
log

1

τ

)
log(nB̃)D̃√

n
log

1

δ
+

1

N
log

1

τ
,

where n = mℓ is the total number of training samples, and D̃ = D2 · d · (dF + dh + d) + d · dy and
B̃ = β−1RhBABA,1BA,2BQBKBV reflect the model capacity and prior radius respectively.

Our proof draws inspiration from the PAC-Bayesian analysis developed in Zhang et al. [2025],
but introduces new techniques to handle recursive training dynamics. In particular, we leverage
a recursive coverage coefficient to track how the model’s confidence evolves across generations,
allowing us to rigorously control generalization error under fully synthetic training. We now present
the formal derivation.

Proof of Theorem 5. We present the proof as follows.

MLE Initialization and Sequence-Based Setup

We assume that all token prefix sequences St = (x1, . . . , xt) are elements of a structured sequence
space S ⊆ X≤ℓ, where X denotes the token vocabulary and ℓ is the maximum sequence length. This
ensures that all context representations during both training and generation reside within a bounded
and well-defined domain.

The initial autoregressive language model GLLM
θ0

is trained via maximum likelihood estimation (MLE)

on a corpus of sequences {(x(j)
1 , . . . , x

(j)
ℓ )}mj=1. The training objective is given by:

θ0 = arg max
θ∈ΘLLM

1

n

m∑
j=1

ℓ∑
t=1

log GLLM
θ (x

(j)
t+1 | S(j)

t ),

where S
(j)
t = (x

(j)
1 , . . . , x

(j)
t ) ∈ S and n = mℓ is the total number of prefix-conditioned samples.

The resulting model GLLM
θ0

serves as a fixed reference distribution encoding inductive biases from
human supervision.

Defining the Confident Support Set S+
1

To identify reliable contexts for self-verification, we define the verification score function as:

sverify(x | S) := log GLLM
θ0 (x | S),

and the corresponding high-quality candidate set:

x+
γ (S) :=

{
x ∈ X

∣∣∣∣ sverify(x | S) ≥ max
x′∈X

sverify(x
′ | S)− γ

}
.

We then define the confident support set S+
1 as the subset of prefixes where the reference model

assigns sufficient mass to the high-reward region:

S+
1 :=

{
S ∈ S

∣∣∣∣GLLM
θ0 (x+

γ (S) | S) ≥
log 2

τ

N

}
.
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Decomposing the Probability of Low-Confidence Generation

We aim to bound the probability that the updated model assigns low probability mass to verified
candidates:

PS∼S
[
GLLM
θ1 (x+

γ (S) | S) ≤ 1− τ
]
≤ PS∼S

[
GLLM
θ1 (x+

γ (S) | S) ≤ 1− τ, S ∈ S+
1

]
+ PS∼S

[
S /∈ S+

1

]
. (66)

Bounding the First Term: Monte Carlo Estimate for Verified Support

Let G∗
1,N be the empirical estimator from N samples drawn from GLLM

θ0
. For S ∈ S+

1 , the probability
that none of the samples falls into x+

γ (S) is at most:

(
1− GLLM

θ0 (x+
γ (S) | S)

)N ≤
(
1−

log 2
τ

N

)N

≤ τ

2
.

Hence,

G∗
1,N (x+

γ (S) | S) ≥ 1− τ

2
.

Bounding Discrepancy via Total Variation Distance

The total variation distance between two distributions P and Q over X is:

DTV(P,Q) =
1

2

∑
x∈X

|P (x)−Q(x)|.

For any event A ⊆ X , it satisfies:

|P (A)−Q(A)| ≤ 2DTV(P,Q).

In particular, if GLLM
θ1

(x+
γ (S) | S) ≤ 1− τ and G∗

1,N (x+
γ (S) | S) ≥ 1− τ

2 , then∣∣GLLM
θ1 − G∗

1,N

∣∣ ≥ τ

2
⇒ DTV ≥ τ

4
.

Taking expectation:

PS∼S
[
GLLM
θ1 (x+

γ (S) | S) ≤ 1− τ, S ∈ S+
1

]
≤ 4

τ
· ES∼S

[
DTV(Gθ1 ,G∗

1,N )
]
. (67)

Bounding the Second Term via Markov’s Inequality

Define the expected inverse support quantity:

Cγ := ES∼S

[
1

GLLM
θ0

(x+
γ (S) | S)

]
.

Then, by Markov’s inequality:

PS∼S [S /∈ S+
1 ] = P

[
GLLM
θ0 (x+

γ (S) | S) <
log 2

τ

N

]
= P

[
log 2

τ

N · GLLM
θ0

(x+
γ (S) | S)

> 1

]

≤ Cγ

N
log

2

τ
. (68)
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Final Bound for the First-Step Generation Error

Combining inequalities (7) and (8), and substituting into the decomposition, we obtain the following
upper bound:

PS∼S
[
GLLM
θ1 (x+

γ (S) | S) ≤ 1− τ
]
≤ 4

τ
· ES∼S

[
DTV(GLLM

θ1 (· | S),G∗
1,N (· | S))

]
+

Cγ

N
log

2

τ
.

(69)

Since GLLM
θ1

(· | S) is the maximum likelihood estimator of the conditional distribution G∗
1,N (· |

S) based on sampled data, we now focus on analyzing the expected total variation distance
ES∼S

[
DTV

(
GLLM
θ1

(· | S),G∗
1,N (· | S)

)]
.

Step 1: Error Decomposition under Token Prefix Sequence Modeling

We begin by establishing a framework for analyzing the error. Consider our dataset consisting of m
token trajectories, each of length ℓ:

D =
{(

x
(j)
1 , x

(j)
2 , . . . , x

(j)
ℓ

)}m

j=1
,

where each token prefix S
(j)
t := (x

(j)
1 , . . . , x

(j)
t ) ∈ S ⊆ X≤ℓ.

To measure how closely our model approximates the reference distribution, we define the log-
likelihood discrepancy function:

L(θ,D) := −1

4

m∑
j=1

ℓ∑
t=1

log
G∗
1,N (x

(j)
t+1 | S(j)

t )

GLLM
θ (x

(j)
t+1 | S(j)

t )
.

For applying the PAC-Bayes framework, we introduce a ghost sample D̃ =
{
(S̃

(j)
t , x̃

(j)
t+1)

}m,ℓ

j=1,t=1
,

where S̃
(j)
t = S

(j)
t and x̃

(j)
t+1 ∼ G∗

1,N (· | S̃(j)
t ). We then define:

g(θ) := L(θ,D)− logED̃

[
exp

(
L(θ, D̃)

) ∣∣∣D] .
PAC-Bayes Bound under Token Prefix Modeling

By the standard PAC-Bayes lemma, for any distributions Q,P ∈ ∆(Θ) where P may depend on D,
we have:

Eθ∼P [g(θ)] ≤ KL(P∥Q) + logEθ∼Q [exp(g(θ))] .

Substituting the definition of g(θ) and taking expectation over D:

ED

[
exp

{
Eθ∼P

[
L(θ,D)− logED̃

[
exp(L(θ, D̃)) | D

]]
−KL(P∥Q)

}]
≤ 1.

Applying Chernoff bounds, with probability at least 1− δ, we obtain:

−Eθ∼P

[
logED̃

[
exp(L(θ, D̃)) | D

]]
≤ −Eθ∼P [L(θ,D)] + KL(P∥Q) + log

1

δ
.
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We can lower-bound the left-hand side using a two-step approach involving Jensen’s inequality and
total variation distance:

− Eθ∼P

[
logED̃

[
exp(L(θ, D̃)) | D

]]
≥ −1

2
logED̃

exp
−1

2

m∑
j=1

ℓ∑
t=1

log
G∗
1,N (x

(j)
t+1 | S(j)

t )

GLLM
θ1

(x
(j)
t+1 | S(j)

t )

 | D


− 1

2
Eθ∼P

logED̃

exp
−1

2

m∑
j=1

ℓ∑
t=1

log
GLLM
θ1

(x
(j)
t+1 | S(j)

t )

GLLM
θ (x

(j)
t+1 | S(j)

t )

 | D


≥ 1

4

m∑
j=1

ℓ∑
t=1

D2
TV(G∗

1,N (· | S(j)
t ),GLLM

θ1 (· | S(j)
t ))

− 1

2
Eθ∼P

logED̃

exp
−1

2

m∑
j=1

ℓ∑
t=1

log
GLLM
θ1

(x
(j)
t+1 | S(j)

t )

GLLM
θ (x

(j)
t+1 | S(j)

t )

 | D

 .

Next, for any reference parameter θ∗ ∈ Θ, we decompose the expected loss:
−Eθ∼P [L(θ,D)] = Eθ∼P [L(θ∗,D) + (L(θ1,D)− L(θ∗,D)) + (L(θ,D)− L(θ1,D))]

≤ L(θ∗,D) + Eθ∼P [L(θ,D)− L(θ1,D)],

where we use the fact that θ1 minimizes L(θ,D). In the realizable setting, there exists θ∗ such that
GLLM
θ∗ (· | S) = G∗

1,N (· | S).
Combining these bounds, we obtain:

1

4

m∑
j=1

ℓ∑
t=1

D2
TV(G∗

1,N (· | S(j)
t ),GLLM

θ1 (· | S(j)
t )) (70)

≤ 1

2
Eθ∼P

logED̃

exp
−1

2

m∑
j=1

ℓ∑
t=1

log
GLLM
θ1

(x
(j)
t+1 | S(j)

t )

GLLM
θ (x

(j)
t+1 | S(j)

t )

 | D


+

1

4

m∑
j=1

ℓ∑
t=1

Eθ∼P

(
log

GLLM
θ1

(x
(j)
t+1 | S(j)

t )

GLLM
θ (x

(j)
t+1 | S(j)

t )

)
+KL(P∥Q) + log

1

δ
. (71)

The first two terms capture the fluctuation under the posterior distribution θ ∼ P , which we will
address next.

Step 2: Controlling the Fluctuation via Structured Posterior Sampling

To control the fluctuation terms, we define the posterior distribution P ∈ ∆(Θ) as a product
distribution over each layer of the transformer:

P =

D+1∏
t=1

LP (θ
(t)) (72)

LP (θ
(D+1)) = Unif

(
B
(
Â(D+1), r(D+1), ∥ · ∥1,2

))
LP (θ

(t)) = Unif
(
B(γ̂(t)

1 , r
(t)
γ,1, | · |)

)
·Unif

(
B(γ̂(t)

2 , r
(t)
γ,2, | · |)

)
· LP (A

(t)) · LP (W
(t))

LP (A
(t)) = Unif

(
B(Â(t)

1 , r
(t)
A,1, ∥ · ∥F )

)
·Unif

(
B(Â(t)

2 , r
(t)
A,2, ∥ · ∥F )

)
LP (W

(t))

=

h∏
i=1

Unif
(
B(ŴQ,(t)

i , r
(t)
Q , ∥ · ∥F )

)
·Unif

(
B(ŴK,(t)

i , r
(t)
K , ∥ · ∥F )

)
·Unif

(
B(ŴV,(t)

i , r
(t)
V , ∥ · ∥F )

)
(73)
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for all t ∈ [D], where Unif(B(a, r, ∥ · ∥)) denotes the uniform distribution over a ball centered at a
with radius r under norm ∥ · ∥.

The radii are carefully calibrated as follows:

r
(t)
γ,1 = R−1(1 +BA,1BA,2)

−1α−1
t /(mℓ), r

(t)
γ,2 = R−1α−1

t /(mℓ),

r
(t)
A,1 = R−1B−1

A,2α
−1
t /(mℓ), r

(t)
A,2 = R−1B−1

A,1α
−1
t /(mℓ),

r
(t)
V = R−1h−1(1 +BA,1BA,2)

−1α−1
t /(mℓ), r

(t)
Q = R−1h−1(1 +BA,1BA,2)

−1B−1
V B−1

K α−1
t /(mℓ),

r
(t)
K = R−1h−1(1 +BA,1BA,2)

−1B−1
V B−1

Q α−1
t /(mℓ), r(D+1) = τB−1

A /(mℓ).

This carefully structured posterior allows us to prove the following key result:

Lemma 6. Zhang et al. [2025] With the posterior distribution P defined in (72), which is a uniform
distribution over a neighborhood around θ1 with radius proportional to 1/(mℓ), we have:

1

2
Eθ∼P

logED̃

exp
−1

2

m∑
j=1

ℓ∑
t=1

log
GLLM
θ1

(x
(j)
t+1 | S(j)

t )

GLLM
θ (x

(j)
t+1 | S(j)

t )

 | D


+
1

4

m∑
j=1

ℓ∑
t=1

Eθ∼P

(
log

GLLM
θ1

(x
(j)
t+1 | S(j)

t )

GLLM
θ (x

(j)
t+1 | S(j)

t )

)
= O(1). (74)

Proof. A detailed proof can be found in Appendix F.2 of Zhang et al. [2025]. The key insight is that
the construction of P with specific radii ensures that the model outputs remain stable under small
parameter perturbations, allowing us to bound the fluctuation terms by a constant.

Bounding the KL Divergence Term

To complete our bound, we need to quantify the KL divergence term in (71). We define the reference
prior distribution Q ∈ ∆(Θ) as:

Q =

D+1∏
t=1

LQ(θ
(t)),

with the following component-wise structure:

• Final linear layer:

LQ(θ
(D+1)) = Unif (B(0, BA, ∥ · ∥1,2)) .

• Transformer layers t ∈ [D]:

LQ(θ
(t)) = Unif (B(1/2, 1/2, | · |)) ·Unif (B(1/2, 1/2, | · |)) · LQ(A

(t)) · LQ(W
(t)),

LQ(A
(t)) = Unif (B(0, BA,1, ∥ · ∥F)) ·Unif (B(0, BA,2, ∥ · ∥F)) ,

LQ(W
(t)) =

h∏
i=1

Unif (B(0, BQ, ∥ · ∥F)) ·Unif (B(0, BK , ∥ · ∥F)) ·Unif (B(0, BV , ∥ · ∥F)) .

The KL divergence between this prior Q and our posterior P can be bounded as:

KL(P∥Q) = O
(
(D2 · d · (dF + dh + d) + d · dy) · log

(
1 +

mℓ

β
RhBABA,1BA,2BQBKBV

))
= O

(
D̃ · log

(
1 +mℓB̃

))
(75)

This term represents the complexity of the posterior family relative to the prior and controls the
flexibility allowed in posterior fluctuations under the PAC-Bayes objective.
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Deriving the Final Bound

By combining (74) and (75) and substituting into (71), we obtain:

1

4

m∑
j=1

ℓ∑
t=1

D2
TV(G∗

1,N (· | S(j)
t ),GLLM

θ1 (· | S(j)
t )) ≲ O(1) +O

(
D̃ · log

(
1 +mℓB̃

))
+ log

1

δ

Taking the square root and using Jensen’s inequality, we get:

1

mℓ

m∑
j=1

ℓ∑
t=1

DTV(G∗
1,N (· | S(j)

t ),GLLM
θ1 (· | S(j)

t ))

≤

√√√√ 1

(mℓ)2

m∑
j=1

ℓ∑
t=1

D2
TV(G∗

1,N (· | S(j)
t ),GLLM

θ1
(· | S(j)

t ))

≲

√√√√D̃ · log
(
1 +mℓB̃

)
+ log 1

δ

mℓ

Based on Lemma F.4 in Hu et al. [2024], we can further bound the difference between the empirical
and expected total variation distances:

1

mℓ

m∑
j=1

ℓ∑
t=1

E
S

(j)
t

[
DTV(G∗

1,N (· | S(j)
t ),GLLM

θ1 (· | S(j)
t ))

]
− 1

mℓ

m∑
j=1

ℓ∑
t=1

DTV(G∗
1,N (· | S(j)

t ),GLLM
θ1 (· | S(j)

t ))

≲

√
1

mℓ

(
D̃ · log

(
1 +mℓB̃

)
+ log

1

δ

)
(76)

Therefore, with probability at least 1− δ, we can bound the expected total variation distance:

ES∼S
[
DTV(GLLM

θ1 (· | S),G∗
1,N (· | S))

]
≲

√√√√D̃ · log
(
1 +mℓB̃

)
+ log 1

δ

mℓ
(77)

Final Bound for GLLM
θ1

Returning to our original objective in (69), we can now derive the final bound:

PS∼S
[
GLLM
θ1 (x+

γ (S) | S) ≤ 1− τ
]
≤ 4

τ
· ES∼S

[
DTV(GLLM

θ1 (· | S),G∗
1,N (· | S))

]
+

Cγ

N
log

2

τ

≲
4

τ
·

√√√√D̃ · log
(
1 +mℓB̃

)
+ log 1

δ

mℓ
+

Cγ

N
log

2

τ

≲
4

τ
·

√√√√D̃ · log
(
mℓB̃

)
mℓ

log
1

δ
+

Cγ

N
log

2

τ
(78)

Let n = mℓ denote the total number of samples. Thus, with probability at least 1− δ, we have:

PS∼S
[
GLLM
θ1 (x+

γ (S) | S) ≤ 1− τ
]
≲

1

τ
·

√√√√D̃ log
(
nB̃
)

n
log

1

δ
+

Cγ

N
log

1

τ
(79)

This final bound characterizes the probability that our trained LLM fails to assign sufficient probability
to the desired completion. The bound decays with the square root of the sample size n, but depends
on model complexity D̃ and scales inversely with the threshold parameter τ .
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Recursive Bound for the Second Generation Model GLLM
θ2

Definition of Verified Prefix Set for GLLM
θ2

We now extend our analysis to the second generation model by defining a subset of prefix-conditioned
inputs that have sufficient verified coverage from the first model:

D+
2 :=

{
S ∈ S

∣∣∣∣GLLM
θ1

(
y+
γ (S) | S

)
≥

log 2
τ

N

}
,

where the verified high-reward candidate set y+
γ (S) contains tokens with near-optimal self-reward:

y+
γ (S) =

{
y ∈ X

∣∣∣∣ sverify(y | S) ≥ max
y′∈X

sverify(y
′ | S)− γ

}
.

Bounding the Low-Confidence Region for GLLM
θ2

Applying the same total variation-based analysis as for the first-step model, we can bound the
probability that GLLM

θ2
assigns low confidence to verified candidate regions:

PS∼S
[
GLLM
θ2 (y+

γ (S) | S) ≤ 1− τ, S ∈ D+
2

]
≤ 4

τ
·DTV

(
GLLM
θ2 (· | S),G∗

2,N (· | S)
)
.

Bounding the Failure Rate of Verified Prefixes

To complete our analysis, we need to bound the probability that a prefix falls outside the verified
region D+

2 . Using Markov’s inequality, we have:

PS∼S [S /∈ D+
2 ] = PS∼S

[
GLLM
θ1

(
y+
γ (S) | S

)
<

log 2
τ

N

]
(80)

= PS∼S

[
log 2

τ

N · GLLM
θ1

(
y+
γ (S) | S

) > 1

]
(81)

≤
log 2

τ

N
· ES∼S

[
1

GLLM
θ1

(
y+
γ (S) | S

)] . (82)

This leads us to define the reciprocal of the model confidence as a random variable:

Z(S) :=
1

GLLM
θ1

(
y+
γ (S) | S

) .
Using the tail-integral identity for expectations:

ES∼S [Z(S)] =

∫ ∞

0

P(Z(S) ≥ t) dt,

and combining with our PAC-Bayes bounds on the total variation distance between GLLM
θ1

and G∗
1,N ,

we can derive:

Cγ,1 := ES∼S

[
1

GLLM
θ1

(
y+
γ (S) | S

)] ≲ 1 +A
1

C0
log

(
1

A

)
+ C

1

C0
log

(
1

C0

)
,

where:

• A =
√

1
n log(nB̃)D̃ log 1

δ represents the statistical error from PAC-Bayes bounds

• C =
Cγ

N is the approximation error from the confidence threshold

• C0 represents the minimum prediction confidence of GLLM
θ1

across verified high-reward
candidates

This bound quantifies how low-confidence predictions propagate into the next generation model.
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Solving the Recurrence Relation

By extending our analysis recursively, similar to the proof of Theorem 1, we can derive a recurrence
relation for the expected reciprocal of model confidence after t generations. The solution to this
recurrence is:

Cγ,t ≲ 1 +At
1

C0
log

(
1

At

)
+ Ct

1

C0
log

(
1

C0

)
≲ 1 +

1

C0
DTV log

(
1

DTV

)

+

( 1

NC0
log

(
1

C0

))t
Cγ

N
+

1 + DTV
C0

log
(

1
DTV

)
N − 1

C0
log
(

1
C0

)
 · 1

C0
log

(
1

C0

)

≲ 1 +
1

C0

√
1

n
log(nB̃)D̃ log

1

δ
log
(√

n
)

+

((
1

NC0
log

(
1

C0

))t
Cγ

N
+

1

N

)
· 1

C0
log

(
1

C0

)
(83)

This expression shows how the error compounds over iterations, with three main components: 1. A
statistical error term that decreases with sample size n 2. An approximation error term that decreases
with the number of samples N used in self-training 3. A recursively propagating error term that
decays exponentially with the number of generations t

Final Low-Confidence Bound After T Recursive Generations

After T recursive updates, with probability at least 1− δ, the probability that the final model assigns
low confidence to its verified top candidates is bounded by:

PS∼S
[
GLLM
θT (x+

γ (S) | S) ≤ 1− τ
]
≲

(
1

τ
+

1

NC0
log

(
1

τ

))√
1

n
log(nB̃)D̃ log

1

δ

+

(
1

N
+

1

N2C0

)
log

(
1

τ

)
+

(
1

NC0
log

(
1

C0

))T
Cγ

N
log

(
1

τ

)
.

(84)

This bound reveals that as T increases, the third term vanishes exponentially, demonstrating that
self-training eventually eliminates the initial confidence errors, provided that 1

NC0
< 1, which is

typically satisfied in practice.

Final Accuracy and Error Decomposition

To translate these confidence bounds into concrete accuracy guarantees, we define:

x+
T (S) := argmax

x∈X
GLLM
θT (x | S), x∗(S) := ground-truth token following S.

The accuracy of generation after T steps is:

Acc(GLLM
θT ) := PS∼S

[
x+
T (S) = x∗(S)

]
,

By decomposing this probability and using our previous bounds, we obtain:

Acc(θT ) = PS∼S
[
x+
T (S) = x∗(S)

∣∣GLLM
θT

(
x+
γ (S) | S

)
≥ 1− τ

]
· PS∼S

[
GLLM
θT (x+

γ (S) | S) ≥ 1− τ
]

≳ 1− ϵ(γ)− (1− ϵ(γ))

(
1

τ
+

1

NC0
log

(
1

τ

))√
1

n
log(nB̃)D̃ log

1

δ

− (1− ϵ(γ))

(
1

N
+

1

N2C0

)
log

(
1

τ

)
+

(
1

NC0
log

(
1

C0

))T
Cγ

N
log

(
1

τ

)
(85)
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The corresponding test error is therefore:

Err(GLLM
θT ) := 1−Acc(GLLM

θT ) = PS∼S
[
x+
T (S) ̸= x∗(S)

]
,

Which satisfies:

Err(GLLM
θT ) ≲ ϵ(γ) +

(
1

τ
+

1

NC0
log

(
1

τ

))√
1

n
log(nB̃)D̃ log

1

δ

+

(
1

N
+

1

N2C0

)
log

(
1

τ

)
+

(
1

NC0
log

(
1

C0

))T
Cγ

N
log

(
1

τ

)
. (86)

This error bound consists of four components: 1. An inherent approximation error ϵ(γ) from the
γ-approximation of optimal reward 2. A statistical error from finite training data that scales as
O(1/

√
n) 3. An approximation error from finite self-training samples that scales as O(1/N) 4. A

rapidly diminishing initial error term that decays as O
(
(1/NC0)

T+1
)

This analysis demonstrates how recursive self-training progressively improves model performance,
with the error bound decreasing as both the pre-training dataset size n and the self-training dataset
size N increase. Moreover, the benefit of additional recursive generations T is most pronounced in
early iterations, with diminishing returns as T increases.

I Exponential Error Growth in Naive Recursive Training of
Transformer-Based LLMs

In this section, we analyze the failure mode of naive recursive training applied to Transformer-based
large language models (LLMs), where models are trained exclusively on synthetic data generated by
their predecessors without any verification or external supervision. This setting, though increasingly
common due to the scarcity of real data, introduces significant risk: even small inaccuracies in
early generations can compound over time, causing the model to drift progressively further from the
original data distribution.

We formalize this phenomenon by characterizing how prediction errors propagate across generations.
Specifically, we show that the absence of quality control leads to exponential error growth, ultimately
resulting in model collapse. This result highlights the inherent instability of unverified recursive
training and underscores the necessity of intervention strategies such as real data anchoring or
self-verification. We now present the formal theorem and provide its proof.
Theorem 7 (Error Propagation for Transformer-based LLMs in Naive Recursive Training). Let
GLLM
θt

(x | S) denote the conditional generation distribution of an autoregressive Transformer-based
LLM at recursive step t, where S ∈ S ⊆ X≤ℓ is a prefix sequence. Suppose the model is trained via
naive recursive generation without any self-verification mechanism. Then, with probability at least
1− δ, the prediction error of GLLM

θT
is bounded as:

Err(GLLM
θT ) ≲ ϵ(γ) +

1

τ

√
1

n
log(nB̃)D̃ log

1

δ
+

(
Cγ +

√
1

n
log(nB̃)D̃ log

1

δ

)(
1

C0
+ log

1

C0

)T

,

where Cγ := ES∼S

[
1

GLLM
θ0

(x+
γ (S)|S)

]
denotes the expected inverse confidence assigned to top-reward

candidates under the initial model.

Note that since Cγ > 1, the error bound includes an exponentially growing term of the form(
Cγ +

√
1
n log(nB̃)D̃ log 1

δ

)(
1
C0

+ log 1
C0

)T
.

As the number of recursive steps T → ∞, this term can dominate the total error, reflecting the
compounding effect of unfiltered distributional shift. Without confidence-based filtering, the model
may gradually amplify its own errors, eventually leading to model collapse.
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Proof of Theorem 7. We establish the following result by analyzing how prediction errors propagate
across recursive training iterations in the absence of verification mechanisms. While our proof
strategy parallels the one used in Theorem 5, it introduces key modifications to account for the lack
of confidence-based filtering or quality control during training.

Foundational Definitions and Error Decomposition

We begin by defining the subset of prefix-token inputs for which the base model GLLM
θ0

assigns
sufficient probability mass to its top predictions:

S+
1 :=

{
S ∈ S

∣∣∣GLLM
θ0 (x+

γ (S) | S) ≥ 1− τ

2

}
,

where the high-reward candidate set is defined via an internal self-reward mechanism:

x+
γ (S) :=

{
x ∈ X

∣∣∣∣ rself(x | S) ≥ max
x′∈X

rself(x
′ | S)− γ

}
,

and the self-reward function is given by:

rself(x | S) := log GLLM
θ0 (x | S).

We aim to analyze the likelihood that the model GLLM
θ1

, trained recursively without any verification
mechanism, assigns insufficient probability mass to its own top candidates. We decompose this event
as:

PS∼S
[
GLLM
θ1 (x+

γ (S) | S) ≤ 1− τ
]
≤ PS∼S

[
GLLM
θ1 (x+

γ (S) | S) ≤ 1− τ, S ∈ S+
1

]
+ PS∼S

[
S /∈ S+

1

]
. (87)

Analysis of Model Divergence via Total Variation Distance

To quantify the discrepancy between consecutive model generations in the absence of verification,
we analyze their divergence using the total variation (TV) distance. For any input prefix S ∈ S and
output token x ∈ X , we have:∣∣GLLM

θ1 (x | S)− GLLM
θ0 (x | S)

∣∣ ≤ 2DTV
(
GLLM
θ1 (· | S),GLLM

θ0 (· | S)
)
.

This inequality can be inverted to obtain a lower bound on the TV distance between generations:

DTV
(
GLLM
θ1 (· | S),GLLM

θ0 (· | S)
)
≥ 1

2

∣∣GLLM
θ1 (x+

γ (S) | S)− GLLM
θ0 (x+

γ (S) | S)
∣∣ .

For prefix contexts in the high-confidence region S+
1 , the base model assigns:

GLLM
θ0 (x+

γ (S) | S) ≥ 1− τ

2
.

If the updated model assigns insufficient mass to this set, i.e.,

GLLM
θ1 (x+

γ (S) | S) ≤ 1− τ,

then the discrepancy is bounded below by:∣∣GLLM
θ1 (x+

γ (S) | S)− GLLM
θ0 (x+

γ (S) | S)
∣∣ ≥ τ

2
.

Consequently, the probability that the updated model fails to retain high confidence on verified inputs
can be bounded by the expected TV divergence:

PS∼S
[
GLLM
θ1 (x+

γ (S) | S) ≤ 1− τ, S ∈ S+
1

]
≤ 4

τ
· ES∼S

[
DTV

(
GLLM
θ1 (· | S),GLLM

θ0 (· | S)
)]

. (88)
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Characterizing the Complement Set via Inverse Confidence

Let Cγ := ES∼S

[
1

GLLM
θ0

(x+
γ (S)|S)

]
denote the expected inverse likelihood mass assigned to high-

reward candidate sets under the base model. By applying Markov’s inequality, we obtain:

PS∼S [S /∈ S+
1 ] = PS∼S

[
GLLM
θ0

(
x+
γ (S) | S

)
< 1− τ

2

]
= PS∼S

[
1− τ

2

GLLM
θ0

(x+
γ (S) | S)

> 1

]

≤
(
1− τ

2

)
· ES∼S

[
1

GLLM
θ0

(x+
γ (S) | S)

]
=
(
1− τ

2

)
Cγ . (89)

Combining equations (35) and (36) into the decomposition (34), we arrive at the following bound for
the first recursive generation step:

PS∼S
[
GLLM
θ1 (x+

γ (S) | S) ≤ 1− τ
]
≤ 4

τ
· ES∼S

[
DTV

(
GLLM
θ1 (· | S),GLLM

θ0 (· | S)
)]

+
(
1− τ

2

)
Cγ .

(90)

Furthermore, from the proof of theorem 3, we know that:

ES∼S
[
DTV

(
GLLM
θ1 (· | S),GLLM

θ0 (· | S)
)]

≲

√
1

n
log
(
nB̃
)
D̃ log

1

δ
(91)

Thus, we have

PS∼S
[
GLLM
θ1 (x+

γ (S) | S) ≤ 1− τ
]
≲

1

τ
·
√

1

n
log
(
nB̃
)
D̃ log

1

δ
+
(
1− τ

2

)
Cγ . (92)

Recursive Analysis for the Second Generation Model GLLM
θ2

Following an analogous approach, we define the high-confidence support region for the second
generation model:

S+
2 :=

{
S ∈ S

∣∣∣GLLM
θ1

(
x+
γ (S) | S

)
≥ 1− τ

2

}
.

For inputs S ∈ S+
2 , a discrepancy in predicted probability mass between GLLM

θ2
and GLLM

θ1
on high-

reward candidates leads to the bound:

PS∼S
[
GLLM
θ2 (x+

γ (S) | S) ≤ 1− τ, S ∈ S+
2

]
≤ 4

τ
· ES∼S

[
DTV

(
GLLM
θ2 (· | S),GLLM

θ1 (· | S)
)]

. (93)

For the complement region S \ S+
2 , we apply Markov’s inequality as before:

PS∼S
[
S /∈ S+

2

]
= PS∼S

[
GLLM
θ1 (x+

γ (S) | S) < 1− τ

2

]
≤
(
1− τ

2

)
· ES∼S

[
1

GLLM
θ1

(x+
γ (S) | S)

]
. (94)

Generalization to Arbitrary Generations

We now generalize the inverse-confidence recurrence to arbitrary recursive steps. Let Cγ,t :=

ES∼S

[
1

GLLM
θt

(x+
γ (S)|S)

]
denote the expected inverse confidence at generation t. Then the recurrence
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relation is given by:

Cγ,t ≤
Cγ,t−1 +A

C0
+A log

1

A
+ Cγ,t−1 log

1

C0

≤
(

1

C0
+ log

1

C0

)
Cγ,t−1 +A log

1

A
, (95)

where A :=
√

1
n log(nB̃)D̃ log 1

δ reflects the TV-induced generalization noise, and C0 is the mini-
mum confidence over all prefix-conditioned top predictions in earlier generations.

Solving this recurrence yields the following bound:

Cγ,t ≲

(
Cγ +A log

1

A

)(
1

C0
+ log

1

C0

)t

. (96)

Asymptotic Error Analysis After T Generations

Finally, applying this bound to the error probability after T recursive generations, we obtain:

PS∼S
[
GLLM
θT

(
x+
γ (S) | S

)
≤ 1− τ

]
≲

1

τ
·A+ (1− τ

2
)

(
Cγ +A log

1

A

)(
1

C0
+ log

1

C0

)T

.

≲
1

τ
·
√

1

n
log(nB̃)D̃ log

1

δ
+

(
Cγ +

√
1

n
log(nB̃)D̃ log

1

δ

)(
1

C0
+ log

1

C0

)T

(97)

This bound highlights exponential sensitivity to both the minimum confidence C0 and the number of
recursive steps T , in the absence of verification mechanisms.

Final Accuracy and Error Decomposition

We define:

x+
T (S) := argmax

x∈X
GLLM
θT (x | S), x∗(S) := ground-truth token following S.

Then the accuracy of generation after T steps is:

Acc(GLLM
θT ) := PS∼S

[
x+
T (S) = x∗(S)

]
,

and satisfies:

Acc(θT ) = PS∼S
[
x+
T (S) = x∗(S)

∣∣GLLM
θT

(
x+
γ (S) | S

)
≥ 1− τ

]
· PS∼S

[
GLLM
θT (x+

γ (S) | S) ≥ 1− τ
]

≳ 1− ϵ(γ)− (1− ϵ(γ))
1

τ
·
√

1

n
log(nB̃)D̃ log

1

δ

− (1− ϵ(γ))

(
Cγ +

√
1

n
log(nB̃)D̃ log

1

δ

)(
1

C0
+ log

1

C0

)T

(98)

The corresponding test error is:

Err(GLLM
θT ) := 1−Acc(GLLM

θT ) = PS∼S
[
x+
T (S) ̸= x∗(S)

]
,

and satisfies:

Err(GLLM
θT ) ≲ ϵ(γ) +

1

τ
·
√

1

n
log(nB̃)D̃ log

1

δ
+

(
Cγ +

√
1

n
log(nB̃)D̃ log

1

δ

)(
1

C0
+ log

1

C0

)T

.

(99)

The proof is completed.
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J Mitigating Collapse via Real Data in Recursive Training of
Transformer-Based LLMs

In the previous section, we demonstrated that naive recursive training of transformer-based LLMs—
without any quality control or external supervision—leads to exponential error growth across gener-
ations. This failure arises from unfiltered distributional drift, which causes the model to gradually
reinforce and amplify its own mistakes.

To mitigate this collapse, one natural strategy is to incorporate real data into each generation of the
training loop. In this section, we formally analyze how the inclusion of ground-truth supervised
examples affects recursive training dynamics. Our key result shows that introducing even a moderate
proportion of real data can effectively suppress exponential error amplification, ensuring bounded
prediction error across generations.

Specifically, we consider a setting where each generation Gt is trained on a mixture of synthetic and
real data. Let α ∈ (0, 1) denote the proportion of real data retained at each step. We show that this
mixing strategy induces a recursive contraction effect, reducing the sensitivity of the model to its
own erroneous generations.
Theorem 8 (Error Bound for Transformer-based LLMs with Real Data). Let GLLM

θt
(x | S) denote the

conditional distribution of a Transformer-based LLM at recursive step t, trained on a mixture of real
and synthetic data with real data proportion α > 0. Then, under the same notation and assumptions
as in Theorem 7, and assuming α > 1− 1

2(1/C0−1) and T → ∞, the prediction error of GLLM
θT

is, with
probability at least 1− δ, bounded as follows:

Err(GT ) ≲ ϵ(γ) +
1

τ

√
D̄ log(nB̄)

n
+

1− α

C0

√
D̄

n
log(nB̄) (100)

Compared to the exponential growth in Theorem 7, the presence of real data introduces a damping
effect, effectively anchoring the model and limiting the accumulation of distributional shift.

We now present the proof of this result.

Proof of Theorem 8. This proof builds upon the key techniques established in the proofs of Theorem 2
and Theorem 7, particularly the decomposition of error into high-confidence and low-confidence
regions, and the recursive control of inverse confidence via total variation distance. We present a
concise yet complete version adapted to Transformer-based LLMs.

We analyze a recursive training process where the model GLLM
θt

at generation t is trained on a mixture
of real and synthetic data:

Dt = α · Dreal + (1− α) · Dsynthetic,

and the induced mixture distribution is:

Gmix
t = α · G∗ + (1− α) · GLLM

θt−1
.

Decomposition of prediction error

We define the high-confidence region:

D+
t :=

{
x ∈ X

∣∣∣∣GLLM
θ0 (y∗ | x) ≥ 1− τ

2(1− α)

}
,

and decompose the total error:

Px∼X
[
GLLM
θt (y∗ | x) ≤ 1− τ

]
≤ P

[
GLLM
θt (y∗ | x) ≤ 1− τ

∣∣x ∈ D+
t

]
+ P

[
x /∈ D+

t

]
.

Bounding the first term via total variation

Using the standard TV bound:∣∣GLLM
θt (y | x)− Gmix

t (y | x)
∣∣ ≤ 2DTV(GLLM

θt ,Gmix
t ),

we get:

P
[
GLLM
θt (y+

γ (x) | x) ≤ 1− τ
∣∣x ∈ D+

t

]
≤ 4

τ
DTV(GLLM

θt ,Gmix
t ).
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Bounding the complement using inverse confidence

Let Cγ := Ex∼X

[
1

GLLM
θ0

(y+
γ (x)|x)

]
. By Markov’s inequality:

P
[
x /∈ D+

t

]
≤
(
1− τ

2(1− α)

)
Cγ .

Recursive coverage coefficient control

Assuming α > 1− 1
2(1/C0−1) , we have:

Cγ,T ≲
1− α

C0
DTV log

1

DTV
.

Finite-sample generalization bounds

In Transformer-based LLMs, the finite-sample deviation under PAC-Bayes analysis is:

Px∼X
[
GT

(
y+
γ (x) | x

)
≤ 1− τ

]
≲

1

τ
·DTV +

1− α

C0
DTV log

1

DTV
. (101)

Final Results

Combining all terms, we derive the final error bound:

Err(GLLM
θT ) ≲ ϵ(γ) +

1

τ

√
D̄ log(nB̄)

n
+

1− α

C0

√
D̄

n
log(nB̄),

where D̄ is the model’s effective dimension, B̄ its prior radius, and n the total sample count. The
proof is completed.

K Further Discussion on Assumptions and Empirical Validation

K.1 On the Realism of Assumption 1

This section aims to clarify both the intuition behind Assumption 1 and its alignment with real world
LLM behavior.

At its core, Assumption 1 formalizes a confidence calibrated agreement condition: high confidence
model predictions are likely to be correct. This is consistent with standard assumptions in self training
(e.g., Assumption 2 on page 14 of Huang et al. [2025b]) and aligns with active research on confidence
calibration in LLMs, which is a well studied area (see Liu et al. [2025] for a survey).

Critical to its realism, empirical work shows modern LLMs often exhibit strong calibration [Achiam
et al., 2023]. For example, Luo et al. [2025] reports small expected calibration errors for pre trained
models like Llama-3-8B (3.52%), Qwen-2.5-7B (5.41%), and DeepSeek-V2-Lite (3.39%) on MMLU.
This demonstrates a close alignment between confidence and accuracy.

To further validate this, we conducted experiments on the MATH dataset with Phi3.5-Mini, analyzing
the log probabilities of correct versus incorrect responses. The results are summarized in Table 1.

As the data shows, correct responses consistently exhibit higher log probabilities, and their distribution
stochastically dominates that of incorrect responses. This observation confirms the positive correlation
between model confidence and correctness, directly supporting the validity of Assumption 1.

K.2 Empirical Validation of Self-Verification

To empirically test our theoretical findings on model collapse, we designed an experiment following
the setting from Fu et al. [2025]. Specifically, we trained a 12 layer, 8 head GPT-2 model (with a
hidden size of 256) to recursively perform in context learning of linear functions from the class:

F =
{
f | f(x) = w⊤x, w ∈ R5

}
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Table 1: Distribution of Correct and Incorrect Responses by Log Probability on the MATH dataset
with Phi3.5-Mini.

Log Probability Range Number of Correct Number of Incorrect
0 to -0.6 1032 83
-0.6 to -1.2 413 462
-1.2 to -1.8 73 386
-1.8 to -2.4 24 95
-2.4 to -3.0 6 18

For each prompt, we sampled x1, . . . , xk, xquery and w independently from N (0, Id). The model’s
task was to predict yquery = w⊤xquery. We compared three distinct training strategies:

• Full Synthetic: The model was trained solely on synthetic data generated by its predecessor.
• Mixed: A combination of fresh real data and synthetic data was used, mixed in a 0.5 ratio.
• Verification-Based Filtering: For each training instance, we sampled 20 candidate re-

sponses, selected the one with the highest confidence (corresponding to γ = 0), and trained
the model exclusively on this verified data.

The results of these experiments, measured by prediction error over recursive training rounds, are
summarized in Table 2.

Table 2: Prediction Error Across Recursive Training Rounds for Different Strategies.

Strategy Round 0 Round 1 Round 2 Round 3
Full Synthetic 0.2418 1.1625 1.4245 1.9523
Mixed 0.2418 0.2824 0.3178 0.3235
Verification 0.2418 0.2672 0.2949 0.3105

As observed, the error accumulates progressively with more generations of recursive training. This
degradation is particularly severe in the full synthetic case, where the error grows rapidly. In contrast,
both incorporating real data and applying the self verification mechanism effectively mitigate the
increase in loss. This outcome is consistent with our theoretical findings.

K.3 Directions for Future Experimental Work

To further validate and extend the theoretical contributions of this paper, several experimental
directions could be pursued for future work:

1. Calibration Manipulation Experiment: An initial experiment could involve selecting a
model for recursive training and systematically adjusting its calibration via temperature
scaling or other established methods. This process would produce model versions with
"low," "moderate," and "high" calibration, where the quality of calibration is quantified by
the Expected Calibration Error (ECE).

2. Performance Correlation Verification: Following the calibration manipulation, a sec-
ond experiment could investigate the relationship between calibration and performance
degradation. The differently calibrated models would undergo recursive training with
self-verification, allowing for a comparison of their error accumulation over successive
generations. Such an analysis would provide empirical insights into how a verifier’s cal-
ibration quality (measured by ECE) correlates with the final model’s test error under a
self-verification framework.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state three main claims: (1) that recursive
training without intervention leads to exponential error growth, (2) that self-verification
using internal confidence scores can prevent collapse without relying on real data, and
(3) that this theoretical framework extends to Transformer-based LLMs. These claims are
rigorously justified through formal theorems and finite-sample error bounds in Sections 4
and 5, and their limitations are discussed in Appendix C.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Appendix C discusses the main limitation of relying on a single confidence-
based verification strategy and suggests directions for improving verification robustness.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All theoretical results include clearly stated assumptions and are supported by
complete formal proofs provided in Appendices.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper is purely theoretical and does not include any experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:[NA]

Justification: The paper is purely theoretical and does not include any experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper is purely theoretical and does not include any experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper is purely theoretical and does not include any experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper is purely theoretical and does not include any experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The work is purely theoretical and adheres to all principles outlined in the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Appendix discusses positive impacts, such as reducing reliance on human-
labeled data through self-verification, and clarifies that the theoretical nature of the work
poses no immediate negative societal risks.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any models or datasets and does not involve
components that pose risks of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use any existing code, datasets, or model assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce or release any new datasets, code, or models.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve any crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve any research with human subjects and therefore
does not require IRB approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve the use of LLMs as part of its core methods; all
results are derived through theoretical analysis.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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