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ABSTRACT

Accurately reconstructing human behavior in close-interaction scenarios is crucial
for enabling realistic virtual interactions in augmented reality, precise motion anal-
ysis in sports, and natural collaborative behavior in human-robot tasks. Reliable
reconstruction in these contexts significantly enhances the realism and effectiveness
of AI-driven interactive applications. However, human reconstruction from monoc-
ular videos in close-interaction scenarios remains challenging due to severe mutual
occlusions, leading local motion ambiguity, disrupted temporal continuity and
spatial relationship error. In this paper, we propose SocialMirror, a diffusion-based
framework that integrates semantic and geometric cues to effectively address these
issues. Specifically, we first leverage high-level interaction descriptions generated
by a vision-language model to guide a semantic-guided motion infiller, halluci-
nating occluded bodies and resolving local pose ambiguities. Next, we propose
a sequence-level temporal refiner that enforces smooth, jitter-free motions, while
incorporating geometric constraints during sampling to ensure plausible contact
and spatial relationships. Evaluations on multiple interaction benchmarks show that
SocialMirror achieves state-of-the-art performance in reconstructing interactive
human meshes, demonstrating strong generalization across unseen datasets and
in-the-wild scenarios. The code will be released upon publication.

1 INTRODUCTION

Human reconstruction, which recovers the 3D geometry and motion of human bodies from visual
inputs, is a fundamental computer vision task, which has extensive applications in fields such as
augmented reality (Urgo et al. (2024)), sports analysis (Fukushima et al. (2024); Xi et al. (2024)),
and film animation. Close human interactions(Huang et al. (2024); Müller et al. (2024)), including
social and competitive behaviors, are particularly critical in these contexts. The interaction further
plays a crucial role in robotics applications, where collaborative tasks require seamless human-robot
interaction. Accurately modeling human behavior in such interactions allows robots to engage in more
natural, human-like collaborations, aligning with human preferences and enhancing the effectiveness
of AI in interactive tasks.

Previous monocular human reconstruction works (Kanazawa et al. (2018); Bogo et al. (2016))
primarily target single-person scenarios. These methods typically focus on accurate pose estimation
(Li et al. (2021); Rempe et al. (2021)), shape reconstruction fidelity (Goel et al. (2023); Pavlakos
et al. (2019); Xu et al. (2020)), or temporal smoothness across frames (Kocabas et al. (2020); Zheng
et al. (2021); Zeng et al. (2022)). However, limiting reconstruction to single-person scenarios restricts
applicability in real-world multi-person interactive settings. A few works(Huang et al. (2023); Lu
et al. (2023); Ugrinovic et al. (2024); Sun et al. (2022); Su et al. (2025); Newell et al. (2025); Liu
et al. (2025)) have considered reconstructing multi-human poses, employing techniques such as
explicit collision avoidance constraints (Ugrinovic et al. (2024)), depth ordering modeling in crowded
scenes (Sun et al. (2022); Wen et al. (2023)), utilizing data-driven priors(Zhu et al. (2024); Lu et al.
(2023); Rempe et al. (2021); Shi et al. (2023)) or recovery relation reasoning(Huang et al. (2023)).
The methods mentioned above typically address multi-person scenarios, where individuals are in
the same space but not directly interacting. In contrast, close-interaction scenes often involve heavy
occlusions, especially when individuals are physically touching or positioned in tight spaces, which
is more relevant for collaborative tasks and robot-human interactions. While some methods(Müller
et al. (2024); Huang et al. (2024); Fang et al. (2024)) have used mutual priors to model interactions,
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Figure 1: We reconstruct 3D human motion from monocular videos, specifically target on close
interaction scenarios. By leveraging both semantic and geometric guidance, SocialMirror resolves
ambiguities through infilling and ensuring the spatial relationship.

reconstructing closely interacting humans from monocular videos remains challenging due to the
exclusive reliance on image features under severe occlusions. This leads to three critical issues:
(1) Local pose ambiguities occur occludes another, making it difficult to infer the hidden person’s
pose, leading to uncertainties. (2) Temporal inconsistencies arise when occlusions disrupt tracking
continuity, resulting in unrealistic motion, such as sudden changes in pose. (3) Spatial relationship
errors happen when image features alone fail to capture the dynamic, complex interactions between
individuals in close proximity, causing inaccuracies in contact areas.

To address the aforementioned issues, we observe that human interactions are inherently intentional,
suggesting the necessity of incorporating semantic context to infer motion and spatial relationships.
Additionally, as interactions naturally occur within 3D space, enforcing geometric constraints is
crucial for achieving physically plausible reconstructions. Motivated by these insights, we pro-
pose SocialMirror, a Semantic and Geometric guided framework for Interactive Human Mesh
Reconstruction from monocular video, shown in Figure 1. First, we introduce Semantic-Guided
Motion Infiller which incorporates textual semantic guidance alongside visual features to recover
motion in occluded regions, effectively addressing severe occlusions and image-feature degradation.
Specifically, a Vision-Language Model (VLM)(Bai et al. (2025); Achiam et al. (2023)) Annotator
first generates textual descriptions of human interactions, providing essential semantic context and
temporal cues. These annotations, along with image features from visible body parts extracted
by a pre-trained backbone, guide the process to reconstruct infilled motion from invisible regions,
ensuring semantically coherent reconstruction despite occlusions. Furthermore, the Temporal Motion
Refiner module performs sequence-level optimization, merging diffusion-based semantic content
with visibly reconstructed sequences. This ensures spatially and temporally coherent reconstructions
even when image information is severely degraded or unavailable. To accurately model the complex
spatial relationships between closely interacting humans, the Geometry Optimizer explicitly captures
geometric constraints based on 3D joint positions. This geometric supervision refines reconstructed
motion sequences, effectively resolving spatial ambiguities and improving realism in contact regions.

Experimental evaluations demonstrate that the proposed method achieves superior reconstruction
accuracy on human interaction datasets with particular advantages in capturing interpersonal spatial
relationships and interaction plausibility. To summarize, our work makes the following contributions:
(1) We introduce semantic information into monocular video-based human mesh reconstruction via
a diffusion-based framework. Semantic guidance enables the network to infer plausible poses in
occluded regions, effectively resolving ambiguities through motion infilling. In addition, semantic
context provides essential temporal cues and contact relationships, enhancing reconstruction accuracy
in closely interacting regions. (2) The proposed method incorporate temporal refinement and 3D
geometric guidance, ensuring temporal consistency, spatial relationship and geometric plausibility. (3)
Experimental validation confirms our method achieves superior reconstruction quality in monocular
interactive human scenarios. Notably, the approach demonstrates generalization capabilities across
unseen datasets and in-the-wild scenarios.

2 RELATED WORK

2.1 HUMAN RECONSTRUCTION

Building on advancements in single-person 3D reconstruction(Kanazawa et al. (2018); Bogo et al.
(2016)), recent approaches have increasingly focused on joint reconstruction of multiple individuals
from monocular images. Prior works(Fieraru et al. (2021); Jiang et al. (2020); Zanfir et al. (2018);
Sun et al. (2021; 2022); Fieraru et al. (2020); Li et al. (2022)) have focused on improving human
relative position and depth estimation, using strategies including depth ordering losses(Fieraru et al.
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(2021); Jiang et al. (2020)), collision constraints(Zanfir et al. (2018); Sun et al. (2021)), and bird’s-eye
view depth reasoning(Sun et al. (2022)). However, these methods still struggle with occlusions and
modeling inter-person relationships. To address these issues, some works enhance feature extraction
under occlusion(Kocabas et al. (2021); Baradel* et al. (2024)), incorporate pose priors(Zhu et al.
(2024); Lu et al. (2023); Rempe et al. (2021); Shi et al. (2023)), and use contextual motion completion
frameworks(Yuan et al. (2022)) for inferring. Additionally, GroupRec(Huang et al. (2023)) improves
human mesh recovery through relational reasoning. However, these approaches fail to capture
the complex interpersonal interactions and accurate contact in close-range scenarios. Only a few
studies(Müller et al. (2024); Ugrinovic et al. (2024); Huang et al. (2024); Fang et al. (2024)) explicitly
address close interactions which involve more intimate contact and heavy occlusions. BUDDI(Müller
et al. (2024)) introduces a diffusion-based prior but is limited to static images. MultiPhys(Ugrinovic
et al. (2024)) resolves mesh interpenetration using a physics engine, while CloseInt(Huang et al.
(2024)) applies mutual attention modules for iterative refinement from monocular video. However,
all of these methods overlook the semantic context inherent in close human interactions and still face
challenges with visual ambiguities.

2.2 HUMAN MOTION GENERATION

Human motion generation has progressed from single-person motion generation(Tevet et al. (2022);
Chen et al. (2023); Jiang et al. (2024)) to more complex human-human interaction generation. Ap-
proaches include response synthesis (Chopin et al. (2023); Ghosh et al. (2024); Liu et al. (2023); Xu
et al. (2024)), where motion is generated in response to an actor’s movements, and interaction gener-
ation(Liang et al. (2024); Tanaka & Fujiwara (2023)), which generates motions for all interacting
individuals simultaneously. The methods mentioned above primarily focus on motion generation
without explicit control. However, control-based approaches, such as motion completion(Choi et al.
(2021); Chung et al. (2022); Zhao et al. (2024); Tevet et al. (2022)) and trajectory or joint-based(Wan
et al. (2024)) control frameworks, have introduced greater control, improving the coherence and
diversity of the generated outputs. OmniControl (Xie et al. (2023)) and InterControl (Wang et al.
(2023)) integrate ControlNet(Zhang et al. (2023b)) and enforce joint constraints and physical plausi-
bility, ensuring more accurate and realistic motion generation. Control-based diffusion is especially
beneficial for human reconstruction tasks, where accurate alignment with input images and the ability
to handle occlusions or depth ambiguities are crucial for maintaining both temporal and spatial
consistency in the generated motions.

2.3 LLM IN POSE EATIMATION

Large language models (LLMs)(Achiam et al. (2023)) are known for their strong generalization capa-
bilities, particularly in introducing semantic information. Their semantic flexibility and generalization
have been proven effective in pose estimation tasks. Xiao et al. (2025) integrates Swin-Base image
features with CLIP’s text-image embeddings, creating multimodal conditional inputs that improve
pose understanding. Wang et al. (2025) uses SHAPY(Choutas et al. (2022)) to generate body shape
description texts and fuses the encoded text prompts with other features to improve monocular body
shape estimation accuracy. Subramanian et al. (2024) leverages a LLM to generate contact constraints
between body parts, transforming these into a loss function to enforce physically consistent predic-
tions for both self-contact and interpersonal interactions. Xu et al. (2025) uses a vision-language
model to extract detailed descriptions of body part interactions, which are then used as multimodal
feedback to refine initial pose estimates. Building on this, we extend these techniques to human
reconstruction from monocular videos in close-interaction scenarios, where we combine visual and
textual cues with VLM(Bai et al. (2025)) and LLM to generate more accurate and semantically
coherent interactions. We incorporate temporal contact labels and refine the reconstruction process to
ensure not only spatial consistency but also temporal continuity and geometric constraints.

3 METHOD

The aim of this work is to reconstruct human close interactions from monocular videos. We introduce
SocialMirror, a semantic and geometry-guided diffusion-based framework for interactive human
mesh reconstruction, as shown in Figure. 2. Specifically, we extract textual descriptions and labels
with temporal and close-contact information from a Vision-Language Model (VLM) and integrate
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Figure 2: The framework of SocialMirror, which integrates semantic guidance from vision-language
annotations and further refine the result with geometric constraints. Trans Block refers to the
transformer block.

these semantic features with visual data in Semantic-Guided Motion Infiller 3.1, which compensates
for visual feature degradation when severe occlusions and mitigates local pose ambiguities. The
Geometry Optimizer 3.2 uses an auxiliary model to optimize 3D joint positions, generating geometric
guidance signals to better model spatial relationships. The Temporal Motion Refiner 3.3 refines the
reconstruction results based on these geometric signals, ensuring temporal consistency.

3.1 SEMANTIC-GUIDED MOTION INFILLER

In multi-person close-interactive scenarios, severe partial occlusion frequently occurs, causing certain
individuals to become visually obscured. Under such challenging conditions, existing reconstruction
methods(Müller et al. (2024); Huang et al. (2024)) typically struggle due to the lack of reliable visual
features from occluded subjects. Nevertheless, human observers consistently maintain perceptual
coherence in these scenarios by effectively utilizing semantic information: even when visual details
are obscured, contextual cues regarding interactive dynamics allow humans to infer plausible states of
hidden regions via spatial and temporal reasoning. Inspired by this, the motion reconstruction models
should leverage high-level semantic understanding rather than relying solely on pixel-level visual
restoration. Consequently, our aim is to enable models to learn semantic-to-motion mappings, em-
powering the model to inpaint invisible regions through available visual cues and inferred interaction
semantics.

VLM Annotator Large language models offer strong generalization capabilities and rich semantic
information. Leveraging inputs such as detailed background scene data, human joint information,
and predefined instructions, we use a vision-language model to generate semantic captions for the
interacted motion of two people. These captions are then converted into single-person descriptions
through prompt engineering. Additionally, we introduce sequential and spatial-level contact labels to
guide the language model in modeling interactions, which are used in the Temporal Motion Refiner
and Geometry Optimizer. We pre-calculate the minimum distance between joints of the individuals
and label pairs with a distance below a threshold as contact. Each contact pair is then formatted
as (JOINT, JOINT, BEGIN-CONTACT-TIME-STEP, END-CONTACT-TIME-STEP) for further
processing. We fine-tune the VLM to enable the model to infer contact labels. Details of the template
design are provided in the Appendix.

Feature Extractor The input consists of sequential images, with the frames length equal to L, and
the output is the SMPL parameter for each person, representing their motion, which includes the
local pose θ ∈ R21×3, shape β ∈ R10, rotation ϕ ∈ R3, and translation τ ∈ R3. The parameter for
a single person is defined as x = {ϕ, θ, β, τ}. The reconstructed results must primarily adhere to
visual evidence. For the visible parts, we leverage the existing HMR framework(Ge et al. (2021);
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Lyskov (2024); Goel et al. (2023)) to obtain initial estimation and image features. We first employ
off-the-shelf human detection and tracking methods(Lyskov (2024); Cheng & Schwing (2022); Zhang
et al. (2023a); Jocher et al. (2023); Ge et al. (2021)) to acquire the bounding boxes of individuals
in images, and then a Vision transformer (ViT) (Goel et al. (2023)) pretrained on extensive datasets
serves as the backbone network to extract image features Fimg within these bounding boxes. We
further apply a motion head with sequential MLP layers to obtain SMPL Token from Fimg, and we
derive the initial coarse estimates x = {xa, xb}. For the interactive descriptions generated by the
VLM Annotator, we use CLIP(Radford et al. (2021)) as the text encoder to obtain textual features
Ftext. We incorporate semantic cues to facilitate complete reconstruction for occluded body regions.

Interactive Diffuser The Interactive Diffuser integrates visual features from observable body regions
with textual semantic guidance to generate interactive motions. Recent advancements in controllable
diffusion-based generation(Xie et al. (2023); Wan et al. (2024); Zhang et al. (2023b)) are ideal for
our task: visible body regions require strict adherence to input images, while occluded regions need
context-aware completion. Unlike traditional diffusion models that start from pure noise, we generate
from the coarse motion x with Distribution Adaptation (Huang et al. (2024)), which ensures output
consistency with observed human poses and preserves key pose features in the generated results.

Following prior methods (Wang et al. (2023); Xie et al. (2023)), the Interactive Diffuser takes the
interactive individual motions, extracted from SMPL head, xt

a and xt
b, as denoising inputs. It then

produces the corresponding denoised motions x̂0
a and x̂0

b , conditioned on the diffusion timestep t and
image features Fimg . The textual descriptions serve as auxiliary guidance through a zero-initialized
layer, similar to ControlNet(Zhang et al. (2023b)). Human interactions inherently involve mutual
influence between individuals’ movements. To model this, we adopt a dual-branch structure with
cross-attention mechanisms (Liang et al. (2024)), where each branch handles motion reconstruction
for one individual while maintaining shared weights and bidirectional information exchange. This
configuration effectively captures the reciprocal nature of interactive motions. For more details of
model architecture, we introduce in appendix.

Model Training We optimize through following objectives fuction: L = Lreproj + Lsmpl + Ljoint +

Lvel+Lint+Lpen , where Lreproj = ∥Π(J + τ)− ˆJ2D∥22, measuring the projected 3D joints and the
2D ground truth poses, J ∈ R21×3 is the 3D joint derived from smpl parameters. Lsmpl,Ljoint,Lvel

are the L2 between predicted and target of shape parameters, 3D joint positions and joint velocities.
Lint = ∥|Ja − Jb| − |Ĵa − Ĵb|∥22 supervise the relative distance between two invdividuls. For
Penetration Loss, we first detect the set of colliding triangles using bounding volume hierarchies
(BVH) (Karras (2012)), then calculate Penetration Loss by:

Lpen =
∑

(fa,fb)∈C

{ ∑
va infa

∥−Ψfb (va)na∥2 +
∑

υb infb

∥−Ψfa (vb)nb∥2
}

(1)

Wherefa, fb are two colliding triangles in the detected colliding triangles C.v and n are vertex position
and normal, respectively, and Ψ(·) is the distance field.

3.2 GEOMETRY OPTIMIZER

In the prior diffusion module, interaction sequences were modeled as a set of SMPL parameters and
position parameters within the camera coordinate system. This modeling approach may diminish
the model’s capacity to grasp spatial relationships, while explicit modeling of the 3D positions of
human joints facilitates the model’s learning of relative joint position relationships in two-person
interactions. Therefore, for the reconstruction results of the diffusion Model, we apply an auxiliary
Module to obtain the 3D joint positions of the two individuals in the interaction sequence, and then
further optimize the final motion sequence.

Auxiliary Module. The Auxiliary Module adopts the same two-branch mutual attention structure as
the diffusion model. The key difference is that the linear layer in the Motion Embedding component is
replaced with a Spatial-Temporal Graph Convolutional Network (STGCN) (Yu et al. (2017); Yan et al.
(2018)), which models spatio-temporal relationships. Based on the human anatomical structure, nodes
in each frame are connected to form spatial edges, while temporal edges link corresponding joints
across consecutive time steps. This setup enables the construction of multi-layer spatial-temporal
graph convolutions, facilitating the integration of information across both spatial and temporal
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dimensions. We convert the joint pair annotations from the VLM Annotator into a contact mask
M ∈ RK×L, indicating contact joints from the start of one time step to the end, with Mk,l = 1 if
there is contact and Mk,l = 0 if there is no contact. This model is trained with a composite loss
function defined as L = Lreproj + Lcontact + Lvel + Lint, where Lcontact = (αM + 1K×L)Ljoint,
which deliberately strengthen the contact positions and 3D geometric information, thereby enhancing
the spatial relationships.

3.3 TEMPORAL MOTION REFINER

Through the Semantic-Guided Motion Infiller, we generate an interaction motion sequence condi-
tioned on both visual and semantic cues. However, textual guidance may unintentionally alter visible
regions, and interpenetration artifacts can still occur due to the use of soft collision penalties. To
address this issue, we apply a confidence-based infilling strategy. Given the initial estimation x from
SMPL head, the infilled sequence x̂0, and a confidence mask C, the final motion sequence is obtained
as x′ = M ⊙x + (1−M)⊙ x̂0, where M = 1{C≥θ} is a binary mask derived from the confidence
scores C ∈ [0, 1]T with threshold θ ∈ [0, 1], and ⊙ denotes element-wise multiplication. Thus,
through this operation, the textual guidance implicitly hallucinates the low-confidence regions, while
the high-confidence parts are preserved from the initial estimation. Subsequently, we further optimize
the infilled motion sequence with a frozen Interactive Diffuser, which leverages the generative prior
of diffusion models to naturally improve temporal coherence and produce smoother transitions across
frames. In parallel, it integrates guidance from the Geometry Optimizer to refine spatial relationships,
leading to motion sequences that are both geometrically consistent and temporally smooth. Addi-
tionally, we introduce a factorized collision loss that enables joint constraints and collision-guided
sampling, independently optimizing body shape and joints for efficient convergence.

Factorized Loss Guidance. During the sampling process, we incorporate joint and collision guidance
signals to improve interaction quality. The joint guidance signal is derived from the joint positions
generated by the Geometry Optimizer. For the predicted motion x̂0 from freezed interactive diffuser,
we derive it 3D joint positions J and compute the weight contact loss between J and the guidance
signal J ′ from the Geometry Optimizer as Lcontact(J, J

′) = (αM+ 1K×L)||J − J ′||2. The collision
guidance signal is based on the interpenetration volume between meshes, which reduces mesh
penetration, improving the geometric plausibility of the interaction. We reconstruct meshes for
the two individuals from x̂0 and use BVH to calculate their L2 intersection volume differences as
Lpenetration. The guidance loss is defined as Lguidance = λjLcontact + λpLpenetration, where λj and λp are
weighting parameters. Following the methodology in InterControl (Wang et al. (2023)), we perform
multiple L-BFGS iterations at each denoising step to update the posterior mean. The optimization
process is described as follows: µ′

t = µt − λ∇µtLguidance(µt), where λ denotes the optimization step
size.

In addition, joint optimization of heterogeneous parameters (rotation, shape, and translation) with
uniform settings leads to suboptimal outcomes. To address this, we introduce a factorized loss
guidance approach. Since joint guidance provides limited shape-related information and collision
constraints may cause unwanted morphological compression when applied to shape parameters,
we decompose the optimization process into two components: rotational parameters µpose

t and
translational parameters µtransl

t for optimizing separately. Each component undergoes multi-round
iterative optimization with L-BFGS optimizer. This factorized approach allows for task-specific
optimization, leading to more efficient convergence and more plausible results.

4 EXPERIMENT

4.1 DATASETS

Hi4D (Yin et al. (2023))focuses on close human interaction scenarios, encompassing dynamic
interaction types such as hugging, dancing, and athletic movements. It specifically addresses complex
poses and prolonged physical contact scenarios, thereby challenging existing methods’ capacity
to handle occlusions and interactive dynamics. The dataset comprises 20 unique participant pairs,
totaling 100 sequences with over 11,000 frames of which more than 6,000 frames contain physical
contact. For consistency, we adopt the same train and test split protocol as the baseline.
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Figure 3: Qualitative comparison results.
Table 1: Comparisons on Hi4D and 3DPW. PA. represents PA-MPJPE. and VPE represents MPVPE.

Method Hi4D 3DPW

↓RE ↓GE ↓Int. ↓Smoothness. ↓Pen. ↓MPJPE ↓PA. ↓VPE ↓RE ↓GE ↓Int. ↓Smoothness. ↓Pen. ↓MPJPE ↓PA. ↓VPE

Human4D(Goel et al. (2023)) - - - - - 72.1 52.4 88.6 - - - - - 72.9 49.1 107.0
BEV(Sun et al. (2022)) 210.5 223.5 131.0 - 1953.6 91.8 59.3 101.2 235.2 291.8 - 145.6 233.8 135.0 81.9 169.7

GroupRec(Huang et al. (2023)) 113.2 122.3 98.8 - 1858.4 82.4 51.6 88.6 204.6 235.2 - 110.6 100.9 73.3 48.7 109.4
BUDDI(Müller et al. (2024)) 200.3 216.4 102.6 - 1879.3 96.8 70.6 116.0 228.4 289.4 - 113.1 203.5 83.6 53.6 93.8
CloseInt(Huang et al. (2024)) 99.0 114.9 81.4 4.6 3947.6 63.1 47.5 76.4 121.1 134.0 19.9 75.6 101.6 59.0 45.3 73.2

Ours 83.6 95.2 68.5 3.5 2380.5 62.2 47.5 79.3 91.0 127.9 10.0 64.6 109.7 55.6 44.3 69.4

3DPW (Von Marcard et al. (2018)) records human activities in natural environments, encompassing
various daily scenarios such as courtyard, downtown, and office. We selected sequences involving
two-person interactions from these recordings, resulting in a total of 31 sequences with 12,000 frames.

Harmony4D (Khirodkar et al. (2024)) is a multi-view video dataset specialized in in-the-wild close
human interactions. Unlike datasets collected in controlled settings with choreographed motions,
Harmony4D captures naturally occurring dynamic activities including wrestling, dancing, and mixed
martial arts. The dataset contains 208 video sequences captured by over 20 synchronized cameras,
yielding 1.66 million images across 5 distinct scenarios involving 24 unique participants. We utilize
the test set of this dataset to validate the generalization ability on unseen dataset without training.

Table 2: Comparisons on Harmony4D.

↓RE ↓GE ↓Int. ↓Pen. ↓MPJPE ↓PA. ↓VPE

Human4D - - - - 108.2 60.3 131.0
BEV 365.4 716.7 360.4 484.4 111.3 78.0 144.3

GroupRec 346.6 689.2 337.1 499.4 119.0 65.5 144.8
BUDDI 352.3 692.3 324.1 479.3 126.4 84.0 158.7
CloseInt 202.2 446.6 255.2 488.9 103.5 47.1 114.9

Ours 198.2 411.8 245.6 482.9 104.6 45.9 117.3

Figure 4: Visulization on in-the-wild video.
4.2 EVALUATION METRICS

We adopt the evaluation metrics mainly from CloseInt(Huang et al. (2024)), including Root-Aligned
Mean Per Joint Position Error (MPJPE) and Procrustes-aligned MPJPE (PA-MPJPE) for pose
estimation accuracy. Mean Per Vertex Position Error (MPVPE) measures mesh reconstruction
quality. These metrics primarily evaluate the proposed method’s accuracy in single-person pose
reconstruction tasks. To further evaluate the network’s capacity to model spatial relationships in multi-
person interactions, except for Interaction defined in CloseInt, we introduce two complementary
metrics: Global Mean Per Joint Position Error (G-MPJPE(GE)) measuring absolute pose errors
across the entire scene, and Relative Mean Per Joint Position Error (R-MPJPE(RE)) focusing on
inter-person positional relationships, which is defined as Mean Per Joint Position Error after aligning
to the first person’s root position. It eliminates the effect of global position offset and focuses more on
the relative position relationship between the joints. For temporal consistency, we follow MultiPhys
(Ugrinovic et al. (2024)) and report Smoothness, calculated as the Mean Squared Error between the
predicted and ground-truth accelerations of each joint. This metric quantifies the continuity of joint
movements across the temporal sequence. For physical plausibility, we report inter-person penetration
volume (Pen.), quantified by computing the signed distance function (SDF) for each subject and
accumulating the penetration depth across intersecting vertices. The Pen. metric represents the
average sum of negative SDF values per person over the entire sequence.
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Table 3: Ablation studies on the impact of semantic and geometric information on Hi4D.

Semantic-Guided Temporl Refiner Geometry ↓RE ↓GE ↓Int. ↓Smoothness. ↓MPJPE ↓PA. ↓VPEMotion Infiller - factorized guidance contact mask Optimizer

100.4 119.0 90.5 4.7 62.4 47.5 78.3
✓ 91.2 102.7 73.4 4.1 63.5 48.7 80.7
✓ ✓ 91.5 103.5 74.2 3.9 63.3 48.5 80.2
✓ ✓ ✓ 91.0 102.4 73.3 4.1 63.5 48.7 80.7

✓ ✓ ✓ 89.3 100.6 69.2 4.0 63.2 48.5 80.3
✓ ✓ ✓ ✓ 88.6 98.7 68.7 3.9 63.0 48.5 80.2

✓ ✓ ✓ ✓ 84.5 96.2 68.5 3.5 62.8 47.7 79.8
✓ ✓ ✓ ✓ ✓ 83.6 95.2 68.5 3.5 62.2 47.5 79.3

Table 4: Results under various occlusion severity on Hi4D. Darker colors indicate greater improve-
ments. Improve. means the improvement rate.

IoU 0.0 (0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 1.0]

CloseInt Ours Improve. CloseInt Ours Improve. CloseInt Ours Improve. CloseInt Ours Improve. CloseInt Ours Improve.

↓RE 85.4 78.3 8.3 93.3 82.3 11.8 104.1 91.4 12.2 104.3 93.8 10.1 108.4 106.7 1.6
↓GE 99.4 89.0 10.5 112.4 96.3 14.3 120.4 101.2 16.0 118.3 105.3 11.0 125.6 117.7 6.3
↓Int. 67.8 62.6 7.7 87.2 68.6 21.3 98.2 79.3 19.3 93.3 77.5 16.9 93.3 82.4 11.7
↓Pen. 15.6 2.8 82.1 139.8 48.7 65.16 1232.2 292.1 76.3 2690.6 406.3 84.9 4218.5 111.2 97.4

↓MPJPE 40.9 44.7 -9.3 49.2 51.3 -4.3 64.2 65.7 -2.3 74.6 72.6 2.7 84.1 88.1 -4.8
↓PA. 31.1 35.2 -13.2 37.6 40.1 -6.7 49.3 51.3 -4.1 55.6 54.9 1.3 58.6 60.6 -3.4
↓VPE 52.8 58.4 -10.6 64.1 67.9 -5.9 80.6 83.5 -3.6 91.8 90.4 1.53 100.4 108.1 -7.7

4.3 MAIN RESULTS

Results on Hi4D and 3DPW. We compare our method with several state-of-the-art baseline methods
on Hi4D(Yin et al. (2023)) and 3DPW(Von Marcard et al. (2018)), most values are reported in the
original paper, and we reproduce the results for interaction metric evaluation. A dash (-) indicates
that some results are either not reported or unavailable. While Human4D (Goel et al. (2023))
achieves promising results on single-person metrics, it does not account for the mutual relationships
of interacting individuals and fail to capture the spatial dependencies between different subjects.
BEV(Sun et al. (2022)) and GroupRec(Huang et al. (2023)) explicitly consider the depth relationships
among humans to address the depth ambiguity of human positions in monocular multi-person
reconstruction tasks, while they struggle to handle the complex interaction patterns in scenarios with
close human interactions. BUDDI(Müller et al. (2024)) and CloseInt(Huang et al. (2024)) share the
most similar setting with our method, focusing on monocular two-person reconstruction under close
multi-person interaction. BUDDI uses a Generative Proxemics model to align meshes with the initial
estimate and detected keypoints. The quality of its results relies on the accuracy of the keypoints,
which can be unreliable or missing when humans are heavily occluded. Additionally, BUDDI lacks
temporal modeling for handling dynamic interactions over time. CloseInt employs a two-person
interaction prior, which also relies on the precondition that the movements of both individuals can be
roughly reconstructed. Therefore, they struggle to handle occlusion in monocular videos, resulting
in poor interaction relationships. In contrast to these methods, our approach introduces semantic
information to infill occluded body parts, operating without reliance on 2D keypoint detection or
flawed image features. We achieves 4.2% and 18.3% improvements in RE and Int. compared with the
latest SOTA on Hi4D. It is critical to clarify the interpretation of single-person vs. interaction-focused
metrics here: MPJPE, PA. and VPE focus solely on per-person reconstruction accuracy. Due to root
alignment in their computation, they cannot capture errors in positioning or root jitter, which are
critical for evaluating interaction quality. This inherent limitation explains why our method shows
only marginal changes in MPJPE and VPE. By contrast, the substantial gains in RE, GE, and Int.
directly validate that SocialMirror effectively addresses the challenges of severe mutual occlusions
and disrupted spatial relationships, which are the primary pain points of monocular interaction
reconstruction. In terms of inter-person penetration, this is not a metric that should be analyzed in
isolation. This is because incorrectly placing two individuals engaged in close interaction far apart
can also yield a small Pen. value. Notably, we expect slight model penetration to occur in close-
interaction actions (e.g., hugging), where, for instance, one’s palm may slightly intersect with the
other person’s body. To evaluate whether a method can minimize penetration while correctly inferring
the relative positions of individuals, the three metrics—RE, Int. and Pen.—should be analyzed
comprehensively. Specifically, our method maintains low values for RE, Int. and Pen. simultaneously.
This demonstrates that it not only effectively captures the relative spatial relationships between
individuals but also minimizes model penetration, thus ensuring the rationality of the interaction
reconstruction results.
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Generalization Evaluation. We further assess SocialMirror’s generalization on the unseen Har-
mony4D dataset(Khirodkar et al. (2024))—without any fine-tuning—in Table 2, SocialMirror achieves
superior results, especially on interaction metrics, validating its strong spatial relationship modeling.
Figure 1 and Figure 4 illustrates qualitative reconstructions on in-the-wild interaction scenes, which
the inputs are arbitrary video from the internet, demonstrating correct recovery of human contact
and pose even under severe occlusion. These results confirm our framework’s strong generalization
across diverse datasets and real-world scenarios.

VLM Annotation User Study. Semantic information plays a vital role in our framework by
complementing motion reconstruction. To assess the quality of interaction descriptions generated by
the VLM Annotator, we conducted a user study with 20 participants who evaluated annotations from
40 randomly selected video sequences. Participants rated the alignment between VLM-generated
texts and videos, as well as the accuracy of identified contact pairs, on a 5-point scale (1 indicating the
generated description is completely irrelevant or incorrect which is below expectation and 5 indicating
the description is exceptionally accurate and detailed which is exceeding expectation). The VLM
Annotator achieved an average score of 3.3, where 3-score measuring the annotation is comparable
with human annotation, demonstrating robust annotation quality and strong generalization across
diverse interaction scenarios, with performance approaching human-level understanding.

4.4 ABLATION STUDY

Ablation studies on each module We conducted ablation studies to evaluate the impact of different
modules in Table 3. Introducing the Semantic-Guided Motion Infiller module leads to a notable
performance improvement, particularly in reducing GE and RE. The semantic information integration
enables the network to preserve critical visual features while incorporating textual descriptions,
leading to more accurate recovery of interactive motions and spatial relationships. Introducing the
Temporal Refiner without factorized guidance or contact mask improves motion smoothness but de-
grades RE, GE and Int., confirming that temporal smoothing alone fails to resolve spatial inaccuracies.
The Geometry Optimizer alone yields only modest improvements. In contrast, consistent improve-
ments emerge when factorized guidance is employed: decoupling rotation and translation parameters
allows independent tuning of hyperparameters for each and thus leads to superior convergence and
overall reconstruction quality. Adding a contact mask further reduces RE, GE, and Int.. It primarily
refines local details, such as hand–contact interactions. These fine-grained adjustments—typically
centimeter-scale in localized regions—often manifest as subtle metric improvements that may not
appear pronounced numerically. When all modules are combined, the full model achieves optimal
performance, with the most significant gains observed in interaction-related metrics and motion
smoothness. This validates the synergistic effect of each module. Notably, MPJPE, PA. and VPE
metrics remain relatively stable across configurations, suggesting the model prioritizes global motion
realism over joint-level precision—a trade-off favorable for visually realistic reconstructions.

Comparison of various occlusion severities. To further explore the effectiveness of our method
on different occlusion-level cases, we quantified occlusion severity by computing intersection-over-
union (IoU) between bounding boxes, partitioning the test set into five subsets representing distinct
occlusion levels. As shown in Table 4, our approach achieves comparable results to CloseInt in
scenarios without occlusion and consistently outperforms under partial and moderate occlusion (IoU
between 0.25 and 0.75). With semantic and geometric guidance, the model reconstructs plausible
poses by leveraging VLM-generated textual descriptions when visual cues are lacking, while also
reducing mesh penetration and improving contact dynamics. Therefore, we obtain more naturally
approximate real-world human interactions under challenging occlusion conditions.

5 CONCLUSION

We present SocialMirror, a diffusion-based method that integrates semantic cues and geometric
constraints to address the challenges of monocular human mesh reconstruction in close-interaction
scenarios. The Semantic-Guided Motion Infiller leverages vision-language descriptions to reconstruct
occluded region and resolve pose ambiguities. Geometry Optimizer and Temporal Motion Refiner
enforce 3D joint consistency and temporal consistency, enhancing spatial plausibility and natural
contact dynamics. Extensive evaluations demonstrate that SocialMirror delivers realistic, semantically
enriched reconstructions across various datasets and in-the-wild scenarios.
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A SUPPLEMENTARY MATERIAL

We present additional details of implementation, including model setup, dataset processing, diffusion
process modification and two-branch network architecture, as well as VLM annotator details with
prompting examples in Sec.A.1. Additional experiments are provided in Sec.A.2, including ablation
study on motion embedding layer design in Geometry Optimizer, performance breakdowns across
Hi4D’s action categories, cross-dataset results and in-the-wild visualizations. Section A.3 includes
analyses of VLM limitations and failure cases, while also exploring the role of semantic information
in limited-contact scenarios and outlining the framework’s current limitations. The use of Large
Language Models are declared in Sec.A.4

A.1 ADDTIONAL DETAILS

A.1.1 IMPLEMENT DETAILS

Our model was implemented using PyTorch and trained on an NVIDIA RTX 3090 GPU. The batch
size was set to 32 for the Semantic-Guided Motion Infiller and 64 for the Geometry Optimizer. We
employed the AdamW optimizer with CyclicLRWithRestarts, where the learning rate was initially
set to 0.0001, with parameters restart_period=10, t_mult=2, and a "cosine" policy.

In the Motion Infiller and Motion Refiner, the dimension of human motion followed CloseInt(Huang
et al. (2024)) with D = 157. For the Geometry Optimizer, we utilized 24 SMPL joints to represent
human motion, resulting in a human motion dimension of D’ = 24 × 3. The text feature dimension
Ftext, encoded from CLIP(Radford et al. (2021)), was 256.

For dataset implementation, original long motion sequences were divided into shorter clips with
a length of L = 16 frames. Each clip was annotated with a corresponding text description using
our LLM annotation module. For 3DPW, we established a new benchmark by selecting sequences
involving two subjects: sequences captured in courtyard environments were used for training, and
those captured in downtown settings were used for testing.

For multi-person scenes, we automatically detect and track individuals to obtain their bounding
boxes and select the pair with the closest spatial proximity as the primary subjects. The original
image is then cropped according to their bounding boxes, centering the region of interest to minimize
background distractions and ensure the VLM focuses exclusively on the targets.

A.1.2 DIFFUSION WITH INITIAL DISTRIBUTIONS

In prior approaches to diffusion-based pose estimation (Feng et al. (2023); Rommel et al. (2023)),
time-dependent Gaussian noise sampled from N (0, I) is incrementally injected into ground-truth
motion sequences x̂0 through the forward process:

q(xt | x̂0) =
√
α̂tx̂0 +

√
1− α̂tϵ, ϵ ∼ N (0, 1) (2)

where αt denotes a constant hyper-parameter(Nichol & Dhariwal (2021)), and α̂t =
∏t

i=0 αi. It was
observed that xt follows a standard Gaussian distribution, and the early iterative steps provide limited
meaningful information for human motion dynamics. Additionally, the results should fully account
for the initial prediction consistent with image characteristics.

To address these issues, we propose modifying the forward diffusion process to align with the initial
distributions:

q(xt|x̂0) = x+
√
α̂t(x̂0 − x) +

√
1− α̂tϵ, ϵ ∼ N (0, σ) (3)

With this adjusted framework, a generative model is derived by reversing the diffusion process,
starting from samples xt ∼ N (x, σ). The reverse process is defined as:

q(xt−1|xt, c) = N
(
xt−1;µα(xt, c), β̃tσ

)
(4)
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where µα(xt, c) represents the estimated mean from the diffusion model under condition c at timestep
t− 1, and β̃t denotes the variance calculated using the hyperparameters βt, α̂t, and α̂t−1.

A.1.3 MODEL DETAILS

We employ a two-branch network architecture to model human interactions, where each branch
processes the actions of one individual and information sharing occurs between the branches. Specifi-
cally, xt

a and xt
b are first processed through a motion embedding layer and sequence position encoding

to generate initial hidden states h0
a and h0

b . These states are then fed into a two-branch transformer
network with shared weights, composed of N transformer blocks. Within each block, self-attention
(SA) and cross-attention (CA) mechanisms enable intra-agent and inter-agent information exchange,
respectively. For the n-th transformer block in agent a’s branch where n ∈ [1, N ] :

The Self-Attention Block processes its own hidden state hn−1
a to capture intra-agent dependencies.

The query QSA
a , key KSA

a , and value V SA
a matrices are derived from hn−1

a as:

QSA
a = hn−1

a W SA
Q , KSA

a = hn−1
a W SA

K , V SA
a = hn−1

a W SA
V (5)

where W SA
Q ,W SA

K ,W SA
V are trainable weights. The self-attention output is calculated as:

SA(hn−1
a ) = Softmax

(
QSA

a (KSA
a )T√
C

)
V SA
a (6)

where C is the number of channels in the attention layer. Then a Cross-Attention Block facilitates
inter-agent information exchange. For agent a, the query matrix QCA

a is derived from hn−1
a , while the

key KCA
a and value V CA

a matrices come from hn−1
b :

QCA
a = hn−1

a WCA
Q , KCA

a = hn−1
b WCA

K , V CA
a = hn−1

b WCA
V (7)

The cross-attention output for agent a is:

CA(hn−1
a , hn−1

b ) = Softmax
(
QCA

a (KCA
a )T√
C

)
V CA
a (8)

A symmetric calculation for agent b, SA(hn−1
b ),CA(hn−1

b , hn−1
a ), swaps the roles of hn−1

a and
hn−1
b .The weight matrices W SA

Q ,W SA
K ,W SA

V and WCA
Q ,WCA

K ,WCA
V are shared across both branches.

At the end of each block, the outputs of the SA and CA blocks are combined with residual connections
and layer normalization, for agent a:

hn
a = LayerNorm

(
hn−1
a + SA(hn−1

a ) + CA(hn−1
a , hn−1

b )
)

(9)

This integrated hidden state hn
a is then fed into subsequent transformer layers. The weight-sharing

symmetry ensures balanced processing of inter-agent interactions, reducing model parameters while
improving generalization capabilities.

Controlnet is a trainable copy of the N transformer blocks of the diffusion model, they share common
inputs: h0

a, h0
b , t, and Fimg. Additionally, it incorporates text features Ftext encoded by CLIP. For each

trained transformer block, the computation is defined as: hi = T (hi−1, Fimg; Θ), where Θ denotes
the frozen training parameters of the block.

The trainable copy of the model connects to the original model via zero linear layers. The output of
the controlled diffusion network is therefore:

hc
i = T (hi−1, Fimg; Θ) + Z (T (x+ Z(Ftext; Θz1), Fimg; Θc) ;Θz2) (10)

Here T represents the original model block Z denotes the zero linear layers. During the initial state
of training, the zero linear layers produce zero outputs, ensuring the original model’s stable output as
hc
i = T (hc

i−1; Θ). As training progresses, the parameters of the zero linear layers learn to gradually
inject conditional signals into the model.
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A.1.4 VLM ANNOTATOR DETAILS

We further provide the details of LLM Annotation in Tab. 5. We also provide several generated textual
descriptions and contact pairs in our visualization results (Fig. 5), illustrating that the texts are well-
aligned with the corresponding image, providing semantic guidance for human mesh reconstruction.

Table 5: Detailed prompting example for VLM Annotator.

Prompting Example
Given the image sequence of two human interaction, generate 0, 1 or more joint-joint contact pair(s) according
to the following background information, rules, and examples. Joint-joint contact pair should exactly reflect
the human interaction shown in the image sequence.
[Start of background Information]
Human has JOINTS: [‘pelvis’, ‘left_hip’, ‘right_hip’, ‘left_knee’, ‘right_knee’, ‘left_ankle’, ‘right_ankle’,
‘left_foot’, ‘right_foot’, ‘neck’, ‘left_collar’, ‘right_collar’, ‘head’, ‘left_shoulder’, ‘right_shoulder’,
‘left_elbow’, ‘right_elbow’, ‘left_wrist’, ‘right_wrist’ ].
[End of background Information]
[Start of rules]
1.Each joint-joint pair should be formatted into {JOINT, JOINT, TIME-STEP, TIME-STEP}. JOINT should
be replaced by JOINT in the background information. IMPORTANT: The first JOINT belongs to person 1,
and the second JOINT belongs to person 2. Each joint-joint pair represents a contact of a joint of person 1 and
a joint of person 2. The first TIME-STEP is the start frame number of contact, and the second TIME-STEP is
the end frame number of contact.
2.Use one sentence to describe what action person 1 do and one sentence to describe what action person 2
do according to the image sequence. IMPORTANT: the sentence starts from ‘text 1:’ describing the action
of person 1 from the perspective of person 1 and the sentence starts from ‘text 2:’ describing the action of
person 2 from the perspective of person 2. Sentences should NOT contain words like ‘person 1’ or ‘person 2’,
use ‘a person’ to refer to himself in the sentence and ‘others’ to refer to others. IMPORTANT: the sentence
should be align with the joint-joint contact pair. IMPORTANT: the order of person 1 and person 2 should be
the same in different joint-joint contact pair of the same image sequence.
3.IMPORTANT: Do NOT add explanations for the joint-joint contact pair.
[End of rules]
[Start of an example]
[Start of sentences]
Text 1: a person dance with others holding his left hand with the other’s right hand, puting his right hand on
the other’s waist, and his shoulder being touched.
Text 2: a person dance with other holding her right hand with the other’s left hand, with her waist being
embraced, placing her left hand on the other’s shoulder.
[End of sentences ]
[Start of joint-joint contact pair(s)]
{left_wrist, right_wrist, 11, 15}
{right_wrist, left_hip, 14, 15}
{right_shoulder, left_wrist, 9, 15}
[End of joint-joint contact pair(s)]
[End of an example]

A.2 ADDTIONAL EXPERIMENTS

A.2.1 GEOMETRY OPTIMIZER

Geometry Optimizer focuses on processing 3D joint positions to provide geometric guidance informa-
tion. To validate the effectiveness of our encoding layer design for the auxiliary model, we conducted
an ablation study by implementing the motion embedding layer with either STGCN or a Linear layer.
The results are presented in Tab. 6.

Table 6: Ablation studies on the impact of motion embedding layer.

Linear STGCN ↓R-MPJPE ↓G-MPJPE ↓Int. ↓MPJPE ↓PA-MPJPE

✓ 102.3 110.0 84.9 81.9 66.8
✓ 81.7 93.2 62.5 60.8 47.8
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The Geometry Optimizer that uses STGCN to encode 3D joint positions exhibits higher accuracy than
the one using Linear. It successfully captures the 3D positional relationships of interacting humans
and outperforms Motion Infiller in all metrics related solely to 3D joint positions. This indicates that
it can effectively provide correct guidance information.

A.2.2 ADDITIONAL EXPERIMENTS RESUTLTS ON HI4D

Comparison on Various Actions. We further split the Hi4D dataset into subset based on action labels
to validate our effectiveness on various action categories. Tab. 7 presents our method’s improvements
over CloseInt across different subsets. Notably, our approach achieves the most significant gains
on actions such as handshake, high-five, and kiss. In these actions, human behavioral patterns are
relatively uniform, and occlusion levels are moderate. The model synthesizes plausible poses by
integrating textual descriptions generated by VLM Annotator, while simultaneously mitigating mesh
interpenetration issues and refining contact dynamics. However, the method shows smaller gains on
complex actions such as dancing and fighting. These activities involve intricate limb interactions and
ambiguous joint-depth relationships, which can slightly undermine VLM annotation consistency and
the precision of geometric guidance. Nonetheless, our method still outperforms the baseline.

Table 7: Comparison of CloseInt and our method, CloseInt/Ours (Improvement), across different
actions on Hi4D.

Action handshake highfive kiss dance fight

↓R-MPJPE 78.0/65.8(20.0) 60.5/53.5(19.2) 81.7/67.7(20.9) 96.4/87.6(9.4) 110.3/100.3(8.2)
↓G-MPJPE 93.2/72.5(23.8) 70.9/84.9(27.8) 98.9/79.7(19.6) 109.2/97.9(9.4) 131.4/120.1(6.5)

↓Int. 36.9/31.1(15.6) 26.7/25.1(5.9) 33.3/23.0(63.9) 39.9/32.4(18.8) 46.7/41.1(11.9)
↓Pen. 194.8/71.9(63.1) 107.4/50.1(53.3) 15409.3/5570.1(63.9) 5477.1/2455.0(55.2) 636.6/226.2(64.5)

A.2.3 CROSS DATASET EVALUATION

We also report both intra-domain and cross-domain results. SocialMirror outperforms prior methods
in all settings. In our experiments, we observed that when not trained on the dataset, CloseInt may
erroneously separate characters that should be in close contact. This results in the absence of even
minor intended penetrations (e.g., slight mesh intersection between a palm and another person),
leading to a relatively low penetration error—though this is not indicative of a good reconstruction
outcome. After training on the dataset, CloseInt’s errors in character placement are reduced, but it
correspondingly exhibits more interpenetration, which explains why the penetration loss increases
post-training. Our method, in both scenarios, produces more accurate relative positions of characters
(as reflected in RE and Int.) while ensuring less interpenetration, demonstrating the positive effect of
the proposed method in reducing interpenetration.

A.2.4 RESULTS ON HARMONY4D

For completeness, we also conducted training experiments on the Harmony4D dataset, which further
confirms the effectiveness of our approach. Specifically, our method achieves significant improve-
ments in interaction-related metrics: it yields increases of 8.2%, 3.5%, and 3.2% in RE, GE, and Int.,
respectively. Meanwhile, it maintains nearly unchanged performance on single-person reconstruction
metrics (i.e., MPJPE, PA., and VPE). This result demonstrates the robust capability of our method in
capturing human interaction relationships.

A.2.5 ADDITIONAL VISUALIZATION RESULTS

We present additional reconstruction results on in-the-wild data in Fig.5, include a detailed comparison
and demonstration of the results in our accompanying video.
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Table 8: Cross Dataset Evaluation on Hi4D and 3DPW.

Method Hi4D 3DPW

↓RE ↓GE ↓Int. ↓Pen. ↓MPJPE ↓PA. ↓VPE ↓RE ↓GE ↓Int. ↓Pen. ↓MPJPE ↓PA. ↓VPE

CloseInt 99.0 114.9 81.4 3947.6 63.1 47.5 76.4 135.7 159.1 95.5 342.7 79.9 52.9 95.1
Ours 83.6 95.2 68.5 2380.5 62.2 47.5 79.3 104.8 162.7 89.9 109.7 65.1 49.0 79.7

CloseInt(Eval. Only) 181.1 232.1 182.7 1973.8 109.1 62.5 132.0 194.4 340.2 128.4 101.6 88.6 63.6 110.7
Ours(Eval. Only) 165.2 184.1 153.0 2380.3 105.2 63.6 129.4 174.7 307.4 125.4 109.7 87.5 63.3 109.8

Table 9: Comparisons on Harmony4D.

↓RE ↓GE ↓Int. ↓Pen. ↓MPJPE ↓PA. ↓VPE

CloseInt 134.8 297.5 182.5 482.6 70.2 38.6 82.6
Ours 123.8 287.2 176.8 480.3 69.8 39.7 80.8

A.3 DISCUSSIONS

A.3.1 RECONSTRUCTION UNDER VLM LIMITATIONS

Based on our user study, the text descriptions generated by the VLM are, on average, superior to
those produced by human annotators. As shown in Fig.5, VLM annotations can capture not only
macroscopic actions but also fine-grained contact relationships between specific joints (e.g., “A person
leads the dance, extending his left arm to hold the other’s right hand and guiding her movements with
his right hand on her back”), whereas a human annotator might simply describe it as "two people
dancing ballroom dance. While VLM Annotator demonstrates satisfactory performance in describing
human interaction under most circumstances, its accuracy tends to decline when confronted with
complex limb interactions, affecting the precision of both textual descriptions and contact pair
annotations. By prioritizing visual feature extraction over textual inputs, our proposed method
maintains reconstruction fidelity even when text-image alignment is compromised. As illustrated
in Fig.6, despite VLM Annotator’s failure to correctly identify the human action, our approach
successfully reconstructs accurate motion patterns by leveraging visual information.

A.3.2 FAILURE CASES

It should be acknowledged that our methodology exhibits limitations in scenarios involving prolonged
and severe occlusions. Fig.7 exemplifies such a challenging case where both visual and semantic
information are critically compromised. The inaccurate textual annotations and contact pair predic-
tions generated by VLM Annotator in this context lead to erroneous guidance signals, resulting in
substantial reconstruction deviations. This observation underscores the necessity of complementary
mechanisms to handle extreme occlusion scenarios in future work.

A.3.3 THE EFFECT OF SEMANTIC INFORMATION ON LIMITED CONTACT SCENARIOS

Even when contact is absent, the VLM can produce high-level scene descriptions (e.g., two people
stand and face each other), which are encoded as semantic features. These provide contextual cues
about interaction and spatial layout beyond direct contact information. In addition, our approach does
not rely solely on contact labels. The semantic features guide the Motion Infiller to infer plausible
poses for ambiguous regions, and the Temporal Refiner and geometric constraints based on 3D joint
prediction from the Auxiliary Module ensure motion smoothness and spatial plausibility. Table 5
further shows interaction metrics gains even for non-close interactions with mild occlusion and few
contacts.

A.3.4 LIMITATIONS

For future work, a promising direction to improve the reliability and overall robustness of the semantic
guide of the method is to explore strategies to mitigate the inherent inability of the VLM, including,
but not limited to, introducing the confidence scores of the VLM Annotator and the weighting of the
guidance, and the development of effective mechanisms for verifying semantic and visual consistency.
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Text 1: A person leads the dance, extending his left 
arm to hold the other's right hand.
Text 2: A person follows the lead, extending her 
right arm to hold the other's left hand.

{left_wrist, right_wrist, 0, 5}

Text 1: A person extends his right hand to hold the 
other's left hand and moves his left arm upwards, 
guiding others in a dance.
Text 2: A person holds her left hand with the 
other's right hand and raises her right arm, 
following the lead in the dance.

{right_wrist, left_wrist, 0, 5}
{left_elbow, right_shoulder, 3, 5}

Text 1: A person leads the dance, extending his left 
arm to hold the other's right hand and guiding her 
movements with his right hand on her back.
Text 2: A person follows the lead, holding the 
other's left hand with her right hand and feeling his 
guidance on her back as she moves gracefully.

{left_wrist, right_wrist, 0, 4}

Text 1: A person extends their right hand to hold 
the other's left hand while dancing.
Text 2: A person extends their left hand to hold the 
other's right hand while dancing.

{right_wrist, left_wrist, 0, 16}

Text 1: A person walks towards others, passing by 
them without any physical contact.
Text 2: A person stands still as others walk past 
without touching.

Text 1: A person moves towards others, extending 
his right hand to touch the other's left shoulder.
Text 2: A person receives a touch on her left 
shoulder from the other's right hand while moving 
away.

{right_wrist, left_shoulder, 5, 8}

Text 1: A person walks towards others, extending 
their right hand forward.
Text 2: A person stands still as others approach 
and extend their left hand towards A person's right 
hand.

Text 1: A person moves his right hand towards 
others.
Text 2: A person extends her left hand towards the 
other's right hand.

Text 1: A person practices martial arts with others, 
keeping his hands ready for defense.
Text 2: A person practices martial arts with others, 
leaning slightly forward.

Text 1: A person strikes with his right hand, 
making contact with the other's left hand.
Text 2: A person blocks the strike with his left 
hand, keeping his right hand ready for defense.

{right_wrist, left_wrist, 1, 4}

Text 1: A person swings his left arm and makes 
contact with the other's right shoulder while 
keeping his right hand near his own waist.
Text 2: A person stands facing others, receiving a 
hit on her right shoulder from the other's left arm 
while maintaining her stance.

{left_elbow, right_shoulder, 5, 8}

Text 1: A person practices martial arts with others, 
keeping his left hand raised.
Text 2: A person practices martial arts with others, 
keeping his right arm up for defense.

Figure 5: Visualization results on in-the-wild data.

It should also be noted that the proposed method is currently limited to reconstructing interac-
tions between two individuals. For reconstructing interactions involving more participants, further
improvements to the network architecture are required.

A.4 THE USE OF LARGE LANGUAGE MODELS (LLMS)

It is hereby declared that in this paper, Vision-Language Models (VLMs) are primarily employed as a
VLM Annotator, whose primary function is to generate textual descriptions of human interactions
within image sequences and spatio-temporal joint contact pairs. Additionally, LLMs are utilized
solely for textual polishing and grammatical correction, the overall research approach, core insights,
reasoning processes, and final conclusions presented in this paper constitute the independent outcomes
of the authors’ original intellectual work and research endeavors. All instances involving the
generation of content through VLMs and LLMs are explicitly documented, with detailed accounts of
their application methods and scenarios.
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Text 1: A person holds the other's left hand with 
their right hand while moving their right arm 
outwards.
Text 2: A person holds the other's right hand with 
their left hand while moving their left arm outwards.

Text 1: A person holds the other's left hand with their 
right hand.
Text 2: A person holds the other's right hand with their 
left hand.

{RElbow, LWrist, 7, 11}

Text 1: A person holds the other's left wrist with their 
right hand.
Text 2: A person holds the other's left wrist with their 
right hand.

{RShoulder, LWrist, 5, 5}

Text 1: A person is being lifted off the ground by 
another person.
Text 2: A person is lifting another person off the 
ground.

{RSmallToe, LAnkle, 1, 2}
{RSmallToe, LHeel, 1, 3}

Prediction

GT

Figure 6: VLM Annotator failed to describe human interaction.

Text 1: A person extends their arms outwards while 
bending slightly forward.
Text 2: A person raises their arms above their head 
while leaning back slightly.

Text 1: A person is leaning forward with their arm 
extended.
Text 2: A person is leaning backward with their arm 
extended.

Text 1: A person leans forward with their arms 
extended, appearing to push against another person.
Text 2: A person leans backward, supporting 
themselves with one arm while the other arm is 
extended outward.

Text 1: A person is dancing with another person, 
extending their arm forward.
Text 2: A person is dancing with another person, 
leaning back slightly.

Prediction

GT

Figure 7: Challenging case which involves prolonged and severe occlusions.
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