Published as a conference paper at ICLR 2023

HUMANLY CERTIFYING SUPERHUMAN CLASSIFIERS

Qiongkai Xu * Christian Walder *
University of Melbourne Google Brain

Victoria, Australia Montreal, Canada
giongkai.xu@unimelb.edu.au cwalder@google.com

Chenchen Xu *

Amazon

Canberra, Australia
xuchench@amazon.com

ABSTRACT

This paper addresses a key question in current machine learning research: if we
believe that a model’s predictions might be better than those given by human ex-
perts, how can we (humans) verify these beliefs? In some cases, this “superhu-
man” performance is readily demonstrated; for example by defeating top-tier hu-
man players in traditional two player games. On the other hand, it can be challeng-
ing to evaluate classification models that potentially surpass human performance.
Indeed, human annotations are often treated as a ground truth, which implicitly as-
sumes the superiority of the human over any models trained on human annotations.
In reality, human annotators are subjective and can make mistakes. Evaluating the
performance with respect to a genuine oracle is more objective and reliable, even
when querying the oracle is more expensive or sometimes impossible. In this pa-
per, we first raise the challenge of evaluating the performance of both humans and
models with respect to an oracle which is unobserved. We develop a theory for
estimating the accuracy compared to the oracle, using only imperfect human anno-
tations for reference. Our analysis provides an executable recipe for detecting and
certifying superhuman performance in this setting, which we believe will assist in
understanding the stage of current research on classification. We validate the con-
vergence of the bounds and the assumptions of our theory on carefully designed
toy experiments with known oracles. Moreover, we demonstrate the utility of our
theory by meta-analyzing large-scale natural language processing tasks, for which
an oracle does not exist, and show that under our mild assumptions a number of
models from recent years have already achieved superhuman performance with
high probability—suggesting that our new oracle based performance evaluation
metrics are overdue as an alternative to the widely used accuracy metrics that are
naively based on imperfect human annotations.

1 INTRODUCTION

Artificial Intelligence (AI) agents have begun to outperform humans on remarkably challenging
tasks; AlphaGo defeated top ranked Go players (Silver et al., 2016; |Singh et al., [2017)), and Ope-
nAI’s Dota2 Al has defeated human world champions of the game (Berner et al., 2019). These Al
tasks may be evaluated objectively, e.g., using the total score achieved in a game and the victory
against another player. However, for supervised learning tasks such as image classification and sen-
timent analysis, certifying a machine learning model as superhuman is subjectively tied to human
judgments rather than comparing with an oracle. We focus on paving a way towards evaluating
models with potentially superhuman performance in classification.

When evaluating the performance of a classification model, we generally rely on the accuracy of the
predicted labels with regard to ground truth labels, which we call the oracle accuracy. However, or-

*Work was done while the authors were with the Australian National University and Data61 CSIRO.
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acle labels may arguably be unobservable. For tasks such as object detection and saliency detection,
the predictions are subjective to many factors of the annotators, e.g., their background and physical
or mental state. For other tasks, even experts may not be able to summarize an explicit rule for
the prediction, such as predicting molecule toxicity and stability. Without observing oracle labels
researchers often resort to two heuristics, i) human predictions or aggregated human annotations are
effectively treated as ground truth (Wang et al.L|2018;|Lin et al.,2014; Wang et al.,[2019) to approxi-
mate the oracle, and ii) the inter-annotator aggreement is taken as the best possible machine learning
model performance (for an extensive survey of works that make this claim without proof, see the
works cited within (Boguslav & Cohenl 2017; Richie et al., |2022))). This heuristic approach suffers
some key disadvantages. Firstly, the quality control of human annotation is challenging (Artstein,
2017; Lampert et al.l 2016). Secondly, current evaluation paradigms focus on evaluating the per-
formance of models, but not the oracle accuracy of humans — yet we cannot claim that a machine
learning model is superhuman without properly estimating the human performance as compared to
the oracle. Thirdly, as machine learning models exceed human performance on important tasks, it
becomes insufficient to merely report the agreement of the model to human annotations.

In this paper, we work on the setting

that oracle labels are unobserved (see Fig- Oracle (*)
ure [TI). Within this setting is provided a

theory for estimating the oracle accuracy (a) Unobserved
on classification tasks which formalises
what empirical works have hinted towards
(Richie et al.| [2022), that machine learn-
ing classification models may outperform
the humans who provide them with train-  (b) Observed
ing supervision. Our aim is not to opti- Annotator » Annotator
mally combine machine learning systems, (1) P, =¢ j) (7)

but rather to estimate the oracle accu-

racy of a single machine learning system Figure 1: The relationship between a) the oracle accu-
by comparing it with the results obtained racy of the annotators, P(¢; = /¢, ), and b) the agree-
from multiple human annotators. Our the- ment between two annotators, P(¢; = ¢;). ¢; and ¢,
ory includes i) upper bounds for the av- are labels given by annotator ¢ and j, ¢, is the oracle
eraged oracle accuracy of the annotators, label. In our setting, part a) is unobserved (gray) and
ii) lower bounds for the oracle accuracy of part b) is observed (black).

the model, and iii) finite sample analysis

for both bounds and their margin which

represents the model’s outperformance. Based on our theory, we propose an algorithm to detect
competitive models and to report confidence scores, which formally bound the probability that a
given model outperforms the average human annotator. Empirically, we observe that some exist-
ing models for sentiment classification and natural language inference (NLI) have already achieved
superhuman performance with high probability.

2 EVALUATION THEORY

We now present our theory for human annotators and machine learning models with oracle labels.

2.1 PROBLEM STATEMENT

We are given K labels crowd sourced from K human annotators, {&}fil and some labels from a
model /4. The probability of two annotators a; and a; possess matched annotations with the other
isP(¢; = ¢;). Denote by { the label of the “average” human annotator which we define as the label
obtained by selecting one of the K human annotators uniformly at random. We seek to formally
compare the oracle accuracy of the average human, P(¢x = £,), with that of the machine learning
model, P({xq = ¢,), where ¢, is the unobserved oracle label. Denote by ¢¢ the label obtained by
aggregating (say, by voting) the K human annotators’ labels. We distinguish between the oracle
accuracy P(¢q = £,) and the agreement with human annotations P({ = £g), although these two
concepts have been confounded in many previous applications and benchmarks.
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2.2 AN UPPER BOUND FOR THE AVERAGE ANNOTATOR PERFORMANCE

The oracle accuracy of the average annotator {x- follows the definition of the previous section, and
conveniently equals the average of the oracle accuracy of each annotator, i.e.

1 K
P(le = 6,) = 7 S P =0,). (1)
i=1

By introducing an assumption as equation [2, we may bound the above quantity. Intuitively, anno-
tators are likely to be positively correlated because i) they tend to have the same correct or wrong
annotations on the same easy or difficult tasks respectively, ii) they may share similar backgrounds
that affect their decisions, and etc. Note that this assumption is also discussed in Section (see
RQ2) where we provide supporting evidence for it on a real-world problem with known oracle la-
bels.

Theorem 1 (Average Performance Upper Bound) Assume annotators are positively correlated,
P, = 4,]8; = 0,) > P(¢; = L,). )
Then, the upper bound of averaged annotator accuracy with respect to the oracle is

1 K K
Plle =) SUZ | 55D ) Pli=1;). 3)

i=1 j=1

We observe that average inter-annotator agreement will be over-estimated by including the self com-
parison terms P(I; = [;), which is always equal to one when i = j, but that the total overestimation
to U? is less or equal to 1/K (K out of K? terms), and that the influence will reduce and converge
to zero as limit K — oco. To provide a more practical estimation, we introduce an empirically ap-
proximated upper bound 2/(¢). In contrast, I/ in equation [3|is also noted as theoretical upper bound,
uw.

Definition 1 The empirically approximated upper bound,

K K

1
R Y P(l; = ;). )
R =1 2 2P =6
i#])
Lemma 2 (Convergence of U(®)) Assume that Z]K:u;sj P; = {;) > KT_Cl where N, is the
constant number of classes. The approximated upper bound U'®) satisfies
lim U/UE =1. (5)

K—+oo

Therefore, with large K, U'®) converges to U or U®).
Empirical support for the convergence of () to 24(*) are demonstrated in Figure [3|of Section

2.3 A LOWER BOUND FOR MODEL PERFORMANCE

For our next result, we introduce another assumption as equation 6} Given two predicted labels ¢,
and /5, we assume that ¢, is reasonably predictive even on those instances that a gets wrong, as per
the assumption formally stated within the following theorem. Note that this assumption is rather
mild in that even random guessing satisfies it, as in this case the probability of choosing the correct
label is equal to any other single wrong label. Once again, this key assumption is discussed and
validated on human data with known oracle labels in Section [3.2](see RQ2).

Theorem 3 (Performance Lower Bound) Assume that for any single incorrect label £ # {4,

P(ly = bi|ly # 4y) > Pl = Ly |ly # Ly). (6)
Then, the lower bound for the oracle accuracy of ly is
LA P(ly, =4p) <P, = Z*). (7

In practice, a more accurate ¢, gives a tighter lower bound for ¢, and so we employ the aggregated
human annotations for the former (letting ¢, = ¢g) to calculate the lower bound of the machine
learning model (letting ¢, = £,4), as demonstrated in Section [3.2]
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Connection to traditional practice of accuracy calculation. Generally, the ground truth of a
benchmark corpus is constructed by aggregating multiple human annotations (Wang et al., 2018;
2019). For example, the averaged sentiment score is used in SST (Socher et al.,|2013) and majority
of votes in SNLI (Bowman et al., |2015). Then, the aggregated annotations are treated as ground
truth to calculate accuracy. Under this setting, the ‘traditional’ accuracy score evaluated on the
(aggregated) human ground truth can be viewed as a special case of our lower bound.

2.4 FINITE SAMPLE ANALYSIS

The results above assume that the agreement probabilities are known; we now connect them with
the finite sample case: £("™) denotes the label assigned to the n-th data point in accordance to ¢, for
n=1,2,...,N. P(N) is the empirical probability given N observations, and P is lim y_, . P2V,
We begin with a standard concentration inequality (see e.g. (Boucheron et al., 2013| § 2.6)),

Theorem 4 (Hoeffding’s Inequality) Let X1, ..., Xy be independent random variables with finite
variance such that P(X,, € (o, 0]) = 1, forall1 <n < N. Let

1
X:NZ:IX,“

then, for any t > 0,

P(X — E[X] > +t) < exp (—W> :

(a—p)?
P(X — E[X] < —t) < exp (—%) : (8)

Combining this with Thereom [I] we obtain the following.

Theorem 5 (Sample Average Performance Upper Bound) With Theorem[l|'s assumptions and

N
PVt = ) = S [ = )] 9)
n=1

defining the empirical agreement ratio,P_-] and letting
5. = exp(—2Nt2). (10)
With probability at least 1 — 0., for any t,, > 0,

Pl =£0,) < |t + — PON)(£4; = (). (11)

==
-
M=

Theorem 6 (Sample Performance Lower Bound) With Theorem[3]'s assumptions and equation[9}
define

61 = exp(—2Nt?). (12)
With probability at least 1 — 8, for any t; > 0,
PN (0, = £y) < t; +P(ly = 1,). (13)

2.5 DETECTING AND CERTIFYING SUPERHUMAN MODELS

We propose a procedure to discover potentially superhuman models based on our theorems.

1. Calculate the upper bound of the average oracle accuracy of human annotators, {/x, with
N data samples;

"Here [] is the Tverson bracket.



Published as a conference paper at ICLR 2023

2. Calculate the lower bound of the model oracle accuracy £y using aggregated human an-
notations as the referenceﬂ with N data samples;

3. Check whether the finite sample margin between the bounds £y — Uy is larger than zero;E]
4. Give proper estimation of ¢,, and ¢; and calculate a confidence score of P(L — U > 0).
Generally, larger margin indicates higher confidence of out-performance. To formally check con-

fidence for the aforementioned margin we provide the following theorem and corresponding algo-
rithms.

Theorem 7 (Confidence of Out-Performance) Assume an annotator pool with agreement statistic
UnN of equation and an agreement statistic between model and aggregated annotations Ly of
equation[39, If Ly > Uy then for all T > 0, t,, > 0 and t; > 0 that satisfy

EN—tl—\/tu—i—U?V:T, (14)

with probability at least 1 — 0,, — 6, the oracle accuracy of the model exceeds that of the average
annotator by T,

P(P(lapg = i) =Pl =€) > 7) 21— 6 — 6, (15)
where

6u = exp (—2Nt2) 6, = exp (—2Nt7) . (16)

Confidence Score Estimation. The above theorem suggests the confidence score
S=1—-10 — 04, 17

and we need only choose the free constants ¢;,t,, and 7. Recall equation

T:(KN—tl)—\/tu+u]2\[7 (18)

and remove one degree of freedom parameterise in ¢,, as

t(ty, T) =Ly — T — m (19)

We are interested in P(£ — U > 0) so we choose 7 = 0, and give two choices for ¢,, and ¢;.
Algorithm 1 (Heuristic Margin Separation, HMS). We assign half of the margin to ¢,,,

. ,CN*UN

ty 5

(20)

Then, with 7 = 0 we calculate the corresponding

Ly —U
tl:EN—\/¥+UI2V, @21)

and compute the heuristic confidence score S

Algorithm 2 (Optimal Margin Separation, OMS).
For a locally (in t,,) optimal score, we perform gradient ascent (Lemaréchal, 2012) on S(t,,), where

S(tU) =1- §(tu) - 6(tl(tu7 0))7 (22)

with t,, is initialized as (Ly — Un)/2 before optimizatiorﬂ

2We demonstrate that aggregating the predictions by voting and weighted averaging are effective in im-
proving our bounds. We emphasize however that the aggregated predictions need not be perfect, as we do not
assume that this aggregation yields an oracle.

3A larger deviation, say a high positive value, is of more interest to our certification as it gives a higher
confidence score to the outperformance.

*We set the learning rate to le-4, and iterated 100 times.
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3 EXPERIMENTS AND DISCUSSION

Previously, we introduced a new theory for analyzing the oracle accuracy of set of classifiers using
observed agreements between them. In this section, we demonstrate our theory on several classifi-
cation tasks, to demonstrate the utility of the theory and reliability of the associated assumptions.
Our code is available at https://github.com/xugiongkai/Superhuman-Eval.git!.

3.1 EXPERIMENTAL SETUP

We first consider two classification tasks with oracle labels generated by rules. Given the oracle
predictions, we are able to empirically validate the assumptions for our theorems and observe the
convergence of the bounds. Then, we apply our theory on two real-world classification tasks and
demonstrate that some existing state-of-the-art models have potentially achieved better performance
than the (averaged) performance of the human annotators in reference to the (unobserved) oracle.

Classification tasks with oracle rules. To validate the correctness of our theory, we collect
datasets with observable oracle labels. We construct two visual cognitive tasks, Color Classification
and Shape Classification, with explicit unambiguous rules to acquire oracle labels, as follows:
* Color Classification: select the most frequently occurring color of the objects in an image.
* Shape Classification: select the most frequently occurring shape of the objects in an image.

For both tasks, object size is ignored. As illustrated in Figure 2] we vary colors (Red, Blue and
Yellow) and shapes (Triangle, Square, Pentagon, Hexagon and Circle) for the two tasks, respectively.

e | O

A
o ¢° 5, L e
o
s°e°

NS

(a) Color (b) Shape

Figure 2: Example a) Color Classification and ) Shape Classification. a) includes 40 objects of
three colors, Red (14), Blue (15) and Yellow (11), with Blue as the most frequent color and therefore
the oracle label. b) includes 37 objects of five different shapes, Triangle (9), Square (10), Pentagon
(7), Hexagon (6) and Circle (5), with Square the dominant shape and oracle label.

For each task, we generated 100 images and recruited 10 annotators from the Amazon Mechanical
Turlﬂ to label them. Each randomly generated example includes 20 to 40 objects. We enforce that no
objects overlap more than 70% with all others, and that there is only one class with the highest count,
to ensure uniqueness of the oracle label. The oracle number of the colors and shapes are recorded to
generate oracle labels of the examples. Note that our 242 is the average agreement among annotators,
and so is proportional to Cohen’s Kappa coefficient which we report in Appendix [D] along with
additional details about the guidelines and interface presented to the annotators.

Real-World Classification Tasks. We analyze the performance of human annotators and machine
learning models on two real-world NLP tasks, namely sentiment classification and natural language
inference (NLI). We use the Stanford Sentiment Treebank (SST) (Socher et al.,|2013)) for sentiment
classification. The sentiment labels are mapped into two classes (SST—Zﬂ or five classes (SST-5),

Shttps://www.mturk.com
6Samples with overall neutral scores are excluded as in (Tai et al., 2015)).
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Figure 3: Comparison of sample lower bound £ for model oracle accuracy P(¢ 4 = ¢,). Rela-
tively strong and weak models are indicated by M(*) and M(*), The aggregation of one annotator
is based on the labels provided by the single annotator. Another comparison of sample theoretical

upper bound U/ ](\f) and sample empirical upper bound Z/IJ(\f) of average oracle accuracy of annotators
Pl = 4y).

very negative(|0,0.2]), negative ((0.2,0.4]), neutral((0.4, 0.6)), positive ((0.6,0.8)), and very posi-
tive ((0.8,1.0]). We use the Stanford Natural Language Inference (SNLI) corpus (Bowman et al.,
2015) for NLI. All samples are classified by five annotators into three categories, i.e. Contradic-
tion (C), Entailment (E), and Neutral (N). More details of the datasets are reported in Appendix [C]
In the latter part of this section, we focus on the estimated upper bounds on test sets, as we intend to
compare them with the performance of machine learning models generally evaluated on test sets.

Machine Learning Models. For both of the classification tasks with known oracles, we treat them
as detection tasks and train YOLOvV3 models (Redmon & Farhadi, |2018) for them. The input image
resolution is 608 x 608, and we use the proposed Darknet-53 as the backbone feature extractor. For
comparison, we train two models, a strong model and a weak model, on 512 and 128 randomly
generated examples, respectively. All models are trained for a maximum of 200 epochs until con-
vergence. During inference, the model detects the objects and we count each type of object to obtain
the prediction. We compare several representative models and their variants for real-world classifi-
cation tasks, such as Recurrent Neural Networks (Chen et al., 2018} (Zhou et al.l [2015), Tree-based
Neural Networks (Mou et al., [2016; [Ta1 et al., [2015), and Pre-trained Transformers (Devlin et al.,
2019; |Radford et al.,2018;|Wang et al.l 2020; [Sun et al., 2020).

3.2 RESULTS AND DISCUSSION

We now conduct several experiments to validate the convergence of the bounds and the validity of
the assumptions. We then demonstrate the utility of our theory by detecting real-world superhuman
models. We organize the discussion into several research questions (RQ).

RQ1: Will the bounds converge given more annotators? We first analyze the lower bounds.
We demonstrate lower bounds for strong (s) and weak (w) models in Figure [3]in black and blue
lines respectively. Generally, i) lower bounds £ are always under the corresponding oracle accu-
racy; i) the lower bounds grow and tend to get closer to the bounded scores given more aggregated

annotators. Then, we analyze the upper bounds. We illustrate theoretical upper bound U ](\f) and

empirically approximated upper bound &/ (e), in comparison with average oracle accuracy of anno-
tators P(¢xc = {,), in Figure [3] We observe that i) both upper bounds give higher estimation than

the average oracle accuracy of annotators; ii) the margin between U J(\? and U J(\f ) reduce, given more

annotators incorporated; iii) u}(\.;) generally provides a tighter bound than ¢/ (t), and we will use U ](5 )
as Uy to calculate confidence score in later discussion.

RQ2: Are the assumptions of our theorems valid? We verify the key assumptions for the up-
per bound of Theorem [I] and the lower bound of Theorem [3| by computing the relevant quanti-
ties in Table [I, The assumptions within these theorems are not concerned with agreement (or
otherwise) on particular training examples (which could be unrealistic), but rather are statements
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Table 2: The sample theoretical upper bounds and sample empirically approximated upper bounds,

Z/l](\f) and U (e), of the average oracle accuracy of the human annotators, and the sample lower bounds
L of some representative models on the SST and SNLI tasks. Those models with £ higher than

Z/{J(\f) or even U J(\I,") are highlighted with t or {.

SST 5-CLASS SST 2-CLASS SNLI 3-CLASS
B Classifier Score Classifier Score Classifier Score
ul? Avg. Human 0.790 * Avg. Human 0.960 * Avg. Human 0.904 *
1/11(\,6) Avg. Human 0.660 T Avg. Human 0.939 f Avg. Human 0.879
CNN-LSTM CNN-LSTM BiLSTM
(Zhou et al.| 2015) 0.492 (Zhou et al.} 2015) 0.878 (Chen et al.} 2018) 0.855
Constituency Tree-LSTM Constituency Tree-LSTM Tree-CNN
Ly (Tai et al., 2015) 0.510 (Tai et al.,|2015) 0.880 (Mou et al.} 2016) 0.821
BERT-large BERT-large LM-Pretrained Transformer
(Devlin et al.| 2019) 0.555 (Devlin et al.|[2019) 0.9497 (Radford et al} [2018) 0.8997
RoBERTa+Self-Explaining StructBERT SemBERT
(Sun et al.}2020) 0.591 (Wang et al.} 2020) 0.971% (Zhang et al.||2020) 0.919%

made in aggregate over all input data points. In words, Theorem [I| assumes that the proba-
bility that an annotator predicts the oracle label must increase when we assume that that any
other annotator predicts the oracle label on average, over all classifier inputs and class labels.

Theorem [3|assumes that on average, over Table 1: Validating our assumptions for both upper

all classifier inputs and class labels, if the
majority vote by the human is incorrect
w.r.t. the oracle, then the machine learn-
ing model is still more likely to predict the
oracle label than any other specific label
that disagrees with the oracle. The two as-
sumptions clearly hold in our specially de-
signed experiments with real human sub-
jects, although we can only perform this
analysis on the tasks with known oracle
labels. However, the methodology behind
Table(l|is by design rather conservative, as
we sum over all incorrect labels (see col-
umn 2 of Table [I]b). Despite this stricter
setup, our assumption still holds on both
experiments.

bound Theorem [I] and lower bound Theorem [3] on
Color and Shape.

Task P(KZ = f*lgj = é*) ]P)([, = f*)
Color 0.850 0.836
Shape 0.586 0.542

(a) Theoremassumes Pl =)l =4) > Pl; =Ly), i # j

Task b P(ly = blla # 00) g 20, P(ly = bxla # €)
Color M) 1.000 0.000
Color M) 1.000 0.000
Shape M (®) 0.579 0.421
Shape M () 0.895 0.105

(b) Theorem assumes P(ly = L|la # L) > P(lp = Lx|la # Ly)

Disclaimer: while the assumptions appear reasonable, we recommend where possible to obtain
some oracle labels to validate the assumptions when applying our theory.

RQ3: How to identify a ‘powerful’, or even superhuman, classification model? We first com-
pare the £ with Uy in our toy experiments, in Figure 3] Overall, showing superhuman perfor-
mance is more likely given more annotators. Eg\s,) outperforms both UJ(\f) and U (t>, given more than
4 and 6 annotators for color classification and shape classification, respectively. When the model is
marginally outperforming the humans, see weak model for color classification, we may not observe

a clear superhuman performance margin, £§f,”) and Z/{](Ve) are very close given more than 7 annotators.
For real-world classification tasks, we

i) calculate the average annotator upper
bounds given multiple annotators’ labels

Table 3: Confidence score S for the certificated models
that outperform human annotators in SST-2 and SNLI.

" Model Task  S(HMS) S(OMS)
and ii) collect model lower bounds re- - -
ported in previous literature. Results on ~ |[Devlinetal.[(2019) — SST-2 <0 <0
SST and SNLI are reported in Table pre- Wang et al.|{(2020) SST-2 0.4730 0.6208
trained language models provide signifi-  |[Radford et al.|(2018) SNLI ~ 0.8482  0.9267
cant performance improvement on those Zhang et al.[(2020) SNLI  0.9997  0.9999

tasks. Our theory identifies some of these
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models that exceed average human performance with high probability, by comparing i/ ](\f ) or the

. e t
even more restrictive Z/IJ(V).

RQ4: How confident are the certifications? We calculate our confidence score for the identified
outperforming models viaUps, L, N, and using HMS and OMS, as reported in Table@ Generally,
the confidence scores for SNLI models are higher than those of SST-2 because the former has test
set is more than five times larger, while more recent and advanced models achieve higher confidence
scores as they have larger margin of Ly — Uy

4 RELATED WORK

Classification accuracy is a widely used measure of model performance (Han et al., [2011])), although
there are other options such as precision, recall, F1-score (Chowdhuryl, [2010; |Sasaki et al., |2007),
Matthews correlation coefficient (Matthews| |1975}; |Chicco & Jurman| [2020), efc.. Accuracy mea-
sures the disagreement between the model outputs and some reference labels. A common practice is
to collect human labels to treat as the reference. However, we argue that the ideal reference is rather
the (unobserved) oracle, as human predictions are imperfect. We focus on measuring the oracle
accuracy for both human annotators and machine learning models, and for comparing the two.

A widely accepted approach is to crowd source (Kittur et al., [2008; Mason & Suri, [2012) a dataset
for testing purposes. The researchers collect a large corpus with each examples labeled by multiple
annotators. Then, the aggregated annotations are treated as ground truth labels (Socher et al., | 2013;
Bowman et al) [2015). This largely reduces the variance of the prediction (Nowak & Riiger, 2010;
Kruger et al., |2014), however, such aggregated results are still not oracle, and their difference to
oracle remains unclear. In our paper, we prove that the accuracy on aggregated human prediction,
as ground truth, could be considered as a special case of the lower bound of oracle accuracy for
machine learning models. On the other hand, much work considers the reliability of collected data,
by providing the agreement scores between annotators (Landis & Kochl [1977). Statistical measures
for the reliability of the inter-annotator agreement (Gwet, [2010), such as Cohen’s Kappa (Pontius Jr
& Millones, [2011)) and Fleiss’ Kappa (Fleiss, |1971)), are normally based on the raw agreement ratio.
However, the agreement between annotators does not obviously reflect the oracle accuracy; e.g.
identical predictions from two annotators does not mean they are both oracles. In our paper, we
prove that observed agreement between all annotators could serve as an upper bound for the average
oracle accuracy of those annotators. Overall, we propose a theory for comparing the oracle accuracy
of human annotators and machine learning models, by connecting the aforementioned bounds.

The discovery that models can predict better than humans dates back at least to the seminal work
(Meehl, |1954)), which compared ad hoc predictions based on subjective information, to those based
on simple linear models with a (typically small) number of relevant numeric attributes. Subsequent
work found that one may even train such a model to mimic the predictions made by the experts
(rather than an oracle), and yet still maintain superior out of sample performance (Goldberg, |1970).
The comparison of human and algorithmic decision making remains an active topic of psychology
research (Kahneman et al., [2021)). Despite this, much work continues to assume without formal
proof that the inter-annotator agreement gives an upper bound on the achievable machine learning
model performance (Boguslav & Cohen, 2017; Richie et al.,[2022); the mounting empirical evidence
against which is now placed on a solid theoretical footing by the present work.

5 CONCLUSIONS

In this paper, we built a theory towards estimating the oracle accuracy of classifiers. Our theory
covers i) the upper bounds for the average performance of human annotators, ii) lower bounds for
machine learning models, and iii) confidence scores which formally capture the degree of certainty
to which we may assert that a model outperforms human annotators. Our theory provides formal
guarantees even within the highly practically relevant realistic setting of a finite data sample and
no access to an oracle to serve as the ground truth. Our experiments on synthetic classification
tasks validate the plausibility of the assumptions on which our theorems are built. Finally, our meta
analysis of existing progress succeeded in identifying some existing state-of-the-art models have
already achieved superhuman performance compared to the average human annotator.
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BROADER IMPACT

Our approach can identify classification models that outperform typical humans in terms of clas-
sification accuracy. Such conclusions influence the understanding of the current stage of research
on classification, and therefore potentially impact the strategies and policies of human-computer
collaboration and interaction. The questions we may help to answer include the following: When
should we prefer a model’s diagnosis over that of a medical professional? In courts of law, should
we leave sentencing to an algorithm rather than a Judge? These questions and many more like
them are too important to ignore. Given recent progress in machine learning we believe the work is
overdue.

LIMITATIONS

Yet we caution that estimating a model’s oracle accuracy in this way is not free. Our approach
requires the results from multiple annotators and preferably also the number of annotators should
be higher than the number of possible classes in the target classification task. Another potential
challenge in applying our analysis is that some of our assumptions may not hold under some specific
tasks or settings, e.g., collusion attack by a group of annotators. We recommend those who apply our
theory where possible to collect a small amount of ‘oracle’ annotations, to validate the assumptions
in this paper. Our work focus on multi-class classification, which only admits a single answer for
each task. A multi-label classification task can be transformed to multiple binary classification tasks
before using our theorem.
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A PROOF FOR THEOREMS AND LEMMAS

Proof of Theorem[I| (Average Performance Upper Bound)
Proof Fori# jandi,j € {1, ---,K}, we have

P, = ¢;) =P(4; = £;]¢; = £)P(; = £,)+
PG = 416 # LOP( £ L)
>P(l; = L8 = LO)P(l; = £y)
=P(l; = L |l; = L)P(L; = 1y)
>P(l; = )P = 1,). (23)
While for i = j, we have P({; = (;) = 1. Therefore,
P(l; = £;) > P(l; = L)P(L; = Ly). 24
Then, combining equation[23|and equation 24
| K K
— 2 - o
Pl = 6.)* =15 ;P(z, = z*);wj =1,) (25)

K K
< Z::; (26)

1 K K
P(lx = £,) < \lzzZP(zi_@). (27)

Proof of Theorem 3 (Performance Lower Bound)

Proof
P(l, = Ly) =P(ly = Lo|ly # L)P(Ly # L) +P(Ly = Lo|ly = L)P(Ly = £y)
<SP(ly = Ci by # L)P(Ly # L) +P(ly = Lo|ly = L)P(Ly = £y)
=P(ly = li|la # C)P(Ly # Li) + P(Ly = £y |l = L)P(Ly = £y)
=P(lp = £y). (28)

Proof of Lemma [2 (Convergence of Empirically Approximated Upper Bound)

Proof By comparing the upper bound and empirical upper bound, we have

U K138 Pl =4)
U LG i Z%} P(¢; = ¢5)
i#]

K
= 1 1 + =1 (EZ el)

K SR SR = 0)

i#j

K-1 K
S L P . 29)
> i1 Zq:l_ Pl = ¢;)
i#£]

For the first factor in equation[29

iy o

For the second factor in equation 29 as both annotators address the same task, the annotator
agreement should be better than guessing uniformly at random, i.e. P(¢; = {;) > 1/N,, where N, is
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the number of categories in the classification task. Then, using a looser constraint Zszl it P; =
l;) > KT;l we have
K N,
0< ——% < —X.
Dimt Ej;l P(¢; = ¢5) K-1
i#]

Aslimpg 100 KN_Cl =0,

K

lim 1+ — 174 =1. 3D
K—+oo >t D=1 Pl = ;)
i#£]
Combining equation[30|and equation[31] we have
. u
A e = 32

Therefore, the empirically approximated upper bound converges to the theoretical upper bound when
K grows larger.

Proof of Theorem [5|(Sample Average Performance Upper Bound)
Proof We apply Theorem | with

X, = - i i RE (33)
TR i=1 j=1 ' Pl

obtaining X,, € [0,1], i.e. « =0, and = 1. Let

s | LSS pon
Uy 2 EZZP (b = 4;). (34)

i=1 j=1

Our choice equationoan implies U3, = X and U? = E[X], and so by equation @

P <,/tu +U3 < u) < 8y (35)

P(lx = £,) <U, (36)

P(,/tﬁuﬁv g[P’(E,Cé*)) gP(,/tﬁu}’v gu). 37

Combining equation 33| with equation[37) gives the result.

Rewrite equation 3] as

which implies

Proof of Theorem [§] (Sample Performance Lower Bound)
Proof We apply Theorem[d| with

X, = [ = g7], (38)
obtaining X,, € [0,1], i.e. « =0, and § = 1. Let
Ly 2PN (0, = 0). (39)
Now equation@implies Ly =Xand L =P, =) =E[X],
P(Ly—t > L) <4 (40)
Recall equation[]} P(€, = 0,) < P({, = {,), which implies
Py -t 2Pl =4)) <P(Ln—-t>L). (41)

Combining equation[d0|with equation[#1) gives the result.
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Proof of Theorem [7|(Confidence of Out-Performance)
Proof Recall Theorem[3and Theorem|6)

P (,/tu +U% <Pl = &)) < 4y

P(Ly —t; > P(la = 1,)) < 6.

IN

Then, we have

P(P(lpm =4e) —Pllc =4,) > 7)

=P <]P’(€M =l,)—Plx="0)> LN -1t — \/tu—H/{]QV)
>P <]P)(£M :E*) > Ly — 1 QP(&C :f*) < an +UJ2V)
>1 PPy =L)< Ly—1))—P (P(é;c =1,) > \/tu+u}‘v)

>1— 8 — by (42)

B AN EXAMPLE FOR THE ASSUMPTIONS

Here, we provide a running example to show that both assumptions for Theorem [1| and |3| could
reasonably hold with no conflict. A common example is demonstrated in Table E]E] In this case, all
annotators did a decent job (generally more correct than incorrect in all conditions). For the more
challenging condition (other annotators fail), the ratio of correct performance is slightly less, see the
rows in Table dal

7, = 7, 0.8 0.2 P(l,=1,) [ 03
by =10y 0.6 0.4

(a) ]P;(‘gb — é?wa — 47) (b) ]P)(éa = é”)

Table 4: An example for the assumptions.

For assumption 1, all possible inequations hold:
* 0.74 =056+ 0.18 =P(¢y, = £,) <P, = l,|l, = £,) = 0.80
©026=0144+012=Plp =lx) <P, =lx|l, = ¥x) =0.30
* 0.70 =056 +0.14 =P({, = £,) <Py, = Li|lp, = £.) = 0.56/0.74 = 0.757
* 0.30=0.1840.12=P(4, = £x) < P(ly = x|ty = {x) =0.12/0.26 = 0.462

For assumption 2, all possible inequations hold:

© 0.6 =P(ly = Llilly = lx) > P(ly = £x|ly = lx) =04
* 0.538 =0.14/0.26 = P(£, = L]l = Uy ) > P(ly = £x |lp = £x) = 0.462

Note that, if b should be a decent ML model or a rational annotator who works better than random
guessing, i.e., 0.5 =P(¢, =l |l, = L) =P(lp =« |ly = £x) = 0.5.

"Binary classification is discussed for simplicity.
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C DETAILS FOR NLP DATASETS

Table 5: Statistics of SST and SNLI: the number of test samples, number of classes, and the number
of annotators for each sample. Note that annotators are sampled from a large and diverse pool.

Dataset #Test  #Class #Annot.
SST-2 (Socher et al., 2013) 1,821 2 3
SST-5 (Socher et al., 2013) 2,210 5 3
SNLI (Bowman et al., 2015) 10,000 3 5

D DETAILS FOR HUMAN ANNOTATION

We crowd source the annotations via the Amazon Mechanical Turk. The annotation interfaces with
instructions for color classification and shape classification are illustrated in Figure ] Each example
is annotated by K = 10 different annotators. For quality control, we i) offer our tasks only to
experienced annotators with 100 or more approved HITs; ii) automatically reject answers from
annotators who have selected an invalid option ‘None of the above’.

We demonstrate the inter-annotator agreement (Cohen’s Kappa, Fleiss’ Kappa and Krippendorff’s
Alpha) of collected annotations on Color and Shape, in Table[6] Note that Cohen’s Kappa compares
only two annotators. We calculate the mean of Cohen’s Kappa scores between all K (K — 1)/2
different pairs of annotators. The results show that our collected human annotation datasets cover
the cases for both strongly (Color) and weakly (Shape) correlated human annotations.

Table 6: Inter-annotator agreements on classification tasks, Color and Shape.

Task Cohen’s Kappa (mean) Fleiss’ Kappa Krippendorff’s alpha
Color 0.6040 0.6036 0.5819
Shape 0.2386 0.2372 0.2330
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Shortcuts | Choose the most frequent color of the circles.

Instructions »

Choose the most frequent color of the .
circles.

Please count the circles and ignore their
size. For example, if there are three blue

circles and two red circles, select blue. . S .

Circles which overlap (and are partially
visible) should count the same.

More Instructions

Select an option
Red 1

Blue 2
Yellow 3
None of the 4
Above

(a) Color Classification

Choose the most frequent shape of the objects.

Instructions » ]

Choose the most frequent shape of the D <:>
objects.

Please count the shapes and ignore their QD

size. For example, if there are three circles i

and two triangles, select 'circle’.

Objects which overlap {and are partially O
visible) should count the same. O

More Instructions A

@ @ 4+ 4@

Select an option

Triangle (3 1
sides)

Square (4 sides) 2

Pentagon (5 3
sides)

Hexagon (6 3
sides)

Circle (round) 5

None of the &
Above

(b) Shape Classification

Figure 4: Human annotation interface for the Color Classification and Shape Classification tasks.
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