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Abstract

Exploring the capabilities of Large Language001
Models (LLMs) in puzzle solving unveils criti-002
cal insights into their potential and challenges003
in AI, marking a significant step towards un-004
derstanding their applicability in complex rea-005
soning tasks. This survey leverages a unique006
taxonomy—dividing puzzles into rule-based007
and rule-less categories—to critically assess008
LLMs through various methodologies, includ-009
ing prompting techniques, neuro-symbolic ap-010
proaches, and fine-tuning. Through a critical011
review of relevant datasets and benchmarks, we012
assess LLMs’ performance, identifying signif-013
icant challenges in complex puzzle scenarios.014
Our findings highlight the disparity between015
LLM capabilities and human-like reasoning,016
particularly in those requiring advanced logical017
inference. The survey underscores the neces-018
sity for novel strategies and richer datasets to019
advance LLMs’ puzzle-solving proficiency and020
contribute to AI’s logical reasoning and cre-021
ative problem-solving advancements.022

1 Introduction023

Recent developments in LLMs such as GPT-3024

(Brown et al., 2020) and GPT-4 (OpenAI et al.,025

2023) have showcased their logical reasoning abil-026

ities across various domains (Liu et al., 2023a,b;027

Bao et al., 2023; Creswell et al., 2022). Despite028

these advances and their demonstrated capabili-029

ties in deductive reasoning (Saparov et al., 2023),030

LLMs face limitations in inductive reasoning set-031

tings, as analyzed by Xu et al. (2023a); Bang et al.032

(2023). The specific application of LLMs to puzzle033

solving, has not been thoroughly summarized.034

Our main contributions are as follows: 1 We035

introduce a distinction between rule-based and rule-036

less puzzles (§2), highlighting the varied knowl-037

edge demands necessary to tackle them. 2 We038

analyze the methodologies LLMs use to solve puz-039

zles (§3), assessing their impact on each category040

Figure 1: Riddle from RiddleSense (Lin et al., 2021).
GPT-4, LLaMA2-70B and Bard chose the right answer.

and comparing them with conventional problem- 041

solving methods. 3 A detailed exploration of 042

existing benchmarks that gauge models’ reasoning 043

abilities is conducted (§4). 4 Finally, this paper 044

offers a detailed view of the present obstacles faced 045

in puzzle-solving with LLMs and highlights a wide 046

array of prospects for future research (§5). 047

Our categorization diverges from existing logi- 048

cal reasoning taxonomies by emphasizing on the 049

underlying cognitive processes and the skills re- 050

quired for puzzle solving, rather than the question 051

format (Luo et al., 2023) or the nature of reasoning 052

(deductive, inductive, abductive) (Luo et al., 2023; 053

Yu et al., 2023a; Yang et al., 2023b; Qiao et al., 054

2022; Huang and Chang, 2022; Flach and Kakas, 055

2000). For instance, the existence of rules in puz- 056

zles such as Sudoku, Crosswords, or Minesweeper 057

necessitates additional skills (e.g. strategy devel- 058

opment) to correctly understand the game’s rules 059

or the ability to correctly format the output. In 060

contrast, rule-less puzzles, such as riddles (Figure 061

1), programming challenges, and commonsense 062

reasoning problems, leverage the model’s inherent 063

knowledge for solution derivation. 064

In our work, we define puzzles as problems that 065

test cognitive abilities including logical reasoning, 066

spatial cognition, and creative thinking by requir- 067

ing the solver to discern patterns, apply deduction, 068

and combine insights from available information 069

in order to arrive at the correct solution. Notably, 070
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Figure 2: Taxonomy of Puzzles

we exclude puzzles that cannot be expressed in text071

in any way, such as jigsaw puzzles (Markaki and072

Panagiotakis, 2022), or problems that require multi-073

modal understanding abilities of LLMs (Chia et al.,074

2024; Ghosal et al., 2024). Mathematical puzzles075

are also excluded, as this area diligently covered076

by the recent work of Liu et al. (2023c).077

2 Categorization of Puzzle Problems078

In assessing LLMs’ reasoning capabilities, it is es-079

sential to categorize puzzles into coherent groups.080

We distinguish puzzles by their reliance on formal081

rules or broader world knowledge accompanied by082

general inferential skills, as illustrated in Figure 2.083

This categorization not only highlights the cogni-084

tive diversity puzzles present, but also aligns with085

distinct reasoning challenges: rule-based puzzles086

demand logical deduction and strategic foresight087

within closed environments with defined parame-088

ters, whereas rule-less puzzles require general rea-089

soning abilities, interpreting situations and explain-090

ing events by drawing inferences based on practical091

knowledge about the everyday world.092

By separating puzzles into these categories,093

we aim to provide a nuanced analysis of LLMs’094

problem-solving abilities, reflecting on both struc-095

tured challenges and those necessitating broader096

inferential reasoning.097

2.1 Rule-based Puzzles098

Rule-based Puzzles provide the model with explicit099

victory conditions, legal move sets or state transi-100

tion rules. We further subdivide this category based101

on whether the state transitions are deterministic or102

incorporate randomness.103

Deterministic games always produce the same104

successor state given a current game state and ac-105

tion taken according to the rules. For example, in106

Chess, making a move always yields one unam-107

biguous new board layout. Other examples include108

Sudoku, maze navigation, or solving a Rubik’s109

cube. The model should learn strategies that op- 110

erate within the possibility space defined by legal 111

game mechanics. 112

Stochastic games incorporate randomness or 113

hidden information, i.e. the same player action can 114

lead to different probability distributions over next 115

states. Examples include Minesweeper (hidden 116

bomb locations) or card games e.g. Poker where op- 117

ponents hold private hands. Mastering these games 118

requires reasoning over uncertain states, planning 119

multiple moves in advance and managing risk. 120

Thus, while both subgroups require logical rea- 121

soning bounded by formal rules, stochastic games 122

pose the additional challenge of decision-making 123

under uncertainty. Excelling in deterministic games 124

enables pure reliance on deduction and forward 125

search, while stochastic environments also require 126

abilities for probabilistic inference, risk analysis, 127

and reasoning with incomplete information. 128

2.2 Rule-less Puzzles 129

Unlike rule-bounded puzzles, rule-less problems 130

rely more on flexible thinking and real-world 131

knowledge to interpret vague situations and infer 132

unobserved details. Rather than testing systematic 133

search or strategic planning, these puzzles measure 134

cognitive skills for contextual interpretation, con- 135

ceptual combination, and reasoning from common 136

experiences. The following fall under this category. 137

Riddles utilize clever wordplay and literary de- 138

vices to conceal answers. For example, "What gets 139

wetter the more it dries?" obscures the solution 140

of "a towel" through metaphor. Solving riddles 141

requires making abstract connections between con- 142

cepts hidden in lyrical language. This assesses 143

skills for fluid reasoning, conceptual blending, and 144

lateral thinking to decode linguistic relationships. 145

Programming Puzzles provide code snippets 146

and require analyzing or modifying the underlying 147

program logic. Schuster et al. (2021) define a pro- 148

gramming puzzle as a short Python program f , and 149
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the goal is to find an input which makes f return150

True. Such puzzles assess skills like tracing exe-151

cution, fixing errors, or anticipating outputs based152

on coding semantics. For example, the following153

puzzle tests understanding programming semantics154

to predict a system’s behaviour:155

def mystery(x):156
return x // 2157

print(mystery (10))158

Commonsense Reasoning Puzzles depict typ-159

ical situations omitting key details. Solvers must160

explain events by inferring plausible implicit as-161

sumptions about motivations, causes and effects.162

For instance, the question "A man who was out-163

side in the rain without an umbrella or hat didn’t164

get a single hair on his head wet. Why?" requires165

pragmatic analysis of unstated contextual factors.166

3 Methods and Strategies167

In applying LLMs to puzzle solving, a wide array168

of methods and strategies enhances complex rea-169

soning and performance. This section outlines the170

approaches used to address puzzles, aiming to high-171

light their application within this unique context.172

Given the extensive literature on prompt engineer-173

ing and related methods Besta et al. (2024); Chen174

et al. (2023); Yu et al. (2023b); Chu et al. (2023);175

Qiao et al. (2022); Liu et al. (2021), we concentrate176

on the techniques most prevalent for puzzle solving,177

instead of describing each method separately. We178

divide existing methods into prompting techniques,179

neuro-symbolic approaches for puzzle translation180

and fine-tuning for specific domains. A detailed181

overview of the methods utilized across different182

puzzle categories is presented in Table 1. We also183

discuss how conventional methods have faced these184

problems before the LLM era (App. A.2).185

3.1 Prompting Methods186

Prompting strategies that provide intermediate rea-187

soning steps are pivotal in enhancing the puzzle-188

solving capabilities of language models. The few-189

shot in-context learning paradigm offers one or190

more demonstrations within prompts, significantly191

improving performance for both rule-based and192

rule-less puzzles by showcasing the reasoning pro-193

cess without additional training (Brown et al., 2020;194

Dong et al., 2023; Zhou et al., 2022).195

Recent works focus on how different ‘thought196

structures’ can guide LLMs to the final solution.197

Chain topologies, which include Chain-of-198

Thought (CoT) (Wei et al., 2022; Kojima et al.,199

2022) have been applied to all kinds of puzzles, 200

demonstrating their superiority over simple IO 201

prompts. Self-Refine (Madaan et al., 2023) is used 202

for the Game of 24 (rule-based/deterministic), out- 203

performing CoT with a 13% higher success rate 204

(Yao et al., 2023). Gu et al. (2023) use Automatic 205

CoT (Zhang et al., 2022), Complexity CoT (Zhang 206

et al., 2022) and Plan-and-Solve (Wang et al., 207

2023a) in a rule-less detective-style benchmark, 208

with none of the methods clearly outperforming 209

CoT across all tested LLMs. The best results are 210

achieved by Detective Thinking Prompt, a CoT- 211

like method introduced in the same study, which 212

does not exceed the 61.6% accuracy score of the 213

best model, GPT-4. Schuster et al. (2021) exclu- 214

sively utilized the solutions to programming puz- 215

zles that the model had already solved as examples, 216

surpassing alternative approaches. 217

Tree topologies cover a variety of methods. Self- 218

Consistency (SC) (Wang et al., 2022) has been 219

tested on rule-based/deterministic puzzles, such 220

as the 8-puzzle, Game of 24 and Pocket Cube, as 221

well as on rule-less commonsense reasoning puz- 222

zles, showcasing a small gain in the first category 223

over CoT (Ding et al., 2023; Yao et al., 2023; Mo 224

and Xin, 2023) and no clear benefit in the second 225

one (Gu et al., 2023). Tree-of-Thought(s) (ToT) 226

(Yao et al., 2023; Long, 2023) has been exclusively 227

applied to rule-based/deterministic puzzles so far, 228

achieving significantly improved success rates over 229

CoT, with increases ranging from 26% (Mo and 230

Xin, 2023) to 70% (Yao et al., 2023) depending 231

on the puzzle and the depth of the tree, despite 232

the increased LLM invocations (Ding et al., 2023). 233

Tree-of-Uncertain-Thought (TouT) (Mo and Xin, 234

2023) achieved even better results than ToT on the 235

same challenges, with a 9% higher success rate 236

on the Game of 24 and 3% on mini-crosswords. 237

Finally, Inference-Exclusion-Prompting (IEP) 238

(Tong et al., 2023) delivered some of the best re- 239

sults on riddles and commonsense puzzles when 240

combined with CoT, scoring 82% on puzzles–up 241

from 81% with zero-shot CoT–and 79% on riddles, 242

compared to 82% with zero-shot CoT. 243

Graph topologies entail the following: Graph- 244

of-Thought(s) (GoT) (Besta et al., 2023; Lei 245

et al., 2023) and Everything-of-Thought (XoT) 246

(Ding et al., 2023) have been used to solve rule- 247

based/deterministic puzzles. While GoT has shown 248

poorer results compared to ToT, with a decrease 249

ranging from 2% to 6% (Ding et al., 2023), XoT 250

has been recognized as the most effective method 251
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for these puzzles, achieving improvements in re-252

sults from 53% to 69% compared to ToT, while253

presenting the fewest LLM invocations among the254

methods tested, including CoT, SC, ToT, and GoT.255

A brief analysis of the aforementioned thought256

structures is presented in Appendix A.1, while a257

more detailed one can be found in the work of258

Besta et al. (2024). Beyond the aforementioned259

methods, the use of extra information such as hints260

for riddles and commonsense puzzles, or introduc-261

tions and summarizations of the puzzles, has also262

been employed. The inclusion of supplementary263

details appears to yield positive results, although264

this is not always the case; for instance, Chinese265

riddles typically show worse results when hints are266

used (Zhang and Wan, 2021).267

3.2 Puzzle Translation268

In this subsection, we summarize the neuro-269

symbolic techniques used by LLMs to translate270

text puzzles from natural language into forms more271

amenable to solutions by external tools. Notably,272

these methods do not test the LLMs’ puzzle solv-273

ing capacity but rather assess their ability to encode274

puzzles into appropriate representations.275

The primary approach involves using LLMs to276

generate logic rules from the puzzle’s natural lan-277

guage and subsequently solve it using a symbolic278

solver. Ishay et al. (2023) employ GPT-3 and GPT-279

4 to transform logic puzzles, such as chess puzzles,280

Jobs puzzle and Sudoku (rule-based/deterministic)281

into Answer Set Programming (ASP) formats by282

generating predicates and rules. They demonstrate283

that this method achieved significant results, with284

GPT-4 scoring 92% accuracy in a logic puzzles285

dataset Mitra and Baral (2015), compared to 7%286

in few-shot and 21% in zero-shot settings with287

the same model. They note that in few-shot set-288

tings, LLMs can generate complex programs that289

humans can easily refine and correct in case of290

code errors. Additionally, similar frameworks such291

as Logic-LM (Pan et al., 2023a), LINC (Olaus-292

son et al., 2023) and Yang et al. (2023a)’s method293

show promising results in logical reasoning tasks,294

although not specifically in puzzle settings.295

While neuro-symbolic approaches have been ap-296

plied to puzzle translation into logic rules, we have297

found no studies on transforming puzzles from nat-298

ural language into code. However, techniques such299

as Program of Thoughts (PoT) prompting (Chen300

et al., 2022) and Program-Aided Language (PAL)301

(Gao et al., 2022) employ models to convert reason-302

ing into Python programs for logical and mathemat- 303

ical reasoning datasets. Therefore, we encourage 304

the research community to explore these methods 305

for puzzle-solving tasks as well. 306

Given the structured nature of rule-based puz- 307

zles, this approach is inherently suitable for them. 308

Consequently, it is logical that no studies have yet 309

been conducted on rule-less puzzles in this context. 310

3.3 Fine-Tuning 311

Fine-tuning LLMs emerges as a potent strategy 312

for enhancing their reasoning capabilities, ranging 313

from general logical reasoning to specific puzzle- 314

solving skills. Models such as LoGiPT (Feng et al., 315

2023a) and LogiT5 (Luo et al., 2023) demonstrate 316

improved logical reasoning, mimicking human-like 317

problem-solving processes. In the realm of riddles, 318

the study of Lin et al. (2021) illustrates that models 319

like BERT (Devlin et al., 2019), RoBERTa (Liu 320

et al., 2019) and ALBERT (Lan et al., 2019) per- 321

form better when trained on both RiddleSense Lin 322

et al. (2021) and CommonsenseQA (Talmor et al., 323

2019) datasets, leveraging commonsense knowl- 324

edge effectively. Moreover, Zhang and Wan (2021) 325

report that combining fine-tuning on ALBERT- 326

XXL with transfer learning from CommonsenseQA 327

achieved the highest accuracy, noting a 4% im- 328

provement over simple fine-tuning. In the domain 329

of rule-based deterministic puzzles, Noever and 330

Burdick (2021) observe suboptimal results when 331

fine-tuning GPT-2 on Sudoku, Rubik’s Cube and 332

Mazes, potentially due to a brief fine-tuning period 333

and limited training examples. Regarding cross- 334

words, various studies (Rozner et al., 2021; Efrat 335

et al., 2021) show mixed results, with some fine- 336

tuned LLMs outperforming non-neural baselines 337

and others not, highlighting the inherent challenge 338

of cryptic crosswords for LLMs. Kazemi et al. 339

(2023) demonstrate that fine-tuning LLMs with 340

proofs and CoT under rule-based contexts yields 341

some of the best results. Lastly, the effectiveness 342

of fine-tuning extends to commonsense reasoning 343

(Del and Fishel, 2022) and programming puzzles 344

(Schuster et al., 2021), showcasing its broad appli- 345

cability across puzzle categories. 346

4 Datasets, Benchmarks and Tasks 347

Exploring diverse datasets, benchmarks, and tasks 348

is crucial for evaluating LLMs in puzzle-solving. 349

This section examines datasets within our puzzle 350

taxonomy, encompassing formats, evaluation met- 351
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rics, and methodologies. Table 2 provides a de-352

tailed summary of datasets utilized across the tax-353

onomy’s categories, organized according to puzzle354

type. The analysis demonstrates LLMs’ versatility355

and the impact of techniques discussed in §3.356

4.1 Rule-based Puzzles357

We explore rule-based puzzles to assess LLMs’ un-358

derstanding within structured, closed-world envi-359

ronments. This includes deterministic puzzles such360

as Sudoku, Rubik’s Cube, Crosswords, and the 8-361

puzzle, where solutions follow a set of defined rules.362

In contrast, stochastic games e.g. Minesweeper,363

card and social deduction games present variable364

outcomes from the same actions due to hidden fac-365

tors. Research predominantly focuses on deter-366

ministic puzzles, highlighting a gap in addressing367

stochastic puzzle uncertainties—a promising direc-368

tion for future research.369

4.1.1 Deterministic Puzzles370

Sudoku serves as a prime benchmark for LLMs371

due to its logical complexity. Noever and Burdick372

(2021) fine-tune GPT-2 (Radford et al., 2019) on373

1M Sudoku games, experimenting with compact374

single-string format, with empty cells represented375

by "-", and posited that a matrix representation may376

enhance the model’s learning efficacy. Long (2023)377

uses nested lists for puzzle representation1, finding378

the Tree-of-Thought (ToT) method most effective,379

especially for smaller puzzles. Ishay et al. (2023)380

explore neuro-symbolic approaches across Sudoku,381

Jobs puzzles and logic puzzles, demonstrating that382

well-prompted LLMs can accurately generate an-383

swer set programming rules.384

For Rubik’s Cube and Maze solvers, Noever385

and Burdick (2021) assess GPT-2’s spatial reason-386

ing using over 2,400 Rubik’s Cube samples and387

10K mazes. Despite limited fine-tuning and token388

constrains, GPT-2 successfully solved the Rubik’s389

Cube in 1 out of 7 attempts, showing potential de-390

spite a high rate of valid though incorrect solutions.391

Ding et al. (2023) apply multiple methods such as392

CoT, Self-Consistency, and various Thoughts (ToT,393

GoT, XoT) on a 2×2×2 Rubik’s Cube using GPT-394

3.5 and GPT-4. XoT with self-revision emerges as395

most accurate, significantly outperforming others396

with a 77.6% success rate.397

Exploring LLM versatility, Ding et al. (2023)398

evaluate the effectiveness of XoT on the spatial 8-399

Puzzle and numerical Game of 24. The 8-Puzzle’s400

1e.g. [[3,*,*,2], [1,*,3,*],[*,1,*,3],[4,*,*,1]]

goal configuration challenges are solved with a re- 401

markable 93.2% accuracy across 419 puzzles using 402

XoT with revision, showcasing superior efficiency 403

over few-shot prompting and CoT. This high ac- 404

curacy, coupled with a reduced number of LLM 405

invocations, underscores the efficiency and poten- 406

tial of XoT in complex puzzle-solving contexts. 407

As for Crosswords, Rozner et al. (2021) and 408

Efrat et al. (2021) fine-tune T5 models (Raffel et al., 409

2019) on extensive datasets of individual cryptic 410

clues, revealing T5’s advantage over traditional 411

methods and highlighting areas for improvement, 412

particularly with quick clues and specified answer 413

lengths. Kulshreshtha et al. (2022)’s comparison of 414

BART (Lewis et al., 2019) and T5 indicate a sub- 415

30% accuracy for clue-answer tasks, with retrieval- 416

augmented generation transformers surpassing fine- 417

tuned LLMs. Additionally, Yao et al. (2023) apply 418

5-shot prompting and ToT to GPT-4 on Crossword 419

puzzles significantly improving performance by 420

solving 4 out of 20 puzzles and achieving a 60% 421

word-level success rate. 422

Feng et al. (2023b) fine-tune two models, "Chess- 423

GPT" and "ChessCLIP," using a collection of 3.2M 424

chess puzzles from the Lichess dataset2. Each puz- 425

zle in the dataset include annotations for its rating, 426

theme, and solution. 427

At last, Kazemi et al. (2023) unveil 428

BoardgameQA, a dataset featuring multi-choice 429

questions against a backdrop of contradictory facts 430

and rules. Models should navigate through these 431

complexities to provide free-text answers. Their 432

evaluation reveals that fine-tuning BERT-large and 433

T5-XXL with proofs emerges as the most effective 434

method, contrary to few-shot prompting on PaLM 435

with CoT. Moreover, the presence of extra or 436

conflicting information decreases accuracy. 437

4.1.2 Stochastic Puzzles 438

The BoardgameQA benchmark (Kazemi et al., 439

2023) also explores scenarios with missing infor- 440

mation, which fall under the stochastic puzzle cat- 441

egory. It is shown that as missing information 442

increases, the accuracy of fine-tuned models de- 443

creases. However, this heightened difficulty does 444

not similarly impact the performance of prompt- 445

tuned and few-shot learning methods, which is 446

likely due to the larger models that were applied. 447

Minesweeper, known for its hidden informa- 448

tion and unpredictability, exemplifies stochastic 449

2https://lichess.org/
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puzzles, requiring players to deduce mine loca-450

tions from numerical clues, challenging spatial451

reasoning. Li et al. (2023) evaluated LLMs on452

Minesweeper, comparing table and coordinate rep-453

resentations. Even though GPT-3.5 displayed ini-454

tial understanding, enhancements like few-shot455

prompting had minimal effects. Conversely, GPT-4456

improved mine identification but struggled to com-457

plete boards, highlighting Minesweeper’s role in458

evaluating LLMs’ strategic thinking. Experiments459

favored the coordinate representation over the table460

format for aiding LLM comprehension.461

Card games, notably Poker, exemplify stochas-462

tic puzzles where strategic skill is crucial. Sim-463

plified Poker variants require players to infer op-464

ponents’ cards and calculate odds amidst hidden465

intentions. Gupta (2023) found that in Poker’s pre-466

flop round, ChatGPT and GPT-4 grasp advanced467

strategies but do not reach Game Theory Optimal468

(GTO) play. ChatGPT leans towards a conservative469

approach, while GPT-4 exhibits more aggressive470

gameplay. Huang et al. (2024) leverage a Rein-471

forcement Learning-trained OPT-1.3B model on all472

Poker phases revealing superior outcomes in win473

rates and efficiency, ultimately showcasing LLMs’474

adeptness at complex strategies in stochastic set-475

tings. An agent that leverages GPT-4 (Guo et al.,476

2023) also achieves significant results in various477

imperfect information card games.478

Social deduction games, including Werewolf479

and Avalon, blend logical reasoning with complex480

social dynamics, making them part of the broader481

stochastic puzzle domain. Such games challenge482

players to deduce roles involving unpredictable483

human behavior. Xu et al. (2023b) propose a Were-484

wolf framework using LLMs without tuning, lever-485

aging historical interactions for strategic decisions486

and showcasing the models’ ability in this con-487

text. Similarly, frameworks for Avalon (Wang et al.,488

2023b; Lan et al., 2023) show how LLMs can navi-489

gate scenarios demanding social manipulation and490

deduction, underscoring LLMs’ proficiency in man-491

aging the complex interplay of logic and social492

interaction inherent in such games.493

4.2 Rule-less Puzzles494

This subsection delves into the diverse datasets495

related to rule-less puzzles, a category that predom-496

inantly encompasses riddles, programming puzzles,497

and commonsense reasoning challenges. Notably,498

we specifically focus on puzzles in their traditional499

sense, thereby excluding code generation datasets,500

which represent a distinct task type. A majority of 501

rule-less puzzles are structured in a multiple-choice 502

question-answering (QA) format, offering a stan- 503

dardized approach for evaluating LLMs’ inferential 504

reasoning. Benchmarks deviating from this format 505

are specially mentioned, providing a broader per- 506

spective on the variety of rule-less puzzle datasets 507

and their implications for LLM performance. 508

4.2.1 Riddles 509

RiddleSense (Lin et al., 2021) offers a collection 510

of 5.7K vertical thinking riddles, testing pre-trained 511

LMs such as BERT, RoBERTa, ALBERT, and text- 512

to-text QA models including UnifiedQA (Khashabi 513

et al., 2020) and T5. Larger LMs generally demon- 514

strate better performance, with UnifiedQA using 515

T5-3B leading, yet struggling with metaphors and 516

counterfactual situations. 517

Complementing this, BrainTeaser (Jiang et al., 518

2023) introduces 1119 lateral thinking puzzles. It 519

contrasts instruction-based models (ChatGPT, T0, 520

and FlanT5 (Chung et al., 2022)) with common- 521

sense ones (including RoBERTa variants and CAR 522

(Wang et al., 2023c)). ChatGPT excels in both 523

sentence-based and word-based puzzles, indicat- 524

ing its strength in lateral thinking. However, over- 525

all, LLMs still face challenges in exhibiting lateral 526

thinking, with common errors in memorization and 527

commonsense association. This dataset highlights 528

the varied dimensions of reasoning that riddles can 529

test, from vertical logic to lateral inference. 530

BiRdQA (Zhang and Wan, 2021) explores the 531

multilingual aspect of riddles, encompassing En- 532

glish and Chinese puzzles, while evaluating mono- 533

lingual LMs (BERT, RoBERTa), as well as mul- 534

tilingual ones (mBERT, XLM-R (Conneau et al., 535

2019)). The use of brief riddle introductions and 536

hints is also tested. Findings reveal a significant 537

performance gap between LMs and human-level 538

understanding, with monolingual models generally 539

outperforming multilingual ones. Interestingly, ad- 540

ditional context such as Wikipedia introductions 541

and hints varied in effectiveness, with such aids 542

benefiting English but not Chinese riddles. 543

CC-Riddle centers on 27K Chinese character 544

riddles, involving multiple-choice, generative, and 545

retrieval-based formats (Xu et al., 2022). Evalu- 546

ation demonstrates that models encountered diffi- 547

culties in comprehension and exhibited misunder- 548

standings, revealing the complexities inherent in 549

character-based riddles. 550

In contrast, PUZZLEQA (Zhao and Anderson, 551
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2023) offers 558 word puzzles in multiple choice552

and free-text formats. Larger models, e.g. GPT-553

3/3.5 show higher accuracy, especially in multiple-554

choice settings. However, methods such as CoT555

combined with summarization do not significantly556

enhance performance, pointing to the ongoing chal-557

lenges in free-response puzzle solving.558

Finally, MARB (Tong et al., 2023) encompasses559

a variety of riddle tasks. Several methodologies in-560

cluding zero-shot, CoT, IEP, and few-shot prompt-561

ing are tested on models such as GPT-4 and PaLM2-562

540B (Anil et al., 2023). The combination of IEP563

and CoT emerged as the most effective method,564

highlighting the value of integrating multiple ap-565

proaches for diverse riddle types. The dataset also566

includes commonsense puzzles (§4.2.3), showing567

similar trends with riddles.568

4.2.2 Programming Puzzles569

P3 (Python Programming Puzzles) (Schuster570

et al., 2021) offers a range of Python programming571

challenges, from straightforward string manipula-572

tions to complex tasks, such as the Tower of Hanoi573

and algorithmic puzzles, requiring from the model574

to find an input that makes the program f return575

"True". Models applied to these puzzles include576

enumerative solvers for building Abstract Syntax577

Trees and autoregressive Language Model Solvers578

such as GPT-3 and Codex (Chen et al., 2021), em-579

ploying varied prompting techniques. The evalua-580

tion metric pass@k, indicates the models’ ability581

to solve a puzzle within a given number of attempts582

(Chen et al., 2021). Results show a correlation583

between puzzle difficulty for both models and hu-584

mans, with descriptive prompts enhancing model585

performance. Interestingly, models proficient in586

code completion solved more puzzles with fewer587

tries, highlighting the importance of specialized588

capabilities in programming challenges.589

Savelka et al. (2023) introduce a dataset com-590

prised of 530 code snippets from programming591

courses, presenting puzzles in a multiple-choice592

format. The distinction between questions with and593

without code snippets offers a unique perspective594

on LLMs’ problem-solving strategies. The dataset595

categorizes questions into six types, including true/-596

false and output prediction. GPT models were eval-597

uated, revealing that code inclusion significantly598

increases puzzle complexity. Accuracy rates vary,599

with higher performance on completion-oriented600

questions, suggesting that LLMs’ effectiveness can601

depend heavily on question format and content.602

While both P3 and Programming Snippets 603

Dataset address programming puzzles, they do so 604

in markedly different ways. P3’s focus on finding 605

correct Python program inputs contrasts with the 606

multiple-choice format of the Programming Snip- 607

pets Dataset. However, both datasets reveal key 608

insights: descriptive prompts aid problem-solving, 609

and question format significantly influences LLM 610

performance. 611

4.2.3 Commonsense Reasoning Puzzles 612

True Detective (Del and Fishel, 2022) presents 613

detective puzzles in long-form stories, challeng- 614

ing LLMs such as GPT-3.5/4 to draw conclusions. 615

Various methods, including CoT and Golden-CoT 616

are used, revealing difficulties in making final in- 617

ferences despite all information being available. 618

While Vanilla and CoT approaches perform close 619

to random, Golden CoT shows significantly better 620

accuracy, especially on GPT-4. 621

DetectBench (Gu et al., 2023) containing 1200 622

questions, also evaluates informal reasoning in 623

real-life contexts. It tests methods such as use of 624

hints, various CoT approaches and detective think- 625

ing on models including GPT-4, GPT-3.5, GLM- 626

4 and Llama2. Hints emerges as a powerful aid, 627

with larger models generally outperforming smaller 628

ones. The effectiveness of different approaches 629

vary, with detective thinking effectively assisting 630

most of the models. 631

Both datasets highlight the complexity of real- 632

life reasoning and detective-style puzzles, demon- 633

strating that hints play a crucial role in aiding both 634

human and model performance. 635

LatEval (Huang et al., 2023b) introduces a con- 636

versational format with English and Chinese stories, 637

requiring players to ask yes/no questions before 638

providing an answer. GPT-3.5, GPT-4, and various 639

other Chat models are evaluated on their ability 640

to ask relevant questions and maintain consistency 641

with the truth. Larger models do not necessarily 642

show advanced performance in question relevance. 643

However, GPT-4 demonstrates the highest answer 644

consistency, though there is still significant room 645

for improvement. The dataset emphasizes the im- 646

portance of interactive and conversational reason- 647

ing in commonsense understanding. 648

PuzzTe (Szomiu and Groza, 2021), with its array 649

of comparison, knights and knaves, and zebra puz- 650

zles, represents a potentially rich resource for LLM 651

testing. Despite not yet being applied to LLMs, its 652

generated puzzle answers by Mace4 model finder 653
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and Prover9 theorem prover3 indicate its potential654

for future LLM evaluations.655

The datasets under investigation demonstrate a656

variety of methods for evaluating commonsense657

reasoning in LLMs, ranging from detective-style658

puzzles to interactive story solving. Although659

larger models generally exhibit better performance,660

the complexity of these tasks poses significant chal-661

lenges. Techniques such as sharing additional in-662

formation through hints show effectiveness in im-663

proving outcomes, yet there remains a considerable664

gap between the performance of models and hu-665

mans. It is important to note that in this work, we666

specifically focus on puzzle-oriented benchmarks,667

excluding general commonsense reasoning datasets668

e.g. CommonsenseQA, PIQA (Bisk et al., 2019) or669

StrategyQA (Geva et al., 2021).670

5 Discussion and Future Directions671

Applied Methods and Dataset Gaps: Across our672

puzzle taxonomy (Figure 2), the selection of meth-673

ods such as few-shot prompting, CoT, introductions674

and fine-tuning is common across most categories.675

Rule-based deterministic and rule-less common-676

sense puzzles show the greatest methodological va-677

riety, while riddles are also see diverse approaches.678

In contrast, rule-based stochastic and rule-less pro-679

gramming puzzles exhibit less variety, likely due680

to fewer studies in these areas. The lack of bench-681

marks for stochastic puzzles prompted us to in-682

clude tasks like card and social deduction games,683

which share core characteristics with traditional684

puzzles. This highlights the need for more special-685

ized datasets that adhere closely to defined puzzle686

structures with missing information elements. Ad-687

ditionally, neuro-symbolic techniques that translate688

natural language into code remain notably underuti-689

lized in puzzle benchmarks, suggesting a potential690

area for future exploration.691

Performance Analysis:692

Rule-based / Deterministic: Methods such as693

ToT and XoT (§ 3), typically enhance model rea-694

soning abilities as the complexity of the struc-695

ture increases (Ding et al., 2023). Yet, studies in696

BoardgameQA and crossword puzzles show gener-697

ally poor model performance.698

Rule-based/Stochastic: Fine-tuning is prevalent699

here, enabling LLMs to grasp basic rules and sim-700

pler scenarios. However, they falter in complex701

settings that require extensive multi-step reasoning702

3https://www.cs.unm.edu/ mccune/prover9/

(Li et al., 2023). 703

Rule-less/Riddles & Commonsense: There is a no- 704

table performance gap between LLMs and human 705

levels, with methods like CoT improving accuracy 706

but still not matching human evaluation outcomes. 707

Rule-less/Programming: LLMs find programming 708

puzzles challenging, paralleling human difficulties 709

(Schuster et al., 2021). Tasks involving code analy- 710

sis and reasoning in multiple-choice formats prove 711

particularly tough (Savelka et al., 2023). 712

Furthermore, the format of questions sig- 713

nificantly affects puzzle-solving effectiveness. 714

Multiple-choice setups simplify tasks for LLMs 715

by narrowing the solution search space, while free- 716

text formats increase the difficulty level. 717

Puzzle Generation research is currently limited, 718

likely because the ability to understand and solve 719

puzzles is a prerequisite for generating them. In 720

our survey, we primarily focused on puzzle-solving. 721

The few works we found in puzzle generation re- 722

veal mixed results. For instance, GPT-3.5’s at- 723

tempts to generate puzzles with answers showed 724

poor outcomes (Zhao and Anderson, 2023). Con- 725

versely, the introduction of ACES, an autotelic gen- 726

eration method for diverse programming puzzles, 727

demonstrates how semantic descriptors produced 728

by LLMs can be leveraged for creative puzzle cre- 729

ation (Pourcel et al., 2023). Lastly, there are recent 730

works that have studied the generation of crossword 731

puzzles of different languages, utilizing LLMs (Zu- 732

garini et al., 2024; Zeinalipour et al., 2023b,a). 733

6 Conclusion 734

In this survey, we propose a taxonomy of puzzles 735

for evaluating LLMs, categorizing them into rule- 736

based (deterministic and stochastic) and rule-less 737

puzzles (riddles, programming, and commonsense 738

reasoning puzzles). We explore a spectrum of meth- 739

ods for LLM-based puzzle solving, ranging from 740

prompting techniques to neuro-symbolic strategies 741

and fine-tuning. By collating existing datasets in 742

this domain, we provide a comprehensive overview 743

of the resources available for such evaluations. Our 744

analysis identifies current challenges, revealing a 745

difficulty of most methods to successfully solve 746

puzzles, while we outline future directions, empha- 747

sizing the need for advanced methodologies and 748

diverse datasets to enhance LLMs’ proficiency in 749

puzzle solving. 750
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7 Limitations751

In this study, we provide a survey of puzzle solv-752

ing using reasoning of Large Language Models.753

Despite our best efforts, there may be still some754

limitations that remain in this paper. Firstly, due to755

the rapidly evolving nature of this field, we continu-756

ously add related approaches and analyses, but it is757

possible that some recent developments may not be758

included. Also, due to page constraints, we cannot759

extensively present all the methods nor provide all760

the technical details. This might limit the depth of761

understanding for some readers. Our review only762

includes methods within 4 years, primarily from763

sources such as ACL, EMNLP, NAACL, NeurIPS,764

ICLR, and arXiv. We plan to continue following765

these sources and adding new methods and datasets.766

Additionally, all our conclusions §6 are based on767

empirical analysis. While this provides robust ev-768

idence, it may not capture all aspects of the prob-769

lem. Lastly, as with any survey, our interpretations770

and conclusions §5 are influenced by our own per-771

spectives and understanding of the field. Other772

researchers might interpret the same studies differ-773

ently. Despite these limitations, we believe this774

study provides a valuable overview of the current775

state of puzzle-solving using reasoning of Large776

Language Models.777
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A Appendix 1377

A.1 Prompting Topologies 1378

The chain-of-thought (CoT) paradigm involves 1379

step-wise explanatory reasoning chains, bolstering 1380

capabilities even in zero-shot settings with instruc- 1381

tions such as "Let’s think step-by-step" (Wei et al., 1382

2022; Kojima et al., 2022). Complementing this, 1383

self-consistency generates multiple solution paths, 1384

selecting the most coherent one (Wang et al., 2022). 1385

Automatic CoT (auto-CoT) autonomously gen- 1386

erates diverse reasoning chains for various ques- 1387

tions (Zhang et al., 2022), while the complexity of 1388

prompted chains influences accuracy, as more in- 1389

tricate reasoning steps often enhance performance 1390

in complex inference tasks (Fu et al., 2022). This 1391

entails generating diverse reasoning chains and se- 1392

lecting outcomes that showcase deeper reasoning 1393

capabilities. 1394

Golden CoT offers ground-truth reasoning 1395

chains to address limitations of basic prompting, 1396

reducing model hallucination risks (Del and Fishel, 1397

2022). The Plan-and-Solve (PS) method breaks 1398

down tasks into subtasks for more structured solv- 1399

ing (Wang et al., 2023a), while Self-Question 1400

guides models through a four-step process to en- 1401

hance informal reasoning (Gu et al., 2023). 1402

Exploring automated feedback, Pan et al. 1403

(2023b) examined self-correction within LLMs, 1404

noting its varied impact on logical reasoning. 1405

While instances of performance enhancement exist 1406

(Weng et al., 2022; Madaan et al., 2023), broader 1407

gains are often elusive, with some strategies even 1408

detracting from overall reasoning accuracy (Huang 1409

14
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et al., 2023a). However, Tyen et al. (2023) high-1410

light the potential of backtracking methods, which,1411

when informed about the specific location of errors,1412

significantly boost the model’s correction abilities.1413

Detective Thinking Prompt (Gu et al., 2023)1414

encourages the model to consider and analyze mul-1415

tiple clues or pieces of evidence within a given1416

scenario, sequentially building towards a conclu-1417

sion, much like solving a mystery. This type of1418

prompting can help the model to handle complex1419

scenarios where synthesizing disparate information1420

correctly is crucial to generating accurate and logi-1421

cal outcomes.1422

The Tree-of-Uncertain-Thought (TouT)1423

prompting method structures problem-solving into1424

a tree where each branch explores different uncer-1425

tain reasoning pathways, allowing for multiple1426

potential solutions (Mo and Xin, 2023). In contrast,1427

the Tree-of-Thought(s)(ToT) method (Yao et al.,1428

2023; Long, 2023) focuses on a more linear and1429

deterministic approach, systematically breaking1430

down problems into a single coherent pathway1431

towards a solution. The Graph-of-Thought(s)1432

(GoT) method (Besta et al., 2023; Lei et al.,1433

2023) structures problem-solving by mapping1434

out various interconnected reasoning pathways,1435

allowing language models to explore and evaluate1436

multiple solutions simultaneously within a flexible,1437

network-like framework.1438

The Everything of Thoughts (XoT) framework1439

integrates Monte Carlo Tree Search (MCTS) with1440

LLMs for enhanced thought generation, showing1441

remarkable performance in complex puzzles (Ding1442

et al., 2023). Additionally, Inference-Exclusion1443

Prompting (IEP) employs a combination of for-1444

ward and backward reasoning to approximate hu-1445

man logic more closely (Tong et al., 2023).1446

A.2 Conventional Methods1447

AI and Machine Learning methods have long been1448

applied to puzzles and games, with algorithms like1449

Deep Blue (Campbell et al., 2002) and AlphaZero1450

(Silver et al., 2017) for Chess and Go, renowned1451

for their exceptional results. This section contrasts1452

“traditional” methods used to solve various puz-1453

zles with those derived from large language mod-1454

els (LLMs). Note that the aim of this paper isn’t1455

to determine the superior method for each puzzle,1456

but to highlight the distinctive reasoning abilities1457

of LLMs within diverse puzzle contexts. We par-1458

ticularly focus on rule-based puzzles, extensively1459

addressed using conventional methods due to their1460

structured, well-defined environments which re- 1461

quire systematic strategies to achieve a solution. 1462

Conversely, rule-less puzzles such as riddles pri- 1463

marily test the logical, commonsense reasoning 1464

and creativity of models, without a clear path of 1465

steps to follow in order to find the solution, so we 1466

do not analyze this category. 1467

Chi and Lange (2013) utilized three techniques 1468

to solve Sudoku: backtracking, simulated anneal- 1469

ing, and alternating projections. The backtrack- 1470

ing method, a brute-force depth-first search, con- 1471

sistently resolves puzzles across all difficulty lev- 1472

els, albeit slowly. Constraint programming trans- 1473

forms Sudoku into a constraint satisfaction prob- 1474

lem, swiftly enforcing constraints to deduce solu- 1475

tions, often within milliseconds (Simonis, 2005). 1476

These methods always find a solution for Su- 1477

doku puzzle, in contrast with LLMs that have not 1478

achieved results better than 80% for 5x5 puzzles 1479

(Long, 2023). 1480

In their study on Rubik’s Cube, Chen (2022) 1481

employed several traditional methods including 1482

Korf’s algorithm (Korf, 1997), which combines 1483

Iterative-Deepening Depth-First Search (IDDFS) 1484

with the A* algorithm and a heuristic search 1485

database. Both Thistlethwaite’s 4 and Kociemba’s 1486
5 algorithms utilize group theory and similar search 1487

techniques to streamline the solving process, with 1488

Kociemba’s version enhancing efficiency by sim- 1489

plifying the group structure. While all these algo- 1490

rithms effectively solve the Rubik’s Cube—a task 1491

challenging for LLMs—Korf’s method is partic- 1492

ularly noted for its efficiency. Additionally, the 1493

study explored a machine learning strategy that in- 1494

tegrates Monte-Carlo Tree Search (MCTS) with 1495

breadth-first search, yielding more optimized so- 1496

lutions, albeit at a lower efficiency. There have 1497

also been various attemts to solve Rubik’s Cube us- 1498

ing Reinforcement Learning (RL) like DeepCubeA 1499

(McAleer et al., 2018; Agostinelli et al., 2019) and 1500

others (Takano, 2023), which although find a so- 1501

lution in relatively few steps are time-consuming, 1502

with duration varying from 38.7 to 75.6 seconds 1503

(Takano, 2023). 1504

Mazes are puzzles that can be solved by apply- 1505

ing simple algorithms like depth-first search, A* or 1506

Trémaux’s algorithm. However these problems are 1507

good for testing the spatial reasoning of LLMs. RL 1508

has also been utilized to solve mazes with (Barj and 1509

4https://www.jaapsch.net/puzzles/thistle.htm
5https://kociemba.org/

15
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https://kociemba.org/


Sautory, 2024) leveraging LLM feedback during1510

training.1511

In Ding et al. (2023) MCTS has been used to1512

solve Game of 24, 8-Puzzle and Pocket Cube,1513

achieving surpassing many LLM techniques, in-1514

cluding CoT, CoT-SC, ToT and GoT. Addition-1515

ally, Rozner et al. (2021) besides fine-tuning T51516

for solving cryptic crosswords, have also used non-1517

neural baselines including a WordNet-based heuris-1518

tic model, a K-Nearest Neighbours bag of words1519

model and a rule-based model, showing that the1520

fine-tuning of T5 had the best results among them.1521

Finally, Studholme (2001) proposed a method1522

for solving Minesweeper by considering it as a1523

constraint satisfaction problem (CSP). The core1524

strategy involves transforming the game’s chal-1525

lenges into a set of logical constraints that must1526

be satisfied to avoid mines effectively.1527

In conclusion, most conventional methods used1528

to solve rule-based puzzles employ deterministic1529

approaches that reliably produce solutions, in stark1530

contrast to the unpredictable nature of LLMs. An-1531

other advantage of these traditional methods is their1532

explainability and interpretability, crucial attributes1533

for thoroughly evaluating algorithms and under-1534

standing their decision-making processes. How-1535

ever, as demonstrated in the study by Takano1536

(2023), these methods can sometimes exhibit in-1537

creased time complexity, indicating a potential1538

trade-off between reliability and efficiency.1539

A.3 Tables1540

Table 1 delineates the various methods leveraged1541

for puzzle-solving based on the datasets we have1542

collected, illustrating the landscape of current LLM1543

research in this domain. It particularly highlights1544

the extensive methods applied to rule-based deter-1545

ministic and rule-less commonsense puzzles. The1546

absence of neuro-symbolic techniques and selec-1547

tion inference prompting indicates potential areas1548

for expansion, especially considering their prospec-1549

tive benefits for LLMs grounded in logical reason-1550

ing datasets. The table further reflects the adapt-1551

ability of certain methods like Chain-of-Thought,1552

few-shot learning and fine-tuning, which are uti-1553

lized across multiple puzzle types, hinting at their1554

effectiveness. Based on this information, we not1555

only catalogue the current state of method applica-1556

tions in puzzle-solving with LLMs but also high-1557

light opportunities for innovative research in areas1558

yet to be explored.1559

Table 2 summarizes the curated datasets and1560

tasks associated with each category within our tax- 1561

onomy of puzzles. A detailed examination reveals 1562

a substantial number of datasets for rule-based de- 1563

terministic puzzles, such as Sudoku and Rubik’s 1564

Cube, and a variety of rule-less riddles, indicating 1565

a strong research interest and resource availabil- 1566

ity in these areas. However, there appears to be a 1567

scarcity in the collection of rule-based stochastic 1568

puzzles and rule-less programming puzzles. This 1569

gap points to an opportunity for further research 1570

and dataset creation that could provide more di- 1571

verse challenges for advancing the problem-solving 1572

capabilities of Large Language Models. Address- 1573

ing this gap could lead to a more balanced and com- 1574

prehensive set of benchmarks that reflect a wider 1575

spectrum of puzzle-solving scenarios, potentially 1576

catalyzing advancements in LLMs’ abilities to han- 1577

dle uncertainty and complex logic-based problem- 1578

solving. 1579
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Methods Rule-based Puzzles Rule-less Puzzles
Deterministic Stochastic Riddles Programming Commonsense

Prompting - - - - -
Few-shot ✓ ✓ ✓ ✓ ✓

Chain-of-Thought ✓ ✓ ✓ ✓ ✓

Self-refine ✓

Auto-CoT ✓

Complexity CoT ✓

Plan & Solve ✓

Detective Thinking ✓

Self-Consistency ✓ ✓

Tree-of-Thoughts ✓

Tree-of-uncertain-Thoughts ✓

Inferential Exclusion Prompting ✓ ✓

Graph-of-Thoughts ✓

Everything-of-thoughts ✓

Hints ✓ ✓

Introduction/Summarization ✓ ✓ ✓ ✓ ✓

Puzzle Translation - - - - -
Logic ✓

Code
Fine-Tuning ✓ ✓ ✓ ✓ ✓

Table 1: Methods used by each category of our taxonomy based on the puzzle benchmarks we collected
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Category Type Datasets

Rule-based

Deterministic BoardgameQA (Kazemi et al., 2023), Sudoku (Noever and Bur-
dick, 2021; Long, 2023; Ishay et al., 2023), Rubik’s Cube (Noever
and Burdick, 2021; Ding et al., 2023), Maze (Noever and Bur-
dick, 2021), Crossword (Yao et al., 2023; Rozner et al., 2021;
Efrat et al., 2021; Kulshreshtha et al., 2022), 8-puzzle (Ding et al.,
2023), Game of 24 (Ding et al., 2023; Yao et al., 2023), Chess
(Ishay et al., 2023; Feng et al., 2023b)

Stochastic Minesweeper (Li et al., 2023), BoardgameQA (Kazemi et al.,
2023), Card Games (Huang et al., 2024; Gupta, 2023), Social
Deduction Games (Wang et al., 2023b; Xu et al., 2023b; Lan et al.,
2023)

Rule-less

Riddles BrainTeaser (Jiang et al., 2023), RiddleSense (Lin et al., 2021),
BiRdQA (Zhang and Wan, 2021), CC-Riddle (Xu et al., 2022),
PUZZLEQA (Zhao and Anderson, 2023), MARB (Tong et al.,
2023)

Programming P3 (Schuster et al., 2021), (Savelka et al., 2023)
Commonsense LatEval (Huang et al., 2023b), True Detective (Del and Fishel,

2022), DetectBench (Gu et al., 2023), MARB (Tong et al., 2023)

Table 2: Collected Datasets and Tasks for each Category
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