
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STRUCTURE GUIDED EQUATION DISCOVERY WITH
INFLUENCE-BASED FEEDBACK FOR LARGE LANGUAGE
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) hold significant promise for scientific discovery,
particularly in identifying interpretable, closed-form equations from complex data.
However, existing LLM-driven approaches often rely on coarse, scalar feedback
(e.g., overall Mean Squared Error), limiting the LLM’s ability to discern the
individual contributions of components within a proposed equation. This forces the
LLM to rely heavily on its priors or engage in inefficient trial-and-error exploration.
We introduce Structure Guided Equation Discovery (SGED), a novel framework
where LLMs act as dual agents in an iterative symbolic modeling pipeline. An
LLM agent first proposes candidate basis functions ψj(x) for a linear symbolic
model f(x) =

∑
j wjψj(x). A second LLM agent then refines this set of terms,

critically guided by detailed, per-term influence scores ∆j and fitted weights wj .
These scores quantify each basis function’s contribution to predictive accuracy,
providing the crucial granular feedback needed for effective model refinement.
SGED can operate as a direct iterative refinement loop or be integrated into Monte
Carlo Tree Search (MCTS) for a more comprehensive exploration of the equation
space. We demonstrate that providing LLMs with this structured, influence-based
feedback improves the accuracy of discovered equations and the efficiency of the
discovery process on diverse biological and synthetic datasets. SGED highlights
the broader principle that equipping LLMs with detailed, interpretable feedback
about sub-components of their generative output can unlock more sophisticated
reasoning and self-improvement capabilities.

1 INTRODUCTION

The quest for interpretable and generalizable mathematical models from data is a cornerstone of
scientific advancement. In fields like biology, pharmacology, and physics, concise equations that
accurately predict phenomena and offer mechanistic insights are invaluable for guiding research
and fostering new discoveries. This paper focuses on discovering closed-form, nonlinear symbolic
models of the form f(x) =

∑
j wjψj(x), where ψj(x) are basis functions (potentially complex

transformations of input features x) and wj are their corresponding weights. The goal is to find
models that are not only accurate but also interpretable.

Large Language Models (LLMs) have emerged as powerful tools for scientific tasks, including
equation discovery (Ma et al., 2023b; Holt et al., 2024b). Their vast knowledge priors and reasoning
capabilities allow them to navigate the complex search space of potential equations. However,
current methods often guide LLMs with only a single scalar metric, such as the overall validation
loss (e.g., Mean Squared Error). This coarse feedback, while indicating if a proposed equation is
good, fails to provide information on why it is good or bad, or which specific parts of the equation
contribute most to its performance or its deficiencies. Without this granular credit assignment, the
LLM must resort to less efficient exploration strategies, relying heavily on its pre-trained biases or
engaging in near-random perturbations. This limitation becomes particularly acute when dealing with
high-dimensional data, where the number of potential input features and their interactions is vast.

To overcome this, we propose Structure Guided Equation Discovery (SGED). SGED transforms
LLMs into sophisticated agents within an iterative discovery pipeline by providing them with granular,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Problem Settings and Method Applicability (SGED Context). Comparison of typical
problem characteristics, system focus, and applications for different modeling paradigms. SGED
targets interpretable symbolic equations for static or dynamic systems, where LLMs propose and
refine basis functions for a linear model using detailed influence-based feedback and optional tree
search.

Method Paradigm Input Dim (d) Typical Data Regime Target Model Form Handles Feat. Eng. (ϕ/ψj)? System Type Focus Primary Objective Example Applications

Classical Symbolic Reg. (e.g., GP-SR) [1] Low (< 20) / Struggles with High Small-Large Symbolic Eq (E) Manual / Limited Static (mostly) Interpretation Basic physics laws, simple regressions
Black-Box ML (NN, GBDT) [2] Any Large Pref. Black-Box Prediction Implicit (Learned Rep.) Static / Dynamical Prediction Accuracy Image recognition, complex risk scoring
Neural ODEs [3] Any (if deep) Large Pref. ODE / Dynamics Implicit Dynamical Prediction (Dynamics) Modeling physical processes
LLM for ODEs (e.g., D3) [4] Low Focus Small-Large ODE / Dynamics ✗(Assumes features) Dynamical Interpretation (ODE) Discovering physics ODEs

SGED (Ours) Any (LLM selects from d) Small-Large Symbolic Eq (
∑
wjψj(x)) ✓(LLM proposes ψj) Static / Dynamical Accuracy, Interpretation, Generalization Biomarker discovery, genomic risk models

Notes: ✓: Supported/Designed for, ✗: Not primary focus/supported, Implicit: Learned internally. ψj are basis functions. "Low Dim": struggles beyond d ≈ 20.
SGED’s current focus is regression; exploring other model forms (e.g., ODEs) with influence feedback could be explored in future work.
References: [1] (Stephens, 2015; Cranmer et al., 2020b), [2] (Chen & Guestrin, 2016; Gorishniy et al., 2021), [3] (Chen et al., 2018), [4] (Holt et al., 2024b)

per-term influence feedback. In our framework, one LLM agent proposes candidate basis functions
ψj(x). After these terms are used to fit a linear model, we calculate influence scores ∆j for each
term, quantifying its impact on the model’s predictive performance (e.g., the change in MSE if the
term were removed).

This detailed feedback, along with the fitted weights wj , is then provided to a second LLM agent,
which decides which terms to keep, discard, or implicitly refine for the next iteration. This process
provides the LLM with the critical missing information: a clear understanding of each component’s
utility. This targeted feedback enables more efficient and effective exploration of the equation space,
leading to more accurate and interpretable models. Furthermore, SGED can employ this iterative
propose-and-prune cycle within a Monte Carlo Tree Search (MCTS) framework, allowing for a more
structured and robust exploration of complex hypothesis spaces, potentially avoiding local optima.

We argue that providing LLMs with such detailed, interpretable feedback about the structural
components of their proposals is a key enabler for more advanced reasoning and self-improvement
in scientific discovery tasks. By understanding not just the overall quality but the specific value of
individual contributions, LLMs can make more informed decisions, leading to faster convergence
and ultimately, more accurate and insightful scientific models (see Figure 2). Additionally, we situate
SGED within the landscape of modeling paradigms, see Table 1.

Contributions:
1⃝ Conceptual Innovation: We reframe LLM-driven equation discovery by emphasizing the need

for granular, interpretable feedback. We propose per-term influence scores as a powerful mechanism
to provide LLMs with the component-level understanding necessary for effective model refinement.
2⃝ Methodological Framework (SGED): We introduce a novel framework employing two LLM

agents: one for proposing candidate basis functions and another for pruning them, guided by per-term
influence scores and weights. We detail how this iterative cycle can be enhanced with Monte Carlo
Tree Search for systematic exploration.
3⃝ Empirical Validation: We demonstrate through experiments on diverse biological and synthetic

datasets that SGED, by leveraging influence-based feedback, discovers more accurate symbolic
equations and converges more efficiently than approaches relying on coarser feedback.

2 METHODOLOGY: STRUCTURE GUIDED EQUATION DISCOVERY (SGED)

Structure Guided Equation Discovery (SGED) is an iterative framework where a Large Language
Model (LLM) acts as an intelligent agent to discover symbolic mathematical models. The target
models are of the form f(x) =

∑M
j=1 wjψj(x), where ψj(x) are basis functions proposed by the

LLM, and wj are their corresponding weights determined by fitting to data.

The central idea of SGED is to guide the LLM’s search process through detailed, per-term influence
feedback, enabling it to make informed decisions about refining the set of basis functions. This
process can either follow a direct iterative refinement path or be augmented with a Monte Carlo Tree
Search (MCTS) to explore a broader space of potential equations more systematically. The overall
workflow is depicted in Figure 1, and we provide a concrete illustration of the discovery process in
Appendix E.2.

2.1 CORE ITERATIVE STEP: PROPOSE-AND-PRUNE CYCLE

The engine of SGED is a propose-and-prune cycle, which constitutes a single iteration of model
generation and refinement. This cycle takes the current set of basis functions (which can be empty
initially or be the result of a previous iteration) and a history of past interactions and attempts. It

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Selection Expand Simulation Backprop

MCTS
Repeat until: total_budget = 30 expansions.

Dataset & Problem

<Train / Val / Test>

Scientific Context

Outputs candidate basis
functions { ψⱼ(x) };
history provided

[1/√v, log1p(v), cbrt(v),
e^{−√v}, v·log v]

Design matrix Φ from all
candidates; fit weights w on
Train

Compute Δⱼ on Validation: Δⱼ
= MSE(full) − MSE(wⱼ ← 0)

Uses (wⱼ, Δⱼ) and history to
KEEP/DROP terms; history
provided
KEEP: v, v·log v
DROP: others

MCTS: Children = repeated stochastic LLM
runs (default 5) of the propose-and-prune cycle from
the previous post-Prune state; history provided

Val MSE
per child

UCT
Reward = -Val

MSE

1) Propose Agent (LLM) 3) Prune Agent (LLM)2) Fit Linear Model & Compute
Influence

Nodes are equations

Example

Figure 1: Conceptual block diagram of the Structure Guided Equation Discovery (SGED) method.
The LLM agent iteratively proposes a set of basis functions {ψj}. A linear model y =

∑
wjψj(x) is

fitted. The LLM receives detailed feedback, including weights wj and influence scores ∆j for each
term, and uses this to refine its proposal for the next iteration. This iterative loop can be enhanced
with MCTS for structured exploration. The process aims for accurate and interpretable models by
leveraging the LLM’s reasoning with granular, influence-based guidance.

consists of two main phases involving LLM interaction: term generation and term pruning, with
an intermediate evaluation step that calculates the crucial influence scores (see Algorithm 2 in
Appendix B.4 for pseudocode).

First, in the Term Generation Phase, the LLM is prompted to suggest new candidate basis functions.
This prompt, provides substantial context: a detailed description of the dataset and the scientific
problem, a preview of the input features and target variables, the currently active set of basis
functions, the best equation found so far (if applicable), and, importantly, a history of previous rounds.
This history includes a summary of which terms were kept or dropped in earlier cycles and their
corresponding Mean Squared Errors (MSEs), enabling the LLM to learn from its past decisions
(full prompt details are in Appendix B.6). The LLM is tasked with generating a list of new terms,
expressed as NumPy-compatible mathematical expressions. The number of terms to propose can be
guided by configuration, for instance, suggesting more terms in the initial round versus subsequent
rounds.

Next, the Candidate Evaluation and Feedback Preparation stage begins. The newly proposed
terms are aggregated with the existing basis functions to form an expanded candidate set. Each of
these candidate terms is then evaluated on the training data to construct a design matrix Φ. A linear
model (e.g. Ordinary Least Squares (OLS), Ridge, or Lasso) is fitted to this design matrix to predict
the target variable y ≈ Φw. This step yields an initial set of weights w for all candidate terms and
the corresponding training MSE. A critical computation then occurs: per-term influence scores are
determined. For every candidate term ψj , its influence score ∆j represents the change in validation
MSE if that specific term were removed from the model (i.e., its weight wj set to zero) while all
other term weights remain fixed (see Appendix B.2 for calculation details). This vector of influence
scores, ∆ = {∆j}, forms the core of the granular feedback provided to the LLM. The validation
dataset is used for these calculations to assess generalization and mitigate overfitting. We use this
computationally efficient ‘no-refit’ approach, which we empirically validated against more costly
refit-aware alternatives and found to be as effective at guiding the discovery process in Appendix E.9.

Following this evaluation, the Term Pruning Phase commences. The LLM is again invoked, this
time to prune the comprehensive set of candidate terms. It receives a detailed prompt, which includes:
the dataset and problem description; the full list of candidate terms alongside their fitted weights wj

and their calculated influence scores ∆j (obtained from the validation set); the overall validation
MSE of the model incorporating all candidate terms; the history of prior keep/drop decisions; and the
human-readable current equation. The LLM is explicitly guided to utilize the influence scores as a
key heuristic for its decisions, with instructions like “∆j ≈ 0 =⇒ drop” and “large ∆j =⇒ keep”,
while also encouraging the use of its own judgment. The LLM’s pruning decisions are returned as a
dictionary specifying which terms to “keep” and which to “drop”.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Finally, in the Final Model Fitting and State Update stage, the basis functions designated as
“keep” by the LLM constitute the refined set of terms for the current iteration. A new linear model
is trained exclusively with these surviving terms using the training data. Its performance metrics,
namely MSE and optionally R2 score, NRMSE, etc. are then evaluated on the validation set. An
independent evaluation on the test set is also performed to record an unbiased measure of the model’s
generalization capability. All pertinent information from this entire propose-and-prune cycle —
including the sets of terms before and after pruning, the LLM’s keep/drop decisions, MSE values at
different stages, other derived metrics, and the generated equations — is systematically collected.
We also incorporate the updated history, which now includes a summary of the outcomes from the
current iteration. This is the final output of one propose-and-prune cycle.

2.2 SEARCH STRATEGIES FOR EQUATION DISCOVERY

SGED employs the propose-and-prune cycle as its core mechanism for generating and evaluating
new candidate equations. Based on the configuration, SGED can adopt one of two main strategies to
navigate the vast search space of possible equations.

The first strategy is a Linear Iterative Refinement. SGED operates by creating a linear sequence of
model refinements. In this mode, the set of basis functions that survive the pruning phase directly
becomes the input set of current terms for the immediately following propose-and-prune cycle. This
iterative process is repeated for a predetermined number of iterations, or until a defined early stopping
criterion is met. Such criteria might include observing no significant improvement in the validation
MSE for a specified number of consecutive iterations, i.e., early-stopping. Each iteration in this chain
is designed to incrementally enhance the quality of the equation by building upon the feedback and
results from the preceding step. A comprehensive history of all generated is maintained throughout
this process, enabling the system to monitor progress and, if needed, to revert to or reconsider
previously high-performing solutions.

The second, more advanced strategy involves a Tree-Based Search using Monte Carlo Tree Search
(MCTS). The MCTS framework allows for a more structured and potentially more robust exploration
of the complex hypothesis space of equations. In this configuration, the search for an optimal equation
is formalized as an MCTS problem. Consequently, a node encapsulates a specific mathematical
equation (defined by its constituent basis functions and their fitted weights) along with the historical
sequence of decisions and refinements that led to its formulation.

The propose-and-prune procedure serves as the mechanism for generating successor states, which
correspond to child nodes in the MCTS tree, from a given parent node. It is possible to generate
multiple distinct successors from a single parent node by repeatedly executing the propose-and-prune,
potentially introducing slight variations or leveraging inherent stochasticity in the LLM’s responses
(we use the latter). The evaluation of a node’s quality, or its reward signal to be maximized, that
we use for the MCTS algorithm, is its negative validation MSE, as a lower MSE indicates a better
model. If the generation of successors is computationally expensive, the MCTS implementation can
be set to use the immediate node reward for simulations or rollouts. A standard MCTS algorithm,
governed by the Upper Confidence Bound for Trees (UCT) formula (Kocsis & Szepesvári, 2006)
with the default exploration constant of

√
2 is used, balancing exploration and exploitation. The

MCTS process continues until a predefined computational budget is exhausted, such as a maximum
number of node expansions or a maximum search depth. The ultimate goal of the MCTS process is
to identify the path through the search tree that culminates in exhibiting the best performance on the
validation metric. Appendix B.3 provides full MCTS implementation details.

By enabling a parallel exploration of multiple refinement pathways, the MCTS approach helps SGED
to potentially circumvent local optima that might ensnare a purely linear iterative refinement strategy.

2.3 INFLUENCE-BASED FEEDBACK AND LLM INTERACTION

The effectiveness of SGED heavily relies on the quality of its interaction with the LLM. The prompts
are designed to provide clear, unambiguous instructions and all necessary contextual information.
The per-term influence scores, ∆j , are pivotal during the pruning phase. The prompt directly instructs
the LLM:

Inspect every row. Decide "keep" or "drop" for each term using the rule: Use the
heuristic: "∆j ≈ 0 =⇒ drop", "large ∆j =⇒ keep" and your own judgement.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This directive empowers the LLM to synergize a quantitative, data-driven metric (the influence score)
with its extensive general knowledge and reasoning capabilities. These capabilities might include
assessing term complexity, predicting potential for generalization, or understanding the semantic
relevance of a term within the context of the specific scientific problem description.

Furthermore, the provision of a historical record of past decisions – what terms were kept or dropped,
and the resultant impact on MSE before and after pruning – facilitates a form of meta-learning or
in-context learning, allowing the LLM to refine its strategies over the duration of the discovery
process (Appendices B.5 and B.6 contain full details on LLM interaction and prompts). The LLM
is also explicitly encouraged to consider how well the proposed terms might generalize beyond the
immediate validation set. Robustness is enhanced by post-processing steps that validate the LLM’s
output (whether they are proposed terms or keep/drop decisions), ensuring correct formatting and
evaluability, and by incorporating retry mechanisms to handle occasional LLM errors or malformed
responses.

3 RELATED WORK

Table 2: Comparison of SGED with prior paradigms. SGED aims to overcome prior limitations via
LLM guided proposal and refinement of basis functions using detailed influence-based feedback,
optionally with MCTS.

Method Paradigm Handles High Dim (d ≈ 150+) Automated Basis Func. Eng. (ψj) Interpretable Output (
∑
wjψj(x)) Feedback Granularity

Classical Symbolic Reg. Often struggles Limited / Manual ✓ Basic (Loss)
Black-Box ML (NNs, GBDT) ✓ Implicit (Learned Rep.) ✗ Basic (Loss)
Neural ODEs ✓(if deep) Implicit ✗ Basic (Loss)
LLM for Equations (e.g., D3) Untested (low-d focus) ✗(Assumes features given) ✓/ Hybrid Loss + Code Errors

SGED (Ours) ✓ ✓(LLM proposes ψj) ✓(Linear Comb. of ψj) Detailed (Per-term Influence Scores)

Our work, SGED, intersects with and differentiates itself from several research areas, as summarized
in Table 2, and we provide an extended related work in Appendix A.

Symbolic Regression (SR). Traditional SR techniques, such as genetic programming (GP) (Koza,
1994; Schmidt & Lipson, 2009) and sparse regression methods like SINDy for dynamical systems
(Brunton et al., 2016), aim to find explicit mathematical equations. While effective for certain
problems, these methods often operate on a predefined set of input features and basic mathematical
operations. They can struggle with high-dimensional inputs or require significant manual feature
engineering to define relevant transformations. Some modern SR approaches like PySR (Cranmer,
2023) incorporate more sophisticated search algorithms and a wider range of operators but typically
do not leverage the generative and reasoning capabilities of LLMs for proposing complex basis
functions or utilize semantic feedback like per-term influence scores. SGED differentiates itself
by employing an LLM to actively generate and refine these basis functions ψj(x), which can be
arbitrarily complex, guided by specific, quantitative influence feedback for each proposed component.

Black-Box Models. Machine learning models like neural networks (NNs) (Chen et al., 2018;
Gorishniy et al., 2021) and gradient-boosted decision trees (GBDTs) (Chen & Guestrin, 2016) are
highly effective at fitting complex patterns in data and can handle high-dimensional inputs. However,
their internal workings are often opaque, making them "black boxes" that lack the interpretability of
symbolic equations. While techniques such as SHAP (Lundberg & Lee, 2017) or LIME (Ribeiro et al.,
2016) can provide post-hoc explanations for feature importance, they do not directly yield a concise,
closed-form mathematical model. SGED, in contrast, aims to produce inherently interpretable models.

LLM-driven Equation Discovery. The use of LLMs for scientific discovery, including equation
generation, is a rapidly advancing field. Systems like AI Feynman (Udrescu & Tegmark, 2020) have
shown success in rediscovering physics equations from data. Eureka (Ma et al., 2023b) employed
LLMs as part of a reward modeling system for reinforcement learning in SR tasks, but not as the
direct generator and refiner of basis functions based on granular feedback. The D3 framework
(Holt et al., 2024b) utilizes LLMs for discovering ODEs, focusing on dynamical systems primarily
from lower-dimensional data. While D3 involves iterative refinement, its feedback mechanisms
are generally coarser (e.g., overall loss, code execution errors) compared to the per-term influence
scores used in SGED. Other recent methods also leverage LLMs in distinct ways. ICSR (Merler
et al., 2024) uses in-context learning where an LLM is prompted with previous attempts and their
scalar scores (combining MSE and complexity) to generate better candidates. LLM-SR (Shojaee

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

et al., 2025) treats equations as programs and uses data-driven feedback on the overall program fit to
guide refinement. LaSR (Grayeli et al., 2024) evolves a high-level, abstract “concept library” (e.g.,
“exponential growth/decay”) by observing patterns in successful equations.

SGED’s novelty lies in its distinct feedback mechanism. Unlike the abstract concepts in LaSR
or the single scalar scores in ICSR and LLM-SR, SGED provides a direct, quantitative vector of
per-term influence scores (∆j). This feedback measures each basis function’s marginal contribution
to validation accuracy, offering interpretable, component-level credit assignment. This granular
guidance, coupled with a dual-agent architecture for proposing and pruning terms within a constrained
linear model structure (

∑
wjψj(x)), allows for a more analytical and targeted model refinement

process.

Influence Functions and Model Interpretability. The concept of influence functions in statistics
(Cook & Weisberg, 1980), traditionally measures the impact of individual data points on model
parameters or predictions. Our use of “influence scores” for terms in a linear model is analogous:
it assesses the importance of a structural component (a basis function ψj) to the overall model fit,
similar to a leave-one-out analysis performed at the term level. This provides a principled way to
assign credit to parts of the model, which the LLM then uses for refinement.

4 EXPERIMENTS AND EVALUATION

We evaluate SGED on a variety of datasets to demonstrate its ability to discover accurate, interpretable
white-box models. Our experiments focus on biomedical, bioinformatics, and pharmacokinetic
domains, reflecting real-world challenges where such models are highly valuable. Full experimental
details, including dataset descriptions, method configurations, and evaluation protocols, are provided
in the Appendices (Appendices B, C and C.5).

Benchmark Datasets. Our evaluation uses six datasets. Three are derived from a sophisticated
biomedical Pharmacokinetic-Pharmacodynamic (PKPD) model of lung cancer tumor growth, sim-
ulating effects of chemotherapy and radiotherapy (Geng et al., 2017, Appendix C.1), used in prior
research (Bica et al., 2020; Seedat et al., 2022; Melnychuk et al., 2022). These are: Lung Cancer
(no treatment), Lung Cancer (with Chemo.), and Lung Cancer (with Chemo. & Radio.). We
also use a COVID-19 epidemic agent-based simulator (COVID-19, Kerr et al., 2021, Appendix C.2).
For bioinformatics, we use an eNET-seq dataset for predicting RNA Polymerase II pausing (RNA
Polymerase, Fong et al., 2022, Appendix C.4). Finally, a real-world Pharmacokinetic (PK) dataset of
Warfarin patients (Warfarin, Janssen et al., 2022, Appendix C.3) is included.

Benchmark Methods. We compare SGED against several relevant methods. For black-box com-
parisons, these include neural ODEs with action inputs (DyNODE, Chen et al., 2018; Alvarez
et al., 2020), standard Recurrent Neural Networks (RNN), and a state-of-the-art Transformer model
(Transformer, Vaswani et al., 2017). For white-box model discovery, we include Sparse Identifica-
tion of Nonlinear Dynamics (SINDy, Brunton et al., 2016) and a Genetic Programming symbolic
regression method (GPLearn, Stephens, 2015). We also compare against variants of LLM-based
discovery: a zero-shot model generated by an LLM (ZeroShot), this model with optimized parame-
ters (ZeroOptim), and an LLM-based iterative approach using only basic MSE feedback without
influence scores (ICL - Basic Feedback). Furthermore, we benchmark against several recent state-of-
the-art LLM-based frameworks: (D3, Holt et al., 2024b), which discovers ODEs through an iterative
multi-agent approach; (ICSR, Merler et al., 2024), which uses in-context learning with previous
attempts and their scalar scores to generate new candidates; (LLM-SR, Shojaee et al., 2025), which
treats equations as programs and employs an evolutionary search; and (LaSR, Grayeli et al., 2024),
which enhances genetic algorithms by using an LLM to evolve a library of abstract textual concepts.

Evaluation Metrics. To assess the performance of our benchmark methods, we use the mean squared
error (MSE) on a held-out test dataset of state-action trajectories. This evaluation is conducted over
multiple seeds, each initialized with different random seeds. We report the average MSE from these
runs along with their 95% confidence intervals (see Appendix C.6 for the full protocol).

5 MAIN RESULTS

Comprehensive evaluations across the benchmark datasets are presented in Table 3. SGED (referred to
as “Ours” in the table, representing the full method with influence feedback with iterative refinement
and MCTS) consistently demonstrates strong performance, often achieving the lowest MSE among

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

interpretable model classes and competitive results against black-box models. This indicates its
ability to discover accurate and concise closed-form equations.

Table 3: Evaluating Method Performance. Test MSE (mean±95 % CI) on held-out data for
six benchmarks. SGED demonstrates competitive or superior performance, particularly among
interpretable models. Results are based on 25 seeds unless otherwise noted. Three vertical subsections
correspond to baseline classes: (1) white-box non-LLM baselines, (2) white-box LLM baselines, (3)
black-box baselines (dark gray font). Dashes (—) indicate not run or not applicable. Average rank
computed for white-box methods only.

Lung Cancer Lung Cancer (with Chemo.) Lung Cancer (with Chemo. & Radio.) COVID-19 RNA Polymerase Warfarin PK
Method MSE ↓ MSE ↓ MSE ↓ MSE ↓ MSE ↓ MSE ↓ Avg. Rank ↓
DyNODE* 326±5.96 55.7±52.8 16.2±6.35 74±2.69 —† 0.726±0.17 6.80
SINDy* 325±5.95 11.8±0.442 13.7±0.635 93.5±0.509 —† 6.84±1.76 6.80
GPLearn 7.56±1.11 46.8±15.5 46.8±4.91 0.000713±0.000506 0.0204±0.000555 2.53±0.169 6.83

ZeroShot 2.13e+13±4.35e+13 4.97e+03±3.67e+03 2.54e+03±2.74e+03 1.34e+08±2.09e+08 1.35e+05±1.75e+05 5.3e+03±1.07e+04 10.50
ZeroOptim 0.142±0.119 86.2±27.3 122±6 1.41e-07±1.04e-07 0.0130±0.000287 0.861±0.177 5.67
ICL (Basic Feedback) 0.0557±0.0486 21.2±9.8 63.3±16.5 9.35e-08±1.77e-08 0.0119±0.000352 0.784±0.193 3.83
D3-white-box 1.01e+04±1.27e+04 45±28.9 253±273 7.81e-06±2.48e-07 0.043±0.0366 1.15±0.343 7.50
LLM-SR 33.4±0 42.2±35.6 32.1±48.4 0.000453±0.000912 1.44±1.91 1.24±0.564 6.50
LaSR 658±7.31 1.71±1.16 3.97±3.21 2.59e-06±8.66e-07 0.0172±0.000649 30.1±0.992 5.50
ICSR 0.407±0.244 0.688±0.39 6.1±1.05 1.03e-07±1.6e-08 —‡ 0.497±0.0646 2.60

RNN* 1.16e+06±3.21e+04 719±94.3 137±5.88 1.39e+04±2.47e+03 — 0.0495±0.0406 —
Transformer* 7.07±0.558 0.346±0.0701 0.207±0.0318 0.261±0.0915 — 1.33±0.941 —

SGED (Ours) 0.0033±0.0035 0.0054±0.00107 0.0521±0.0178 5.32e-08±1.35e-09 0.0115±0.000312 0.646±0.105 1.17

∗Results reused from prior work (Holt et al., 2024b), based on 10 seeds.
†Not applicable as the baseline is designed for temporal data but RNA Polymerase dataset is static.
‡ICSR fails with this dataset due to the large number of features (263).

5.1 CASE STUDY: RNA POLYMERASE II PAUSING

The discovery of quantitative rules governing biological processes is crucial for advancing our
understanding of life. Automated machine learning approaches like SGED offer a path to generate
interpretable, data-driven hypotheses from complex biological datasets, potentially accelerating
discovery.

Biological Background. RNA polymerase II (Pol II) transcription is a fundamental process involving
initiation, elongation, and termination (Cramer, 2019). Transcription speed is non-uniform, influenced
by frequent Pol II pausing (Noe Gonzalez et al., 2021; Jonkers & Lis, 2015; Danko et al., 2013;
Bentley, 2014; Zamft et al., 2012). Pause sites, particularly at G residues preceding T/C on the
non-template DNA strand, are key determinants of elongation speed (Fong et al., 2022; Gajos et al.,
2021). Nucleosomes and histone modifications like H3K36me3 are also implicated (Bondarenko
et al., 2006; Churchman & Weissman, 2011; Lee et al., 2024; Wen et al., 2014), but their precise roles
and the sequence determinants of pausing in human cells remain incompletely understood.

Dataset. We analyzed eNET-seq data mapping Pol II pause sites in human cells at single-base reso-
lution (Fong et al., 2022). A "pause score" (Nreads at pause site/Nreads in 200bp window) quantified pausing.
This score was aligned with 263 features, including local DNA sequence context around poten-
tial pause sites (e.g., one-hot encoded nucleotides A/T/G/C at positions -3 to +3 relative to site),
MNase-seq signal (nucleosome occupancy), H3K4me3 and H3K36me3 ChIP-seq signals (histone
modifications), and gene region annotations (TSS, gene body, termination). A balanced dataset of
48,000 pause sites and 48,000 control sites (pause score = 0) was split into training, validation, and
test sets.

Findings. SGED, guided by influence-based feedback, discovered the following interpretable
equation (coefficients rounded for brevity):
pause_score = 0.0178 ln

(
1 + signalMNase

)
− 0.000246 signalH3K4me3 + 0.00902 ln

(
1 + signalH3K4me3

)
+ 0.0194 ln

(
1 +

∑
cond

signalH3K36me3,ds

)
− 0.0291

(
1{seq−1=A} + 1{seq0=A} + 1{seq1=A} + 1{seq−1=T} + 1{seq0=T} + 1{seq1=T}

)
+ 0.02231{gene_region=TSS} + 0.02571{gene_region=body} + 0.06361{gene_region=termination}
− 0.0146

(
1{seq−3=T} + 1{seq−2=T} + 1{seq−1=T}

)
− 0.0402

(
1{seq−1=G} + 1{seq−1=C}

)
+ 0.03331{seq0=G} − 0.03971{seq0=C}

+ 0.07351{seq1=T} + 0.02431{seq−1=G},

where “ds” sums over the H3K36me3 signals from several alternative data sources; seqi is the
nucleotide at relative position i; 1{·} is the indicator function.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Expert review by an Anonymous Biologist confirmed that this SGED-discovered equation aligns with
known biology and offers novel insights:

Expert review (Anonymous Biologist)

▶Confirms existing knowledge: Positive association of nucleosome occupancy (signalMNase)
and H3K36me3 with pausing, and higher pausing in termination regions, consistent with
prior studies (Bondarenko et al., 2006; Churchman & Weissman, 2011; Lee et al., 2024; Wen
et al., 2014; Gromak et al., 2006).
▶Discovers novel sequence elements: Beyond the known GT element at positions 0/+1
(Fong et al., 2022; Gajos et al., 2021), the model identifies C at positions 0 and -1, and T at -1,
-2, -3 as significant negative predictors of pausing. These represent new, testable hypotheses
about sequence-dependent pausing mechanisms.

This case study demonstrates SGED’s capacity to learn complex relationships from high-dimensional
biological data, producing interpretable models that both validate existing knowledge and generate
novel scientific hypotheses. Further discussion is in Appendix D.

5.2 INSIGHT EXPERIMENTS: IMPACT OF FEEDBACK AND SEARCH STRATEGY

To understand the contributions of SGED’s core components, we performed ablation studies on the
Lung Cancer benchmark dataset.

Ablation Study: Influence Feedback and MCTS. We compared the full SGED model against
variants where either the MCTS tree search component was disabled (falling back to iterative
refinement) or the detailed influence based feedback was removed (LLM receives only basic MSE for
pruning), or both. Results are shown in Table 4. The reported MSE values are for the Lung Cancer
(no treatment) dataset, averaged over 25 seeds.

Table 4: Ablation study on the Lung Cancer (no treatment) dataset. We quantify the impact of
removing the MCTS component and/or the influence-feedback module. Results are test MSE (lower
is better) averaged over 25 seeds with 95% confidence intervals.

Variant MCTS Influence Feedback MSE ↓
Full SGED (Ours) ✓ ✓ 0.0033±0.0035

w/o MCTS (Iterative + Influence Feedback) ✗ ✓ 0.350±0.505
w/o Influence Feedback (MCTS + Basic Feedback) ✓ ✗ 4.56±6.71
w/o MCTS or Influence Feedback (Iterative + Basic Feedback) ✗ ✗ 61.98±20.52

The results clearly indicate that both the influence-based feedback and the MCTS tree search con-
tribute significantly to SGED’s performance. Removing influence feedback (even with tree search)
leads to a substantial increase in MSE (from 0.0033 to 4.56), demonstrating that granular, per-term
guidance is crucial for the LLM to effectively prune and refine equations.

Similarly, removing the tree search (even with influence feedback, MSE increases to 0.350) also results
in higher MSE, suggesting that systematic exploration helps in finding better solutions compared to a
purely linear iterative approach for this benchmark. The variant without both components performs
the worst (MSE of 61.98), underscoring the synergistic benefits of these design choices.

Iterative Improvement with Influence Feedback. Figure 2 illustrates the convergence behavior,
comparing SGED with influence feedback to a variant relying on basic MSE feedback. SGED with
influence feedback converges faster and to lower MSE values, as the detailed per-term information
allows for more targeted and efficient exploration of the equation space. Each iteration leverages the
insights from influence scores to prune unhelpful terms and focus on promising ones, leading to a
more rapid discovery of accurate and parsimonious models. This is shown for the linear iterative
refinement variant of SGED here, and analogously for the MCTS variant in Appendix E.1.

These insight experiments underscore the importance of SGED’s core principles: providing LLMs
with rich, structured feedback at the component level and employing systematic search strategies
to navigate the complex landscape of possible equations. A suite of additional experiments in the
appendix further substantiates these findings. We demonstrate that SGED’s performance advantage is

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10

Iterations

0

25

50

75

100

125

150

175

200

M
ea

n
S

q
u

ar
ed

E
rr

or

MSE vs. Iterations: Impact of Influence Feedback

Basic Feedback ±95

Basic Feedback Mean

Influence Feedback ±95

Influence Feedback Mean

Figure 2: MSE vs. Iterations: Impact of Influence Feedback. Plot showing validation MSE
convergence over iterations for SGED (linear iterative refinement variant) with full influence-based
feedback versus a variant with only basic MSE feedback on the Lung Cancer (with Chemo. & Radio.)
dataset. Shaded regions denote 95% confidence intervals, solid lines show means. Detailed influence
feedback is leads to faster convergence and lowers final MSE.

consistent across nine different underlying LLMs, including open-weight models (Appendix E.5);
that it is robust to a large number of irrelevant features (Appendix E.6); that it can successfully
discover equations for diverse synthetic models (Appendix E.7); and, importantly, generalizes robustly
to unseen biological replicates, indicating the discovered models capture reproducible scientific
principles (Appendix E.8). Furthermore, the method scales sub-linearly with an increasing number
of input features, making it suitable for high-dimensional problems (Appendix G). Critically, SGED
also proves more computationally efficient, achieving superior accuracy when constrained by a
fixed LLM token budget (Appendix G.3) and converging significantly faster than traditional methods
like Genetic Programming (Appendix E.4). Methodological variants, including an extension for
term-local constant optimization (Appendix E.10) and an ablation on alternative influence score
calculations (Appendix E.9), are also explored.

6 DISCUSSION

This paper introduced Structure Guided Equation Discovery (SGED), a framework that leverages
Large Language Models for symbolic modeling by providing them with fine-grained, per-term
influence scores as feedback. This structured guidance allows the LLM to iteratively propose, evaluate,
and refine basis functions for constructing interpretable models of the form f(x) =

∑
j wjψj(x).

Integration of Monte Carlo Tree Search further enhances the systematic exploration of the equation
space. Our empirical results across diverse datasets, including a detailed case study on RNA
Polymerase II pausing, demonstrate that SGED can discover accurate and scientifically plausible
equations. The ablation studies confirm that both the influence-based feedback mechanism and the
MCTS contribute significantly to the framework’s effectiveness, leading to lower MSE compared
to variants lacking these components. The ability to identify important terms via influence scores
and to prune irrelevant ones based on this quantitative metric, combined with the LLM’s reasoning
capabilities, proves to be a powerful approach for navigating the vast search space of symbolic models
and achieving superior accuracy.

Limitations & Future Work. Though SGED’s architectural advantages provide a robust performance
uplift across a range of LLMs, its performance is still ultimately tied to the capabilities of the
underlying language model. While current state-of-the-art models show strong reasoning abilities,
their capacity to generate highly novel or counter-intuitive scientific insights based on the provided
feedback is an area for ongoing research. The complexity of basis functions that can be reliably
proposed and evaluated also presents a frontier. While SGED is computationally efficient, running
many LLM calls at scale can still be intensive. Future work could explore more efficient LLM
prompting strategies, methods for distilling learned heuristics from the LLM’s successful refinements,
and extending the framework to other types of mathematical models (e.g., differential equations with
more complex structures, causal graphs). Validating the novel discoveries from SGED, such as the
new sequence determinants in the RNA Polymerase case study, through wet-lab experiments is a
crucial next step for real-world scientific impact. Further research into the types of feedback that are
most effective for LLM-guided discovery remains a rich area of investigation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics Statement. Our work promotes transparency in AI-driven science by developing a method,
SGED, that generates interpretable symbolic models. The primary ethical consideration is the
potential for misinterpretation; a discovered equation is a data-driven hypothesis, not a validated
scientific law, and may reflect spurious correlations in the data. We stress that any model produced
by SGED must be rigorously scrutinized and validated by domain experts before any consideration
for real-world application to prevent potential harm from decisions based on flawed but plausible-
looking equations. The datasets used in this research were either simulated or publicly available and
anonymized, and were handled in accordance with their usage terms. We position SGED as a tool to
augment, not replace, human scientific inquiry, acknowledging that the underlying Large Language
Models may introduce biases and lack genuine scientific understanding.

Reproducibility Statement. To ensure full reproducibility of our findings, we provide a comprehen-
sive account of our methodology, data, and experimental setup. The core Structure Guided Equation
Discovery (SGED) framework is described in Section 2, with a detailed breakdown of the propose-
and-prune cycle (Section 2.1), search strategies (Section 2.2), and the influence-based feedback
mechanism (Section 2.3). For implementation, high-level pseudocode is available in Appendix B.4,
and an in-depth description of all methodological components, including the calculation of influence
scores and MCTS configuration, is provided in Appendix B. The specifics of our interaction with
Large Language Models, including the models used and the exact prompt templates for the “Propose”
and “Prune” agents, are documented in Appendix B.5 and Appendix B.6, respectively. All benchmark
datasets are thoroughly described in Appendix C, which details the simulation parameters for the
Cancer PKPD and COVID-19 environments and provides sources for the public Warfarin PK and
RNA Polymerase datasets. The experimental evaluation protocol, including benchmark methods,
metrics, and hyperparameters, is specified in Section 4 and further detailed in Appendix C.5. The
computational resources used for our experiments are outlined in Appendix F. Upon publication, all
code required to generate the datasets and reproduce the results will be made publicly available.

REFERENCES

Aerdem. Lofo importance - leave one feature out importance. https://github.com/
aerdem4/lofo-importance, 2020. Accessed: 2024-05-23.

Ruta Agashe, Jayanth Krishnamurthy, and Daniel Khashabi. Leveraging large language models for
scientific discovery: a survey. arXiv preprint arXiv:2402.03236, 2024.

Victor M Martinez Alvarez, Rareş Roşca, and Cristian G Fălcuţescu. Dynode: Neural ordinary differ-
ential equations for dynamics modeling in continuous control. arXiv preprint arXiv:2009.04278,
2020.

David Alvarez-Melis and Tommi S Jaakkola. On the robustness of interpretability methods. arXiv
preprint arXiv:1806.08049, 2018.

Rajkumar Ashok, Manuel López-Ibáñez, and Nadarajen Veerapen. Mcts-ge: Monte carlo tree search
for grammar-based genetic programming. In Proceedings of the 2020 Genetic and Evolutionary
Computation Conference Companion, pp. 171–172. ACM, 2020.

David L Bentley. Coupling mrna processing with transcription in time and space. Nature Reviews
Genetics, 15(3):163–175, 2014.

Tarek R Besold, Artur d’Avila Garcez, Sebastian Bader, Howard Bowman, Pedro Domingos, Pascal
Hitzler, Thomas Icard, Kai-Uwe Kühnberger, Luís C Lamb, Rianne de Penning, et al. Neurosym-
bolic cognitive reasoning: A survey. KI-Künstliche Intelligenz, 31:337–357, 2017.

Ioana Bica, Ahmed M. Alaa, James Jordon, and Mihaela van der Schaar. Estimating counterfactual
treatment outcomes over time through adversarially balanced representations. In International
Conference on Learning Representations, 2020.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascandolo.
Neural symbolic regression that scales. In International Conference on Machine Learning, pp.
936–945. PMLR, 2021.

10

https://github.com/aerdem4/lofo-importance
https://github.com/aerdem4/lofo-importance

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Daniil A Boiko, Robert MacKnight, and Gabe Gomes. Emergent autonomous scientific research
capabilities of large language models. Nature, 622(7981):101–108, 2023.

Vladimir A Bondarenko, Louise M Steele, Andrea Újvári, Daria A Gaykalova, Olga I Kulaeva,
Yury S Polikanov, Donal S Luse, and Vasily M Studitsky. Nucleosomes can form a polar barrier to
transcript elongation by rna polymerase ii. Molecular cell, 24(3):469–479, 2006.

Alana Bran, Alvin Rajkomar, Yanatan Matias, Valter Sagi, Catherine Cui, Anton Libov, Bowen
Cole, Shefali Rao, Benjamin Van Durme, and Adam M Ringel. Beyond fact checking: Guiding
biomedical hypothesis generation with large language models. arXiv preprint arXiv:2308.14487,
2023.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of
sciences, 113(15):3932–3937, 2016.

Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-Lezama, Yisong
Yue, et al. Neurosymbolic programming. Foundations and Trends® in Programming Languages, 7
(3):158–243, 2021.

Pinxin Chen, Hieu Xu, Luke Zettlemoyer, and Alexey Leshchinskiy. Alphadev: Generating code with
large language models and deep reinforcement learning. arXiv preprint arXiv:2307.02319, 2023.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Zhi-Feng Chen, Jing-Dun Lin, Cheng-Ming Fan, and Hsueh-I Wu. Incorporating actor-critic in monte
carlo tree search for symbolic regression. Applied Intelligence, pp. 1–19, 2024.

Hanyu Cheng, Raghu Kansal, and Javier Duarte. Symbolnet: Neural symbolic regression with
adaptive dynamic pruning for compression. Machine Learning: Science and Technology, 2024.
doi: 10.1088/2632-2153/ad2a91. arXiv:2307.15720.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

L Stirling Churchman and Jonathan S Weissman. Nascent transcript sequencing visualizes transcrip-
tion at nucleotide resolution. Nature, 469(7330):368–373, 2011.

R Dennis Cook and Sanford Weisberg. Characterizations of an empirical influence function for
detecting influential cases in regression. Technometrics, 22(4):495–508, 1980.

Patrick Cramer. Eukaryotic transcription turns 50. Cell, 179(4):808–812, 2019.

Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression. jl.
arXiv preprint arXiv:2305.01582, 2023.

Miles Cranmer, Alvaro Sanchez Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David Spergel,
and Shirley Ho. Discovering symbolic models from deep learning with inductive biases. In
Advances in Neural Information Processing Systems, volume 33, pp. 17429–17442, 2020a.

Miles Cranmer, Alvaro Sanchez Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David Spergel,
and Shirley Ho. PySR: Fast & flexible symbolic regression. arXiv preprint arXiv:2010.14131,
2020b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Charles G Danko, Nasun Hah, Xin Luo, André L Martins, Leighton Core, John T Lis, Adam Siepel,
and W Lee Kraus. Signaling pathways differentially affect rna polymerase ii initiation, pausing,
and elongation rate in cells. Molecular cell, 50(2):212–222, 2013.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608, 2017.

Andrew G Dunn and Tom S Arrow. Gpt-3 a new tool for reproducible science? Nature Machine
Intelligence, 4(12):1088–1089, 2022.

Aaron Fisher, Cynthia Rudin, and Francesca Dominici. All models are wrong, but many are useful:
Learning a variable’s importance by studying an entire class of prediction models simultaneously.
Journal of Machine Learning Research, 20(177):1–81, 2019.

Nova Fong, Ryan M Sheridan, Srinivas Ramachandran, and David L Bentley. The pausing zone
and control of rna polymerase ii elongation by spt5: Implications for the pause-release model.
Molecular cell, 82(19):3632–3645, 2022.

Jerome H Friedman and Bogdan E Popescu. Predictive learning via rule ensembles. The Annals of
Applied Statistics, 2(3):916–954, 2008.

Martyna Gajos, Olga Jasnovidova, Alena van Bömmel, Susanne Freier, Martin Vingron, and Andreas
Mayer. Conserved dna sequence features underlie pervasive rna polymerase pausing. Nucleic
acids research, 49(8):4402–4420, 2021.

Artur d’Avila Garcez and Luis C Lamb. Neurosymbolic ai: The 3 rd wave. Artificial Intelligence
Review, pp. 1–20, 2023.

Changran Geng, Harald Paganetti, and Clemens Grassberger. Prediction of Treatment Response
for Combined Chemo- and Radiation Therapy for Non-Small Cell Lung Cancer Patients Using a
Bio-Mathematical Model. Scientific Reports, 7(1):13542, October 2017. ISSN 2045-2322. doi:
10.1038/s41598-017-13646-z.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. Advances in neural information processing systems, 34:18932–18943,
2021.

Arya Grayeli, Atharva Sehgal, Omar Costilla-Reyes, Miles Cranmer, and Swarat Chaud-
huri. Symbolic regression with a learned concept library. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neu-
ral Information Processing Systems, volume 37, pp. 44678–44709. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/4ec3ddc465c6d650c9c419fb91f1c00a-Paper-Conference.pdf.

Natalia Gromak, Steven West, and Nick J Proudfoot. Pause sites promote transcriptional termination
of mammalian rna polymerase ii. Molecular and cellular biology, 26(10):3986–3996, 2006.

Frank R Hampel. The influence curve and its role in robust estimation. Journal of the american
statistical association, 69(346):383–393, 1974.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Samuel Holt, Zhaozhi Qian, Tennison Liu, James Owen Weatherall, and Mihaela van der
Schaar. Data-driven discovery of dynamical systems in pharmacology using large lan-
guage models - project page. https://www.vanderschaar-lab.com/papers/
d3-data-driven-discovery-of-dynamical-systems-in-pharmacology-using-large-language-models/,
2024a. Accessed: 2024-05-23.

Samuel Holt, Zhaozhi Qian, Tennison Liu, Jim Weatherall, and Mihaela van der Schaar. Data-driven
discovery of dynamical systems in pharmacology using large language models. Advances in Neural
Information Processing Systems, 37:96325–96366, 2024b.

12

https://proceedings.neurips.cc/paper_files/paper/2024/file/4ec3ddc465c6d650c9c419fb91f1c00a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/4ec3ddc465c6d650c9c419fb91f1c00a-Paper-Conference.pdf
https://www.vanderschaar-lab.com/papers/d3-data-driven-discovery-of-dynamical-systems-in-pharmacology-using-large-language-models/
https://www.vanderschaar-lab.com/papers/d3-data-driven-discovery-of-dynamical-systems-in-pharmacology-using-large-language-models/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models. In ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale Machine
Learning Models, 2023.

Alexander Janssen, Frank C Bennis, and Ron AA Mathôt. Adoption of machine learning in pharma-
cometrics: an overview of recent implementations and their considerations. Pharmaceutics, 14(9):
1814, 2022.

Iris Jonkers and John T Lis. Getting up to speed with transcription elongation by rna polymerase ii.
Nature reviews Molecular cell biology, 16(3):167–177, 2015.

Pierre-Alexandre Kamienny, Stéphane Le Tallec, François Charton, Sébastien Le, and Yann Ollivier.
End-to-end symbolic regression with transformers. Transactions on Machine Learning Research,
2022.

Cliff C Kerr, Robyn M Stuart, Dina Mistry, Romesh G Abeysuriya, Katherine Rosenfeld, Gregory R
Hart, Rafael C Núñez, Jamie A Cohen, Prashanth Selvaraj, Brittany Hagedorn, et al. Covasim: an
agent-based model of covid-19 dynamics and interventions. PLOS Computational Biology, 17(7):
e1009149, 2021.

Elias B Khalil, Pierre Le Bodic, Siyuan Liu, and Song Son. Bamcts: A bayesian approach to
monte-carlo tree search. In International Conference on Machine Learning, pp. 10962–10976.
PMLR, 2022.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

John R Koza. Genetic programming as a means for programming computers by natural selection.
Statistics and computing, 4:87–112, 1994.

Jan Kubalík, Erik Derner, Vít Bíba, Martin Babjak, and Robert Babuska. Symbolicgpt: A generative
transformer model for symbolic regression. Genetic Programming and Evolvable Machines, 24(1):
7, 2023.

Ian E Kumar, Suresh Venkatasubramanian, Michael Hoffman, and Alistair Goldstein. Problems with
shapley-value-based explanations as feature importances. In International Conference on Machine
Learning, pp. 5391–5400. PMLR, 2020.

Min Kyung Lee, Na Hyun Park, Soo Young Lee, and TaeSoo Kim. Context-dependent and locus-
specific role of h3k36 methylation in transcriptional regulation. Journal of Molecular Biology, pp.
168796, 2024.

Jing Lei, James Robins, and Larry Wasserman. Distribution-free predictive inference for regression.
Journal of the American Statistical Association, 113(523):1094–1111, 2018.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Iman Misra, Nicolas Sonnerat, et al. Solving quantitative
reasoning problems with language models. In Advances in Neural Information Processing Systems,
volume 35, pp. 1289–1301, 2022.

Yingping Li, Zihang Liu, Weimin Song, Tao Huang, Erik D Goodman, Jie Yan, and Aimin Zhou.
Differentiable genetic programming for high-dimensional symbolic regression. IEEE Transactions
on Evolutionary Computation, 27(6):1877–1891, 2023a.

Yue-Yang Li, Zichao Xu, Shangce Tan, Hongming Song, Kai Zhang, Fan Guo, and Hong Liu.
Transformer-based planning for symbolic regression. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023b. URL https://openreview.net/forum?id=
FpCV7iSjP7.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

13

https://openreview.net/forum?id=FpCV7iSjP7
https://openreview.net/forum?id=FpCV7iSjP7

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Linyuan Lu, Shingo Mabu, and Kotaro Hirasawa. Contemporary symbolic regression methods and
their relative performance. Applied Soft Computing, 111:107692, 2021.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances in
neural information processing systems, 30, 2017.

Chuan Ma, Zonglin Shen, Yefan Wu, M Shamim Hossain, Cong Tao, and Yang Li. Large language
models in science and medicine. Patterns, 4(8):100835, 2023a.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. arXiv preprint arXiv:2310.12931, 2023b.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. https://eureka-research.github.io/, 2023c. Accessed:
2024-05-23.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Hossein Mobahi, et al. Self-refine: Iterative refinement with
self-feedback. In Advances in Neural Information Processing Systems, volume 36, 2023.

Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. Causal transformer for estimating
counterfactual outcomes. In International Conference on Machine Learning, pp. 15293–15329.
PMLR, 2022.

Matteo Merler, Nicola Dainese, and Katsiaryna Haitsiukevich. In-context symbolic regression:
Leveraging language models for function discovery. CoRR, abs/2404.19094, 2024. URL https:
//doi.org/10.48550/arXiv.2404.19094.

Subhrajit Monda, Sudipan Das, Lovesh Kumar, and Partha Talukdar. Deep symbolic regression: A
survey and new results. In Proceedings of the First Workshop on Neural Machine Translation and
Generation, pp. 123–133. Association for Computational Linguistics, 2021.

Melvin Noe Gonzalez, Daniel Blears, and Jesper Q Svejstrup. Causes and consequences of rna
polymerase ii stalling during transcript elongation. Nature reviews Molecular cell biology, 22(1):
3–21, 2021.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023. URL https://api.
semanticscholar.org/CorpusID:257532815.

Allen Pan, Jiasheng Xu, Hong-Cheng Chen, Xiaozhi Li, and He Ji. Automatically correcting large
language models: Surveying and aco. arXiv preprint arXiv:2308.08182, 2023.

Brenden K Petersen, Mikel Landajuela Larma, Terrell N Mundhenk, Claudio Prata Santiago,
Soo Kyung Kim, and Joanne Taery Kim. Deep symbolic regression: Recovering mathemat-
ical expressions from data via risk-seeking policy gradients. In International Conference on
Learning Representations, 2020.

Zhaozhi Qian, Krzysztof Kacprzyk, and Mihaela van der Schaar. D-CODE: Discovering closed-form
ODEs from observed trajectories. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=wENMvIsxNN.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature machine intelligence, 1(5):206–215, 2019.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

14

https://eureka-research.github.io/
https://doi.org/10.48550/arXiv.2404.19094
https://doi.org/10.48550/arXiv.2404.19094
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://openreview.net/forum?id=wENMvIsxNN

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. science,
324(5923):81–85, 2009.

Nabeel Seedat, Fergus Imrie, Alexis Bellot, Zhaozhi Qian, and Mihaela van der Schaar. Continuous-
time modeling of counterfactual outcomes using neural controlled differential equations. arXiv
preprint arXiv:2206.08311, 2022.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: Language agents with verbal reinforce-
ment learning. In Advances in Neural Information Processing Systems, volume 36, 2023.

Parshin Shojaee, Kazem Meidani, Shashank Gupta, Amir Barati Farimani, and Chandan K.
Reddy. LLM-SR: Scientific equation discovery via programming with large language mod-
els. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=m2nmp8P5in.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354–359, 2017.

Trevor Stephens. gplearn 0.4.2 documentation. https://gplearn.readthedocs.io/en/
stable/, 2015. Accessed: 2025-5-16.

Georgi Tonchev, Theofilos Sainis, Stergios Nikolakopoulos, Zoe Kotti, Pavlos Papasarantopoulos,
Prodromos Malakasiotis, and Ion Androutsopoulos. Automating systematic reviews with large
language models: a competition-based perspective. arXiv preprint arXiv:2401.06794, 2024.

Silviu-Marian Udrescu and Hod Lipson. Fast function class discovery for symbolic regression.
Genetic Programming and Evolvable Machines, 10(3):241–271, 2009.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science advances, 6(16):eaay2631, 2020.

Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max
Tegmark. Ai feynman 2.0: Pareto-optimal symbolic regression exploiting graph modu-
larity. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 4860–4871. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/33a854e247155d590883b93bca53848a-Paper.pdf.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Hua Wang, Zheng Fan, Pavel V Shliaha, Matthew Miele, Ronald C Hendrickson, Xuejun Jiang, and
Kristian Helin. H3k4me3 regulates rna polymerase ii promoter-proximal pause-release. Nature,
615(7951):339–348, 2023.

Larry Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer Texts in
Statistics. Springer, New York, NY, 1 edition, 2004. ISBN 978-0-387-40272-7. doi: 10.1007/
978-0-387-21736-9. URL https://doi.org/10.1007/978-0-387-21736-9. Series
ISSN 1431-875X; Series E-ISSN 2197-4136; eBook ISBN 978-0-387-21736-9 (published 2013-
12-11); Softcover ISBN 978-1-4419-2322-6 (published 2010-12-01); First edition; xx+442 pp.

Hong Wen, Yuanyuan Li, Yuanxin Xi, Shiming Jiang, Sabrina Stratton, Danni Peng, Kaori Tanaka,
Yongfeng Ren, Zheng Xia, Jun Wu, et al. Zmynd11 links histone h3. 3k36me3 to transcription
elongation and tumour suppression. Nature, 508(7495):263–268, 2014.

Bradley Zamft, Lacramioara Bintu, Toyotaka Ishibashi, and Carlos Bustamante. Nascent rna structure
modulates the transcriptional dynamics of rna polymerases. Proceedings of the National Academy
of Sciences, 109(23):8948–8953, 2012.

15

https://openreview.net/forum?id=m2nmp8P5in
https://gplearn.readthedocs.io/en/stable/
https://gplearn.readthedocs.io/en/stable/
https://proceedings.neurips.cc/paper_files/paper/2020/file/33a854e247155d590883b93bca53848a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/33a854e247155d590883b93bca53848a-Paper.pdf
https://doi.org/10.1007/978-0-387-21736-9

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Yifan Zhang, Yikang Sile, Chengyu Weng, Yuxin Zhang, and Chen Lin. Hypothesis generation with a
large language model by identifying documents for relevant and novel connections. arXiv preprint
arXiv:2305.19225, 2023.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Appendix

Table of Contents
A Additional Related Work 18

A.1 Symbolic Regression: Foundations and Evolution 18
A.2 Large Language Models in Scientific Discovery and Equation Formulation . . . 19
A.3 Interpretability in Machine Learning: Inherent vs. Post-Hoc 19
A.4 Neurosymbolic AI . 20
A.5 Influence Analysis: From Data Points to Model Components 20
A.6 Automated Feature Engineering and Basis Function Discovery 20
A.7 Iterative Refinement and Search Strategies in Complex Spaces 21

B Method Details 21
B.1 Overview of SGED . 22
B.2 Influence Score (∆j) Details . 22
B.3 Monte Carlo Tree Search (MCTS) Implementation Details 23
B.4 SGED Pseudocode . 25
B.5 LLM Details . 27
B.6 Prompt Details . 27

C Benchmark Dataset and Evaluation Details 33
C.1 Cancer PKPD Simulations . 33
C.2 COVID-19 Epidemic Simulation . 34
C.3 Warfarin Pharmacokinetics Dataset . 34
C.4 RNA Polymerase II Pausing Dataset . 34
C.5 Benchmark Method Details . 35
C.6 Evaluation Details . 37

D RNA Polymerase II Pausing Case Study – Further Discussion 38
D.1 Experiment 1 SHAP Plots . 38
D.2 Experiment 2 and Discussion . 39

E Additional Results 42
E.1 Impact of Influence Feedback with MCTS . 42
E.2 Illustration of SGED Equation Discovery . 42
E.3 Investigation of MCTS rollout depth . 44
E.4 Convergence Efficiency . 45
E.5 Investigation of LLM sensitivity . 46
E.6 Investigation of Robustness to a Large Number of Irrelevant Features 51
E.7 Investigation of Synthetic Model Benchmark 52
E.8 Generalization Study on the RNA Polymerase Dataset 53
E.9 Influence Score Variants . 54
E.10 Term-local Optimization . 58

F Computational Resources 60

G Computational Cost and Scalability Analysis 61
G.1 Cost and Wall-Clock Time Comparison . 61
G.2 Scalability with High-Dimensional Inputs . 61
G.3 Performance Under a Fixed Computational Budget 62

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Code. All code will be made available upon publication.

LLM Usage. Large Language Models (LLMs) were employed for refining the language, grammar,
and clarity of the manuscript. Additionally, they were used to assist with code implementation and
debugging. All intellectual content, research ideas, and scientific arguments were developed solely
by the authors.

A ADDITIONAL RELATED WORK

Structure Guided Equation Discovery (SGED) synergizes concepts from symbolic regression, the
rapidly evolving capabilities of Large Language Models (LLMs) in scientific reasoning, machine
learning interpretability, and advanced search techniques. This extended related work section aims
to provide a more comprehensive contextualization of SGED, elaborating on its distinctions and
contributions by delving deeper into these intersecting domains.

A.1 SYMBOLIC REGRESSION: FOUNDATIONS AND EVOLUTION

Symbolic Regression (SR) is the problem of identifying a mathematical expression that best fits a
given dataset, without assuming a pre-specified model structure. This inherently seeks interpretable
models.

Traditional Approaches: Genetic Programming (GP) has historically been a dominant paradigm for
SR (Koza, 1994; Schmidt & Lipson, 2009; Stephens, 2015). GP-based SR typically evolves a popula-
tion of candidate expressions (often represented as trees) using evolutionary operators like crossover
and mutation. While powerful, traditional GP can face challenges such as premature convergence,
code bloat (expressions becoming overly complex), and difficulties in efficiently exploring vast search
spaces, especially with high-dimensional data or when a diverse set of mathematical operators is
required (Cranmer, 2023; Lu et al., 2021; Monda et al., 2021; Li et al., 2023a). The search can be
computationally intensive, and the quality of discovered equations can be sensitive to the choice of
initial function sets and hyperparameters. Other early approaches, like Symbolic Regression via Fast
Function Class Discovery (SRFC) (Udrescu & Lipson, 2009), focused on identifying general classes
of functions as a preliminary step, which could then guide more detailed equation discovery.

Sparse Symbolic Regression: Methods like SINDy (Sparse Identification of Nonlinear Dynamics)
(Brunton et al., 2016) leverage sparse regression. SINDy constructs a library of candidate (often
nonlinear) functions of the state variables and uses techniques like LASSO or sequentially thresholded
least-squares to find a sparse combination of these functions that best describes the system’s dynamics,
primarily for ODEs. While effective for systems where the basis functions are well-chosen, the
library of candidate functions is often pre-defined by the user, which might limit discovery of truly
novel functional forms not anticipated by the domain expert.

Modern Advancements in SR: More recent SR methods have introduced innovations to tackle these
challenges. PySR (Cranmer, 2023; Cranmer et al., 2020b) incorporates techniques from simulated
annealing, genetic algorithms, and a highly optimized search process with a broad library of operators
to find Pareto-optimal equations (balancing accuracy and complexity). AI Feynman (Udrescu &
Tegmark, 2020; Udrescu et al., 2020) introduced a recursive divide-and-conquer strategy inspired
by physics problem-solving techniques. It attempts to discover symmetries, separability, and other
properties of the target function to break it down into simpler components, often using neural networks
to guide these decompositions. Deep Symbolic Regression (DSR) approaches (Petersen et al., 2020;
Biggio et al., 2021; Kamienny et al., 2022) often use recurrent neural networks (RNNs) to generate
expressions token by token, framing SR as a sequence generation problem, sometimes guided by
reinforcement learning. Other neural approaches like SymbolNet (Cheng et al., 2024) focus on
scalability to high-dimensional inputs and model compression by dynamically pruning operators and
features.

SGED’s Differentiation in SR: SGED distinguishes itself from these SR paradigms in several key
aspects. Unlike traditional GP or sparse SR methods that rely on pre-defined or combinatorially gen-
erated basis functions, SGED tasks an LLM with proposing candidate basis functions ψj(x). These
can be arbitrarily complex and draw upon the LLM’s vast pre-trained knowledge of mathematical and

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

scientific relationships. Crucially, SGED provides the LLM with highly granular, per-term influence
scores ∆j as feedback, guiding a second LLM agent in the pruning and refinement process. This
explicit, quantitative credit assignment for each component of the proposed equation is a core novelty
that enables more targeted and efficient exploration than typical fitness-based evolution in GP or
the global loss signals used in many DSR approaches. While AI Feynman uses NNs for specific
decomposition tasks, SGED employs LLMs more broadly for generative proposal and structured
refinement based on component-wise utility.

A.2 LARGE LANGUAGE MODELS IN SCIENTIFIC DISCOVERY AND EQUATION FORMULATION

LLMs are increasingly being explored as powerful tools for accelerating scientific discovery (OpenAI,
2023; Brown et al., 2020; Agashe et al., 2024). Their ability to process and generate human language,
understand complex instructions, and synthesize information from vast training corpora makes them
suitable for tasks ranging from hypothesis generation to experimental design and data analysis (Boiko
et al., 2023; Dunn & Arrow, 2022; Ma et al., 2023a; Tonchev et al., 2024).

LLMs for Equation Discovery and System Modeling: Several works have specifically investigated
LLMs for discovering mathematical models. Eureka (Ma et al., 2023b;c) leverages LLMs, particularly
their code-writing capabilities, to design reward functions for reinforcement learning agents that then
perform symbolic regression or other optimization tasks. While Eureka uses LLMs effectively for
reward generation, SGED employs LLMs as the direct architects of the symbolic equations themselves,
iteratively proposing and refining basis functions. The D3 framework (Holt et al., 2024b;a) uses
LLMs to discover Ordinary Differential Equations (ODEs) for pharmacological systems. D3 employs
multiple LLM agents for modeling, feature acquisition, and evaluation in an iterative loop. While
sharing the iterative, LLM-driven discovery spirit with SGED, the feedback mechanism in D3 is
generally coarser (e.g., overall model fit, code execution errors, qualitative evaluation). SGED’s
unique contribution is the fine-grained, per-term influence scores ∆j provided to the LLM, enabling
more precise credit assignment and refinement of the equation’s structure, and its applicability to
general symbolic models beyond just ODEs. D-CODE (Qian et al., 2022) also focuses on discovering
closed-form ODEs, using a grammar-based approach and a coefficient optimizer, but does not involve
LLMs in the same generative and iterative feedback loop as SGED or D3.

Broader LLM Capabilities for Science: LLMs have also shown promise in generating computer
code for simulations (Li et al., 2022; Chen et al., 2023), assisting in mathematical reasoning (Imani
et al., 2023; Lewkowycz et al., 2022), and forming hypotheses from literature (Bran et al., 2023;
Zhang et al., 2023). SGED specifically harnesses the LLM’s pattern recognition and generative
capabilities to propose scientifically plausible basis functions and its reasoning capabilities to interpret
and act upon the structured influence feedback for model refinement. This structured interaction,
providing quantitative evidence for the utility of each proposed component, pushes the LLM beyond
simple generation towards a more analytical role.

A.3 INTERPRETABILITY IN MACHINE LEARNING: INHERENT VS. POST-HOC

The demand for interpretable machine learning models is growing, especially in high-stakes domains
like science and medicine where understanding the “why” behind a prediction is as important as the
prediction itself (Rudin, 2019; Doshi-Velez & Kim, 2017).

Black-Box Models and Post-Hoc Explanations: Many high-performing machine learning models,
such as deep neural networks (Gorishniy et al., 2021; Chen et al., 2018) and gradient-boosted decision
trees (Chen & Guestrin, 2016), are often considered “black boxes” due to their complex internal
structures. To shed light on their predictions, post-hoc explanation methods have been developed.
Prominent examples include LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro et al.,
2016) and SHAP (SHapley Additive exPlanations) (Lundberg & Lee, 2017). LIME approximates the
black-box model locally with a simpler, interpretable model. SHAP uses concepts from cooperative
game theory (Shapley values) to attribute the prediction to individual features. While these methods
provide valuable insights, they offer explanations of an already-trained (and often opaque) model
rather than producing a model that is inherently transparent. Limitations can include computational
cost, potential instability of explanations, and the fact that the explanation itself is an approximation
of the original model’s behavior (Rudin, 2019; Kumar et al., 2020; Alvarez-Melis & Jaakkola, 2018).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

SGED’s Pursuit of Inherent Interpretability: SGED directly addresses the need for interpretability
by aiming to discover models of the form f(x) =

∑
j wjψj(x). Each basis function ψj(x) is a

symbolic expression, and its contribution to the final output is explicitly weighted by wj . This
structure is inherently interpretable, allowing domain experts to examine, understand, and potentially
validate or refute the discovered relationships based on their domain knowledge. The per-term
influence scores ∆j further enhance this by quantifying the contribution of each ψj to the model’s
predictive power during the discovery process itself.

A.4 NEUROSYMBOLIC AI

Neurosymbolic AI seeks to combine the strengths of neural networks (e.g., learning from data, pattern
recognition) with symbolic reasoning (e.g., logic, explicit knowledge representation, interpretability)
(Garcez & Lamb, 2023; Chaudhuri et al., 2021; Besold et al., 2017). This integration aims to create
AI systems that are more robust, generalizable, interpretable, and capable of incorporating existing
domain knowledge.

SGED can be viewed as a neurosymbolic system. The LLM, a large neural network, acts as the “neuro”
component, responsible for proposing candidate symbolic basis functions and for reasoning about
their utility based on feedback. The symbolic regression task itself, the manipulation of mathematical
expressions, and the resulting interpretable equation f(x) =

∑
j wjψj(x) represent the “symbolic”

component. The per-term influence scores act as a critical bridge, translating numerical performance
data into a structured format that the LLM can symbolically reason about to refine the symbolic
model. This tight integration, where the neural component generates and refines symbolic structures
based on quantitative feedback about those structures, aligns well with the goals of neurosymbolic
AI, particularly in the context of scientific discovery (Cranmer et al., 2020a; Kubalík et al., 2023).

A.5 INFLUENCE ANALYSIS: FROM DATA POINTS TO MODEL COMPONENTS

The concept of “influence” in SGED, referring to the impact of individual terms ψj(x) on the model’s
predictive performance, draws an analogy to classical influence functions in statistics and more recent
feature importance techniques.

Classical Influence Functions: Influence functions, introduced in Hampel (1974) and further
developed in Cook & Weisberg (1980), measure the effect of an individual data point on a model’s
parameters or predictions. They are valuable for outlier detection and understanding model sensitivity
to specific observations.

Feature Importance and Leave-One-Out Analysis: In machine learning, various methods assess
feature importance. Permutation feature importance (Breiman, 2001; Fisher et al., 2019) measures the
decrease in model performance when a feature’s values are randomly shuffled. Leave-One-Feature-
Out (LOFO) importance involves retraining the model with one feature omitted and observing the
performance change (Lei et al., 2018; Aerdem, 2020). These methods help identify which input
features are most critical for a model’s predictions.

SGED’s Term Influence Scores: SGED’s per-term influence scores ∆j adapt this concept to the
components of the discovered equation itself. Instead of assessing the impact of raw input features
or individual data points, ∆j quantifies how much the removal of a specific basis function ψj(x)
(and its corresponding weight wj) would affect the model’s validation MSE. This provides a direct,
interpretable measure of each term’s contribution to the model’s accuracy, akin to a leave-one-term-
out analysis. This granular credit assignment is then fed back to the LLM, enabling it to make
informed decisions about which terms to retain, discard, or refine, thereby steering the discovery
process towards more accurate and parsimonious equations.

A.6 AUTOMATED FEATURE ENGINEERING AND BASIS FUNCTION DISCOVERY

The performance of many machine learning models heavily depends on the quality of input features.
Automated feature engineering aims to create new, informative features from existing ones.

Traditional and Deep Learning Approaches: Traditional techniques might involve polynomial ex-
pansions or predefined transformations. Deep learning models implicitly perform feature engineering

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

by learning hierarchical representations, but these learned features are often not symbolic or easily
interpretable.

Rule-Based Feature Generation: Methods like RuleFit (Friedman & Popescu, 2008) generate
new features in the form of decision rules. These rules, derived from an ensemble of decision trees,
capture interactions between original features. A sparse linear model (e.g., using Lasso) is then fitted
on both the original features and these new rule-based features. This yields an interpretable model
that can capture non-linearities and interactions.

SGED’s LLM-Driven Basis Function Proposal: SGED takes a distinct approach by using an
LLM to propose candidate basis functions ψj(x). These are not limited to simple rules but can be
complex symbolic expressions involving various mathematical operations and combinations of input
features. The LLM’s generative capabilities allow for a much broader and potentially more creative
exploration of the space of possible transformations than typical rule-generation algorithms. The
subsequent linear combination

∑
j wjψj(x) maintains interpretability, while the influence-guided

pruning ensures that only valuable, LLM-generated transformations are retained.

A.7 ITERATIVE REFINEMENT AND SEARCH STRATEGIES IN COMPLEX SPACES

Discovering optimal symbolic equations is a challenging search problem over a vast and complex
space.

Iterative Refinement and Feedback: Many AI systems employ iterative refinement, where solutions
are progressively improved based on feedback. The nature and granularity of this feedback are
crucial. SGED’s iterative propose-and-prune cycle, guided by per-term influence scores, provides a
structured mechanism for self-improvement. The LLM learns from its past decisions (which terms
were kept/dropped and their impact) and the specific utility of each component in the current proposal.
This contrasts with approaches where feedback is only a single scalar loss, offering less guidance for
targeted improvement. LLM self-correction and refinement, often through in-context learning, is an
active area of research (Madaan et al., 2023; Shinn et al., 2023; Pan et al., 2023). SGED provides a
domain-specific instantiation of this principle with a highly structured feedback signal.

Monte Carlo Tree Search (MCTS): For more systematic exploration, SGED can integrate its
propose-and-prune cycle into an MCTS framework. MCTS is a heuristic search algorithm that
has achieved remarkable success in domains like game playing (e.g., AlphaGo/AlphaZero (Silver
et al., 2016; 2017)) and other optimization problems. In SGED, MCTS treats the equation discovery
process as navigating a tree where nodes represent (sets of) basis functions and edges represent
propose/prune actions. MCTS balances exploration of new equation structures with exploitation of
promising ones. While MCTS has been explored for program synthesis and, more recently, symbolic
regression (Khalil et al., 2022; Li et al., 2023b; Chen et al., 2024; Ashok et al., 2020), SGED’s
novelty lies in combining MCTS with LLM-driven proposal/pruning stages that are informed by the
detailed influence-based feedback. The work Li et al. (2023b) also uses MCTS with transformers
for symbolic regression, but their feedback and reward structure within MCTS differs from SGED’s
influence-score-driven pruning by an LLM agent.

By leveraging detailed, interpretable feedback and powerful search strategies, SGED aims to make
significant strides in the automated discovery of accurate and understandable symbolic models from
data.

B METHOD DETAILS

This section provides further details on the Structure Guided Equation Discovery (SGED) framework,
complementing the main description in Section 2. We elaborate on the core components, including
the definition and calculation of influence scores, and the specifics of the Monte Carlo Tree Search
(MCTS) implementation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

B.1 OVERVIEW OF SGED

As outlined in Section 2 and depicted in Figure 1, SGED operates as an iterative symbolic modeling
pipeline driven by Large Language Models (LLMs). The framework employs two primary LLM
agents:

• A “Propose” Agent: This LLM agent is responsible for generating new candidate basis
functions ψj(x). It receives contextual information about the dataset, the scientific problem,
the current set of basis functions, the best equation discovered so far, and a history of past
decisions and outcomes to guide its suggestions.

• A “Prune” Agent: After candidate terms are evaluated, this LLM agent refines the set
of basis functions. It is provided with the candidate terms, their fitted weights wj , and
crucially, their per-term influence scores ∆j . Based on this granular feedback and its general
knowledge, it decides which terms to keep or discard.

This propose-and-prune cycle forms the core iterative step. SGED can execute these cycles in a
linear iterative refinement loop or integrate them within a Monte Carlo Tree Search (MCTS) frame-
work for a more systematic and robust exploration of the equation space. The overall objective is
to discover accurate, parsimonious, and interpretable models of the form f(x) =

∑
j wjψj(x).

The hyperparameters related to LLM prompting, such as terms_per_round (default: 5),
first_round_n_candidates (default: 10), and keep_n_terms (default: 6, but can be
disabled to allow keeping any number of terms), guide the LLM agents’ behavior during term
generation and pruning.

B.2 INFLUENCE SCORE (∆j) DETAILS

The per-term influence score, ∆j , is a cornerstone of the SGED framework, providing the granular
feedback necessary for the “Prune” LLM agent to make informed decisions.

Definition: For a linear model f(x) =
∑M

k=1 wkψk(x) with M basis functions, the influence score
∆j for a specific term ψj(x) is defined as the change in the model’s Mean Squared Error (MSE) on
the validation set if that term were removed from the model, while all other term weights wk (k ̸= j)
remain fixed at their originally fitted values.

Let Φval be the design matrix evaluated on the validation set using all M candidate basis functions,
and yval be the corresponding true target values. Let w = (w1, w2, . . . , wM)T be the vector of
weights obtained by fitting the full model to the training data (e.g., using Ordinary Least Squares,
OLS). The prediction of the full model on the validation set is ŷval = Φvalw. The MSE of the full
model on the validation set is MSEfull = mean((yval − ŷval)

2).

Now, consider removing term ψj . This is equivalent to setting its weight wj to zero. The predictions
of this reduced model, f−j(x), on the validation set are ŷval,−j = ŷval − ϕval,jwj , where ϕval,j is the
j-th column of Φval (i.e., the evaluations of ψj(x) on the validation set). The MSE of this reduced
model is MSE−j = mean((yval − ŷval,−j)

2). The influence score ∆j is then:

∆j = MSE−j −MSEfull

A higher positive ∆j indicates that removing term ψj increases the validation MSE, implying that the
term is important for the model’s predictive accuracy on unseen data. A ∆j ≈ 0 suggests the term
has little unique contribution to reducing validation MSE under the current model. This calculation is
performed for each target variable if the model is multi-output.

Calculation: The calculation steps are:

1. Fit the full linear model (e.g., OLS) using the training data (Φtrain,ytrain) to obtain the
weights w.

2. Calculate the predictions ŷval and the baseline MSEfull on the validation set (Φval,yval).
3. For each term ψj (from k = 1 to M):

(a) Calculate the predictions of the model without term j (effectively wj = 0, other wk

fixed): ŷval,−j = ŷval − ϕval,jwj .

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(b) Calculate MSE−j using ŷval,−j .
(c) Compute ∆j = MSE−j −MSEfull.

Computational Cost:

• Fitting the initial OLS model: Typically O(NtrainM
2 +M3) if Ntrain > M or O(N2

trainM)
if M > Ntrain.

• Calculating ŷval: O(NvalM).

• Calculating MSEfull: O(Nval) (assuming multi-output m is small, otherwise O(Nvalm)).

• For each of the M terms, calculating ∆j :

– Prediction ŷval,−j adjustment: O(Nval).
– MSE−j calculation: O(Nval).
– Total for all ∆j : M ·O(Nval).

The calculation of influence scores is therefore efficient once the initial model is fitted and its
predictions on the validation set are obtained.

Justification and Relation to Other Measures:

• Direct Relevance to Predictive Performance: ∆j directly quantifies how much a term
contributes to reducing error on unseen (validation) data, which is a primary goal.

• Efficiency: Calculating ∆j by fixing other weights is much more computationally efficient
than refitting the model M times (once for each term’s removal). This makes it practical for
iterative refinement loops with many candidate terms.

• Interpretability for LLM Guidance: The concept of “change in error if term is removed”
is intuitive and can be effectively communicated to an LLM, especially with heuristics like
“∆j ≈ 0 =⇒ drop”.

• Differentiation from other importance measures:

– It is a form of “leave-one-out” importance but applied to model terms (basis functions)
rather than individual data points (like statistical influence functions, e.g., Cook’s
distance).

– It differs from SHAP values (Lundberg & Lee, 2017), which explain the contribution
of features to individual predictions rather than the global impact of a term on overall
model MSE.

– It is distinct from feature importance measures derived from tree-based ensembles (e.g.,
Gini importance or permutation importance on raw input features), as ∆j is specific to
the contribution of pre-defined or LLM-proposed basis functions ψj(x) within a linear
model structure.

– By not refitting the model for each term removal, ∆j measures the unique contribution
of a term given the current set of other terms and their weights. This is a deliberate
choice to assess the marginal utility of a term in the specific context of the current full
model. If terms are highly collinear, this score might be low for some of them, aiding
in pruning redundant terms.

The use of validation data for calculating ∆j is critical for assessing generalization and mitigating
overfitting, guiding the LLM to select terms that are robustly beneficial.

We further explore and experimentally investigate alternative approaches to computing influence
scores in Appendix E.9.

B.3 MONTE CARLO TREE SEARCH (MCTS) IMPLEMENTATION DETAILS

When SGED employs a tree-based search strategy, it utilizes a Monte Carlo Tree Search (MCTS)
algorithm to navigate the complex hypothesis space of symbolic equations. This approach allows for
a more structured exploration than simple iterative refinement.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

• State (Node Representation): Each node in the MCTS tree represents a specific state in the
equation discovery process. This state is defined by the current set of selected basis functions
{ψj(x)}, the corresponding fitted weights {wj} that form the current best equation for that
path, and the history of decisions (proposals, prunings, and feedback) that led to this state.

• Action (Transition): An action involves transitioning from a parent node (current equation
state) to a child node (a refined equation state). This transition is achieved by executing one
full propose-and-prune cycle as described in Section 2.1. Specifically, from a selected
leaf node, the “Propose” agent suggests new terms, these are evaluated, influence scores are
calculated, and the “Prune” agent refines the term set. This results in a new equation that
defines a child node.

• Expansion: During the expansion phase of MCTS, if a selected leaf node is not a terminal
state (e.g., maximum depth not reached), child nodes are generated. SGED can generate
multiple distinct successor states (child nodes) from a single parent node by repeatedly
invoking the propose-and-prune cycle. The hyperparameter n_successors (default: 5)
controls how many child nodes are attempted to be generated from a parent node during a
single expansion step. Variation between these successors arises from the inherent stochas-
ticity in the LLM’s responses to the propose and prune prompts, even when given the same
historical context up to the parent node. Each such generated child represents a distinct path
for exploration.

• Reward and Value Estimation (Simulation/Rollout Phase): The quality or value of a
node (equation) needs to be estimated to guide the MCTS search.

– In the default SGED configuration, referred to as Heuristic MCTS (when the hyperpa-
rameter rollout_is_just_node_reward is set to True, which is the default),
no explicit rollout (simulation beyond the newly expanded node) is performed. Instead,
the reward for a newly expanded child node is its immediate, directly computed quality.
This quality is typically the negative validation Mean Squared Error (−MSEval) of the
equation associated with that child node (after the pruning step). A higher value (lower
MSE) indicates a better node. This immediate reward is then directly backpropagated
up the tree.

– If rollout_is_just_node_reward is set to False, a simulation phase (roll-
out) would be executed from the newly expanded node for a number of steps defined
by rollout_depth (default: 1, see Appendix E.3 for an investigation). The reward
from the end of this simulated trajectory would then be backpropagated. However, the
primary results in this paper use the Heuristic MCTS approach.

– Other reward signals beyond simply the negated validation set MSE could be used,
though are not explored here, e.g. incorporating alternative accuracy metrics or account-
ing for equation parsimony (e.g. as R = −MSEval−α ·Complexity, where complexity
may be defined as the number of terms, operator count, etc.).

• Backpropagation: After a node’s value is determined (either through direct evaluation in
Heuristic MCTS or via a rollout), this value is backpropagated up the tree from the expanded
node to the root. The visit counts and average reward (or value) of all visited nodes along
the path are updated.

• Selection (Tree Policy): The MCTS algorithm uses the Upper Confidence Bound applied to
Trees (UCT) formula to balance exploration and exploitation when selecting which node to
traverse down the tree. From a current node, the child i selected is the one that maximizes:

UCT(i) = Q(i) + c

√
lnN(p)

N(i)

where:

– Q(i) is the current estimated average reward (exploitation term) for child i.
– N(p) is the number of times the parent node p has been visited.
– N(i) is the number of times child node i has been visited.
– c is the exploration constant (hyperparameter, default:

√
2). A higher c encourages

more exploration of less-visited nodes.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

This selection process is repeated from the root until a leaf node (a node that has not been
expanded, or a terminal node) is reached.

• Termination: The MCTS process continues until a predefined computational budget is
exhausted. This is primarily controlled by the total_budget hyperparameter (default:
30), which defines the total number of MCTS iterations (selection, expansion, simulation/e-
valuation, backpropagation cycles). A depth_limit (default: 10) can also restrict the
maximum depth of the tree.

• Output: After the MCTS process completes, the equation corresponding to the node that
yielded the best validation MSE throughout the entire search is typically selected as the final
discovered model.

• Computational Cost: The main computational costs in the MCTS-based SGED are the
LLM API calls (for term proposal and pruning at each expansion, potentially multiple times
if n_successors > 1), the evaluation of basis functions on data, and the fitting of linear
models. The total number of MCTS iterations (total_budget) is the primary driver of
the overall computational expense.

This MCTS framework allows SGED to systematically explore diverse pathways of equation refine-
ment, potentially avoiding local optima that a simpler iterative approach might encounter.

B.4 SGED PSEUDOCODE

Below is a high-level pseudocode outlining the SGED framework. Algorithm 1 describes the overall
MCTS-driven search. Algorithm 2 details the core propose-and-prune cycle (PAPC).

For brevity, Algorithm 1 illustrates the Heuristic MCTS case, but this can be easily adapted to the
rollout with rollout_depth case.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Algorithm 1 Structure Guided Equation Discovery (SGED) - MCTS Loop

1: Input: DatasetD (containing train, validation, test sets), Problem Description Pd, MCTS Budget
BMCTS, LLM Agents (LLMP , LLMR), MCTS Parameters (exploration const c, num successors
ns, depth limit dlim)

2: Output: Best discovered symbolic equation fbest
3: Initialize fbest ← None
4: Initialize best_val_mse←∞
5: Initialize MCTS Tree T with a root node (representing an initial empty state)
6: for iteration = 1 to BMCTS do
7: selected_node← SelectPolicy(T, c) {Select a node using UCT}
8: if selected_node is suitable for expansion (e.g., not terminal by dlim, and not yet fully

expanded for ns children) then
9: {Attempt to expand selected_node by generating up to ns children}

10: for i = 1 to ns do
11: PAPC_Inputs← GatherInputsForPAPC(selected_node, Pd,D, LLMP , LLMR, fbest)

12: equation, val_mse, new_terms, history ← ProposeAndPruneCycle(PAPC_Inputs)
13: if equation was successfully generated then
14: child_node← AddChildNode(T, selected_node, new_terms, equation, val_mse, history)

15: current_reward← −val_mse {Heuristic reward for UCT}
16: BackpropagateValue(child_node, current_reward, T)
17: if val_mse < best_val_mse then
18: best_val_mse← val_mse
19: fbest ← equation
20: end if
21: end if
22: end for
23: Update expansion status of selected_node in T .
24: else
25: current_reward← −selected_node.stored_val_mse {Use node’s known value}
26: BackpropagateValue(selected_node, current_reward, T)
27: end if
28: end for
29: if fbest is not None then
30: Evaluate fbest using test set from D
31: end if
32: return fbest

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Algorithm 2 Propose-and-Prune Cycle

1: Input: current_termsin, historyin, best_equation_so_far, Pd,Dtrain,Dval, LLMP , LLMR

2: Output: equationout, val_mseout, final_termsout, historyout
3:
4: // Term Generation Phase
5: Prompt LLMP with Pd, current active terms current_termsin, best_equation_so_far,
historyin, and data preview.

6: newly_proposed_terms← LLMP .generate_terms()
7: candidate_terms← current_termsin ∪ newly_proposed_terms
8:
9: // Candidate Evaluation and Feedback Preparation

10: Evaluate all ψj ∈ candidate_terms on Dtrain to get design matrix Φtrain.
11: Fit linear model: ytrain ≈ Φtrainwcand to get candidate weights wcand.
12: Evaluate all ψj ∈ candidate_terms on Dval to get Φval.
13: Calculate full validation MSE: MSEval,cand using wcand and (Φval,yval).
14: For eachψj ∈ candidate_terms, calculate influence score ∆j on validation set (as per Appendix

B.2).
15:
16: // Term Pruning Phase
17: Prompt LLMR with Pd, candidate_terms, their weights wj , influence scores ∆j , MSEval,cand,

historyin, and current equation form.
18: pruning_decisions← LLMR.decide_terms_to_keep_drop() {keep: [...], drop: [...]}
19: final_termsout ← terms marked "keep" in pruning_decisions
20:
21: // Final Model Fitting and State Update
22: Evaluate final_termsout on Dtrain to get Φtrain,final.
23: Fit final linear model: ytrain ≈ Φtrain,finalwfinal to get wfinal.
24: Form equationout using final_termsout and wfinal.
25: Calculate val_mseout for equationout on Dval.
26: Record this cycle’s details (terms before/after pruning, decisions, MSEs, equation) into

historyout.
27:
28: return equationout, val_mseout, final_termsout, historyout

This pseudocode provides a conceptual blueprint. Actual implementations would involve detailed
prompt engineering, error handling, and specific choices for the linear model fitting procedure (e.g.,
OLS, Ridge).

B.5 LLM DETAILS

Unless otherwise specified (e.g., in Appendix E.5 which details experiments across a range of
different Large Language Models), the primary LLM employed for the core experiments presented in
this work was a version of GPT-4o. Specific model versions were used as available at the time of
experimentation. For example, one of the models used in comparative evaluations was:

• GPT-4o: model identifier gpt-4o, version 2024-11-20.

B.6 PROMPT DETAILS

The interaction with the LLM is central to the SGED framework. We employ two primary types of
interactions, mediated by distinct LLM agents: one for proposing new candidate basis functions (the
“Propose” agent) and another for refining the set of terms based on evaluation feedback (the “Prune”
agent). Below, we detail the structure of these prompts and provide illustrative examples of LLM
interactions.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

B.6.1 TERM GENERATION PHASE: THE “PROPOSE” AGENT

In this phase, the LLM is tasked with generating new candidate basis functions ψj(x). The prompt
provides comprehensive context, including the problem description, available features, the current set
of basis functions (if any), the best equation found so far, and a history of previous interactions to
facilitate learning from past attempts.

Prompt Template for “Propose” Agent: The following is a representative template for the prompt
provided to the “Propose” agent. Specific details such as dataset descriptions, feature lists, and
historical performance are dynamically inserted.

Listing 1: Prompt Template for “Propose” Agent
You are an automated assistant for proposing linear terms for the equations in a symbolic regression pipeline.

Your proposed terms will be:
1. Concatenated with the current candidate terms.
2. Sent to a LLM term pruner agent that will use various computed signals to decide which terms to keep and

which to drop.

Instructions:
Given below information, propose some candidate terms. The terms can be any valid numpy expressions.
Make use of the dataset and problem description to propose relevant terms.
Make sure to use the learnings from the history of previous rounds.

Return these between triple backticks and one term on each line.
The first backticks must be prepended with TERMS

Example output:

TERMS
‘‘‘
x1
x2**2
np.sin(x3)
‘‘‘

NOTES:

* Propose around {terms_per_round} terms, generally not too many unless this is the first round.

* If this *is* the first round, propose around {first_round_n_candidates} terms.

* You may propose no terms (nothing between the TERMS backticks) if you think it is appropriate.

DATASET AND PROBLEM DESCRIPTION

{dataset_and_problem_description}

CURRENT TERMS:

{current_terms}

Current equation:
{current_equation}

HISTORY

{history}

=========
The input data and target variable(s) preview:
{input_preview}

The prompt template for the “Propose” agent dynamically incorporates several pieces of information.
Key placeholders include:

terms_per_round: Hyperparameter specifying how many new basis functions the LLM should
suggest in the current round. Default value: 5.

first_round_n_candidates: Hyperparameter specifying how many new basis functions the
LLM should suggest in the first round. Default value: 10.

dataset_and_problem_description: Provides the LLM with context about the scientific
problem and data, e.g.:
Prediction of Treatment Response for Combined Chemo- and Radiation-Therapy
for Non-Small Cell Lung Cancer Patients Using a Bio-Mathematical Model

Here you must model the state differential of **cancer_volume**, and **chemo_concentration**, which are **
dv_dt** and **dc_dt**, driven by the input actions **chemo_dosage** and **radiotherapy_dosage**,
together with relevant

laboratory and coagulation markers listed below.

Description of the variables

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

* cancer_volume : Volume of the tumour (cm^3)

* chemo_concentration : Plasma concentration of vinblastine (mg m^-3)

* chemo_dosage : Administered vinblastine dose rate (mg m^-3 day^-1)

* radiotherapy_dosage : Delivered external-beam RT dose rate (Gy day^-1)

Time unit: **days**

Typical value ranges

* cancer_volume : 0.01433 - 1170.861 cm^3

* chemo_concentration : 0 - 9.9975 mg m^-3

* chemo_dosage : 0 - 5 mg m^-3 day^-1

* radiotherapy_dosage : 0 - 2 Gy day^-1

Dataset summary

The training dataset consists of **1000** patients, each
followed for 60 days with daily resolution (delta_t = 1 day). Continuous variables are recorded once per day

unless otherwise specified.

current_terms: Informs the LLM about terms already part of the active model in iterative steps,
e.g.:
[’cancer_volume’, ’chemo_dosage’, ’cancer_volume * chemo_concentration’, ’cancer_volume * radiotherapy_dosage

’, ’np.log(cancer_volume + 1)’, ’np.sqrt(cancer_volume)’]

current_equation: Shows the LLM the current best-performing model to potentially build
upon or deviate from, e.g.:
dv_dt = 0.009194 cancer_volume - 0.0004414 chemo_dosage - 0.02797 cancer_volume * chemo_concentration -

0.04775 cancer_volume * radiotherapy_dosage - 1.214 np.log(cancer_volume + 1) + 1.202 np.sqrt(
cancer_volume)

dc_dt = - 0.004518 cancer_volume + 0.9776 chemo_dosage - 0.001191 cancer_volume * chemo_concentration - 3.691e
-06 cancer_volume * radiotherapy_dosage - 1.442 np.log(cancer_volume + 1) + 0.5209 np.sqrt(cancer_volume
)

history: Gives a history of terms decisions, and performance, enabling in-context learning, e.g.
Round node_0_0: KEEP=[’cancer_volume’, ’cancer_volume * chemo_concentration’, ’cancer_volume *

radiotherapy_dosage’, ’np.log(cancer_volume + 1)’, ’np.sqrt(cancer_volume)’, ’chemo_dosage’] | DROP=[’
chemo_concentration’, ’radiotherapy_dosage’, ’chemo_dosage * radiotherapy_dosage’, ’cancer_volume *
chemo_dosage’, ’cancer_volume * radiotherapy_dosage’, ’np.log(cancer_volume + 1)’, ’np.sqrt(
cancer_volume)’, ’radiotherapy_dosage’] | MSE before pruning=0.005453 (per-output
=[0.010905755578988435, 6.33977252002678e-27]) | MSE after pruning=0.900026 (per-output
=[0.011005448429060318, 1.789047395904737])

Round node_0_0_1: ...

Example LLM Response for “Propose” Agent: Below is an example response from the LLM
acting as the “Propose” agent, based on the template above.

Listing 2: Example LLM Response from “Propose” Agent
TERMS
‘‘‘
cancer_volume
chemo_concentration
chemo_dosage
radiotherapy_dosage
np.log(cancer_volume + 1)
np.sqrt(cancer_volume)
chemo_dosage * radiotherapy_dosage
cancer_volume * chemo_concentration
radiotherapy_dosage / (cancer_volume + 1)
chemo_dosage / (chemo_concentration + 1)
‘‘‘

B.6.2 TERM PRUNING PHASE: THE “PRUNE” AGENT

After new terms are proposed and a model is fitted using the expanded set of basis functions, the
“Prune” agent is invoked. This agent receives the full list of candidate terms, their fitted weights wj ,
their per-term influence scores ∆j (e.g., change in validation MSE if the term is removed), and the
overall validation MSE. Its task is to decide which terms to keep or discard.

Prompt Template for “Prune” Agent: The following template illustrates the prompt given to the
“Prune” agent.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Listing 3: Prompt Template for “Prune” Agent
You are an equation-pruning assistant for symbolic regression.

==
INPUT YOU RECEIVE
==

* A table (or dictionary/json representation) where each row has:

field	meaning
term	Name of the symbolic basis function psi_k(x) (e.g. "x1", "sin(x2)", ...).
weight	Fitted scalar coefficient w_k obtained by ordinary least squares (OLS).
influence	Influence score for term k (see definition below).

* The validation set MSE.

Influence definition (no refit)

delta_k is the increase in mean-squared-error (MSE) if the k-th weight is deleted while all other weights stay
fixed. For OLS this is

delta_k = (w_k^2 / n) * sum phi_k(x_i)^2 (always >= 0).

* Note that the influence values are computed on the validation (rather than training) set, and thus may not
always be >= 0.

Hence:

* If influence is large -> the term is important (its removal hurts the loss a lot).

* If influence ~= 0 -> the term is useless (its removal makes no noticeable difference).

==
YOUR TASK
==
1. **Inspect every row**.
2. **Decide "keep" or "drop"** for each term using the rule:

* Use the heuristic: "delta_k ~= 0 -> drop", "large delta_k -> keep" and your own judgement.

3. **Return** a python dictionary after "DECISION" with exactly the two keys

DECISION
‘‘‘
{{

"keep": ["term_a", "term_b", ...],
"drop": ["term_c", "term_d", ...]

}}
‘‘‘‘

Place each term name in either **keep** or **drop** - never both, never neither.

IMPORTANT:
* Make use of the dataset and problem description to make the best decision.

* Make sure to use the learnings from the history of previous rounds.

* (!) You must consider the generalization beyond the validation set and make decisions accordingly.

* (!) You should also consider BOTH the weights and the influence of the terms.

* (!) You MUST keep {keep_n_terms} terms at most, to keep the model interpretable.

__
CONVENTIONS & NOTES
__

Important notes

* Treat terms independently; no need to refit or update weights.

* Note that everything was evaluated on the validation set to avoid overfitting.

* If there are multiple outputs (targets), you will see multiple tables, one for each target.

* Use all the information available, but keep in mind that you must only return one keep/drop decision even if
there are multiple outputs.

* Keep only the most important terms for each output.

Output format

* Feel free to comment briefly (<= 30 chars) about each decision, but keep the python dictionary in the right
format.

* The dictionary MUST be provided between triple backticks, otherwise it cannot be parsed.

* It must be prepended with "DECISION", otherwise it cannot be parsed.

__
EXAMPLE
__
INPUT TABLE(S):

y_1:
term	weight	influence
x1	3.00	12.21
x2	-1.96	5.14
x1**2	0.53	0.91
sin	0.93	0.52
cos	-0.05	0.0009

y_2:

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

term	weight	influence
x1	3.00	12.21
x2	-1.96	5.14

MSE (per-output): [0.217, 0.145]
MSE overall: 0.181

Output:

DECISION
‘‘‘
{{

"keep": ["x1", "x2", "x1**2", "sin"],
"drop": ["cos"]

}}
‘‘‘

That’s it - perform the keep/drop decision based on the information provided.

==
DATASET AND PROBLEM DESCRIPTION
==
{dataset_and_problem_description}

==
CURRENT TERMS
==
{current_terms}

Current equation:
{current_equation}

==
HISTORY
==
{history}

==
INPUT YOU RECEIVE
==

INPUT TABLE(S):

{input}

MSE (per-output): [..., ...]
MSE overall: ...

The prompt template for the “Prune” agent is populated with the following key pieces of information
to guide the pruning decision:

keep_n_terms: Hyperparameter specifying the maximum number of terms to keep. Default value:
6.

dataset_and_problem_description: Analogous to the “Propose” agent.

current_terms: Analogous to the “Propose” agent.

current_equation: Analogous to the “Propose” agent.

history: Analogous to the “Propose” agent.

input: This is a critical input, formatted as a table, showing each candidate basis function ψj , its
fitted weight wj , and its calculated influence score ∆j . For example:
INPUT TABLE(S):

dv_dt:
term	weight	influence
cancer_volume	0.0092651	2.7752
chemo_concentration	-0.0035792	0.000354906
chemo_dosage	0.00120966	9.91133e-06
radiotherapy_dosage	0.00212704	-7.52432e-07
cancer_volume * chemo_concentration	-0.027962	638.689
cancer_volume * chemo_dosage	-1.14907e-05	9.16085e-05
cancer_volume * radiotherapy_dosage	-0.0477543	197.164
chemo_dosage * radiotherapy_dosage	-0.000750627	1.83055e-05
np.log(cancer_volume + 1)	-1.20511	17.425
np.sqrt(cancer_volume)	1.19886	109.978

dc_dt:
| term | weight | influence |

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

|:------------------------------------|-------------:|-------------:|
| cancer_volume | 4.8914e-16 | -5.36642e-27 |
| chemo_concentration | -0.5 | 6.62719 |
| chemo_dosage | 1 | 10.8058 |
| radiotherapy_dosage | -6.55278e-15 | 4.93846e-28 |
| cancer_volume * chemo_concentration | 1.86065e-17 | -1.98136e-27 |
| cancer_volume * chemo_dosage | -8.391e-18 | 7.54011e-28 |
| cancer_volume * radiotherapy_dosage | -9.34055e-17 | 3.47305e-27 |
| chemo_dosage * radiotherapy_dosage | -1.90453e-16 | 3.39238e-29 |
| np.log(cancer_volume + 1) | 5.50181e-16 | -2.14874e-28 |
| np.sqrt(cancer_volume) | -2.09539e-16 | 2.65579e-28 |

MSE (per-output): [0.010905755578988435, 6.33977252002678e-27]
MSE overall: 0.005453

Example LLM Response for “Prune” Agent: An example of an LLM’s response when acting as
the “Prune” agent is shown below.

Listing 4: Example LLM Response from “Prune” Agent
To make the equation interpretable and preserve only the most meaningful terms, I will review the terms in

both outputs (‘dv_dt‘ and ‘dc_dt‘) based on their influence and weight. I’ll aim to retain at most 6
terms.

Analysis for ‘dv_dt‘:
1. **Highly influential terms**:

- ‘cancer_volume * chemo_concentration‘ (delta = 638.509) is critical.
- ‘cancer_volume * radiotherapy_dosage‘ (delta = 197.209) is highly impactful.
- ‘np.sqrt(cancer_volume)‘ (delta = 110.587) has substantial influence.
- ‘np.log(1 + cancer_volume)‘ (delta = 17.6803).

2. **Moderately influential / less relevant**:
- ‘cancer_volume‘ (delta = 2.7081): core variable, but delta suggests moderate importance.
- ‘chemo_dosage‘, ‘radiotherapy_dosage‘: limited delta values.

3. **Negligible**:
- Terms involving weighted interactions: e.g., ‘chemo_dosage / (1 + cancer_volume)‘ (delta ~= 0). These

can be ignored safely.

Analysis for ‘dc_dt‘:
1. **Highly influential terms**:

- ‘np.log(1 + cancer_volume)‘ (delta = 22.3107): critical.
- ‘chemo_dosage‘ (delta = 18.8115): essential for modeling ‘dc_dt‘.
- ‘np.sqrt(cancer_volume)‘ (delta = 15.8203): quite significant.

2. **Moderately influential**:
- ‘radiotherapy_dosage‘: important as part of the model.
- ‘cancer_volume‘: relevant, but has relatively small delta compared to other terms.

3. **Negligible terms**:
- Interactions like ‘radiotherapy_dosage / (1 + cancer_volume)‘ (small delta).

Considering both outputs, I aim to balance interpretability and prioritization based on influence across both
equations. Here is the final decision:

DECISION
‘‘‘
{

"keep": [
"cancer_volume * chemo_concentration", # Very high delta for dv_dt
"cancer_volume * radiotherapy_dosage", # Very high delta for dv_dt
"np.sqrt(cancer_volume)", # Significant delta for both dv_dt and dc_dt
"np.log(1 + cancer_volume)", # Critical delta for both dv_dt and dc_dt
"chemo_dosage", # Crucial delta for dc_dt
"radiotherapy_dosage" # Balanced importance for dc_dt
],
"drop": [
"cancer_volume", # Moderate delta in both outputs
"chemo_dosage * chemo_concentration", # Insignificant in dv_dt (<0.0003)
"radiotherapy_dosage * chemo_concentration", # Similar to above
"chemo_dosage / (1 + cancer_volume)", # Negligible delta
"radiotherapy_dosage / (1 + cancer_volume)" # Negligible delta
]

}
‘‘‘

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

C BENCHMARK DATASET AND EVALUATION DETAILS

Our evaluation utilizes several benchmark datasets, including three derived from a sophisticated
biomedical Pharmacokinetic-Pharmacodynamic (PKPD) model, one from an epidemic simulator, one
real-world clinical dataset, and one real-world biological dataset.

C.1 CANCER PKPD SIMULATIONS

Three of our benchmark environments are based on a well-established biomedical Pharmacokinetic-
Pharmacodynamic (PKPD) model of lung cancer tumor growth. This model simulates the combined
effects of chemotherapy and radiotherapy and has been utilized in prior research (Geng et al., 2017;
Seedat et al., 2022; Bica et al., 2020; Melnychuk et al., 2022; Holt et al., 2024b). We use this model
to generate data for three distinct scenarios: Lung Cancer (no treatments), Lung Cancer (with
Chemo.) (chemotherapy only), and Lung Cancer (with Chemo. & Radio.) (both chemotherapy
and radiotherapy). Each scenario results in a separately sampled dataset. The comprehensive Lung
Cancer (with Chemo. & Radio.) scenario, based on the general Cancer PKPD model, is described
below, followed by how the other variations are derived.

General Cancer PKPD Model Structure. This model describes the tumor volume x(t) (in cm3) over
time t (in days) following diagnosis. It incorporates the effects of radiotherapy, urt , and chemotherapy,
uct . The tumor dynamics are governed by the differential equation:

dx(t)

dt
=

(
ρ log

(
K

x(t)

)
− βcC(t)− (αrd(t) + βrd(t)

2)

)
x(t) (1)

where the first term ρ log
(

K
x(t)

)
represents tumor growth dynamics, the term βcC(t) models the

effect of chemotherapy, and (αrd(t)+βrd(t)
2) models the effect of radiotherapy. The patient-specific

parameters K, ρ, βc, αr, βr are adopted from Geng et al. (2017), and their values are summarized in
Table 5.

Table 5: Cancer PKPD model parameter values from Geng et al. (2017).

Model Component Variable Parameter Symbol Value

Tumor Growth Growth rate ρ 7.00× 10−5 day−1

Carrying capacity K 30 cm3

Radiotherapy Linear cell kill αr 0.0398 Gy−1

Quadratic cell kill βr Set such that αr/βr = 10 Gy

Chemotherapy Chemotherapy cell kill βc 0.028 (mg/m3)−1 day−1

The concentration of the chemotherapy drug, C(t), is modeled by an exponential decay with a
one-day half-life:

dC(t)

dt
= −0.5C(t)

A chemotherapy action uct corresponds to an increase in C(t) by 5.0mg/m3 of Vinblastine adminis-
tered at time t. The radiotherapy term d(t) represents the daily dose, with urt corresponding to 2.0Gy
fractions of radiotherapy delivered at timestep t.

Time-Dependent Confounding. To introduce realistic complexities, the administration of chemother-
apy and radiotherapy is modeled as Bernoulli random variables, with probabilities pc(t) and pr(t)
dependent on the average tumor diameter D̄(t):

pc(t) = σ

(
γc

Dmax
(D̄(t)− δc)

)
pr(t) = σ

(
γr

Dmax
(D̄(t)− δr)

)
(2)

where σ(·) is the sigmoid function, Dmax = 13 cm is the maximum tumor diameter, δc = δr =
Dmax/2. The parameters γc = γr = 2 control the strength of this time-varying confounding.

Dataset Generation. For each of the three Cancer PKPD scenarios, we sample N = 1, 000 patient
trajectories. Initial tumor volumes x(0) are drawn from a uniform distribution U(0, 1149) cm3.
Patient trajectories are simulated for 60 days using the PKPD model (Equation (1)) and the specified

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

action policy, employing a Euler stepwise numerical solver. This procedure generates one dataset
sample. We create distinct training, validation, and test sets (Dtrain,Dval,Dtest) by repeating this
sampling process with different random seeds. For each run of a benchmark method requiring a
random seed, these datasets are re-sampled. The Lung Cancer scenario omits both treatment terms
(effectively C(t) = 0, d(t) = 0). The Lung Cancer (with Chemo.) scenario omits the radiotherapy
term only (d(t) = 0). The Lung Cancer (with Chemo. & Radio.) scenario uses the full model as
described.

C.2 COVID-19 EPIDEMIC SIMULATION

We employ COVASIM, a detailed agent-based simulator for modeling COVID-19 epidemics (Kerr
et al., 2021). COVASIM can simulate various non-pharmaceutical interventions (e.g., lockdowns,
social distancing) and pharmaceutical interventions (e.g., vaccinations). In this model, each agent sig-
nifies an individual who can transition between states: susceptible, exposed, infectious, or recovered
(which includes deaths).

We use COVASIM with its default parameters as provided in its open-source implementation1. To
generate diverse epidemic trajectories, we simulate 24 distinct "countries" or populations. For each
simulation, the population size is set to 1, 000, 000 individuals, with each agent simulated individually
(i.e., simulation rescaling is disabled). Each simulation starts with an initial number of infected
individuals I(0) sampled uniformly from U(10, 000, 100, 000), and the epidemic is simulated for 60
days.

This process is repeated with independent random seeds to generate training, validation, and test
datasets (Dtrain,Dval,Dtest). For each benchmark method run that involves a random seed, these
datasets are re-sampled.

C.3 WARFARIN PHARMACOKINETICS DATASET

We utilize a real-world clinical trial dataset focused on Warfarin pharmacokinetics (PK), which
is publicly available (Janssen et al., 2022). This dataset, known as the NOMEN dataset, can
be accessed from https://github.com/Janssena/SI-AIEP-paper. It comprises data
from 32 patients who received a single dose of Warfarin. The dataset contains a total of 251
Warfarin concentration measurements, with a median of six measurements per patient. Warfarin
was administered at t = 0, and concentration measurements were taken at predefined time points:
t ∈ {0.25, 0.5, 1.0, 2.0, 4.0, 6.0, 12.0, 24.0, 48.0, 72.0, 96.0, 120.0} hours. Covariates available for
each patient include weight, age, and sex.

We adhere to the original pre-processing scripts provided with the dataset. The data is split into
training, validation, and test sets using proportions of 70%, 15%, and 15%, respectively. These
splits are performed chronologically to maintain temporal causality. This dataset is released under a
GPL-3.0 license.

C.4 RNA POLYMERASE II PAUSING DATASET

This dataset, central to the case study presented in Section 5.1, focuses on predicting RNA Poly-
merase II (Pol II) pausing. It is derived from eNET-seq data that maps Pol II pause sites in human
cells at single-nucleotide resolution (Fong et al., 2022). The primary objective is to predict the
pause_score, a continuous variable between 0 and 1, where a higher score indicates increased
Pol II pausing at a specific genomic location. The pause score is calculated as the ratio of sequencing
reads at the pause site to the total reads in a 200bp window surrounding it.

The dataset comprises 263 features, including:

• Genomic Coordinates and Context: Features such as start (current position),
gene_start, gene_end, exon_intron_start, exon_intron_end, distance to
nearest downstream (down_nuc_dist) and upstream (up_nuc_dist) nucleosomes.

• Chromatin Features:
1COVASIM is available at https://github.com/InstituteforDiseaseModeling/

covasim.

34

https://github.com/Janssena/SI-AIEP-paper
https://github.com/InstituteforDiseaseModeling/covasim
https://github.com/InstituteforDiseaseModeling/covasim

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

– Nucleosome occupancy signal from MNase-seq (e.g.,
SIGNAL_MNase_CONDITION_WT).

– Histone modification signals from ChIP-seq, such as H3K4me3 (e.g.,
SIGNAL_ChIPseqH3K4me3_CONDITION_CDK7negWT, where higher sig-
nal implies more H3K4me3 modification) and H3K36me3 under various
conditions (e.g., SIGNAL_ChIPseqH3K36me3_CONDITION_negU170K,
SIGNAL_ChIPseqH3K36me3_CONDITION_posU170K, where higher signal
indicates more H3K36me3 modification).

• RNA Structure Features: DMS signal (e.g., SIGNAL_DMS_CONDITION_WT_STRAND_neg,
where lower signal implies more RNA structure) and RNA structure scores (e.g.,
SIGNAL_StructureScore_CONDITION_WT_STRAND_neg, where higher score
indicates more structure).

• DNA Sequence Context: One-hot encoded nucleotides at positions -20 to +20 relative to the
potential pause site (e.g., seq_neg1__A, seq_0__G, seq_1__T). Possible nucleotide
categories are A, C, G, T, and N (unknown).

• Gene Region Annotations: Categorical features like chrom__<category>
(chromosome, e.g., chr1, chrX), strand__<category> (pos or neg),
gene_region__<category> (one of TSS, body, termination), and
exon_intron__<category> (one of exon, intron, missing). Cat-
egorical columns are one-hot encoded, with column names in the format
<column_name>__<category>.

The target variable is pause_score. The dataset used for the experiments described in Section 5.1
was balanced, containing approximately 48,000 pause sites and a similar number of control sites
(where pause score = 0), and was split into training, validation, and test sets. For each benchmark
method run involving a random seed, this training/validation/test split was resampled.

C.5 BENCHMARK METHOD DETAILS

Our comparative evaluation includes several established benchmark methods to contextualize the
performance of SGED. These methods span both black-box and white-box modeling paradigms.

C.5.1 WHITE-BOX NON-LLM BASELINES

DyNODE (Dynamical Neural Ordinary Differential Equations) is a method that learns the underlying
dynamics of a system from observed data by parameterizing the derivative function of an ordinary
differential equation (ODE) with a neural network (Chen et al., 2018). For systems involving external
actions or interventions, the DyNODE framework can be extended to incorporate these action inputs
directly into the learned dynamics, allowing it to model how treatments or other external factors
influence the system’s evolution over time (Alvarez et al., 2020). This approach offers a flexible
black-box model for continuous-time dynamical systems.

SINDy (Sparse Identification of Nonlinear Dynamics) is a white-box method designed to discover
governing differential equations directly from time-series data (Brunton et al., 2016). It operates
by constructing a library of candidate nonlinear functions of the state variables and then employs
sparse regression techniques (typically sequentially thresholded least-squares or Lasso) to identify a
minimal set of active terms that best describe the observed dynamics. The result is an interpretable,
parsimonious differential equation model.

GPLearn (Stephens, 2015) is a genetic programming approach for symbolic regression that algo-
rithmically discovers mathematical expressions to model a given dataset. It works by evolving a
population of candidate equations over a number of generations, applying genetic operators such
as crossover and mutation to iteratively refine solutions based on a fitness metric, typically related
to prediction accuracy. In the experiments, unless stated otherwise, GPLearn was configured with
a population_size of 1000, run for 30 generations, and a parsimony_coefficient
of 1.0. The parsimony_coefficient of 1.0 was selected to apply a considerable penalty to the
complexity of the evolved expressions. This encourages the discovery of more concise equations,
which aligns with the general aim of finding parsimonious models (e.g., around six terms in the
primary SGED experiments), thus making shorter programs preferable during the evolutionary search.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

C.5.2 WHITE-BOX LLM BASELINES

To ensure fair comparison, we set the maximum number of terms allowed to be six (unless otherwise
stated) in SGED, and ensured this was comparably set in all other corresponding methods. We use
the same underlying LLM across all LLM-based methods (GPT-4o version 2024-11-20, unless
otherwise stated).

ZeroShot represents a baseline LLM-driven approach where the Large Language Model is prompted
to generate a symbolic equation model in a single pass, based solely on the provided problem
description and dataset characteristics. This method does not involve any iterative refinement or
feedback based on the model’s performance on actual data. Consequently, the parameters of the
equation generated by the ZeroShot method are used as proposed by the LLM without any subsequent
optimization against the training dataset. The number of terms in the equation generated by the LLM
was constrained via prompting, typically to a maximum of six terms (unless stated otherwise), to
align with the parsimony goals of SGED.

ZeroOptim builds directly upon the ZeroShot approach. An LLM first generates an initial symbolic
equation model in a zero-shot manner, based on the problem description. However, unlike the
pure ZeroShot baseline, the structural form of this LLM-proposed equation is then taken, and its
constituent parameters (weights wj) are subsequently optimized by fitting them to the training data.
This optimization process is performed analogously to the final model fitting stage within the SGED
framework, aiming to find the best parameter values for the LLM’s proposed equation structure.
As with ZeroShot, the LLM was prompted to generate equations with a limited number of terms,
typically up to six (unless stated otherwise), for comparability.

ICL - Basic Feedback is an LLM-based iterative equation discovery method that serves as a key
ablation and comparator to SGED. In this approach, the LLM iteratively proposes candidate equations
(or modifications to existing ones). After each proposal, the equation’s parameters are optimized
analogously to SGED, and its performance is evaluated, typically yielding a scalar metric such as
the overall Mean Squared Error (MSE) on a validation set. This scalar MSE, along with a history
of previously attempted equations and their outcomes, is now provided back to the LLM to guide
its proposal for the next iteration, facilitating in-context learning. Crucially, ICL - Basic Feedback
lacks the granular, per-term influence scores (∆j) that are central to SGED. Furthermore, it does
not incorporate SGED’s dedicated term pruning phase, where an LLM agent refines the equation
structure based on these influence scores. For fair comparison with SGED, the maximum number of
terms in the equations generated by the LLM was limited via prompting, with a default of six terms
in the experiments unless specified otherwise.

D3-white-box (Holt et al., 2024b) refers to the Data-Driven Discovery framework when specifically
configured to discover interpretable, white-box dynamical system models. This approach leverages
Large Language Models (LLMs) within an iterative cycle involving three core agents: Modeling,
Feature Acquisition, and Evaluation. For white-box discovery, the Modeling Agent is tasked by
the LLM to propose and refine closed-form equation models. These equations are represented as
executable Python code, typically PyTorch modules. After a model is proposed, its parameters are
optimized against training data. The Evaluation Agent then assesses the model, providing feedback
that includes quantitative metrics like validation Mean Squared Error (MSE) and qualitative verbal
reflections on model structure and plausibility. This feedback informs the LLM for subsequent
iterations of model generation and refinement. The Feature Acquisition Agent can also propose
additional relevant features to incorporate, further guiding the discovery process, although for specific
benchmark comparisons, it might be applied to a fixed set of predefined features. The overall D3
framework aims to autonomously navigate the model space, identify relevant system variables, and
converge on accurate, interpretable equations. The implementation details and hyperparameters as
per (Holt et al., 2024b) were used for this benchmark. The maximum number of input features in the
white-box model was constrained via prompting, with a default of six, unless specified otherwise.

LaSR (Symbolic Regression with a Learned Concept Library, Grayeli et al., 2024) is a framework
that enhances traditional genetic algorithms for symbolic regression by incorporating a learned
library of abstract textual concepts. It uses an LLM to discover and evolve high-level concepts
(e.g., “exponential decay”) from successful equations. These concepts then guide the mutation and
crossover operations in the search, biasing it towards scientifically plausible structures rather than
refining the equations directly. The complexity hyperparameter maxsize of 30 was used to allow

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

for equations at least as complex as the six-term limit used elsewhere. The total number of cycles
was set to 75. Other hyperparameters used were as per Grayeli et al. (2024).

LLM-SR (Scientific Equation Discovery via Programming with Large Language Models, Shojaee
et al., 2025) frames equation discovery as program synthesis. It leverages an LLM’s scientific prior
knowledge and code generation capabilities to propose equation skeletons as Python programs. These
programs are then combined with an evolutionary search, where data-driven feedback on the overall
program’s fit is used to guide the iterative refinement process. The complexity hyperparameter
max_nparams was set to 8, in excess of SGED’s six term limit. The rest of the hyperparameters
were used as per Shojaee et al. (2025).

ICSR (In-Context Symbolic Regression, Merler et al., 2024) employs an LLM as an optimizer within
an iterative refinement loop. The LLM is prompted with a set of previously evaluated equations
and their corresponding scalar fitness scores (which typically combine accuracy and a complexity
penalty). Through in-context learning, the LLM is tasked with generating a new candidate equation
that is expected to achieve a better score, effectively navigating the solution space based on a history
of successes and failures. The hyperparameter from Merler et al. (2024) were used, and max_nodes
complexity parameter was set to 30 to allow for equations at least as complex as the six-term limit
used in SGED and elsewhere.

C.5.3 BLACK-BOX BASELINES

RNN (Recurrent Neural Network) models are a class of neural networks well-suited for sequential
data, including time-series (Rumelhart et al., 1986). Standard RNN architectures, such as those using
LSTM (Long Short-Term Memory) (Hochreiter & Schmidhuber, 1997) or GRU (Gated Recurrent
Unit) (Cho et al., 2014) cells, maintain an internal hidden state that captures information from past
inputs, enabling them to model temporal dependencies. For prediction tasks, the RNN processes
input sequences (e.g., trajectories of state variables and actions) to predict future states or system
outputs. These are generally considered black-box models due to the complexity of their internal
representations.

Transformer models, originally introduced for natural language processing tasks (Vaswani et al.,
2017), have demonstrated strong performance on a wide variety of sequential data, including time-
series. The core mechanism of Transformers is the attention mechanism, particularly self-attention,
which allows the model to weigh the importance of different elements in the input sequence when
making predictions. This enables them to capture long-range dependencies effectively. Like RNNs,
Transformer models are typically considered black-box due to their intricate architectures and large
number of parameters.

C.6 EVALUATION DETAILS

We assess the performance of all benchmark methods using the mean squared error (MSE) on a
held-out test dataset, denoted asDtest. The MSE is calculated based on the model’s predictions against
the true target values in this test set. Where there are multiple target variables, the mean MSE across
all targets is used.

For each method, given per-seed test MSEs x1, . . . , xn, we report two-sided 95% confidence intervals
for the mean across seeds as x̄± t0.975,n−1

s√
n

, where x̄ is the sample mean, s is the unbiased sample
standard deviation, and t0.975,n−1 is the Student’s t critical value (see, e.g., Wasserman, 2004).
Replicates are independent training runs (random seeds). We use the appropriate degrees of freedom
for each method’s n.

When a simulator is used to generate data (e.g., for the Cancer PKPD and COVID-19 benchmarks as
described in Appendix C), new training, validation, and test datasets (Dtrain,Dval,Dtest) are indepen-
dently generated for each random seed. Unless specified otherwise, the validation and test datasets
are generated to contain a comparable number of samples or trajectories as the training set.

Each benchmark model is trained using its respective training dataset (Dtrain). For methods that
support it, early stopping (at patience 10) or default model selection heuristics are applied using
the validation dataset (Dval) to prevent overfitting and guide the learning process. For SGED, the
validation set is critically used for calculating per-term influence scores and guiding the pruning

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

decisions, as detailed in Section 2. Maximum number of iterations or generations is set to 30 for all
methods where this is applicable unless stated otherwise; SGED maximum node expansion budget
for MCST is similarly set set to 30. For a complementary experiment comparing methods at a
fixed computational (LLM token) budget, see Appendix G.3. The final reported performance for all
methods is evaluated on the unseen test dataset (Dtest). This entire procedure of data generation (if
applicable), training, validation-guided refinement (if applicable), and testing is repeated for each
random seed to ensure robust and reliable comparisons. We use 25 random seeds for SGED results
and other LLM-based method results, using the same underlying LLM. Given the evaluation is
exactly the same as the baseline and datasets for some results of the baselines, we use previous values
averaged over 10 random seeds for the non-LLM baselines from paper Holt et al. (2024b).

D RNA POLYMERASE II PAUSING CASE STUDY – FURTHER DISCUSSION

In this section, we provide SHAP plots for the case study experiment (referred to as Experiment 1
here), an additional experiment (referred to as Experiment 2 here) conducted to further investigate
the use of SGED with the RNA Polymerase II pausing problem, and a discussion given both sets
of results. The aim is to illustrate how SGED can be used in scientific discovery and hypothesis
generation process (e.g. note the extension to Experiment 2 from Experiment 1, given the results of
the former). This case study is one of many potential use cases for SGED, illustrating the potential
power of this method.

D.1 EXPERIMENT 1 SHAP PLOTS

To further interrogate the interpretable equation discovered by SGED for RNA Polymerase II pausing
(presented in Section 5.1), f(x) =

∑
j wjψj(x), we employed SHapley Additive exPlanations

(SHAP) (Lundberg & Lee, 2017). SHAP is a game theoretic approach that explains the output
of a model by assigning an importance value (SHAP value) to each of its input features for every
individual prediction. In this application, the "features" provided to SHAP are the evaluated basis
functions ψj(x) that form the terms of the SGED equation. The SHAP values therefore quantify
how much each term wjψj(x) contributes to pushing the model’s output (the pause score) from its
base (average) prediction to the actual predicted value for a given sample. This analysis allows us to
visualize the magnitude, variability, and directional impact of each constituent term in the discovered
equation.

While the SGED equation f(x) =
∑

j wjψj(x) is already structured for interpretability as a weighted
sum of basis functions, SHAP analysis provides a standardized framework to:

• Visualize the distribution of contributions for each basis function term ψj(x) across all
samples.

• Understand how the specific value of a basis function ψj(x) (which itself is derived from the
original input features like signalMNase or sequence indicators) influences its contribution to
the final pause score.

• Confirm the relative importance and consistent impact of terms that were selected and
weighted during the SGED discovery process.

Essentially, SHAP helps to decompose the prediction into contributions from each ψj(x) term, pro-
viding insights at both a global (overall term importance) and local (individual prediction explanation)
level.

We generated two types of SHAP plots to visualize these explanations, as shown in Figure 3: a
beeswarm plot and a custom term influence bar plot.

The beeswarm plot (Figure 3a) summarizes the SHAP values for the most influential basis function
terms ψj(x) in the equation. Each point on the plot represents a single term’s SHAP value for
a specific sample (a potential pause site). The terms are ranked along the y-axis by their global
importance (sum of absolute SHAP values across all samples). The x-axis shows the SHAP value,
indicating the term’s impact on the model output; positive SHAP values contribute to a higher
predicted pause score, while negative values contribute to a lower score. The color of each point
corresponds to the value of the basis function ψj(x) for that sample (typically, red indicates high

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

values of ψj(x) and blue indicates low values). This coloring reveals how the magnitude of each
basis function’s evaluation influences its contribution to the pause score.

The custom term influence bar plot (Figure 3b) provides an alternative view of global term
importance and the general direction of each term’s influence. The length of each bar corresponds to
the mean absolute SHAP value for that basis function term ψj(x), signifying its overall importance
in the equation. The color and direction of the bar indicate the predominant direction of the term’s
influence on the pause score. This directionality is determined by calculating the Spearman’s rank
correlation coefficient (ρ) between the values of the basis function ψj(x) for each sample and their
corresponding SHAP values for that term. Spearman’s correlation is employed here because:

• It assesses monotonic relationships. The SHAP value of a term wjψj(x) will have a
monotonic relationship with ψj(x) (the direction determined by the sign of wj). Spearman
captures this robustly.

• It is robust to outliers in the evaluated basis function values or the SHAP values.
• It operates on the ranks of the data, suitable even if distributions are non-normal.

A positive Spearman correlation (typically shown in red, extending to the right) suggests that as
the value of the basis function ψj(x) increases, its SHAP value (and thus its effective contribution
wjψj(x) relative to its mean) tends to push the predicted pause score higher. Conversely, a negative
correlation (typically shown in blue, extending to the left) suggests that an increasing value of
ψj(x) tends to push the pause score lower. This plot helps to quickly identify which terms in the
SGED-discovered equation are most impactful and whether higher values of these terms generally
promote or inhibit Pol II pausing.

D.2 EXPERIMENT 2 AND DISCUSSION

Experimental Setup. Experiment 1 (discussed in Section 5.1) tasked SGED with predicting pause
sites from an artificially balanced dataset comprising equal numbers of actual pause sites and control
non-pause sites within genes. While this approach identified key features distinguishing pause
sites from non-pause regions, a limitation is that pause sites are naturally much less frequent than
non-pause sites. Furthermore, this setup primarily addresses the presence of a pause rather than the
strength or characteristics of different pause sites relative to each other.

To delve deeper into the factors modulating the intensity of Pol II pausing, Experiment 2 adopted a
different approach. Here, SGED was tasked with identifying terms that distinguish pause sites based
on their varying pause scores, using a dataset consisting exclusively of identified pause sites (i.e.,
non-pause sites were excluded). This focuses the analysis on understanding what makes some pauses
stronger or weaker than others, given that a pause event is already occurring. This also addresses any
potential confounding effects of artifical balancing between pause and non-pause sites in Experiment
1.

Results. The equation discovered by SGED in this context is presented below.

pause_score = − 0.01711 ln(1 + signalMNase)
− 0.0003407 signalH3K4me3
− 0.00216 ln(2 + signalH3K4me3)

− 0.0005086
∑
cond

signalH3K36me3, cond

+ 0.01206 ln(1 + gene_length)
− 0.084141{gene_region=TSS}
+ 0.00034211{gene_region=TSS} · signalH3K4me3
+ 0.021431{seq0=G}
+ 0.0006817 ln(1 + down_nuc_dist)
+ 0.01968 ln(1 + down_nuc_dist + |up_nuc_dist|)
+ 0.0001679

(
signalH3K4me3 −

∑
cond

signalH3K36me3, cond

)
− 0.01338

(
ln(2 + signalH3K4me3)− ln

(
2 +

∑
cond

signalH3K36me3, cond

))
+ 0.0098231{seq−1=G}
+ 0.01422

(
1{seq0=G} · 1{seq1=T}

)
39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

−0.125 −0.100 −0.075 −0.050 −0.025 0.000 0.025 0.050 0.075

SHAP value (impact on model output)

1{gene region=TSS}

ln(1 + signalMNase)

1{gene region=body}

1{seq0=C}

1{seq−3=T} + 1{seq−2=T} + 1{seq−1=T}

signalH3K4me3

1{seq−1=G}

1{gene region=termination}

ln(1 + signalH3K4me3)

1{seq0=G}

ln(1 +
∑

cond signalH3K36me3,cond)

1{seq−1=G} + 1{seq−1=C}

1{seq−1=A} + 1{seq0=A} + 1{seq1=A} + 1{seq−1=T} + 1{seq0=T} + 1{seq1=T}

1{seq1=T}

Low

High

F
ea

tu
re

va
lu

e

(a) SHAP Beeswarm Plot for Equation Terms

−0.02 −0.01 0.00 0.01 0.02 0.03

Mean SHAP Contribution (Impact on Model Output)

1{seq1=T}

1{seq−1=A} + 1{seq0=A} + 1{seq1=A} + 1{seq−1=T} + 1{seq0=T} + 1{seq1=T}

1{seq−1=G} + 1{seq−1=C}

ln(1 +
∑

cond signalH3K36me3,cond)

1{seq0=G}

ln(1 + signalH3K4me3)

1{gene region=termination}

1{seq−1=G}

signalH3K4me3

1{seq−3=T} + 1{seq−2=T} + 1{seq−1=T}

1{seq0=C}

1{gene region=body}

ln(1 + signalMNase)

1{gene region=TSS}
Positive Influence on Pause Score

Negative Influence on Pause Score

(b) SHAP Term Influence Bar Plot

Figure 3: SHAP analysis of the SGED-discovered equation for RNA Polymerase II pausing from
Experiment 1. Each "feature" in the SHAP analysis corresponds to a basis function term ψj(x) from
the equation. (a) Beeswarm plot showing the distribution of SHAP values for the most important
equation terms. Each point is a SHAP value for a term and a sample, colored by the value of the
evaluated basis function ψj(x) (red for high, blue for low). (b) Custom bar plot illustrating global
term importance (mean absolute SHAP value) and the direction of influence. Red bars indicate
a general positive correlation between the value of ψj(x) and its contribution to the pause score
(Spearman’s ρ > 0), while blue bars indicate a negative correlation (Spearman’s ρ < 0).

− 0.01761
(
1{seq−1=G} + 1{seq−1=C} + 1{seq0=G} + 1{seq0=C}
+ 1{seq1=G} + 1{seq1=C}

)
,

The SHAP analysis for this equation (Figure 4) illustrates the relative effects of these different terms
on the predicted pause score.

Discussion. Combining insights from both Experiment 1 and Experiment 2, SGED has revealed
several features of potential functional importance to transcriptional pausing in human cells. A notable
result emerging from this comparative analysis is that high H3K4me3 signal is generally associated
with reduced pausing (i.e., lower pause scores in Experiment 2), consistent with a proposed a link
between this mark and faster transcription (Wang et al., 2023). Regarding H3K36me3, Experiment 1
indicated its role as a significant predictor for the presence of pause sites. However, Experiment 2
suggests that higher levels of H3K36me3 are negatively related to the strength of these pause sites
(lower pause scores), a finding that aligns with some genetic studies (Lee et al., 2024; Wen et al.,
2014). Furthermore, SGED’s discovered equations highlight the importance of the relative levels
of these two histone marks. Specifically, terms reflecting a high ratio of H3K36me3 to H3K4me3
(e.g., through difference terms like signalH3K4me3 −

∑
signalH3K36me3, cond with a positive coefficient,

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

−0.10 −0.05 0.00 0.05 0.10

SHAP value (impact on model output)

ln(1 + down nuc dist)

ln(2 + signalH3K4me3)

ln(1 + down nuc dist + |up nuc dist|)
ln(1 + signalMNase)

1{seq−1=G}

1{seq0=G} · 1{seq1=T}

1{seq0=G}

1{seq−1=G} + 1{seq−1=C} + 1{seq0=G} + 1{seq0=C} + 1{seq1=G} + 1{seq1=C}

∑
cond signalH3K36me3, cond

ln(1 + gene length)

signalH3K4me3 −
∑

cond signalH3K36me3, cond

1{gene region=TSS} · signalH3K4me3

signalH3K4me3

ln(2 + signalH3K4me3)− ln(2 +
∑

cond signalH3K36me3, cond)

1{gene region=TSS}

Low

High

F
ea

tu
re

va
lu

e

(a) SHAP Beeswarm Plot for Equation Terms

−0.03 −0.02 −0.01 0.00 0.01 0.02

Mean SHAP Contribution (Impact on Model Output)

1{gene region=TSS}

ln(2 + signalH3K4me3)− ln(2 +
∑

cond signalH3K36me3, cond)

signalH3K4me3

1{gene region=TSS} · signalH3K4me3

signalH3K4me3 −
∑

cond signalH3K36me3, cond

ln(1 + gene length)
∑

cond signalH3K36me3, cond

1{seq−1=G} + 1{seq−1=C} + 1{seq0=G} + 1{seq0=C} + 1{seq1=G} + 1{seq1=C}

1{seq0=G}

1{seq0=G} · 1{seq1=T}

1{seq−1=G}

ln(1 + signalMNase)

ln(1 + down nuc dist + |up nuc dist|)
ln(2 + signalH3K4me3)

ln(1 + down nuc dist)
Positive Influence on Pause Score

Negative Influence on Pause Score

(b) SHAP Term Influence Bar Plot

Figure 4: SHAP analysis of the SGED-discovered equation for RNA Polymerase II pausing from
Experiment 2. Analogous to Figure 3, but for Experiment 2.

or ratio-like terms in logarithmic form) are associated with higher pause scores, whereas a high
H3K4me3 to H3K36me3 ratio appears linked to lower pause scores.

The analysis also found that the region downstream of genes (termination region) is associated with
higher pausing scores relative to the gene body and the 5’ end (TSS). This is consistent with the
hypothesis that Pol II pausing plays a role in facilitating transcription termination (Gromak et al.,
2006).

This work also refined our understanding of sequence specificity in pausing. Previous studies
identified a G, T/C sequence element as enriched at the pause site (position 0) and the +1 position
(Fong et al., 2022; Gajos et al., 2021). Our SGED models confirm that T at position +1 (often as
part of a G0–T+1 motif) is a strong positive predictor for pause sites. Conversely, the models from
both experiments, particularly when examining factors that disfavor pausing or reduce pause strength,
identified new elements: C at position 0 and -1, and T at positions -1, -2, and -3 appear to disfavor
pausing. Additionally, a cluster of G/C nucleotides at positions -1, 0, and +1 (captured by terms like
−(1{seq−1=G} + · · ·+ 1{seq1=C})) was also found to be associated with reduced pausing or lower
pause scores.

These results, derived from the interpretable equations generated by SGED, provide new, data-
driven hypotheses that will help guide future experimental studies into the complex mechanisms of
sequence-dependent transcriptional pausing and its regulation by the chromatin environment.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

E ADDITIONAL RESULTS

E.1 IMPACT OF INFLUENCE FEEDBACK WITH MCTS

To further delineate the benefits of the per-term influence feedback mechanism, we conducted an
additional comparative analysis focusing on scenarios where Monte Carlo Tree Search (MCTS) is
employed as the overarching search strategy. In this setup, we compared SGED equipped with its
full influence-based feedback against a variant that also uses MCTS but relies only on basic Mean
Squared Error (MSE) for its pruning decisions (akin to the “MCTS + Basic Feedback” ablation in
Table 4).

This comparison is particularly insightful as it highlights the value of granular feedback even when
a powerful search algorithm like MCTS is exploring the equation space. While MCTS inherently
provides a robust exploration framework, the detailed influence scores offer more directed guidance
to the LLM agent during the pruning phase within each node expansion of the MCTS. This allows
the search to more rapidly identify and prioritize promising branches in the search tree.

Figure 5 illustrates the expected convergence behavior in this MCTS context. The x-axis represents
the number of nodes expanded in the MCTS, providing a measure of computational effort in the
search process. As shown, SGED with full influence-based feedback converges more quickly to
lower MSE values than the MCTS variant relying solely on basic feedback. This accelerated conver-
gence underscores the efficiency gains afforded by providing the LLM with detailed, interpretable
information about the contributions of individual equation components, even within a sophisticated
tree search paradigm.

0 2 4 6 8 10

Nodes expanded

0

50

100

150

200

M
ea

n
S

q
u

ar
ed

E
rr

or

MSE vs. Nodes expanded: Impact of Influence Feedback

Basic Feedback ±CI

Basic Feedback Mean

Influence Feedback ±CI

Influence Feedback Mean

Figure 5: MSE vs. Nodes Expanded (MCTS): Impact of Influence Feedback. Plot showing
validation MSE convergence as a function of MCTS nodes expanded. Compares SGED with full
influence-based feedback against an MCTS variant using only basic MSE feedback on the Lung
Cancer (with Chemo. & Radio.) dataset. Shaded regions denote 95% confidence intervals, and solid
lines show means. Detailed influence feedback leads to faster convergence (fewer nodes expanded to
reach a given MSE) and a lower final MSE within a given computational budget.

Both Figure 2 and Figure 5 are based on 25 seed runs for the Lung Cancer (with Chemo. & Radio.)
dataset. In both figures, the best test MSE achieved so far as of # iteration or # node expansion is
tracked.

E.2 ILLUSTRATION OF SGED EQUATION DISCOVERY

To provide a more concrete understanding of how SGED discovers and refines equations, this section
illustrates the process using two example runs (Run A and Run B) on the Lung Cancer (with Chemo.
& Radio.) benchmark dataset. Figure 6 depicts the progression of the best Mean Squared Error
(MSE) achieved on the test set as the Monte Carlo Tree Search (MCTS) expands more nodes. Each
significant drop in MSE, indicating the discovery of a more accurate equation, is annotated on the
plot (e.g., A0, B9). Below, we present the specific equations and their corresponding MSEs at these
key points, showcasing the iterative improvements made by SGED. This visualization highlights how
the framework navigates the equation space, modifying and selecting terms to progressively enhance
model performance.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50

Nodes expanded

10−24

10−20

10−16

10−12

10−8

10−4

100

M
S

E
A0

A9 A50

B0 B1 B9
B13

B36

MSE vs Nodes Expanded – Example Runs

Example Run A

Example Run B

Figure 6: Illustration of SGED Equation Discovery Process. Test MSE achieved versus MCTS
nodes expanded for two example SGED runs (Run A: green, Run B: blue) on the Lung Cancer (with
Chemo. & Radio.) dataset. Points A0, A9, A50 for Run A, and B0, B1, B9, B13, B36 for Run B,
indicate instances where a new, more accurate equation was discovered. The equations corresponding
to these points are detailed below.

The equations discovered at pivotal moments during these SGED runs are as follows:

EXAMPLE RUN A
• Point A0 (Node 0):

– MSE: 0.127
– Equations:

dv_dt = 0.02425 · cancer_volume − 0.08865 · chemo_concentration

− 0.03812 · chemo_dosage

− 0.02755 · cancer_volume · chemo_concentration

− 0.04786 · cancer_volume · radiotherapy_dosage

+ 0.4913
√

cancer_volume

dc_dt = −0.5 · chemo_concentration + chemo_dosage
• Point A9 (Node 9):

– MSE: 2.85 × 10−26

– Equations:

dv_dt = 0.1389 · cancer_volume

− 0.028 · cancer_volume · chemo_concentration

− 0.04776 · cancer_volume · radiotherapy_dosage

− 0.01453 · cancer_volume · ln(cancer_volume)

dc_dt = −0.5 · chemo_concentration + chemo_dosage
• Point A50 (Node 50):

– MSE: 9.59 × 10−27

– Equations:

dv_dt = 0.1389 · cancer_volume

− 0.028 · cancer_volume · chemo_concentration

− 0.01453 · cancer_volume · ln(cancer_volume)

− 0.02388 · cancer_volume · (radiotherapy_dosage)2

dc_dt = −0.5 · chemo_concentration + chemo_dosage

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

EXAMPLE RUN B
• Point B0 (Node 0):

– MSE: 0.785
– Equations:

dv_dt = 0.04326 · cancer_volume + 0.1558 · chemo_concentration

+ 0.1157 · chemo_dosage

− 0.02769 · cancer_volume · chemo_concentration

− 0.04836 · cancer_volume · radiotherapy_dosage

dc_dt = −0.5 · chemo_concentration + chemo_dosage

• Point B1 (Node 1):
– MSE: 0.328
– Equations:

dv_dt = 0.03643 · cancer_volume − 0.08611 · chemo_concentration

− 0.02803 · chemo_dosage

− 0.02736 · cancer_volume · chemo_concentration

− 0.04801 · cancer_volume · radiotherapy_dosage

+ 0.6666 ln(cancer_volume + 1)

dc_dt = −0.5 · chemo_concentration + chemo_dosage

• Point B9 (Node 9):
– MSE: 0.127
– Equations:

dv_dt = 0.02425 · cancer_volume − 0.08865 · chemo_concentration

− 0.03812 · chemo_dosage

− 0.02755 · cancer_volume · chemo_concentration

− 0.04786 · cancer_volume · radiotherapy_dosage

+ 0.4913
√

cancer_volume

dc_dt = −0.5 · chemo_concentration + chemo_dosage

• Point B13 (Node 13):
– MSE: 0.0376
– Equations:

dv_dt = 0.005864 · chemo_concentration + 0.007118 · chemo_dosage

− 0.02803 · cancer_volume · chemo_concentration

− 0.04733 · cancer_volume · radiotherapy_dosage

− 1.708 ln(cancer_volume + 1)

+ 1.544
√

cancer_volume

dc_dt = −0.5 · chemo_concentration + chemo_dosage

• Point B36 (Node 36):
– MSE: 2.85 × 10−26

– Equations:

dv_dt = 0.1389 · cancer_volume

− 0.028 · cancer_volume · chemo_concentration

− 0.04776 · cancer_volume · radiotherapy_dosage

− 0.01453 · cancer_volume · ln(cancer_volume)

dc_dt = −0.5 · chemo_concentration + chemo_dosage

E.3 INVESTIGATION OF MCTS ROLLOUT DEPTH

The Monte Carlo Tree Search (MCTS) component of SGED plays a crucial role in systematically
exploring the vast space of possible equations. A key parameter within MCTS is the rollout depth,
which determines how far into the future the search simulates potential sequences of actions (in our
case, “propose then prune terms” equation refinement steps) to estimate the value of a given state
(equation). Deeper rollouts can provide more accurate value estimates, potentially leading to better
search decisions and ultimately more accurate discovered equations. However, they also incur a
higher computational cost. This investigation aims to quantify the impact of varying MCTS rollout
depths on the performance of SGED, helping to understand this trade-off.

We evaluated the effect of rollout depth on two distinct benchmark datasets: the simulated Lung
Cancer (with Chemo. & Radio.) dataset and the real-world RNA Polymerase dataset. Three MCTS
configurations were tested:

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

• No Rollout (Heuristic MCTS): In this configuration, the MCTS does not perform any
simulation. Instead, the value of a newly expanded node (representing an equation) is
directly estimated using an immediate heuristic, which in our case is the negative validation
Mean Squared Error (MSE) of the equation at that node. This reward is then directly
backpropagated.

• Rollout Depth 1: After selecting a leaf node for expansion, the MCTS performs a simulation
of one additional propose-and-prune cycle. The reward obtained from this single-step rollout
is used for backpropagation.

• Rollout Depth 2: Similar to the above, but the simulation (rollout) extends for two propose-
and-prune cycles.

For each configuration and dataset, performance was measured by the test MSE, averaged over 10
random seeds, with 95% confidence intervals reported.

The results are presented in Table 6.

Table 6: Impact of MCTS Rollout Depth on SGED Performance. Test MSE (mean ± 95% CI) on
the Lung Cancer with Chemo. & Radio. (simulated) and RNA Polymerase (real-world) datasets for
different MCTS rollout depths. Results are averaged over 10 seeds. Lower MSE is better. The best
performing variation for each dataset is indicated in bold.

MCTS Rollout Variation Lung Cancer with Chemo. & Radio. RNA Polymerase
MSE ↓ MSE ↓

No Rollout (Heuristic MCTS) 0.0571 ± 0.0367 0.0118 ± 0.000445
Rollout Depth 1 0.0211 ± 0.0131 0.0114 ± 0.000720
Rollout Depth 2 0.0130 ± 0.0123 0.0113 ± 0.000523

The findings from this investigation, as summarized in Table 6, indicate a trend consistent with
expectations for MCTS performance. For both the simulated Lung Cancer with Chemo. & Radio.
dataset and the real-world RNA Polymerase dataset, increasing the rollout depth generally leads to
improved performance (i.e., lower test MSE). Specifically, moving from no rollout to a rollout depth
of 1, and further to a rollout depth of 2, resulted in progressively lower mean MSE values.

On the Lung Cancer with Chemo. & Radio. dataset, a rollout depth of 2 achieved the lowest MSE
(0.0130), a noticeable improvement over no rollout (0.0571) and rollout depth 1 (0.0211). Similarly,
for the RNA Polymerase dataset, rollout depth 2 yielded the best mean MSE (0.0113), compared
to 0.0118 for no rollout and 0.0114 for rollout depth 1. While the confidence intervals show some
overlap, particularly for the RNA Polymerase dataset where the improvements are more modest,
the consistent reduction in mean MSE suggests that deeper rollouts allow the MCTS to make more
informed decisions during the search process. This enhanced lookahead capability helps SGED to
better navigate the complex equation space and identify more accurate symbolic models. This benefit,
however, should be weighed against the increased computational time required for deeper rollouts in
practical applications.

Elsewhere in this work, unless otherwise specified, we use the Heuristic MCTS configuration.

E.4 CONVERGENCE EFFICIENCY

A critical aspect of any equation discovery algorithm is its efficiency in navigating the vast search
space of potential mathematical expressions. Rapid convergence to accurate and parsimonious
solutions is highly desirable, as it reduces computational cost and accelerates the scientific discovery
process. This section investigates the convergence efficiency of SGED compared to a standard
Genetic Programming (GP) approach, GPLearn. We aim to demonstrate that the structured, influence-
based feedback mechanism within SGED, particularly when coupled with MCTS, leads to faster
identification of high-quality symbolic models.

Experimental Setup and Iteration Comparability: To assess convergence efficiency, we tracked
the best test Mean Squared Error (MSE) achieved against the number of "major evaluation iterations"
for both SGED and GPLearn on the Lung Cancer (with Chemo. & Radio.) benchmark dataset.
Experiments were conducted over 10 random seeds, and we report the mean MSE ± 95% confidence
intervals.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

For SGED, an “iteration” is defined as one MCTS node expansion. Each expansion involves the core
propose-and-prune cycle: the LLM proposes candidate basis functions, these are evaluated, influence
scores are calculated, and the LLM prunes the terms to form a new candidate equation. This new
equation is then fully evaluated.

For GPLearn, an “iteration” corresponds to one generation. In each generation, a population of
candidate equations undergoes genetic operations (e.g., crossover, mutation), and each new individual
(equation) in the subsequent population is evaluated.

While the precise computational operations within an SGED MCTS expansion (involving LLM calls
and influence score calculations) differ from those in a GPLearn generation (dominated by genetic
operations and fitness evaluations of a population), both represent a fundamental step where a set
of new candidate equations are generated, fully evaluated, and used to guide the subsequent search.
By plotting performance against these respective “major evaluation iterations” or, more broadly,
“number of candidate equations fully evaluated,” we gain insight into how quickly each algorithm
explores promising regions of the equation space and refines its solutions. This provides a broadly
comparable measure of how efficiently each method utilizes its core search mechanism to improve
solution quality.

The iteration count was set to 30 for both methods. GPLearn was run with the following param-
eters: population_size = 1000, parsimony_coefficient = 0.01, with the rest of
the parameters set to their default values.

Results: The convergence behavior of SGED and GPLearn is illustrated in Figure 7. The plot
clearly shows that SGED converges significantly faster to a substantially lower test MSE compared
to GPLearn on this benchmark. SGED rapidly identifies high-performing equations within a smaller
number of major evaluation iterations. Specifically, SGED reached a final mean test MSE of
0.0752 ± 0.0295. In contrast, GPLearn’s convergence was slower, and it settled at a considerably
higher final mean test MSE of 28.5 ± 9.34 within a comparable or number of its own evaluation
iterations.

This superior convergence efficiency highlights the effectiveness of SGED’s approach. The detailed,
per-term influence feedback allows the LLM to make more informed decisions during the pruning
phase, leading to more targeted exploration. Coupled with the systematic search of MCTS, SGED
is able to more quickly discard unpromising avenues and focus on refining equation structures that
demonstrate high predictive accuracy. This contrasts with the more stochastic and population-based
exploration of GPLearn, which, in this case, required more evaluations to achieve a less optimal
solution.

This demonstrates SGED’s ability not only to find accurate equations but to do so with greater
efficiency in terms of the number of core search and evaluation steps.

E.5 INVESTIGATION OF LLM SENSITIVITY

Understanding the robustness of SGED’s advantages across different underlying Large Language
Models (LLMs) is crucial for assessing the generalizability of our approach. This investigation
aims to determine if the performance gains observed with SGED are primarily due to its structured,
influence-based feedback mechanism and search strategy, rather than being contingent on the specific
capabilities of a single LLM. Demonstrating such robustness would imply that the architectural
innovations of SGED provide consistent benefits, offering practical value to users who may employ a
variety of LLMs, including proprietary and open-weight models.

To evaluate this sensitivity, we conducted a comprehensive set of experiments comparing SGED
(Ours) with the baseline LLM-driven methods: ZeroShot, ZeroOptim, and ICL (Basic Feedback).
These four methods were evaluated on all six main benchmark datasets detailed in Section 4 and
Appendix C: Lung Cancer, Lung Cancer (with Chemo.), Lung Cancer (with Chemo. & Radio.),
COVID-19, RNA Polymerase, and Warfarin PK. For each method and dataset combination, we
utilized a diverse suite of nine different base LLMs. The models used, their classification, and version
notes are as follows:

• Open-weight Models:
– Llama-3.3-70B: Llama-3.3-70B-Instruct, version 5.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25
Iterations

0

50

100

150

200

250

M
SE

SGED and GPLearn Convergence Comparison
SGED
GPLearn

Figure 7: Convergence Efficiency: SGED vs. GPLearn. Test MSE (mean ± 95% CI over 10
seeds) versus number of major evaluation iterations for SGED (MCTS expansions) and GPLearn
(generations) on the Lung Cancer (with Chemo. & Radio.) dataset. SGED demonstrates faster
convergence to a lower MSE, indicating superior search efficiency.

– DeepSeek V3: DeepSeek V3, version 0324.
• Proprietary Models:

– GPT-4: gpt-4, version turbo-2024-04-09.
– GPT-4o-Mini: gpt-4o-mini, version 2024-07-18.
– GPT-4o: gpt-4o, version 2024-11-20.
– GPT-4.1: gpt-4.1, version 2025-04-14.
– OpenAI o1: o1, version 2024-12-17.
– OpenAI o4-Mini: o4-mini, version 2025-04-16.
– OpenAI o3: o3, version 2025-04-16.

All inference hyperparameters were set to their default values for each model throughout the experi-
ments.

The performance was measured using the Mean Squared Error (MSE) on the respective test sets,
consistent with our main evaluations. Each experiment was run with 25 seeds2 to ensure reliability,
and average MSE values are reported.

The results of this extensive evaluation are presented systematically. Figure 8 presents bar plots for
all six datasets, showing the MSE outcomes. Corresponding numerical results are detailed in Table 7.

The bar plots presented in Figure 8 facilitate visual comparison of method performance across
different LLMs. Each subfigure in Figure 8 corresponds to a specific dataset. Within each such
dataset-specific plot, results for the four methods—ZeroShot, ZeroOptim, ICL (Basic Feedback), and
SGED (Ours)—are displayed in separate panels. In every panel, the x-axis lists the different base
LLMs, while the y-axis represents the Mean Squared Error (MSE), where lower bars indicate better
performance. The ± 95% CI is shown as error bars. For improved clarity, the y-axis MSE values
are presented on a logarithmic scale. Notably, due to its significantly MSE, the ZeroShot method is
plotted with a y-axis range distinct from the other three methods within each dataset. Conversely,
the y-axis ranges for ZeroOptim, ICL (Basic Feedback), and SGED (Ours) are all aligned with each
other within the context of a single dataset to enable their direct comparison.

2Except Llama-3.3-70B-Instruct, where 10 seeds were used, due to limitations to model throughput
that was available at the time of the experiments.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

100

106

1012

1018

1024

1030

1036

M
SE

 (l
ow

er
 is

 b
et

te
r)

Zero-Shot (scale differs)

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

10 27

10 22

10 17

10 12

10 7

10 2

Zero-Shot + Optim.

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

10 27

10 22

10 17

10 12

10 7

10 2

ICL

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

10 27

10 22

10 17

10 12

10 7

10 2

SGED

LLM Sensitivity Analysis: Lung Cancer Dataset

Llama-3.3-70B DeepSeek V3 GPT-4 GPT-4o-Mini GPT-4o GPT-4.1 OpenAI o1 OpenAI o4-Mini OpenAI o3

(a) Lung Cancer

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

100

102

104

106

108

1010

1012

M
SE

 (l
ow

er
 is

 b
et

te
r)

Zero-Shot (scale differs)

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

10 8

10 6

10 4

10 2

100

102
Zero-Shot + Optim.

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

10 8

10 6

10 4

10 2

100

102
ICL

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

10 8

10 6

10 4

10 2

100

102
SGED

LLM Sensitivity Analysis: Lung Cancer (with Chemo.) Dataset

Llama-3.3-70B DeepSeek V3 GPT-4 GPT-4o-Mini GPT-4o GPT-4.1 OpenAI o1 OpenAI o4-Mini OpenAI o3

(b) Lung Cancer (with Chemo.)

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

100

102

104

106

108

1010

1012

M
SE

 (l
ow

er
 is

 b
et

te
r)

Zero-Shot (scale differs)

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

10 8

10 6

10 4

10 2

100

102
Zero-Shot + Optim.

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

10 8

10 6

10 4

10 2

100

102
ICL

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

10 8

10 6

10 4

10 2

100

102
SGED

LLM Sensitivity Analysis: Lung Cancer (with Chemo. & Radio.) Dataset

Llama-3.3-70B DeepSeek V3 GPT-4 GPT-4o-Mini GPT-4o GPT-4.1 OpenAI o1 OpenAI o4-Mini OpenAI o3

(c) Lung Cancer (with Chemo. & Radio.)

Figure 8: MSE (± 95% CI error bars) on benchmark datasets for ZeroShot, ZeroOptim, ICL (Basic
Feedback), and SGED (Ours) across various base LLMs, including open-weight models. Each
subfigure represents a different dataset. SGED outperforms the other methods across the datasets and
base LLMs with few exceptions.
Note: The y axis (MSE) scale is logarithmic. For each dataset: the MSE range is different for
the ZeroShot baseline, as its performance is significantly worse; the other methods are shown over
matching ranges for clarity.
(Figure continued to next page)

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

10 3

100

103

106

109

1012

1015

M
SE

 (l
ow

er
 is

 b
et

te
r)

Zero-Shot (scale differs)

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

10 9

10 8

10 7

10 6 Zero-Shot + Optim.

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

10 9

10 8

10 7

10 6 ICL

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

10 9

10 8

10 7

10 6 SGED

LLM Sensitivity Analysis: COVID-19 Dataset

Llama-3.3-70B DeepSeek V3 GPT-4 GPT-4o-Mini GPT-4o GPT-4.1 OpenAI o1 OpenAI o4-Mini OpenAI o3

(d) COVID-19

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

100

103

106

109

1012

1015

M
SE

 (l
ow

er
 is

 b
et

te
r)

Zero-Shot (scale differs)

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3
10 2

6 × 10 3

Zero-Shot + Optim.

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

10 2

6 × 10 3

ICL

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

10 2

6 × 10 3

SGED

LLM Sensitivity Analysis: RNA Polymerase Dataset

Llama-3.3-70B DeepSeek V3 GPT-4 GPT-4o-Mini GPT-4o GPT-4.1 OpenAI o1 OpenAI o4-Mini OpenAI o3

(e) RNA Polymerase

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

100

102

104

106

108

1010

1012

M
SE

 (l
ow

er
 is

 b
et

te
r)

Zero-Shot (scale differs)

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

100

6 × 10 1

Zero-Shot + Optim.

Lla
m

a-
3.

3-
70

B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

100

6 × 10 1

ICL
Lla

m
a-

3.
3-

70
B

De
ep

Se
ek

 V
3

GP
T-

4

GP
T-

4o
-M

in
i

GP
T-

4o

GP
T-

4.
1

Op
en

AI
 o

1

Op
en

AI
 o

4-
M

in
i

Op
en

AI
 o

3

100

6 × 10 1

SGED

LLM Sensitivity Analysis: Warfarin PK Dataset

Llama-3.3-70B DeepSeek V3 GPT-4 GPT-4o-Mini GPT-4o GPT-4.1 OpenAI o1 OpenAI o4-Mini OpenAI o3

(f) Warfarin PK

Figure 8: MSE (± 95% CI error bars) on benchmark datasets for ZeroShot, ZeroOptim, ICL (Basic
Feedback), and SGED (Ours) across various base LLMs, including open-weight models. Each
subfigure represents a different dataset. SGED outperforms the other methods across the datasets and
base LLMs with few exceptions.
Note: The y axis (MSE) scale is logarithmic. For each dataset: the MSE range is different for
the ZeroShot baseline, as its performance is significantly worse; the other methods are shown over
matching ranges for clarity.
(Figure completed)

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Table 7: Test MSE (mean ± 95% CI) for different methods and base LLMs across all benchmark
datasets. The best performing method for each LLM is bolded. If the best method’s confidence
interval overlaps with any other method’s CI for that LLM, only its mean is bolded; otherwise, both
mean and CI are bolded.

(a) Lung Cancer

Base LLM ZeroShot ZeroOptim ICL (Basic Feedback) SGED (Ours)
Llama-3.3-70B 6.88e+13 ± 7.74e+13 0.0319 ± 0.0117 0.782 ± 1.72 4.89e-25 ± 1.09e-24
DeepSeek V3 7.23e+13 ± 7.54e+13 0.679 ± 0.657 0.0046 ± 0.00468 7.55e-27 ± 3.76e-27
GPT-4 2.85e+37 ± 5.88e+37 9.06 ± 13.1 0.0179 ± 0.0106 6.57e-07 ± 1.09e-06
GPT-4o-Mini 1.59e+13 ± 3.18e+13 0.0682 ± 0.0575 102 ± 210 0.00116 ± 0.00218
GPT-4o 5.75e+10 ± 1.15e+11 0.0971 ± 0.111 0.119 ± 0.0899 0.000792 ± 0.00105
GPT-4.1 1.59e+06 ± 3.2e+06 12.4 ± 4.05 0.006 ± 0.00483 0.000118 ± 5.32e-05
OpenAI o1 3.71e+31 ± 7.66e+31 0.0146 ± 0.00384 0.00629 ± 0.00558 1.74e-08 ± 3.49e-08
OpenAI o4-Mini 4.98e+13 ± 6.34e+13 0.025 ± 0.0133 0.00395 ± 0.00183 2.39e-05 ± 4.87e-05
OpenAI o3 8.37e+12 ± 7.06e+12 0.00626 ± 0.00664 0.000717 ± 0.00131 3.54e-12 ± 4.4e-12

(b) Lung Cancer (with Chemo.)

Base LLM ZeroShot ZeroOptim ICL (Basic Feedback) SGED (Ours)
Llama-3.3-70B 2.13e+03 ± 2.14e+03 12.5 ± 16.4 1.01 ± 0.00448 1.76 ± 3.48
DeepSeek V3 9.44e+04 ± 7.63e+04 37.8 ± 25 1.01 ± 0.329 0.00358 ± 0.00102
GPT-4 3.38e+05 ± 2.73e+05 124 ± 20 34.7 ± 23.7 0.00644 ± 0.00516
GPT-4o-Mini 4.6e+07 ± 9.29e+07 101 ± 27.7 1.52 ± 0.608 0.603 ± 1.17
GPT-4o 1.11e+07 ± 2.28e+07 106 ± 25.1 9.74 ± 9.29 0.00489 ± 0.00139
GPT-4.1 2.44e+03 ± 4.4e+03 7.45 ± 14.1 0.468 ± 0.193 0.000864 ± 0.000883
OpenAI o1 7.39e+05 ± 7.73e+05 16.4 ± 18.3 1.89 ± 1.91 0.00277 ± 0.000628
OpenAI o4-Mini 3.7e+05 ± 2.97e+05 22.7 ± 21.6 0.417 ± 0.299 0.00267 ± 0.00123
OpenAI o3 5.92e+09 ± 4.99e+09 16.5 ± 18.7 0.0533 ± 0.029 1.52e-07 ± 1.8e-07

(c) Lung Cancer (with Chemo. & Radio.)

Base LLM ZeroShot ZeroOptim ICL (Basic Feedback) SGED (Ours)
Llama-3.3-70B 524 ± 18.4 113 ± 0.92 12.5 ± 4.91 0.227 ± 0.0846
DeepSeek V3 1.06e+05 ± 1.53e+05 12.2 ± 5.62 9 ± 3.8 0.0118 ± 0.00265
GPT-4 7.07e+08 ± 1.46e+09 126 ± 10.3 56.4 ± 18.2 1.47 ± 1.6
GPT-4o-Mini 2.38e+06 ± 3.7e+06 118 ± 11.8 15.1 ± 3.56 1.57 ± 1.66
GPT-4o 9.92e+04 ± 1.5e+05 98.6 ± 10.3 46.3 ± 17.3 0.127 ± 0.083
GPT-4.1 3.02e+04 ± 3.39e+04 4.76 ± 8.33 9.68 ± 5.6 0.0016 ± 0.00199
OpenAI o1 6.51e+08 ± 1.34e+09 59.7 ± 24.4 27.1 ± 9.04 0.0137 ± 0.00223
OpenAI o4-Mini 4.84e+06 ± 5.33e+06 28.7 ± 18.6 0.708 ± 0.801 0.00608 ± 0.00867
OpenAI o3 5.24e+09 ± 3.54e+09 42.7 ± 23.7 1.49 ± 1.61 3.82e-06 ± 3.22e-06

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

(d) COVID-19

Base LLM ZeroShot ZeroOptim ICL (Basic Feedback) SGED (Ours)
Llama-3.3-70B 2.13e+06 ± 2.84e+06 1.03e-07 ± 3.01e-08 6.38e-08 ± 2.41e-09 6.16e-08 ± 7.54e-09
DeepSeek V3 3.3 ± 3.76 1.25e-07 ± 2.05e-08 7.52e-08 ± 4.33e-09 5.28e-08 ± 1.18e-09
GPT-4 4.03e+10 ± 8.25e+10 1.43e-07 ± 1.44e-08 8.63e-08 ± 1.17e-08 5.45e-08 ± 2.28e-09
GPT-4o-Mini 4e+16 ± 8.26e+16 6.51e-07 ± 7.71e-07 7.47e-08 ± 9.47e-09 5.81e-08 ± 3.45e-09
GPT-4o 4e+06 ± 8.26e+06 2.13e-07 ± 1.89e-07 7.95e-08 ± 9.33e-09 5.33e-08 ± 1.27e-09
GPT-4.1 0.213 ± 0.102 1.65e-07 ± 3.17e-08 6.47e-08 ± 6.96e-09 5.31e-08 ± 1.17e-09
OpenAI o1 1.53 ± 0.857 1.43e-07 ± 2.99e-08 9.07e-08 ± 1.19e-08 6.2e-08 ± 4.14e-09
OpenAI o4-Mini 1.44 ± 0.791 1.46e-07 ± 3.45e-08 7.16e-08 ± 7.49e-09 5.81e-08 ± 4.81e-09
OpenAI o3 2.16 ± 0.514 1.95e-07 ± 2.92e-08 7.13e-08 ± 9.05e-09 5.4e-08 ± 1.28e-09

(e) RNA Polymerase

Base LLM ZeroShot ZeroOptim ICL (Basic Feedback) SGED (Ours)
Llama-3.3-70B 5.08e+08 ± 1.05e+09 0.0117 ± 0.00035 0.0116 ± 0.000425 0.0103 ± 0.000129
DeepSeek V3 6.01e+07 ± 1.24e+08 0.0119 ± 0.000514 0.0108 ± 0.000163 0.0102 ± 6.65e-05
GPT-4 3.46e+15 ± 4.49e+15 0.0136 ± 0.000579 0.0117 ± 0.000362 0.012 ± 0.00016
GPT-4o-Mini 2.36e+15 ± 2.46e+15 0.0132 ± 0.000381 0.0127 ± 0.000295 0.012 ± 0.000268
GPT-4o 7.16e+12 ± 1.48e+13 0.013 ± 0.000156 0.0119 ± 0.000323 0.0115 ± 0.000279
GPT-4.1 1.5e+03 ± 2.36e+03 0.0124 ± 0.00046 0.0105 ± 0.000118 0.0108 ± 0.000168
OpenAI o1 2.91e+13 ± 6e+13 0.0129 ± 0.000275 0.0115 ± 0.00024 0.0115 ± 0.000242
OpenAI o4-Mini 66.9 ± 78.7 0.0129 ± 0.000315 0.012 ± 0.000196 0.011 ± 0.000137
OpenAI o3 6.18 ± 4.42 0.0134 ± 0.000774 0.0113 ± 0.000258 0.0103 ± 0.000124

(f) Warfarin PK

Base LLM ZeroShot ZeroOptim ICL (Basic Feedback) SGED (Ours)
Llama-3.3-70B 4.42 ± 1.23 0.964 ± 0.223 0.834 ± 0.43 0.612 ± 0.117
DeepSeek V3 4.46e+12 ± 3.82e+12 0.828 ± 0.1 0.692 ± 0.0853 0.649 ± 0.0773
GPT-4 1.21e+05 ± 1.86e+05 0.753 ± 0.123 0.633 ± 0.076 0.624 ± 0.0734
GPT-4o-Mini 5.15e+05 ± 9.64e+05 0.85 ± 0.191 0.764 ± 0.0987 0.874 ± 0.262
GPT-4o 119 ± 98.5 0.831 ± 0.148 0.805 ± 0.215 0.675 ± 0.0961
GPT-4.1 24.6 ± 13 0.953 ± 0.205 0.698 ± 0.148 0.673 ± 0.114
OpenAI o1 798 ± 995 0.864 ± 0.173 0.721 ± 0.137 0.642 ± 0.103
OpenAI o4-Mini 94.1 ± 158 0.918 ± 0.192 0.734 ± 0.167 0.63 ± 0.0768
OpenAI o3 6.24e+03 ± 8.68e+03 0.935 ± 0.214 0.775 ± 0.144 0.736 ± 0.139

Across all datasets and underlying LLM choices, SGED consistently outperforms ZeroShot, ZeroOp-
tim, and ICL (Basic Feedback), with only a few exceptions (see Table 7). This strongly suggests
that the structured feedback and systematic search strategy integral to SGED are key drivers of its
enhanced equation discovery capabilities, providing a robust advantage irrespective of the specific
foundational LLM employed. These findings underscore the value of SGED’s methodology in
leveraging LLMs for scientific discovery.

E.6 INVESTIGATION OF ROBUSTNESS TO A LARGE NUMBER OF IRRELEVANT FEATURES

Scientific datasets, particularly in fields like genomics or high-throughput screening, can often present
a high-dimensional feature space where many features may be irrelevant or noisy. A critical aspect of
an effective equation discovery method is its ability to identify the truly influential variables amidst
a large number of distractors. This section investigates the robustness of SGED to an increasing
number of such irrelevant features.

We conducted experiments using the Lung Cancer (with Chemo. & Radio.) benchmark dataset.
To simulate scenarios with varying degrees of feature space complexity, we augmented the original
dataset by adding 5, 75, or 150 additional "distractor" features. These features were populated with
values drawn from a standard normal distribution (N (0, 1)) and were designed to have no causal
relationship with the target variables. The performance of SGED (denoted as “SGED (Ours)” in
the table) was compared against the LLM-based baselines: ZeroShot, ZeroOptim, and ICL (Basic

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

Feedback). All methods were evaluated based on their Mean Squared Error (MSE) on the test set,
averaged over 25 random seeds, with 95% confidence intervals reported.

The results are presented in Table 8.

Table 8: Performance with Increasing Numbers of Irrelevant Features. Test MSE (mean ± 95%
CI) on the Lung Cancer (with Chemo. & Radio.) dataset, augmented with varying numbers of
normally distributed, irrelevant features. Results are averaged over 25 seeds. Lower MSE is better.
“+0 Features” corresponds to the original dataset.

Method +0 Features +5 Features +75 Features +150 Features
(Original)

ZeroShot 2.54e+03 ± 2.74e+03 1.48e+03 ± 2.35e+03 3.08e+03 ± 6.18e+03 1.57e+04 ± 2.18e+04
ZeroOptim 122 ± 6 142 ± 12.2 131 ± 27.8 132 ± 22.7
ICL (Basic Feedback) 63.3 ± 16.5 111 ± 32.6 118 ± 32.5 126 ± 22.5

SGED (Ours) 0.0521 ± 0.0178 0.0843 ± 0.0421 2.99 ± 5.95 4.88 ± 9.8

As evident from Table 8, SGED consistently achieves the lowest MSE across all conditions, even
when a substantial number of irrelevant features are introduced. While the performance of SGED
does show some degradation as the number of distractor features increases (MSE from 0.0521 with
0 extra features to 4.88 with 150 extra features), its accuracy remains significantly better—often
by orders of magnitude—than the other LLM-based approaches. For instance, with 150 additional
irrelevant features, SGED achieves an MSE of 4.88, whereas the next best LLM-based method, ICL
(Basic Feedback), has an MSE of 126.

The other methods (ZeroShot, ZeroOptim, ICL) show varied responses to the additional features but
consistently perform much worse than SGED. Their inability to effectively filter out the noise, even
with optimization (ZeroOptim) or basic iterative feedback (ICL), highlights the challenge distractor
features pose. These findings suggest that SGED’s architecture, particularly its use of per-term
influence scores and systematic search (with MCTS), equips the LLM with a more robust mechanism
to discern and prioritize relevant features.

E.7 INVESTIGATION OF SYNTHETIC MODEL BENCHMARK

To further assess the robustness and generalization capabilities of SGED, particularly its performance
on model structures that may not be prevalent in its LLM’s training data, we conducted evaluations
on a procedurally generated synthetic model benchmark. By creating synthetic models with known
ground-truth equations incorporating diverse mathematical operators and interactions, we can test
the ability of SGED to discover accurate equations even when faced with potentially unfamiliar
functional forms.

These synthetic datasets were derived by introducing specific modifications to the underlying structure
of the previously described lung cancer model with chemotherapy and radiotherapy. The modifications
included the incorporation of trigonometric operators, division operators, and novel interaction terms,
resulting in five distinct synthetic models:

• Synthetic 1 (inc. γ sin(ωt)): Introduces a sinusoidal forcing term. The underlying differen-
tial equation is:

dx(t)

dt
=

(
ρ log

(
K

x(t)

)
− βcC(t)− (αrd(t) + βrd(t)

2) + γ sin(ωt)

)
x(t)

• Synthetic 2 (inc. −δI(t)): Incorporates an additional linear negative feedback term I(t).

dx(t)

dt
=

(
ρ log

(
K

x(t)

)
− βcC(t)− (αrd(t) + βrd(t)

2)− δI(t)
)
x(t)

• Synthetic 3 (inc. log(K
x(t)+N(t))): Modifies the growth term to include an additional

variable N(t) in the denominator of the logistic term.

dx(t)

dt
=

(
ρ log

(
K

x(t) +N(t)

)
− βcC(t)− (αrd(t) + βrd(t)

2)

)
x(t)

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

• Synthetic 4 (inc. ϵ cos(ϕt)): Adds a cosine forcing term.

dx(t)

dt
=

(
ρ log

(
K

x(t)

)
− βcC(t)− (αrd(t) + βrd(t)

2) + ϵ cos(ϕt)

)
x(t)

• Synthetic 5 (inc. θC(t)d(t)): Introduces a multiplicative interaction term between
chemotherapy C(t) and radiotherapy d(t).

dx(t)

dt
=

(
ρ log

(
K

x(t)

)
− βcC(t)− (αrd(t) + βrd(t)

2)− θC(t)d(t)
)
x(t)

Here, x(t) represents the tumor volume, C(t) is the chemotherapy effect, d(t) is the radiotherapy
effect, and other parameters (ρ,K, βc, αr, βr, γ, ω, δ,N(t), ϵ, ϕ, θ) are constants or time-varying
inputs specific to each synthetic model.

The performance of SGED was compared against the LLM-based baselines: ZeroShot, ZeroOptim,
and ICL (Basic Feedback). The results, in terms of test Mean Squared Error (MSE), are presented in
Table 9.

Table 9: Synthetic Model Benchmark Performance. Test MSE (mean ± 95% CI) on five procedu-
rally generated synthetic datasets. Results are averaged over 25 seeds. Lower MSE is better. SGED
(Ours) consistently outperforms other LLM-based methods.

Method Synthetic 1 Synthetic 2 Synthetic 3 Synthetic 4 Synthetic 5

ZeroShot 3.42e+03 ± 2.59e+03 1.14e+04 ± 2.17e+04 1.11e+03 ± 470 3.12e+05 ± 6.36e+05 7.8e+03 ± 5.55e+03
ZeroOptim 153 ± 13.5 65.3 ± 7.53 106 ± 14.6 147 ± 14.8 118 ± 12.3
ICL (Basic Feedback) 102 ± 17.7 48.3 ± 10.7 40.4 ± 11.3 89.2 ± 12 42.6 ± 16.3

SGED (Ours) 52.7 ± 0.307 0.189 ± 0.158 0.0272 ± 0.0153 52.5 ± 0.296 0.036 ± 0.0202

As shown in Table 9, SGED consistently achieves significantly lower MSE compared to ZeroShot,
ZeroOptim, and ICL (Basic Feedback) across all five synthetic datasets. This strong performance on
models with varied and potentially novel structures (such as trigonometric terms or modified logistic
growth factors) underscores SGED’s ability to effectively search the equation space and adapt its
discovery process. The granular, influence-based feedback appears crucial in guiding the LLM to
identify relevant terms and construct accurate models, even when the underlying system dynamics
deviate from more common forms. These results further highlight the robustness of the SGED
framework and its potential for discovering meaningful equations in diverse scientific domains.

E.8 GENERALIZATION STUDY ON THE RNA POLYMERASE DATASET

A crucial test for any equation discovery method aiming for scientific relevance is its ability to
generalize not just to held-out data from the same experiment, but to entirely new, independent
measurements. A model that performs well on a new biological replicate is more likely to have
captured true underlying biological principles rather than just fitting noise or artifacts specific to a
single experiment.

To rigorously assess this, we obtained a second biological replicate for the RNA Polymerase II pausing
measurements, representing a separate laboratory experiment (used as the target pause_score;
henceforth, “Replicate 2”). We then took the final equations discovered by SGED and several
LLM-based baselines – which were trained and selected using only the original dataset (“Replicate
1”) – and evaluated their predictive performance on this new, unseen replicate without any re-fitting.
This provides a strong test of out-of-distribution generalization.

The results, summarized in Table 10, demonstrate the robust generalization of the SGED-discovered
models. While all methods experienced a predictable and modest drop in performance when evaluated
on the new replicate – an expected outcome given inter-experiment variability – SGED maintained its
superior accuracy.

On Replicate 2, SGED achieved the lowest Mean Squared Error (MSE) of 0.00793 ± 0.000214
and the highest coefficient of determination (R2) of 0.142± 0.0232. This indicates that the SGED-
discovered equation explained the most variance in the independent dataset, outperforming the
next-best method, ICL (Basic Feedback), which achieved an MSE of 0.00815 and an R2 of 0.119.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

The strong performance on a true biological replicate provides compelling evidence that the structured,
influence-based feedback mechanism of SGED guides the discovery process towards equations that
capture genuine, reproducible biological principles.

Table 10: Generalization to an Independent Biological Replicate. Performance of discovered
equations on the original test set (Replicate 1) versus a new, unseen biological replicate (Replicate 2)
for the RNA Polymerase dataset. Models were trained/selected using only Replicate 1 data. Results
are mean ± 95% CI over 25 seeds. SGED shows the best generalization, maintaining the lowest MSE
and highest R2 on the new replicate.

Performance on Original Test Set (Replicate 1) Performance on New Biological Replicate (Replicate 2)
Method MSE ↓ R2 ↑ NRMSE ↓ MSE ↓ R2 ↑ NRMSE ↓
ZeroShot 1.35e+05 ± 1.75e+05 -9.80e+06 ± 1.28e+07 1.55e+03 ± 1.15e+03 1.40e+05 ± 1.72e+05 -1.52e+07 ± 1.87e+07 1.97e+03 ± 1.42e+03
ZeroOptim 0.0130 ± 0.000287 0.0724 ± 0.0199 0.963 ± 0.0101 0.00887 ± 0.000159 0.0406 ± 0.0188 0.979 ± 0.00937
ICL (Basic Feedback) 0.0119 ± 0.000352 0.149 ± 0.0251 0.922 ± 0.0137 0.00815 ± 0.000246 0.119 ± 0.0262 0.938 ± 0.0140

SGED (Ours) 0.0115 ± 0.000312 0.176 ± 0.0226 0.907 ± 0.0125 0.00793 ± 0.000214 0.142 ± 0.0232 0.926 ± 0.0126

E.9 INFLUENCE SCORE VARIANTS

In SGED, the per-term influence score, ∆j , is computed on a validation split by deleting a single
term (setting wj ← 0) while holding the remaining coefficients fixed. This is the explicit definition of
∆j used throughout the method and its pruning phase. The corresponding pruning prompt includes,

as an illustration, an OLS identity, ∆k =
w2

k

n

∑
i ϕk(xi)

2, with the comment “always ≥ 0” and an
instruction to “treat terms independently; no need to refit or update weights.”

The applicability of these statements hinges on the OLS orthogonality that nullifies cross-terms,
a property that holds for the training data at the optimum but does not necessarily extend to a
disjoint validation set. To ensure this distinction is clear, the prompt contains an explicit note that
validation-computed values “may not always be ≥ 0”.

Here, as part of an additional investigation, we also implement and evaluate two refit-aware influence
score alternatives that align the definition more closely with extra-sum-of-squares logic.

INFLUENCE SCORE COMPUTATION

Notation. Let X ∈ Rn×p and y ∈ Rn denote training data; Xval ∈ Rnval×p, yval ∈ Rnval

denote validation data; W ∈ Rp×m the fitted full–model coefficients (one column per output). On
validation, Ŷval = XvalW , with residuals Rval = Yval − Ŷval. We use MSEval(W)j =

1
nval
∥y(j)val −

(XvalW):,j∥22.

(A) No–refit (default in SGED). Deleting term k is implemented by ŷ(j)val,−k = (XvalW):,j −
φval
k wk,j , where φval

k = Xvalek. Expanding the squares yields the exact validation–split change

∆val
k,j =

2wk,j

nval
(φval

k)⊤r(j)val +
w2

k,j

nval
∥φval

k ∥22, r
(j)
val = y

(j)
val − (XvalW):,j .

The cross–term vanishes on the training split at the OLS optimum (residuals orthogonal to columns
of X), making the classic “≥ 0” identity a good approximation there; on validation the cross–term
generally does not vanish and ∆val

k,j can be slightly negative. This approach is how SGED computes
∆j before pruning, by default.

(B) Refit–aware (full refit). Define the refit–aware influence as the validation MSE change after
refitting on train with column k removed:

∆refit
k,j = MSEval

(
W (−k)

)
j
−MSEval(W)j , W

(−k)
:,j = arg min

u∈Rp−1

1

n
∥y(j) −X(−k)u∥22

(or ridge adds λ∥u∥22). This aligns with extra-sum-of-squares on train and yields a clean validation
readout.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

(C) Refit–aware (efficient), compatible with OLS and ridge. Let A = X⊤X (OLS) or A =
X⊤X + λI (ridge), B = A−1. Partition index k from the rest and denote αk = Bkk, β−k = B−k,k.

Writing W =

[
W−k,:

Wk,:

]
,

W
(−k)
−k,: =W−k,: −

β−k

αk
Wk,:

Ŷ
(−k)
val = X

(−k)
val W

(−k)
−k,:

∆refit
k,j =

1

nval

∥∥∥y(j)val − ŷ
(j)
val

(−k)
∥∥∥
2

2
−MSEval(W)j .

This avoids an explicit fit–loop, reusing B to update all p leave–one–out solutions in O(p2) per term
(after a one–time O(p3) factorization), and works columnwise for multi–output.

Where this is used in SGED. The pipeline computes ∆j on validation to guide pruning (Section 2,
Appendix B.2); the prompt receives the per–term weights wj and validation–computed ∆j to guide
its term keep/drop decisions.

ABLATION ACROSS SIX BENCHMARKS: ACCURACY VS. COST

We compared the three influence score variants—(i) No–refit, (ii) Refit–aware (full), and (iii) Re-
fit–aware (efficient)—across the six benchmark datasets described in Tables 11 and 12. To ensure a
fair comparison of test performance, the same set of 15 random seeds was used for each variant.

Table 11: Test MSE (mean± 95% CI) across datasets for the three influence variants.

Variant COVID-19 Lung Cancer (with Chemo. & Radio.) Lung Cancer (with Chemo.) Lung Cancer RNA Polymerase Warfarin PK
No–refit 5.35e-08± 1.93e-09 0.0311± 0.027 0.00304± 0.00194 3.55e-09± 5.3e-09 0.0114± 0.000398 0.597± 0.0821
Refit–aware (full) 5.24e-08± 1.67e-09 0.0337± 0.0064 0.00903± 0.0043 0.0065± 0.00561 0.0118± 0.000373 0.622± 0.0943
Refit–aware (efficient) 5.14e-08± 1.97e-09 0.0476± 0.0226 0.00756± 0.00169 0.0028± 0.00192 0.0119± 0.000391 0.639± 0.0888

Table 12: Wall–clock optimization time (mean± 95% CI; seconds).

Variant COVID-19 Lung Cancer (with Chemo. & Radio.) Lung Cancer (with Chemo.) Lung Cancer RNA Polymerase Warfarin PK
No–refit 0.752± 0.0103 4.46± 0.564 5.54± 0.712 2.83± 0.193 13.5± 1.17 0.482± 0.0415
Refit–aware (full) 0.891± 0.0159 10.6± 1.56 10.7± 1.22 9.87± 1.14 23.1± 1.59 0.607± 0.0848
Refit–aware (efficient) 0.779± 0.0139 4.55± 0.512 4.31± 0.61 5.04± 0.662 18± 1.69 0.53± 0.0753

A repeated-measures ANOVA confirmed that there was no significant difference in test MSE among
the three variants on any of the six datasets (all p ≥ 0.09).3 As expected, the refit–aware variants incur
a non–trivial extra cost (Table 12) without providing a corresponding gain in accuracy (Table 11).

DISTRIBUTION OF INFLUENCE VALUES

We examined the empirical distribution of ∆ values encountered during runs for Lung Cancer (with
Chemo. & Radio.) and RNA Polymerase across all three variants. Two representative histograms
(symlog x–axis for readability; outliers lightly clipped at extreme quantiles) are included in Fig. 9–10.

Key summaries:

Lung Cancer (with Chemo. & Radio.): share of influences (%)
Variant Pr(∆ < 0) Pr(∆ = 0) Pr(∆ > 0) n
No–refit 18.19 – 81.81 21,912
Refit–aware (full) 24.59 0.05 75.37 21,590
Refit–aware (efficient) 29.53 0.14 70.33 22,398

3We conducted a one-factor repeated-measures ANOVA with Greenhouse-Geisser correction for each
dataset. The statistics (F (2, 18), pGG, partial η2) were: Lung Cancer (F = 0.19, p = 0.72, η2p = 0.02);
Lung Cancer (with Chemo.) (F = 2.17, p = 0.17, η2p = 0.20); Lung Cancer (with Chemo. & Radio.)
(F = 1.74, p = 0.22, η2p = 0.16); Warfarin PK (F = 2.78, p = 0.09, η2p = 0.24); RNA Polymerase
(F = 1.49, p = 0.26, η2p = 0.14); and COVID-19 (F = 1.05, p = 0.34, η2p = 0.10).

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

RNA Polymerase: share of influences (%)
Variant Pr(∆ < 0) Pr(∆ = 0) Pr(∆ > 0) n
No–refit 4.71 – 95.29 7,190
Refit–aware (full) 9.08 1.40 89.52 6,696
Refit–aware (efficient) 8.75 2.28 88.97 6,526

Observations: (i) negative values are infrequent, and where present their magnitudes are typically
small compared to the bulk positive mass (see symlog histograms); (ii) the shape of the distribution is
broadly similar across the three variants; (iii) taken together with the within–seed ANOVA analysis,
these results suggest the validation–computed ∆ is stable enough for pruning decisions even without
per–term refits.

0

2000

4000

6000

8000

C
ou

nt

n = 21, 912
Pr(j < 0) = 18.19%
Pr(j > 0) = 81.81%

No-refit

0

2000

4000

6000

8000

10000

C
ou

nt

n = 21, 590
Pr(j < 0) = 24.59%
Pr(j > 0) = 75.37%
Pr(j = 0) = 0.05%

Refit-aware (full)

100 0 100 101 102 103 104

Influence

0

2000

4000

6000

8000

C
ou

nt

n = 22, 398
Pr(j < 0) = 29.53%
Pr(j > 0) = 70.33%
Pr(j = 0) = 0.14%

Refit-aware (efficient)

Figure 9: Distribution of influence values ∆ on Lung Cancer (with Chemo. & Radio.) (symlog
x–axis; extreme outliers clipped at the 0.01% tails for legibility).

SUMMARY OF FINDINGS

• The Nature of the Influence Score. Because the influence score, ∆, is computed on a
validation set without refitting the model, it is not constrained to be non-negative. Occasional
small negative values are an expected result of this design and indicate that a feature has low
or redundant influence in the context of the full model.

• Performance vs. Cost. Our experiments across six diverse datasets show that the test accu-
racy of the default, no-refit, and refit-aware variants is statistically indistinguishable. Given

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

0

200

400

600

800

1000

1200

C
ou

nt

n = 7, 190
Pr(j < 0) = 4.71%
Pr(j > 0) = 95.29%

No-refit

0

200

400

600

800

1000

1200

1400

C
ou

nt

n = 6, 696
Pr(j < 0) = 9.08%
Pr(j > 0) = 89.52%
Pr(j = 0) = 1.40%

Refit-aware (full)

10 4 0 10 4 10 3 10 2 10 1 100 101 102

Influence

0

200

400

600

800

1000

1200

1400

C
ou

nt

n = 6, 526
Pr(j < 0) = 8.75%
Pr(j > 0) = 88.97%
Pr(j = 0) = 2.28%

Refit-aware (efficient)

Figure 10: Distribution of influence values ∆ on RNA Polymerase (symlog x–axis; extreme outliers
clipped).

that the refit-aware variants are more computationally expensive, this finding establishes the
default no-refit method as an efficient approach that does not compromise test accuracy.

• Implementation Flexibility. For applications where a refit-aware analysis is specifically
required, two alternatives are available via configuration. Setting refit_aware=True
performs a full refit for each term, while refit_aware_efficient=True uses a
faster computational update. Both methods provide the extra-sum-of-squares style score,
∆refit, evaluated on the validation set.

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

E.10 TERM-LOCAL OPTIMIZATION

To enhance SGED’s flexibility, we introduce a variant that allows for the discovery of optimal scalar
constants within the basis functions proposed by the LLM. This extension, which we refer to as
SGED with Term-Local Optimization (SGED-TLO), addresses scenarios where an equation’s true
functional form involves specific constants that an LLM is unlikely to guess a priori (e.g., a decay
rate in an exponential term or a frequency in a sinusoidal term). SGED-TLO integrates a dedicated
optimization step to fine-tune these constants, enabling the discovery of more precise and potentially
more accurate symbolic models.

The core principle is to augment the standard SGED loop: the “Propose” agent can now suggest basis
functions containing tunable parameters, which are subsequently optimized before the “Prune” agent
performs its influence-guided term selection.

Parametric Basis Functions In this variant, the “Propose” LLM agent can include tunable scalar
constants in its proposed terms using the syntax c(init), where init is an initial value for the
parameter. For example, an agent might propose a term like np.sin(c(1.0) * x1). Each basis
function ψj can thus be a parametric function ψj(x; θj), where θj is a vector of the tunable constants
within that term. The collection of all such constants across all candidate terms is denoted by θ.

To maintain the model’s primary structure as a linear combination of basis functions, the use of c()
is disallowed as a direct outer multiplier (e.g., c(1.5) * x1), as the per-term linear coefficient wj

is already learned by the outer model. The “Propose” agent’s prompt in SGED-TLO variant contains
clear instructions and examples to reflect this setup.

Term-Local Optimization Objective After the “Propose” agent suggests a new set of candidate
terms, an additional optimization step is introduced before pruning. This step tunes the vector of
all constants θ by minimizing an objective function J(θ). Crucially, this is a nested optimization
problem. For any given set of constants θ, the outer linear model weights W are first re-computed by
fitting on the training data. The objective J(θ) is then the Mean Squared Error (MSE) evaluated on
the validation set using these optimal weights W (θ). This ensures that the constants are optimized
for generalization performance.

Formally, for a given θ, the design matrix on a data split S ∈ {train, val} is ΦS(θ), where [ΦS(θ)]ik =
ψk(xi; θk). The optimal outer weights are a function of θ:

W (θ) = argmin
W ′

1

ntrainm
∥Ytrain − Φtrain(θ)W

′∥2F (+ λ∥W ′∥2F for ridge)

The objective for the inner-term constants is then to minimize the validation loss:

J(θ) =
1

nvalm

∥∥Yval − Φval(θ)W (θ)
∥∥2
F

This objective is minimized with respect to θ using a quasi-Newton method (L-BFGS-B by default),
with gradients estimated via finite differences.

Dynamic Re-optimization and Agent Interaction A key feature of this variant is that the constants
are not optimized once and then fixed. After optimization, the symbolic representation of the terms
retains the c(value) markers, where value is now the optimized value. These symbolic forms
are what the “Prune” agent sees in its feedback tables.

In each subsequent iteration of the SGED loop, the constants within all surviving and newly proposed
terms are re-optimized together. This dynamic re-optimization allows the ideal value for a constant
in one term to adapt to the presence or absence of other terms in the model, preserving maximal
flexibility throughout the discovery process. The “Prune” agent is explicitly prompted that these
constants are not static and will be re-tuned in subsequent rounds.

Algorithm Flow The SGED-TLO propose-and-prune cycle proceeds as follows:

1. The LLM Propose agent suggests new terms, which may contain c(init) syntax. These
are combined with surviving terms from the previous iteration.

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

2. The set of all constants θ from all current candidate terms is optimized by minimizing J(θ).
3. After optimization, the resulting terms are evaluated on the data splits (train, validation,

test).
4. The standard pruning phase proceeds. The Prune agent receives the terms (with their

optimized c(value) markers), their fitted outer weights wj , and their per-term influence
scores ∆j .

5. The agent returns keep/drop decisions. Surviving terms, retaining their c() markers, are
passed to the next iteration.

This entire cycle is embedded within either the linear iterative refinement or the MCTS search strategy,
just as in the standard SGED framework.

E.10.1 PROOF OF CONCEPT EXPERIMENT

To provide a clear illustration of the specific advantage offered by term-local optimization, we
conducted a proof-of-concept experiment on a simple synthetic dataset. The data was generated
from the ground-truth equation y = 1/(0.123 + x21), which contains a non-trivial constant, 0.123,
that an LLM is highly unlikely to propose spontaneously. We ran both the standard SGED and
the SGED-TLO variant on this dataset, using their non-tree-based iterative refinement modes for
simplicity.

As hypothesized, SGED-TLO was uniquely capable of recovering the exact ground-truth equation.
During its iterative search, the “Propose” agent eventually suggested the correct functional form with
a tunable constant: 1 / (x_1**2 + c(init)). The subsequent optimization step successfully
tuned the constant to match the ground truth value of 0.123. In the final pruning round, the feedback
provided to the “Prune” agent was unambiguous. The correct parametric term had an influence
score of 17.59, while all other candidate terms had negligible influence (on the order of 10−17 or
less). Guided by this overwhelming signal, the agent correctly kept only the single correct term and
discarded all others, resulting in the exact solution with a final MSE of effectively zero (1.07×10−29).
The final discovered equation was:

y = 1 / (x_1**2 + 0.123)

By contrast, the standard SGED variant was unable to discover the true equation. Without the ability
to tune the constant, it could not find a single basis function to accurately model the data. Instead,
it was forced to approximate the target function by constructing a linear combination of multiple,
non-parametric basis functions. After ten iterations, the best model it found was a complex five-term
approximation:

y = 17.33 x_1 + 102.2 np.exp(-x_1) + 38.73 x_1 * np.exp(-x_1)

- 18.34 np.abs(x_1) - 186.4 * 1 / (1 + np.exp(x_1))

While this model achieved a respectable test MSE of 0.0372, it failed to capture the simple, par-
simonious structure of the underlying data-generating process. In this experimental setting, with
a 10 iteration budget, SGED-TLO was able to discover the exact expression in 10/25 runs, while
vanilla SGED was able discover it in 0/25 runs (never). The experiment clearly demonstrates that
for problems where precise constants are integral to the model’s form, the term-local optimization
capability of SGED-TLO is essential for discovering the correct symbolic solution.

E.10.2 BENCHMARK RESULTS WITH TERM-LOCAL OPTIMIZATION

To assess the practical impact of term-local optimization, we compared the performance of SGED-
TLO against the vanilla SGED framework across our six benchmark datasets. The results, presented
in Table 13, show that the inclusion of tunable constants yields mixed outcomes depending on the
dataset’s characteristics. However, it is important to note that SGED-TLO’s performance remains
highly competitive, and is often superior, when compared to the broader set of baselines presented in
Table 3.
For the Lung Cancer and Lung Cancer (with Chemo.) datasets, SGED-TLO demonstrates a
marked improvement in accuracy. This is likely attributable to the increased flexibility afforded
by parametric terms, which can more closely approximate the underlying system dynamics. In the
discovered equations for these datasets, we observe the selection of basis functions with optimized
constants, such as those with the functional form wj log(x + θ) or wj exp(θ · x). For instance, a

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

Table 13: Comparison of SGED vs. SGED-TLO. Test MSE (mean± 95% CI) across all benchmark
datasets. Results are averaged over 25 seeds. Lower is better. Bold indicates the better-performing
variant for each dataset (if confidence intervals overlap, only the mean of the better-performing
variant is bold.)

Benchmark Dataset SGED SGED-TLO

Lung Cancer 0.0033 ± 0.0035 7.59e-06 ± 1.33e-05
Lung Cancer (with Chemo.) 0.0054 ± 0.00107 0.000877 ± 0.000548
Lung Cancer (with Chemo. & Radio.) 0.0521 ± 0.0178 0.239 ± 0.127
COVID-19 5.32e-08 ± 1.35e-09 5.33e-08 ± 1.77e-09
RNA Polymerase 0.0115 ± 0.000312 0.0119 ± 0.000124
Warfarin PK 0.646 ± 0.105 0.663 ± 0.111

high-performing equation discovered for the Lung Cancer (with Chemo.) task includes such adaptive
terms:

dv_dt = − 0.0002279 · chemo_concentration + 0.0001333 · chemo_dosage

− 2.358 · np.log(cancer_volume + 4.06858)
− 0.02799 · cancer_volume · chemo_concentration

+ 1.736 · np.sqrt(cancer_volume)

+ 1.945 · np.exp(-0.00875506 · cancer_volume)

dc_dt = − 0.5 · chemo_concentration + chemo_dosage

Conversely, on datasets like Lung Cancer (with Chemo. & Radio.) and RNA Polymerase, the
performance of SGED-TLO is slightly worse than that of vanilla SGED. We speculate that this
may be due to the significantly more complex and potentially non-convex optimization landscape
introduced by the tunable constants θ. The L-BFGS-B optimizer, while effective, may converge to
local minima, particularly if the LLM’s initial guesses for the constants are far from an optimal region.
This could result in a set of basis functions that are locally optimal with respect to their internal
constants but globally suboptimal for the final linear model, leading to a higher test MSE compared
to the simpler, non-parametric terms found by the standard SGED. Performance on the COVID-19
and Warfarin PK datasets was comparable between the two variants.

The promising results on several datasets indicate that SGED-TLO is a valuable extension of the core
framework. The approach and its variants warrant further investigation in future work, which could
explore more sophisticated global optimization algorithms or improved heuristics for initializing the
tunable constants. We provide the implementation of SGED-TLO as described in this section with
the codebase for this work.

F COMPUTATIONAL RESOURCES

The computational experiments for this research were conducted using a combination of cloud-based
services for Large Language Model (LLM) inference and local or server-based machines for model
optimization and equation evaluation.

LLM Inference: The inference for the majority of the Large Language Models employed in this
study was performed using the serverless API provided by Azure AI Foundry. This allowed for
scalable access to various proprietary LLM endpoints.

For the Llama-3.3-70B model, inference was conducted on a dedicated Azure Virtual Machine,
specifically a Standard_NC96ads_A100_v4 instance. Key specifications of this VM include:

• Processor: 96 non-multithreaded 3rd Gen AMD EPYC™ 7V13 (Milan) cores.
• GPU Accelerators: 4 NVIDIA A100 PCIe GPUs, each with 80GB of memory.
• System Memory: 880 GiB.

Model Optimization and Equation Evaluation: The optimization of model parameters (i.e., fitting
the linear model w for basis functions ψj(x)) and the evaluation of equations were carried out on the
following types of local workstations and servers:

• A workstation equipped with a 10-core Intel Core i9-10900K CPU and 64 GiB of RAM.

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

• A server equipped with an 80-Core AMD EPYC 9V84 CPU and approximately 630 GiB of
RAM.

It is important to note that the optimization step of SGED, which involves fitting a linear model (we
use the scikit-learn library’s implementation), does not require GPU acceleration and can be
efficiently performed on any reasonably powerful desktop computer.

Execution Time: The time of execution for SGED varied depending on several factors, including the
complexity of the dataset, the number of terms explored, the depth and breadth of the Monte Carlo
Tree Search (if utilized), and the response latency of the LLM APIs. Individual propose-and-prune
cycles involving LLM calls typically took seconds to minutes, while full MCTS runs could extend to
several hours for comprehensive exploration. No single run took longer than 3 hours total wall-clock
time. Fitting the linear models for equation evaluation was generally swift, on the order of seconds.

The total compute resources for the entire research project, including preliminary experiments and
hyperparameter tuning, naturally exceeded that of the final reported experimental runs. However, the
resources outlined above are representative of those required to reproduce the main findings.

G COMPUTATIONAL COST AND SCALABILITY ANALYSIS

To address the practical feasibility of SGED, we conducted a comprehensive analysis of its computa-
tional cost and scalability.

G.1 COST AND WALL-CLOCK TIME COMPARISON

We benchmarked SGED’s monetary cost (in USD, based on LLM API calls) and total wall-clock
time against several baseline methods on the Lung Cancer (with Chemo. & Radio.) dataset. Cost
is based on GPT-4o API pricing at the time of experimentation: $0.000005 per input token and
$0.00002 per output token. The total cost and wall clock results, averaged over 5 seeds, are shown in
Table 14, as well as the Test MSE taken from the Table 3 main experiment results where available.
Hyperparameters used were the same as in the Table 3 experiment, and default parameters were used
for the additional PySR baseline, as set in the PySR implementation shipped with the LaSR (Grayeli
et al., 2024) code base.

SGED’s runtime is competitive with other modern symbolic regression methods and significantly
faster than computationally intensive approaches like LaSR, while achieving a substantially lower
Test MSE. For results under a comparable LLM token budget, see Appendix G.3, which makes the
per-token performance efficiency of SGED especially clear.

Table 14: Computational Cost and Performance Comparison. Benchmarks on the Lung Cancer
(with Chemo. & Radio.) dataset. Cost is based on GPT-4o API pricing at the time of experimentation.

Method Total Cost (USD) ↓ Wall Clock (s) ↓ Test MSE ↓
GPLearn - 92.2 ± 5.8 46.8 ± 4.9
PySR (Cranmer, 2023) - 282.7 ± 6.0 0.399 ± 0.123
D3-white-box (Holt et al., 2024b) 0.589 ± 0.138 203.4 ± 39.5 253 ± 273
LaSR (Grayeli et al., 2024) 72.40 ± 3.48 1444.5 ± 137.5 3.97 ± 3.21
ICSR (Merler et al., 2024) 1.08 ± 0.16 774.2 ± 140.6 6.1 ± 1.05
LLM-SR (Shojaee et al., 2025) 0.80 ± 0.02 371.7 ± 18.7 32.1 ± 48.4

SGED (Ours) 1.87 ± 0.71 382.8 ± 137.6 0.052 ± 0.018

G.2 SCALABILITY WITH HIGH-DIMENSIONAL INPUTS

A key concern for symbolic regression methods is scalability with a large number of input fea-
tures. We evaluated SGED’s runtime on the RNA Polymerase dataset, which has 263 features. All
hyperparameters were kept the same as in the Table 3 main experiment. As shown in Figure 11,
SGED’s runtime scales exceptionally well. The total wall-clock time increases only sub-linearly
as the feature count grows from 10 to 263. This is a significant advantage of our framework, as

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

the influence-based feedback allows the LLM to efficiently identify and prune irrelevant features,
avoiding the combinatorial explosion that challenges many other methods. This demonstrates SGED’s
practical feasibility for large-scale, high-dimensional scientific problems.

10 50 150 263
Features kept

200

220

240

260

280

300

320

340

360
To

ta
l w

al
l-c

lo
ck

 ti
m

e
(s

)

269.0
273.9

320.9

334.4

Runtime vs. Number of Features (RNA Polymerase Dataset)

Figure 11: Scalability with Increasing Number of Features. Mean total wall-clock time on the
RNA Polymerase dataset versus number of features used, averaged over 10 seeds. Points indicate
means; error bars denote 95% confidence-interval half-widths. Runtime increases sub-linearly as the
feature count grows from 10 to 263, indicating strong scalability of SGED.

G.3 PERFORMANCE UNDER A FIXED COMPUTATIONAL BUDGET

To provide a direct and fair comparison of computational efficiency, we conducted an experiment
where all LLM-based baselines were benchmarked under a fixed computational budget with respect
to LLM usage – as the LLM calls are the most computationally intensive aspect of these methods. In
order to ensure the methods consumed a nearly identical number of total LLM tokens (approximately
265k) we either adjusted the hyperparameters controlling itrative execution length of the method
(number of iterations / generations or equivalent), or added early stopping based on the cumulative
number of tokens consumed in the experiment run. All other hyperparameters were unchanged from
the Table 3 main experiment setting. The Lung Cancer (with Chemo. & Radio.) dataset was used and
the results were averaged over 5 seeds.

The results, presented in Table 15, are conclusive. When the LLM computational resources are held
equal, SGED’s performance advantage is clear. It achieves an MSE that is nearly 50 times better
than the next-best performing method (ICSR). This demonstrates that SGED’s architecture uses its
computational budget more efficiently to find a superior solutions. While some simpler methods (like
ICL with Basic Feedback) have a faster wall-clock time, they produce substantially less accurate
results. SGED strikes an optimal balance, achieving a competitive runtime while delivering superior
final equation(s).

Table 15: Performance Comparison Under a Fixed Token Budget (≈265k Tokens). Results on
the Lung Cancer (with Chemo. & Radio.) dataset, averaged over 5 seeds.

Method Test MSE ↓ Total Tokens Wall Clock (s)

ICL (Basic Feedback) 16.04 ± 22.1 265,199 ± 8,729 82.4 ± 3.8
D3-white-box (Holt et al., 2024b) 809.7 ± 1754.4 262,636 ± 2,406 302.1 ± 33.3
LaSR (Grayeli et al., 2024) 101.3 ± 112.1 272,606 ± 15,209 409.3 ± 28.1
ICSR (Merler et al., 2024) 2.66 ± 2.11 261,989 ± 71,813 1031.5 ± 319.3
LLM-SR (Shojaee et al., 2025) 9.88 ± 20.1 259,639 ± 12,820 1208.2 ± 58.1

SGED (Ours) 0.054 ± 0.074 272,743 ± 111,859 382.8 ± 137.6

62

	Introduction
	Methodology: Structure Guided Equation Discovery (SGED)
	Core Iterative Step: Propose-and-Prune Cycle
	Search Strategies for Equation Discovery
	Influence-Based Feedback and LLM Interaction

	Related Work
	Experiments and Evaluation
	Main Results
	Case Study: RNA Polymerase II Pausing
	Insight Experiments: Impact of Feedback and Search Strategy

	Discussion
	Appendix
	 Appendix
	Additional Related Work
	Symbolic Regression: Foundations and Evolution
	Large Language Models in Scientific Discovery and Equation Formulation
	Interpretability in Machine Learning: Inherent vs. Post-Hoc
	Neurosymbolic AI
	Influence Analysis: From Data Points to Model Components
	Automated Feature Engineering and Basis Function Discovery
	Iterative Refinement and Search Strategies in Complex Spaces

	Method Details
	Overview of SGED
	Influence Score (j) Details
	Monte Carlo Tree Search (MCTS) Implementation Details
	SGED Pseudocode
	LLM Details
	Prompt Details
	Term Generation Phase: The ``Propose'' Agent
	Term Pruning Phase: The ``Prune'' Agent

	Benchmark Dataset and Evaluation Details
	Cancer PKPD Simulations
	COVID-19 Epidemic Simulation
	Warfarin Pharmacokinetics Dataset
	RNA Polymerase II Pausing Dataset
	Benchmark Method Details
	White-box non-LLM baselines
	White-box LLM baselines
	Black-box baselines

	Evaluation Details

	RNA Polymerase II Pausing Case Study – Further Discussion
	Experiment 1 SHAP Plots
	Experiment 2 and Discussion

	Additional Results
	Impact of Influence Feedback with MCTS
	Illustration of SGED Equation Discovery
	Investigation of MCTS rollout depth
	Convergence Efficiency
	Investigation of LLM sensitivity
	Investigation of Robustness to a Large Number of Irrelevant Features
	Investigation of Synthetic Model Benchmark
	Generalization Study on the RNA Polymerase Dataset
	Influence Score Variants
	Term-local Optimization
	Proof of concept experiment
	Benchmark results with term-local optimization

	Computational Resources
	Computational Cost and Scalability Analysis
	Cost and Wall-Clock Time Comparison
	Scalability with High-Dimensional Inputs
	Performance Under a Fixed Computational Budget

