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Abstract

Controlling the length of generated text can
be crucial in various text generation tasks in-
cluding summarization. Existing methods of-
ten require complex model alterations, limit-
ing compatibility with pre-trained models. We
address these limitations by developing a sim-
ple approach for controlling the length of auto-
matic text summaries by increasing the impor-
tance of correctly predicting the £OS token in
the cross entropy loss computation. The pro-
posed methodology is agnostic to architecture
and decoding algorithm and orthogonal to other
inference-time techniques for controlling gen-
eration length, allowing for powerful hybrid
combinations. We test it with encoder-decoder
and modern GPT-style LLMs. We show that
our method can consistently control generation
length without affecting the quality of the sum-
mary.

1 Introduction

Text summarization is the task of condensing es-
sential information from longer texts in a shorter
summary. Extractive text summarization methods
create summaries by taking the most representative
sentences from the original text, whereas abstrac-
tive text summarization focuses on generating com-
pletely new texts (Witbrock and Mittal, 1999). This
task finds applications in various domains such as
news (Hermann et al., 2015b), scientific papers
(Luhn, 1958), conversations (Gliwa et al., 2019),
and review (Hu and Liu, 2004) summarization.

Summarization tasks tend to be accompanied by
various constraints, often dictated by an applica-
tion or product requirements. Example of these
constraints are capping the maximum length of
the generated text, using specific keywords in the
summary, following a specific format or style (Fan
etal., 2018).

Furthermore, despite the rise of large language
models like ChatGPT or GPT-4 (OpenAl, 2023),

we speculate (and confirm in Section 5) that sim-
pler models can offer comparable summarization
quality at a lower cost, making research in this field
still relevant.

In this work, we focus on controlling length in
abstractive text summarization. This problem is
motivated by the necessity to meet interface re-
quirements, such as element sizes in mobile appli-
cations. In this context, summaries need to be of a
desired length to fit into the page to optimize user
experience.

To address this problem, we introduce a novel
method of controlling summary length which in-
volves weighting the end-of-sentence (£0.S) token
more than other tokens at training time. Intuitively,
this allows the model to focus on correctly predict-
ing when to stop the generation, thus inducing it to
respect the summary length distribution in its train-
ing data. We conduct experiments on two model
families and multiple decoding strategies to show
that our method not only is able to control genera-
tion length without compromising the quality of the
summary, but also is transferable among architec-
tures and complementary to other inference-time
length controlling techniques.

2 Previous work

Methods for controlling the length of generated text
can be categorized into two groups: learning-based
and decoding-based approaches. While learning-
based methods entail alterations to the training ar-
chitecture or loss function, decoding-based meth-
ods operate during the inference phase.

Decoding-based techniques often involve pre-
venting the model from producing the £OS token
by assigning it a probability of negative infinity and
truncating the text once the desired token count is
achieved (Rush et al., 2015), or by incorporating
a length penalty into the beam-search decoding
algorithm (Murray and Chiang, 2018).



On the other hand, learning-based methods adapt
the attention mechanism to be more sensitive to
length (Yu et al., 2021; Liu et al., 2022) or train
specialized embeddings that factor in the desired
length of the generated text (Kikuchi et al., 2016;
Fan et al., 2017; Liu et al., 2018; Takase and
Okazaki, 2019). In addition, Makino et al. (2019)
devised a modification of the objective function
that boosts the effectiveness of embedding-based
methods, thus showing that modifications of the
training architecture and of the objective function
are complementary to each other. Many of these
techniques, however, entail intricate implementa-
tion steps and necessitate training new models from
scratch, making them less feasible for integration
with pre-trained models.

Notable exceptions to this constraint are the
work of Miculicich et al. (2023), who fine-tuned
a pre-trained model with reversed positional en-
codings and showed competitive results both in
terms of summary quality and length, and that of
Chan et al. (2021) and Jie et al. (2023) who used a
Markov decision process and reinforcement learn-
ing respectively, to control the generation length.

In line with this research trajectory, our method
can be applied to train a new model from scratch
as well as to fine-tune pre-trained models. We
refrain from altering the underlying architecture,
and instead adopt a straightforward modification of
the objective function which enhances our ability
to govern generation length without compromising
quality.

3 Methodology

The intuition behind our method lies in the spe-
cial importance of the EOS token during training.
We note that the cross-entropy loss calculated on
that particular token is the only loss component
directly teaching the model to respect the summary
length distribution in its training data. During the
computation of the loss, the signal from that partic-
ular token gets diluted by the averaging operation
among all other generated tokens, which depend-
ing on the dataset can range in number from a few
dozens to a few hundreds.

We therefore hypothesize that simply boosting
the weight of that loss component will help the
model follow the training length distribution more
closely, without significantly affecting overall per-
formance. To be precise, our work aims at enforc-
ing an upper bound for the generation length, which

is why we are only interested in disproportionately
penalising false negatives when predicting FOS
token (the loss component when the ground truth is
EOS). The exact weight to be applied is a hyper-
parameter on which we run an ablation study.

In formal terms, we start from the original form
of the cross entropy loss calculated over the se-
quence:

;log Z‘V‘

where V' is the vocabulary, NV is the sequence
length, y,, the ground truth token at time-step n €
(1, N) and z, is the logit for token v € V" at time-
step n. We then add a weighting term to derive:
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where
W, ify, = [EOS]
Wy,, = .
1, otherwise

The weight of the FOS token W is a hyper-
parameter that controls the balance between seman-
tics and length: when W = 1, Ly goes back to
treating FO.S just as another token (L1 = Ls);
as W — oo the loss assigns higher importance to
not missing the £OS token, thus making its pre-
dicted sequences increasingly short (potentially at
the expense of quality).

4 Experiments

Because our method requires training datasets with
summaries that respect the desired length con-
straint, we create subsets of CNN/Daily Mail (Her-
mann et al. (2015a) and See et al. (2017)) and Wik-
ithow (Koupaee and Wang (2018)). Specifically we
set a hard constraint on summary length of 235
characters for CNN/Daily Mail and 125 characters
for Wikihow. We pick different thresholds to ex-
plore whether our method’s performance depends
on it. From each filtered dataset, we sample 10,000,
500, and 500 instances for training, validation, and
test, respectively. We call this the Fixed Length ap-
proach. We apply it by fine-tuning pre-trained mod-
els and showing that the resulting models are con-
sistently better able to generate summaries within
the character count limitation.



A natural extension of our method, which cir-
cumvents the need for manually curating datasets
with a specific summary length, would be pre-
pending the instruction *Summarize with up to
{K} characters the following text:’ toeach
sample in the dataset, where K is the exact number
of characters in the reference summary. This would
induce the model to "learn to count" the number
of characters at inference time, thus being able
to generate summaries of any desired length. We
then fine-tune the LLM with the same procedure
explained in Section 3 and call this the Dynamic
Length approach. We test this hypothesis on a sub-
set of CNN/Daily Mail with 100k samples filtered
to have summaries shorter than 800 characters. For
every sample, we prepend the prompt above and,
for simplicity, round num_chars up to the closest
number in the range from 75 to 800 with a stride
of 50.

4.1 Base Models and Hyperparameters

For the Fixed Length approach, we fine-tune the
pre-trained T5-base (Raffel et al., 2020) and Llama-
2 7B (Touvron et al., 2023) models. We evalu-
ate £OS token weight with the values of 1 (base-
line) and 10. We compare two decoding strategies:
greedy decoding, and beam search with 5 beams
and length penalty values of -1, 0 and 1.

As baselines, we use gpt-3.5-turbo and gpt-
4 by OpenAl' on the CNN/Daily Mail dataset
with default generation parameters and the
following prompt template: "{source_text}.
Summarize with up to 235 characters."?.

For the Dynamic Length approach, we only fine-
tune the pre-trained T5-base and evaluate against
gpt-3.5-turbo and gpt-4.

4.2 Metrics

As metrics, we report (a) ROUGE-2 (Lin, 2004):
a relevance score for text generation tasks which
relies on the intersection of bi-grams between the
reference and prediction; (b) BERTScore (Zhang
et al., 2019): a semantic similarity score calculated
using contextual embeddings from a pre-trained
BERT model, in our case RoBERTa-large (Liu
et al., 2019); (c) Percent of too long summaries:
the percent of generated summaries that exceed the
number of character limitation. This is our primary
metric.
"https://openai.com/

>We also tried prepending the instruction but obtained
slightly worse results

5 Results

Our main results are shown in Tables 1 and 2. We
observe that our method always controls length
better than the baseline, across architectures and
decoding strategies. Furthermore, for Llama-2
7B, our method also improves summary quality
across all settings, both in terms of Rouge-2 and
BertScore. For T5-base our results on summary
quality are inconclusive: sometimes the metrics
slightly improve and other times slightly degrade.
Note that deviations in quality metrics are small in
comparison to the improvements achieved in terms
of summary length.

We observe that the positive effects of our
method are consistent across decoding strategies
and, in particular, are present even when beam
search with length penalty® is used, proving that
our method is indeed orthogonal to inference-time
length control techniques. Moreover, it’s worth
noting that the baseline models, namely gpt-3.5-
turbo and gpt-4, failed to adhere to the specified
length constraints provided via prompts. Both mod-
els demonstrated inferior performance compared
to our fine-tuned Llama-2 7B across all the met-
rics we monitored, and T5-base across all metrics
except BertScore.

Rouge-2 BertScore % of too long
w=1l | w=10 | w=1 | w=10 | w=1 | w=10
T5-base

Greedy 14.7 152 | 237 | 24.7 | 27.0 | 10.0
Beam_; | 15.1 149 | 23.8 | 241 15.6 8.8
Beamg 15.0 140 | 234 | 240 | 20.8 13.0
Beam; | 14.7 14.5 21.6 | 21.8 | 634 | 60.8
Llama-2 7B
Greedy 16.0 | 16.0 | 32.1 | 32.0 15.0 6.6
Beam_; | 153 15.6 | 284 | 28.5 3.8 1.0
Beamg 152 | 15.6 | 284 | 28.5 4.4 1.8
Beamy; | 152 | 15.7 | 282 | 28.5 6.0 2.6

OpenAl
gpt-3.5 12.8 26.2 51.6
gpt-4 13.0 26.1 48.2

Table 1: Results for modified CNN/Daily Mail, Fixed
Length approach (235 characters). The subscripts in
Beam denote the value of the length penalty parameter.

Table 3 shows the effectiveness of our methodol-
ogy for the Dynamic Length setting. We observe
better adherence to the length constraint than the
baseline, and better or equal performance in terms
of summary quality. Note that the results in Ta-
bles 1 and 3 cannot be meaningfully compared as

3The Ip parameter is actually a length reward as imple-
mented in HuggingFace, i.e. positive values penalise short,
rather than long generations



Rouge-2 BertScore % of too long
w=1l | w=10 | w=1 | w=10 | w=1 | w=10
T5-base

Greedy 18.0 17.6 | 48.9 48.9 6.6 34
Beam_; | 18.2 17.5 494 | 47.8 32 14
Beam 18.4 176 | 49.3 | 49.1 4.0 2.2
Beamy; | 17.0 17.1 435 47.1 22.2 9.6
Llama-2 7B
Greedy 22.1 23.1 534 | 54.0 3.2 32
Beam_; | 22.4 | 23.2 53.6 | 54.1 2.8 1.6
Beam, 22.6 23.3 53.8 54.1 2.8 1.6
Beamy; | 22.6 23.2 53.5 53.8 3.8 2.2

Table 2: Results for modified Wikihow, Fixed Length
approach (125 characters).

the length constraints for the Dynamic length set-
ting are more granular and therefore significantly
harder to respect compared to the single constraint
in the Fixed Length setting.

Rouge-2 BertScore % of too long
w=1l | w=10 | w=1 | w=10 | w=1 | w=10
T5-base

Greedy 159 | 16.0 | 255 | 257 | 356 | 224
Beam_; | 16.0 | 16.4 | 254 | 254 | 228 7.0
Beamo 16.1 16.1 | 25.0 | 248 | 30.6 | 15.0
Beam;; | 158 | 158 | 23.8 | 24.0 | 63.6 | 46.8

OpenAl
gpt-3.5 12.7 26.8 42.6
gpt-4 12.5 26.8 33.2

Table 3: Results for CNN/Daily Mail, Dynamic
Length approach with num_chars in range(start=75,
stop=800, step=50).

w [ Rouge-2 | BertScore | % of long
T5-base
1 14.7 23.7 27.0
2 14.9 243 194
5 154 25.0 11.6
10 15.2 24.7 10.0
50 14.8 24.2 10.4
le7 11.9 22.1 0
Llama-2 7B
1 16.0 32.1 15.0
2 154 31.9 10.8
5 16.5 32.5 8.4
10 16.0 32.0 6.6
50 16.0 32.1 7.8

Table 4: Results for modified CNN/Daily Mail, fixed
length (235 characters), different EOS weights and
greedy decoding.

Table 4 shows how metrics differ across several
W settings. As expected, higher values result in
better length control by shifting the distribution of
generated length to the left as shown in Figure 1a
and Figure 1b. However we note there are diminish-
ing returns after a certain value of W which in our
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Figure 1: Length distributions of predicted test sum-
maries with different EOS weights. For visualisation
purposes we truncated the lengthier baseline (W = 1)
distributions: the actual maximum lengths were 639 and
852 characters for TS5 and LLAMA-2 respectively.

setting lies somewhere between 10 and 50. Finally,
in Appendix A we demonstrate the effectiveness
of the Fixed Length approach across datasets of
different sizes and with different cutoffs.

6 Conclusions

This paper presents a novel, easy to implement
method for limiting the length of generations with-
out significant quality degradation. We provided
evidence that our method works across different
model architectures (encoder-decoder and decoder
only), different datasets and in combination with
other inference time length control methods.

7 Limitations

While our method shows promising results, cer-
tain limitations need to be acknowledged. Firstly,
our evaluation was conducted on a limited set of



models, which may not fully represent the diver-
sity of available architectures and configurations.
Future work should include ablation studies across
a broader range of models to ascertain the general-
izability and robustness of our approach.

Secondly, the fine-tune process required for pre-
trained language models incurs significant compu-
tational costs, potentially limiting the scalability
and accessibility of our method compared to ap-
proaches that solely rely on inference-time opera-
tions.

8 Ethics Statement

This research adheres to the principles outlined in
the ACL Ethics Policy. We comply with the li-
censes of all used datasets. Despite we did not use
sensitive data to train our models, we encourage
all summarization application developers using our
method to honor the ethical code for conducting
linguistic and cognitive research. (Mao et al., 2022)
found that pre-trained language models might suf-
fer from certain biases. Since our methodology
suggests to fine-tune such models, we cannot guar-
antee that the resultant models produce unbiased
outputs.
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A Ablations
A.1 Dataset Size

To demonstrate that the effectiveness of our method
is independent from the size of the fine-tuning

dataset, we test it on subsamples of CNN/Daily
Mail of different sizes: 2k, 10k, 50k samples. Ta-
ble 5 shows that our method yields a consistent
improvement in length control with minimal to no
performance degradation across all dataset sizes.
We note, however, that as the dataset size increases
the difference between our method and the baseline
reduces, thus indicating that increasing dataset size
positively contributes to better length control and
is complementary to our method.

Rouge-2 BertScore
w=1 | w=10 | w=1 | w=10
T5-base
2k samples 147 | 143 | 235 | 243 | 386 | 188
10k samples | 14.7 | 152 | 23.7 | 24.7 | 27.0 | 10.0
50k samples | 15.5 | 15.7 | 254 | 25.6 | 194 | 12.2
Llama-2 7B
2k samples 144 | 15.7 | 283 | 31.8 | 450 | 10.0
10k samples | 16.0 | 16.0 | 32.1 | 32.0 | 15.0 6.6
50k samples | 16.7 | 16.5 | 35.7 | 333 | 13.2 3.0

% of too long
w=1 | w=10

Table 5: Results for modified CNN/Daily Mail with 2k,
10k, 50k samples and reference summary length of at
most 235 characters.

A.2 Reference summary length

We also test our method on subsets of CNN/Daily
Mail with 10k samples and different maximum
lengths for the reference summary, namely 175,
235, and 500 characters. We do this in order to
demonstrate that the method is portable across
datasets with any summary length. Table 6 shows
that our method yields a consistent improvement
in length control with minimal to no performance
degradation across all dataset sizes also in this case.

Rouge-2 BertScore % of too long
w=1l | w=10 | w=1l | w=10 | w=1 | w=10
T5-base

175 chars | 13.2 13.5 248 | 25.1 17.6 10.4
235 chars | 14.7 15.2 | 237 | 247 | 270 10.0
500 chars | 16.3 16.2 244 | 24.6 8.6 0.0
Llama-2 7B
175 chars | 15.6 16.1 32.8 | 33.1 12.2 3.2
235 chars | 16.0 16.0 | 32.1 32.0 15.0 6.6
500 chars | 16.6 16.1 31.7 | 313 7.8 1.4

Table 6: Results for modified CNN/Daily Mail with 10k
samples and reference summary lengths of at most 175,
235, and 500 characters.
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