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Abstract

Controlling the length of generated text can001
be crucial in various text generation tasks in-002
cluding summarization. Existing methods of-003
ten require complex model alterations, limit-004
ing compatibility with pre-trained models. We005
address these limitations by developing a sim-006
ple approach for controlling the length of auto-007
matic text summaries by increasing the impor-008
tance of correctly predicting the EOS token in009
the cross entropy loss computation. The pro-010
posed methodology is agnostic to architecture011
and decoding algorithm and orthogonal to other012
inference-time techniques for controlling gen-013
eration length, allowing for powerful hybrid014
combinations. We test it with encoder-decoder015
and modern GPT-style LLMs. We show that016
our method can consistently control generation017
length without affecting the quality of the sum-018
mary.019

1 Introduction020

Text summarization is the task of condensing es-021

sential information from longer texts in a shorter022

summary. Extractive text summarization methods023

create summaries by taking the most representative024

sentences from the original text, whereas abstrac-025

tive text summarization focuses on generating com-026

pletely new texts (Witbrock and Mittal, 1999). This027

task finds applications in various domains such as028

news (Hermann et al., 2015b), scientific papers029

(Luhn, 1958), conversations (Gliwa et al., 2019),030

and review (Hu and Liu, 2004) summarization.031

Summarization tasks tend to be accompanied by032

various constraints, often dictated by an applica-033

tion or product requirements. Example of these034

constraints are capping the maximum length of035

the generated text, using specific keywords in the036

summary, following a specific format or style (Fan037

et al., 2018).038

Furthermore, despite the rise of large language039

models like ChatGPT or GPT-4 (OpenAI, 2023),040

we speculate (and confirm in Section 5) that sim- 041

pler models can offer comparable summarization 042

quality at a lower cost, making research in this field 043

still relevant. 044

In this work, we focus on controlling length in 045

abstractive text summarization. This problem is 046

motivated by the necessity to meet interface re- 047

quirements, such as element sizes in mobile appli- 048

cations. In this context, summaries need to be of a 049

desired length to fit into the page to optimize user 050

experience. 051

To address this problem, we introduce a novel 052

method of controlling summary length which in- 053

volves weighting the end-of-sentence (EOS) token 054

more than other tokens at training time. Intuitively, 055

this allows the model to focus on correctly predict- 056

ing when to stop the generation, thus inducing it to 057

respect the summary length distribution in its train- 058

ing data. We conduct experiments on two model 059

families and multiple decoding strategies to show 060

that our method not only is able to control genera- 061

tion length without compromising the quality of the 062

summary, but also is transferable among architec- 063

tures and complementary to other inference-time 064

length controlling techniques. 065

2 Previous work 066

Methods for controlling the length of generated text 067

can be categorized into two groups: learning-based 068

and decoding-based approaches. While learning- 069

based methods entail alterations to the training ar- 070

chitecture or loss function, decoding-based meth- 071

ods operate during the inference phase. 072

Decoding-based techniques often involve pre- 073

venting the model from producing the EOS token 074

by assigning it a probability of negative infinity and 075

truncating the text once the desired token count is 076

achieved (Rush et al., 2015), or by incorporating 077

a length penalty into the beam-search decoding 078

algorithm (Murray and Chiang, 2018). 079
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On the other hand, learning-based methods adapt080

the attention mechanism to be more sensitive to081

length (Yu et al., 2021; Liu et al., 2022) or train082

specialized embeddings that factor in the desired083

length of the generated text (Kikuchi et al., 2016;084

Fan et al., 2017; Liu et al., 2018; Takase and085

Okazaki, 2019). In addition, Makino et al. (2019)086

devised a modification of the objective function087

that boosts the effectiveness of embedding-based088

methods, thus showing that modifications of the089

training architecture and of the objective function090

are complementary to each other. Many of these091

techniques, however, entail intricate implementa-092

tion steps and necessitate training new models from093

scratch, making them less feasible for integration094

with pre-trained models.095

Notable exceptions to this constraint are the096

work of Miculicich et al. (2023), who fine-tuned097

a pre-trained model with reversed positional en-098

codings and showed competitive results both in099

terms of summary quality and length, and that of100

Chan et al. (2021) and Jie et al. (2023) who used a101

Markov decision process and reinforcement learn-102

ing respectively, to control the generation length.103

In line with this research trajectory, our method104

can be applied to train a new model from scratch105

as well as to fine-tune pre-trained models. We106

refrain from altering the underlying architecture,107

and instead adopt a straightforward modification of108

the objective function which enhances our ability109

to govern generation length without compromising110

quality.111

3 Methodology112

The intuition behind our method lies in the spe-113

cial importance of the EOS token during training.114

We note that the cross-entropy loss calculated on115

that particular token is the only loss component116

directly teaching the model to respect the summary117

length distribution in its training data. During the118

computation of the loss, the signal from that partic-119

ular token gets diluted by the averaging operation120

among all other generated tokens, which depend-121

ing on the dataset can range in number from a few122

dozens to a few hundreds.123

We therefore hypothesize that simply boosting124

the weight of that loss component will help the125

model follow the training length distribution more126

closely, without significantly affecting overall per-127

formance. To be precise, our work aims at enforc-128

ing an upper bound for the generation length, which129

is why we are only interested in disproportionately 130

penalising false negatives when predicting EOS 131

token (the loss component when the ground truth is 132

EOS). The exact weight to be applied is a hyper- 133

parameter on which we run an ablation study. 134

In formal terms, we start from the original form 135

of the cross entropy loss calculated over the se- 136

quence: 137

L1 = − 1

N

N∑
n=1

log
ex

yn
n∑|V |

v=1 e
xv
n

(1) 138

where V is the vocabulary, N is the sequence 139

length, yn the ground truth token at time-step n ∈ 140

(1, N) and xvn is the logit for token v ∈ V at time- 141

step n. We then add a weighting term to derive: 142

L2 = − 1

N

N∑
n=1

wyn log
ex

yn
n∑|V |

v=1 e
xv
n

(2) 143

where 144

wyn =

{
W, if yn = [EOS]

1, otherwise
145

146

147

The weight of the EOS token W is a hyper- 148

parameter that controls the balance between seman- 149

tics and length: when W = 1, L2 goes back to 150

treating EOS just as another token (L1 = L2); 151

as W → ∞ the loss assigns higher importance to 152

not missing the EOS token, thus making its pre- 153

dicted sequences increasingly short (potentially at 154

the expense of quality). 155

4 Experiments 156

Because our method requires training datasets with 157

summaries that respect the desired length con- 158

straint, we create subsets of CNN/Daily Mail (Her- 159

mann et al. (2015a) and See et al. (2017)) and Wik- 160

ihow (Koupaee and Wang (2018)). Specifically we 161

set a hard constraint on summary length of 235 162

characters for CNN/Daily Mail and 125 characters 163

for Wikihow. We pick different thresholds to ex- 164

plore whether our method’s performance depends 165

on it. From each filtered dataset, we sample 10,000, 166

500, and 500 instances for training, validation, and 167

test, respectively. We call this the Fixed Length ap- 168

proach. We apply it by fine-tuning pre-trained mod- 169

els and showing that the resulting models are con- 170

sistently better able to generate summaries within 171

the character count limitation. 172
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A natural extension of our method, which cir-173

cumvents the need for manually curating datasets174

with a specific summary length, would be pre-175

pending the instruction ’Summarize with up to176

{K} characters the following text:’ to each177

sample in the dataset, where K is the exact number178

of characters in the reference summary. This would179

induce the model to "learn to count" the number180

of characters at inference time, thus being able181

to generate summaries of any desired length. We182

then fine-tune the LLM with the same procedure183

explained in Section 3 and call this the Dynamic184

Length approach. We test this hypothesis on a sub-185

set of CNN/Daily Mail with 100k samples filtered186

to have summaries shorter than 800 characters. For187

every sample, we prepend the prompt above and,188

for simplicity, round num_chars up to the closest189

number in the range from 75 to 800 with a stride190

of 50.191

4.1 Base Models and Hyperparameters192

For the Fixed Length approach, we fine-tune the193

pre-trained T5-base (Raffel et al., 2020) and Llama-194

2 7B (Touvron et al., 2023) models. We evalu-195

ate EOS token weight with the values of 1 (base-196

line) and 10. We compare two decoding strategies:197

greedy decoding, and beam search with 5 beams198

and length penalty values of -1, 0 and 1.199

As baselines, we use gpt-3.5-turbo and gpt-200

4 by OpenAI1 on the CNN/Daily Mail dataset201

with default generation parameters and the202

following prompt template: "{source_text}.203

Summarize with up to 235 characters."2.204

For the Dynamic Length approach, we only fine-205

tune the pre-trained T5-base and evaluate against206

gpt-3.5-turbo and gpt-4.207

4.2 Metrics208

As metrics, we report (a) ROUGE-2 (Lin, 2004):209

a relevance score for text generation tasks which210

relies on the intersection of bi-grams between the211

reference and prediction; (b) BERTScore (Zhang212

et al., 2019): a semantic similarity score calculated213

using contextual embeddings from a pre-trained214

BERT model, in our case RoBERTa-large (Liu215

et al., 2019); (c) Percent of too long summaries:216

the percent of generated summaries that exceed the217

number of character limitation. This is our primary218

metric.219

1https://openai.com/
2We also tried prepending the instruction but obtained

slightly worse results

5 Results 220

Our main results are shown in Tables 1 and 2. We 221

observe that our method always controls length 222

better than the baseline, across architectures and 223

decoding strategies. Furthermore, for Llama-2 224

7B, our method also improves summary quality 225

across all settings, both in terms of Rouge-2 and 226

BertScore. For T5-base our results on summary 227

quality are inconclusive: sometimes the metrics 228

slightly improve and other times slightly degrade. 229

Note that deviations in quality metrics are small in 230

comparison to the improvements achieved in terms 231

of summary length. 232

We observe that the positive effects of our 233

method are consistent across decoding strategies 234

and, in particular, are present even when beam 235

search with length penalty3 is used, proving that 236

our method is indeed orthogonal to inference-time 237

length control techniques. Moreover, it’s worth 238

noting that the baseline models, namely gpt-3.5- 239

turbo and gpt-4, failed to adhere to the specified 240

length constraints provided via prompts. Both mod- 241

els demonstrated inferior performance compared 242

to our fine-tuned Llama-2 7B across all the met- 243

rics we monitored, and T5-base across all metrics 244

except BertScore. 245

Rouge-2 BertScore % of too long
w=1 w=10 w=1 w=10 w=1 w=10

T5-base
Greedy 14.7 15.2 23.7 24.7 27.0 10.0
Beam−1 15.1 14.9 23.8 24.1 15.6 8.8
Beam0 15.0 14.0 23.4 24.0 20.8 13.0
Beam+1 14.7 14.5 21.6 21.8 63.4 60.8

Llama-2 7B
Greedy 16.0 16.0 32.1 32.0 15.0 6.6
Beam−1 15.3 15.6 28.4 28.5 3.8 1.0
Beam0 15.2 15.6 28.4 28.5 4.4 1.8
Beam+1 15.2 15.7 28.2 28.5 6.0 2.6

OpenAI
gpt-3.5 12.8 26.2 51.6
gpt-4 13.0 26.1 48.2

Table 1: Results for modified CNN/Daily Mail, Fixed
Length approach (235 characters). The subscripts in
Beam denote the value of the length penalty parameter.

Table 3 shows the effectiveness of our methodol- 246

ogy for the Dynamic Length setting. We observe 247

better adherence to the length constraint than the 248

baseline, and better or equal performance in terms 249

of summary quality. Note that the results in Ta- 250

bles 1 and 3 cannot be meaningfully compared as 251

3The lp parameter is actually a length reward as imple-
mented in HuggingFace, i.e. positive values penalise short,
rather than long generations
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Rouge-2 BertScore % of too long
w=1 w=10 w=1 w=10 w=1 w=10

T5-base
Greedy 18.0 17.6 48.9 48.9 6.6 3.4
Beam−1 18.2 17.5 49.4 47.8 3.2 1.4
Beam0 18.4 17.6 49.3 49.1 4.0 2.2
Beam+1 17.0 17.1 43.5 47.1 22.2 9.6

Llama-2 7B
Greedy 22.1 23.1 53.4 54.0 3.2 3.2
Beam−1 22.4 23.2 53.6 54.1 2.8 1.6
Beam0 22.6 23.3 53.8 54.1 2.8 1.6
Beam+1 22.6 23.2 53.5 53.8 3.8 2.2

Table 2: Results for modified Wikihow, Fixed Length
approach (125 characters).

the length constraints for the Dynamic length set-252

ting are more granular and therefore significantly253

harder to respect compared to the single constraint254

in the Fixed Length setting.255

Rouge-2 BertScore % of too long
w=1 w=10 w=1 w=10 w=1 w=10

T5-base
Greedy 15.9 16.0 25.5 25.7 35.6 22.4
Beam−1 16.0 16.4 25.4 25.4 22.8 7.0
Beam0 16.1 16.1 25.0 24.8 30.6 15.0
Beam+1 15.8 15.8 23.8 24.0 63.6 46.8

OpenAI
gpt-3.5 12.7 26.8 42.6
gpt-4 12.5 26.8 33.2

Table 3: Results for CNN/Daily Mail, Dynamic
Length approach with num_chars in range(start=75,
stop=800, step=50).

w Rouge-2 BertScore % of long
T5-base

1 14.7 23.7 27.0
2 14.9 24.3 19.4
5 15.4 25.0 11.6

10 15.2 24.7 10.0
50 14.8 24.2 10.4
1e7 11.9 22.1 0

Llama-2 7B
1 16.0 32.1 15.0
2 15.4 31.9 10.8
5 16.5 32.5 8.4

10 16.0 32.0 6.6
50 16.0 32.1 7.8

Table 4: Results for modified CNN/Daily Mail, fixed
length (235 characters), different EOS weights and
greedy decoding.

Table 4 shows how metrics differ across several256

W settings. As expected, higher values result in257

better length control by shifting the distribution of258

generated length to the left as shown in Figure 1a259

and Figure 1b. However we note there are diminish-260

ing returns after a certain value of W which in our261

(a) T5-base

(b) Llama-2 7B

Figure 1: Length distributions of predicted test sum-
maries with different EOS weights. For visualisation
purposes we truncated the lengthier baseline (W = 1)
distributions: the actual maximum lengths were 639 and
852 characters for T5 and LLAMA-2 respectively.

setting lies somewhere between 10 and 50. Finally, 262

in Appendix A we demonstrate the effectiveness 263

of the Fixed Length approach across datasets of 264

different sizes and with different cutoffs. 265

6 Conclusions 266

This paper presents a novel, easy to implement 267

method for limiting the length of generations with- 268

out significant quality degradation. We provided 269

evidence that our method works across different 270

model architectures (encoder-decoder and decoder 271

only), different datasets and in combination with 272

other inference time length control methods. 273

7 Limitations 274

While our method shows promising results, cer- 275

tain limitations need to be acknowledged. Firstly, 276

our evaluation was conducted on a limited set of 277
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models, which may not fully represent the diver-278

sity of available architectures and configurations.279

Future work should include ablation studies across280

a broader range of models to ascertain the general-281

izability and robustness of our approach.282

Secondly, the fine-tune process required for pre-283

trained language models incurs significant compu-284

tational costs, potentially limiting the scalability285

and accessibility of our method compared to ap-286

proaches that solely rely on inference-time opera-287

tions.288

8 Ethics Statement289

This research adheres to the principles outlined in290

the ACL Ethics Policy. We comply with the li-291

censes of all used datasets. Despite we did not use292

sensitive data to train our models, we encourage293

all summarization application developers using our294

method to honor the ethical code for conducting295

linguistic and cognitive research. (Mao et al., 2022)296

found that pre-trained language models might suf-297

fer from certain biases. Since our methodology298

suggests to fine-tune such models, we cannot guar-299

antee that the resultant models produce unbiased300

outputs.301
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A Ablations431

A.1 Dataset Size432

To demonstrate that the effectiveness of our method433

is independent from the size of the fine-tuning434

dataset, we test it on subsamples of CNN/Daily 435

Mail of different sizes: 2k, 10k, 50k samples. Ta- 436

ble 5 shows that our method yields a consistent 437

improvement in length control with minimal to no 438

performance degradation across all dataset sizes. 439

We note, however, that as the dataset size increases 440

the difference between our method and the baseline 441

reduces, thus indicating that increasing dataset size 442

positively contributes to better length control and 443

is complementary to our method. 444

Rouge-2 BertScore % of too long
w=1 w=10 w=1 w=10 w=1 w=10

T5-base
2k samples 14.7 14.3 23.5 24.3 38.6 18.8
10k samples 14.7 15.2 23.7 24.7 27.0 10.0
50k samples 15.5 15.7 25.4 25.6 19.4 12.2

Llama-2 7B
2k samples 14.4 15.7 28.3 31.8 45.0 10.0
10k samples 16.0 16.0 32.1 32.0 15.0 6.6
50k samples 16.7 16.5 35.7 33.3 13.2 3.0

Table 5: Results for modified CNN/Daily Mail with 2k,
10k, 50k samples and reference summary length of at
most 235 characters.

A.2 Reference summary length 445

We also test our method on subsets of CNN/Daily 446

Mail with 10k samples and different maximum 447

lengths for the reference summary, namely 175, 448

235, and 500 characters. We do this in order to 449

demonstrate that the method is portable across 450

datasets with any summary length. Table 6 shows 451

that our method yields a consistent improvement 452

in length control with minimal to no performance 453

degradation across all dataset sizes also in this case. 454

Rouge-2 BertScore % of too long
w=1 w=10 w=1 w=10 w=1 w=10

T5-base
175 chars 13.2 13.5 24.8 25.1 17.6 10.4
235 chars 14.7 15.2 23.7 24.7 27.0 10.0
500 chars 16.3 16.2 24.4 24.6 8.6 0.0

Llama-2 7B
175 chars 15.6 16.1 32.8 33.1 12.2 3.2
235 chars 16.0 16.0 32.1 32.0 15.0 6.6
500 chars 16.6 16.1 31.7 31.3 7.8 1.4

Table 6: Results for modified CNN/Daily Mail with 10k
samples and reference summary lengths of at most 175,
235, and 500 characters.

6

http://arxiv.org/abs/2303.08774
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.1145/312624.312748
https://doi.org/10.1145/312624.312748
https://doi.org/10.1145/312624.312748
https://doi.org/10.1145/312624.312748
https://doi.org/10.1145/312624.312748
https://doi.org/10.1145/312624.312748
https://doi.org/10.1145/312624.312748

	Introduction
	Previous work
	Methodology
	Experiments
	Base Models and Hyperparameters
	Metrics

	Results
	Conclusions
	Limitations
	Ethics Statement
	Ablations
	Dataset Size
	Reference summary length


