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ABSTRACT

We introduce an extensive new dataset of MIDI files, created by transcribing audio
recordings of piano performances into their constituent notes. The data pipeline
we use is multi-stage, employing a language model to autonomously crawl and
score audio recordings from the internet based on their metadata, followed by a
stage of pruning and segmentation using an audio classifier. The resulting dataset
contains over one million distinct MIDI files, comprising roughly 100,000 hours
of transcribed audio. We provide an in-depth analysis of our techniques, offering
statistical insights, and investigate the content by extracting metadata tags, which
we also provide.

1 INTRODUCTION

Central to the success of deep learning as a paradigm has been the datasets used to train neural
networks. With the rapid technical advancements and ever increasing availability of computational
power, music has become a popular target for deep learning research, and deep learning in turn has
had a notable impact on the study and creation of musical works (Briot et al., 2019). These advance-
ments in music-oriented deep learning rely heavily on diverse and well-structured datasets. Music is
inherently structured and can be represented computationally in a variety of forms (Wiggins, 2016).
Of particular relevance to this work are symbolic representations of music, such as MIDI (Musical
Instrument Digital Interface), which are used by people and machines alike in both the generative
process and the analysis of compositions.

In fields outside of computational music, the significance of comprehensive datasets is ubiquitous.
For example, in computer vision, the ImageNet dataset (Deng et al., 2009) catalyzed research for al-
most a decade, providing both high-quality training data and robust benchmarks. Similarly, datasets
such as Common Crawl (2024), C4 (Raffel et al., 2020), and the Pile (Gao et al., 2020) have been
instrumental in advancing natural language processing. These resources have enabled the study of
scaling-based approaches towards language modelling, enhanced available techniques, and provided
foundation models for researchers with restricted resources.

The situation for music-oriented deep learning research is mixed. While numerous publicly avail-
able audio-based datasets exist (Gemmeke et al., 2017; Hawthorne et al., 2018; Thickstun et al.,
2016; Bertin-Mahieux et al., 2011), symbolic datasets, which represent music in formats like MIDI,
are comparatively lacking in both quality and quantity. The Lakh dataset (Raffel, 2016), comprising
176,581 MIDI files scraped from the internet, has been widely adopted in model training (Thickstun
et al., 2023; Zeng et al., 2021) due to its scale. However, its files, often created through software
sequencing or digital score conversion, often lack the nuances of expressive human performances,
and vary significantly in quality. In contrast, the MAESTRO dataset (Hawthorne et al., 2018) offers
high-quality Disklavier MIDI recordings from professional pianists, capturing the subtleties of hu-
man interpretation. However, its size and focus on virtuosic classical piano performances limits its
applicability across diverse musical genres and compositional styles.

Underlying this is a common limitation: the manual transcription process creates bottlenecks for
both the scale and quality. In recent years, researchers have turned to Automatic Music Transcription
(AMT) (Benetos et al., 2019) to address these limitations, creating various large-scale symbolic
datasets (Kong et al., 2020; Zhang et al., 2022; Edwards et al., 2023). Leading AMT techniques
leverage neural networks to extract symbolic note-level information from audio (Sigtia et al., 2016;
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Table 1: Comparison of publicly available datasets of symbolic music.

Dataset # Files # Hours Genre Source Multi-track
MAESTRO 1,276 199 Classical Piano Competitions No
Mutopia1 1,862 69 Mixed Lilypond Yes
PiJAMA 2,777 223 Jazz AMT No
GiantMIDI 10,855 1,237 Classical AMT No
ATEPP 11,742 1,009 Classical AMT No
Lakh2 176,581 9,567 Mixed Web-scrape Yes
Aria-MIDI3 1,186,253 100,209 Mixed AMT No

1 https://www.mutopiaproject.org/
2 Size of the full dataset, including corrupted files. The commonly used clean subset contains 45,129 files.
3 Reduces to 745,109 files and 62,484 hours after compositional deduplication described in Section 4.

Hawthorne et al., 2017; Kong et al., 2021), theoretically enabling symbolic datasets to match the
scale found in other modalities. Nevertheless, several challenges persist:

Transcription Quality. Some music forms, like solo-piano recordings, translate more accurately
to MIDI than others. Additionally, training neural-AMT models relies on a small number of spe-
cific high-quality datasets of aligned audio-MIDI, e.g., MAESTRO for solo-piano. This limitation
restricts use cases outside the distribution of the training data, leading to degraded transcriptions of
recordings in different genres or with audio artifacts (Marták et al., 2024; Edwards et al., 2024).

Pre-processing. A dichotomy between quality and scale still presents itself. Current methods em-
ployed for audio curation and pre-processing (e.g., selection, pruning, and segmentation) are insuf-
ficient when applied to noisy and diverse audio corpora without human oversight. This is partially
due to a lack of training data precisely labelled for the nuances of this application. Datasets main-
taining high-quality standards have utilized a stage of machine-guided manual human verification
to remove falsely identified audio (Zhang et al., 2022; Edwards et al., 2023), an approach that does
not scale well.

In this work we address these challenges, focusing on creating a comprehensive dataset of pi-
ano transcriptions. We demonstrate that with strategic modifications to the data pipeline, AMT-
based approaches can be scaled effectively. Our approach leverages a robust piano-AMT model
[REDACTED], capable of accurately transcribing recordings across diverse timbres and recording
qualities. While this model is crucial to our process, in this work we concentrate on developing
techniques for precise curation, pre-processing, and metadata attribution for publicly available au-
dio files. These techniques enable the creation of a large-scale, high-quality dataset suitable for
various music information retrieval tasks and generative applications.

1.1 CONTRIBUTIONS OF THIS PAPER

More specifically, our contributions are as follows:

1. We introduce a scalable, language model-guided method for crawling and extracting meta-
data from specific types of videos. We analyze the effectiveness of this approach in the
context of publicly available piano recordings.

2. We outline a process for distilling an audio source-separation model to train a classifier ca-
pable of accurately identifying and segmenting realistic piano recordings, which we open-
source. This enabled an 8-fold improvement in identification of non-piano audio without
human supervision when compared to previous work.

3. Using an existing piano-transcription model, we provide a new MIDI dataset of piano tran-
scriptions, one of the largest and cleanest to date.

We hope the dataset released alongside this work has a positive impact on the MIR research com-
munity. We foresee several potential areas where it may accelerate research. Firstly, pretrained
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generative models have had a large impact on the textual and visual domains (Zhou et al., 2023).
These models rely on datasets typically in terabytes. Comprising approximately 20 gigabytes of
MIDI files, Aria-MIDI isn’t on this scale; however, it may still be useful for research into pretrained
music models. Secondly, we are releasing accurate compositional metadata for each file, as well as
piano audio-classifier scores, which due to our training methods can act as a proxy for recording
quality. This information is valuable for many MIR tasks (Choi et al., 2017), as well as for making
clean and compositionally deduplicated subsets.

1.2 RELATED WORK

The use of neural networks for automatic music transcription has its roots in the seminal work
of Sigtia et al. (2015; 2016). This was followed by various works experimenting with different
approaches and neural architectures (Hawthorne et al., 2017; 2021; Yan et al., 2021; Toyama et al.,
2023). The high-resolution piano transcription model introduced in Kong et al. (2021), trained using
the MAESTRO (Hawthorne et al., 2018) and MAPS (Emiya et al., 2010) datasets, became the de
facto benchmark for accuracy. More recently, AMT research has extended to other instruments
(Riley et al., 2024) and multi-track transcription (Gardner et al., 2021; Chang et al., 2024), where it
has seen success.

There are three predominant publicly available datasets of piano transcriptions, all of which utilized
the transcription model introduced in Kong et al. (2021). GiantMIDI (Kong et al., 2020) was the
first, comprising transcriptions of piano recordings matching names of musical works taken from
the IMSLP (2006). From 143,701 initial recordings, 10,855 were identified by a model trained to
detect solo-piano recordings. The ATEPP dataset (Zhang et al., 2022) took a different approach than
GiantMIDI, focusing on repeat performances of standard classical piano repertoire, and using text-
based techniques to determine opus and piece numbers. PiJAMA (Edwards et al., 2023), a dataset
of jazz piano transcriptions, spans 120 different pianists across 244 recorded albums. Recordings
were curated by matching tracks from albums performed by a manually curated list of pianists.

All three datasets utilized YouTube to match musical metadata with audio recordings and employed
audio-based classifiers, trained using MAESTRO and AudioSet, to identify piano recordings. For
ATEPP and PiJAMA, these classifiers were also used to remove applause and speech. The level of
human intervention varied across datasets: GiantMIDI relied solely on automated processes, while
ATEPP and PiJAMA incorporated manual checks. Table 1 presents a comparison of these datasets
in context.

2 METHODOLOGY

In this section, we describe the methodology used to compile our dataset of MIDI files. Our approach
consists of three distinct stages. First, we assemble a comparatively large corpus of candidate piano
recordings using low-overhead, text-based methods. Next, we employ audio-based techniques to
refine our initial corpus through pruning and pre-processing. Finally, we conduct a computationally
intensive stage of transcription and metadata extraction. This multi-stage approach allows us to
efficiently process a large volume of data while ensuring high-quality results in our final dataset.

2.1 CRAWLING

A common theme in previous work has been to compile candidate recordings by first obtaining a
corpus of metadata (e.g., composers, performers, album titles) via various means, and then using the
APIs provided by Spotify1 and YouTube2 to match piece titles to corresponding videos on YouTube.
We take a different approach: Our method begins with a small collection of manually curated seed
videos and uses YouTube’s API to crawl related content. The crawling priority is determined by
a language model, which performs two tasks: 1) parsing the title and description of each video,
and 2) scoring the likelihood of the video containing solo-piano content on a scale of 1-5. More
specifically, starting from fifty solo-piano seed videos which span a variety of genres and styles, we
follow a two-step procedure which we cycle through repeatedly:

1https://developer.spotify.com/documentation/web-api
2https://developers.google.com/youtube/v3
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1. For each unscored video, we prompt a language model with its YouTube title and descrip-
tion. The model is tasked with assigning a score from one to five, indicating the likelihood
that the video contains a solo-piano performance.

2. In order of priority determined by the score, we use the YouTube API to fetch related video
URLs, titles, and descriptions.

By taking advantage of the related videos endpoint of the YouTube API, we outsource the majority
of the crawling process to YouTube’s own recommendation algorithm. We used the 70B parameter
version of Llama 3.1 (Dubey et al., 2024) for the language model, observing that smaller models
made obvious mistakes more frequently. The system prompt we used can be found in Appendix
A.1. Overall, we found this process to be effective. Although initially this procedure tended to
overrepresent recordings of well-known classical pieces, as these became less available later in
the process, piano recordings representing diverse set of musical styles and genres were crawled
thoroughly.

2.2 AUDIO CLASSIFICATION AND SEGMENTATION

LABEL

Audio Segment

Piano Spectrogram

Other Spectrogram

Piano RMS-Energy

Other RMS-Energy

Figure 1: A visual representation of the pseudo-labeling process applied to a five-second excerpt
from a piano concerto. As the non-piano component has a contiguous region with sufficient energy,
this example is labelled as non-piano.

As we analyze in-depth in Section 3, relying solely on the score attributed to each recording during
the crawling process results in an unacceptably high rate of misclassifications. Following other
work (Kong et al., 2020; Zhang et al., 2022), we address this by using an audio classification model
(Dieleman and Schrauwen, 2014) in the next stage of our pipeline. We identified the following
problematic situations which we aimed to address with an audio classifier:

• Misclassifications due to logical mistakes by the language model or misleading/ambiguous
YouTube data: The classifier identifies and removes such recordings while allowing us to
retain those with some ambiguity, which would otherwise have to be pruned.

• Undesirable acoustic qualities in positively classified recordings: Despite positive classifi-
cation by the language model, recordings can be inappropriate for transcription for a vari-
ety of reasons including incorrect instrumentation (e.g., harpsichord, organ, electric piano),
low audio quality, or the presence of additional instruments. To mitigate this, we include
representative examples from these categories in the training data for our classifier.

• Non-piano content in high-quality piano recordings: Many otherwise high-quality piano
recordings contain segments of non-piano content, such as applause, commentary, or ex-
tended periods of silence. Using the algorithm we describe in Section 2.2.2, we adapt the
classifier to segment recordings into contiguous regions of solo-piano performance, remov-
ing unwanted content.

A primary concern when building an audio classifier is the quality, diversity, and accuracy of the
labels used for training. Initial investigations revealed that relying on well-known datasets such as
MAESTRO (Hawthorne et al., 2018) and AudioSet (Gemmeke et al., 2017) was insufficient, as we
display in Table 4. In an effort to achieve classification accuracy approximating human labels, we
curated a mixed training dataset, representative of our corpus of crawled recordings. We used a
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Table 2: Overview of supervised and unsupervised audio corpora used to train the piano audio classi-
fier. Prop. denotes the proportion of solo-piano labels in the corresponding component. Notably, the
raw GiantMIDI files, pre-processed with source-separation, only contain 87.35% solo-piano labels,
and our collection of piano concertos contained 14.98% solo-piano labels.

Component Length (h) Weight (%) Pseudo lab. Prop. (%) dBmin lmin (s)
GiantMIDI 1040 43.24 True 87.35 -25dB 1.5
Score-4 676 28.11 True 44.81 -22dB 1.5
MAESTRO 198 8.23 False 99.62 N/A N/A
Synthetic Data 143 5.95 False 98.34 N/A N/A
Jazz Trio Database 139 5.78 True 3.61 -28dB 1.0
Piano Other 75 3.12 False 99.22 N/A N/A
Non-Piano Other 71 2.95 False 0.00 N/A N/A
Symphonies 40 1.66 False 0.00 N/A N/A
Piano Concertos 23 0.96 True 14.98 -28dB 1.0

Total 2405 100.0

novel approach, leveraging an audio source-separation model to accurately generate pseudo-labels
for the unsupervised (unlabelled) parts of the training corpus.

Given an audio file, we used the MVSep Piano source-separation model (Uhlich et al., 2024; Fab-
bro, 2024; Solovyev et al., 2023) to decompose it into its constituent parts, separating the piano
component from the other audio content. For each five-second clip, we resample each component
to 22,050 Hz and calculate a spectrogram with 2048 bins, using a frame and hop length of 2048 and
512 respectively. By calculating the RMS energy of each frame and converting to dBFS (Zölzer,
2022), we classify contiguous segments above an energy threshold as non-silent. Given parameters
dBmin and lmin, we classify the five-second audio clip as non-piano if the component labeled other
has a non-silent region longer than lmin, according to the energy level dBmin. Similarly, we classify
the audio clip as non-piano if the component labeled piano has a contiguous silent region, according
to the energy level -20dB, of length greater than four seconds. This process is visualised in Figure 1.

We applied this labelling procedure to various collections of publicly available audio files, displayed
in Table 2, the main constituent being 10,000 YouTube videos from our corpus which were given
a score of four by the language model. We also used the GiantMIDI audio files, the Jazz Trio
Database (Cheston et al., 2024), and smaller collections of piano and non-piano recordings which
we curated manually. Including the pseudo-labelled audio allows us to distill the source-separation
model (Hinton et al., 2015), bypassing the high computational cost associated with applying source
separation to our entire inference corpus, which we estimate at about 5,000 A100 hours3.

2.2.1 TRAINING

For our solo-piano classifier, we chose a CNN-based architecture (LeCun et al., 2015) with five con-
volutional layers followed by two dense layers and a single output neuron. The input to the classifier
consists of mel-spectrograms calculated from five-second audio clips. We used a sample rate of
22,050 Hz, 2048 spectrogram frequency bins, 256 mel bins, and a hop length of 220 (corresponding
to 10ms hops). We trained the model for ten epochs using the AdamW optimizer (Loshchilov and
Hutter, 2019) with β1, β2 = 0.9, 0.95, ϵ = 1e-6 and an L2 weight decay of 0.01. A linear learning
rate scheduler was used, decaying to 10% of the initial learning rate after a warmup over the first
500 optimizer steps.

One consequence of training with pseudo-labels obtained using source separation was having to
use relatively sensitive energy thresholds in order to correctly label training examples with a quiet
but notable non-piano component. These thresholds occasionally result in incorrect training la-
bels for solo-piano recordings with significant but acceptable background audio artifacts like noise,

3In comparison, classification of 100,000 hours of audio using our model only took 20 A100 hours, I/O
being the main bottle-neck.
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distortion, and reverb. To mitigate this, we trained with the corresponding audio augmentation in
approximately 10% of batches, as well as randomly applying pitch shifting and bandpass filters. We
also included labeled examples, representative of such piano recordings, as part of our training data.

2.2.2 INFERENCE

As well as per-file classification, we also use our classification model to segment audio recordings
into their standalone components of contiguous piano performance. To do this, we employ a sliding-
window based technique adapted from standard approaches (Keogh et al., 2004), aimed at accurately
removing non-piano content whilst being robust to short-lived classification mistakes.

Given an audio recording, we score each five-second interval, calculated with a stride of one second,
by passing the inputs through our model. We classify a region (n, m + 5), m ≥ n + d, as non-
piano if and only if all segments starting between n and m are scored below λ. The parameters
d and λ control the sensitivity and minimum length of non-piano segments, which we set to 3
and 0.5 respectively. After excluding all non-piano segments, we classify the remaining segments
as piano if they are longer than 45 seconds. Finally, we discard piano segments with an average
score lower than 0.7. Our choice of algorithm and hyperparameters was motivated to reduce the
chance of a solo-piano segment being prematurely interrupted due to instability in scoring. As our
classifier designates intervals which are mostly silent as non-piano, this approach also segments
piano performances separated by at least d + 5 seconds of silence. In Section 3 we investigate the
accuracy of both classification and segmentation of our proposed approach.

2.3 TRANSCRIPTION

We used the piano-AMT model [REDACTED], introduced in [REDACTED], to transcribe the seg-
mented audio recordings. This choice was informed by the model’s robustness in transcribing audio
from a diverse set of recording environments, compared with models used in previous work (Kong
et al., 2020; Zhang et al., 2022) (See Appendix A.3). Transcription of the 100,209 hours of audio
took 765 hours using an NVIDIA H100 GPU with a batch size of 128, representing an inference
speed of roughly 131x real-time at a rate of approximately 2327 transcribed notes per second.

2.4 METADATA EXTRACTION

Access to per-file metadata labels provides a straightforward way to create different dataset splits,
appropriate for various generative and MIR tasks. A central concern of ours was entity resolution
(ER) (Christen, 2011), i.e., identifying the compositional source of each recording and addressing
overrepresentation of popular pieces in the corpus4.

Inspired by our crawling methodology, we chose a similar strategy for extracting metadata. We used
Llama 3.1 (70B) to process YouTube titles and descriptions for files that passed language model and
audio detection filters. The prompt (see Appendix A.2) extracted composer, opus numbers (e.g., Op.,
BWV, K., D.) and piece identifiers, as well as performer, genre, and form labels. Accurate metadata
labels provide a way to quantify and control compositional duplication, as well as supervised labels
useful for MIR. We investigate the accuracy of these labels and their distributions in Sections 3 and
4 respectively.

3 METHODOLOGICAL ANALYSIS

In this section, we evaluate the effectiveness of the components in our data pipeline. Where applica-
ble, we compare our methods to those used in previous work, in particular the GiantMIDI, ATEPP,
and PiJAMA datasets. For baselines and to determine ground truth, we relied on human labels
obtained from two musically trained pianists familiar with popular classical and jazz repertoire.

Language Model Classification. We first analyze the ability of a language model to correctly clas-
sify a video solo-piano according to its YouTube title and description. In our experiment we chose
a random sample of 250 videos from those crawled, and calculated the accuracy of the labels pro-
vided by different language models, judged relative to the audio content. We also asked human

4For example, moonlight appears in 6,819 titles, likely referring to Beethoven’s Moonlight Sonata.
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Table 3: Classification precision, recall, and F1-scores for various language models and score clas-
sification thresholds. Results indicate that Llama 3.1 (70B) with a score threshold of 4 offers a
appropriate balance between inference cost and accuracy.

Score ≥ 3 Score ≥ 4 Score ≥ 5

Model P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)
Llama 3.1 8B 73.08 81.43 77.03 82.26 72.86 77.27 86.36 27.14 41.30
Llama 3.1 70B 64.76 97.14 77.71 70.83 97.14 81.93 84.51 85.71 85.11
Llama 3.1 405B 77.01 95.71 85.35 80.49 94.29 86.84 94.44 72.86 82.26

Human labels 73.63 95.71 83.23 83.56 87.14 85.31 85.71 25.71 39.56

participants to label the videos according to the same prompt given to the language models. Clas-
sification precision, recall, and F1 scores can be seen in Table 3. In comparison to human-derived
labels, language models perform well at this text-based classification task. We attribute this to the
depth of knowledge of different composers, performances, and pieces, which the language models
have access to. Despite this, there remains a discrepancy between the audio ground truth and labels
obtained from titles and descriptions alone.

Audio Segmentation. We evaluate the performance of our audio classification model in identifying
and segmenting solo-piano content within audio recordings. For comparison, we used MVSep di-
rectly to obtain binary labels, applying the same inference procedure as described in Section 2.2.2.
For ablation, we trained a model without the pseudo-labeled training data listed in Table 2. To mimic
classifiers used for segmentation in other work, notably for the GiantMIDI, ATEPP, and PiJAMA
datasets, we include various noise, applause, and speech from AudioSet (Gemmeke et al., 2017) as
negative training examples for our ablation model.

For this analysis, a random sample of 250 audio recordings with language model scores greater
than or equal to 3 was selected, excluding those used during training. To establish ground truth,
participants were tasked with segmenting recordings into regions of solo-piano content and assigning
files into one of three categories: Not solo-piano, solo-piano with significant audio artifacts, or
solo-piano with good to pristine recording quality. Human-labeled segments were post-processed
in accordance with our inference algorithm: Non-piano segments shorter than eight seconds were
ignored, and a minimum length of 45 seconds was imposed on piano segments. Segmentation
accuracy results can be seen in Table 4. While the ablation model achieves accurate segmentation,
being less likely to interrupt piano segments by misclassifying occasional noisy periods of extreme
piano audio as non-piano content, it conversely mislabels non-piano audio as piano eight times more
frequently than the proposed approach in absolute terms.

We next evaluated our model’s classification performance. To assess this on a per-file basis, we im-
posed minimum thresholds on the average score for predicted piano segments, negatively classifying
files with no predicted piano segments after filtering. Table 5 reports the accuracy of this approach
in identifying the non-piano recordings and the solo-piano recordings with significant audio arti-
facts, in our evaluation dataset. Additionally, we analyzed the audio files that constitute GiantMIDI,
ATEPP, and PiJAMA. Our human participants manually categorized the files which fell below an
empirically determined average score threshold of 0.7, which could indicate issues with recording
quality or content. The resulting distributions of these categorizations are shown in Figure 2.

In both tasks, our approach performs well. For segmentation with λ=0.5, we achieve a 96.38% over-
lap with the ground truth for high-quality piano recordings, while removing 98.83% of non-piano
audio over the full evaluation corpus. When additionally using a segment average-score threshold of
T=0.7, this improves to 100%, while retaining 95.28% of the high-quality piano audio on a per-file
basis. Furthermore, raising T to 0.9 removes the vast majority of low-quality audio, allowing us to
curate a clean split of dataset, which we also provide.

Metadata extraction. We selected a random sample of 200 files and cross-referenced the metadata
labels assigned by the language model with the YouTube titles and descriptions. For each file and
metadata category, we manually checked for incorrect labels, e.g., misattributions, as well as labels
which were missing despite information being present in the raw text. Results are displayed in

7
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Table 4: Segmentation accuracy and overlap ratios for different techniques and hyperparameters. We
consider a predicted segment correct if its beginning and end match the reference within tolerances
of ±2 seconds and ±5 seconds, respectively. Each reference segment is matched to at most one
predicted segment. Overlap ratios are calculated separately for piano and non-piano audio, each as
the ratio of the duration of correctly identified audio to the total duration of the respective ground
truth audio type. dBmin and λ denote the sensitivity to non-piano content as described in Section 2.2.

Segmentation Accuracy Segment Overlap
Technique P (%) R (%) F1 (%) Piano (%) Non-Piano (%)
Full corpus
MVSep, dBmin=-22dB 65.62 70.47 67.96 91.96 97.22
MVSep, dBmin=-25dB 58.28 63.76 60.90 88.74 98.18
MVSep, dBmin=-28dB 49.38 53.69 51.45 82.23 98.66
Proposed, λ=0.5 71.97 75.84 73.86 94.22 98.83
Proposed, λ=0.6 70.70 74.50 72.55 92.67 98.89
Proposed, λ=0.7 68.39 71.14 69.74 91.04 99.10
Ablation, λ=0.5 71.18 81.21 75.86 97.05 91.10

All solo-piano recordings
MVSep, dBmin=-22dB 68.18 70.47 69.31 91.96 89.50
MVSep, dBmin=-25dB 59.75 63.76 61.69 88.74 93.43
MVSep, dBmin=-28dB 50.00 53.69 51.78 82.23 94.12
Proposed, λ=0.5 72.44 75.84 74.10 94.22 92.73
Proposed, λ=0.6 71.15 74.50 72.79 92.67 93.18
Proposed, λ=0.7 68.83 71.14 69.97 91.04 94.66
Ablation, λ=0.5 77.56 81.21 79.34 97.05 73.33

Quality solo-piano recordings
MVSep, dBmin=-22dB 70.00 75.97 72.86 94.71 85.13
MVSep, dBmin=-25dB 61.64 69.77 65.45 92.06 87.04
MVSep, dBmin=-28dB 50.33 58.91 54.29 87.41 88.22
Proposed, λ=0.5 75.36 80.62 77.90 96.38 84.80
Proposed, λ=0.6 73.91 79.07 76.40 95.33 86.13
Proposed, λ=0.7 71.53 75.97 73.68 93.92 88.29
Ablation, λ=0.5 82.09 85.27 83.65 97.15 83.13

Table 6. This manual verification confirms the accuracy of our metadata labeling process. Notably,
in some instances, the language model provided accurate labels that were absent from the raw text.

Table 5: Classification performance for different segment average score thresholds calculated with
on our human-labelled evaluation dataset. Segments were calculated using λ=0.5. All solo-piano
measures the performance at identifying files with segments of solo-piano performance, regardless
of audio artifacts, whereas Quality solo-piano measures the performance at identifying only record-
ings with good to pristine recording conditions. FP = False Positives.

All solo-piano Quality solo-piano
Threshold P (%) R (%) F1 (%) FP P (%) R (%) F1 (%) FP
T ≥0.50 99.28 93.24 96.17 1 88.49 96.85 92.48 16
T ≥0.60 99.27 91.89 95.44 1 89.05 96.06 92.42 15
T ≥0.70 100.00 89.86 94.66 0 90.98 95.28 93.08 12
T ≥0.80 100.00 85.14 91.97 0 90.48 89.76 90.12 12
T ≥0.90 100.00 75.68 86.15 0 95.54 84.25 89.54 5
T ≥0.95 100.00 61.49 76.15 0 97.80 70.08 81.65 2
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Figure 2: Distribution of files with average scores ≤ 0.7 across datasets. Files were manually
categorized. Human-based pruning in ATEPP and PiJAMA explains distribution differences from
GiantMIDI. See Table 1 for general dataset information.

Table 6: Analysis of metadata presence and accuracy across different attributes. For each attribute,
presence indicates the percentage of files with assigned metadata, accuracy shows the percentage of
correct labels among present metadata, and missed labels represents the percentage of files where
metadata was omitted despite being inferrable from YouTube titles and descriptions. Accuracy was
verified following the criteria specified in the system prompt (see Appendix A.2).

Attribute Presence (%) Accuracy (%) Missed Labels (%)
Composer 71.0 99.3 2.7
Performer 62.0 99.2 0.8
Opus Number 32.0 100.0 1.5
Piece Number 22.0 93.2 4.3
Key Signature 23.0 97.8 0.0
Genre 86.5 94.2 0.6
Music Period 63.0 92.9 12.5

4 DATASET STATISTICS

In this section, we analyze statistics about our methodology and the contents of the resulting dataset
of MIDI files. Overall, when executing our data pipeline we collected YouTube data for 3,290,453
videos, from which we further processed 1,713,650 using our audio classifier. We then transcribed
over 1 million audio segments into approximately 100,000 hours of transcribed solo-piano music.
We present a breakdown of scores ascribed during each stage of processing in Figure 3. Taken
together with the experiments in Section 3, we conclude that the techniques we have introduced
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Figure 3: Score breakdowns for the different components of our data pipeline. Figure (a) displays the
relative proportion of language model scores. Figure (b) shows the cumulative density of language
model scores, calculated over recordings attributed a language model score of at least three.
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Figure 4: Number of transcriptions (log scale) in Aria-MIDI as attributed to the top 50 composers.
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Figure 5: Relative frequency distribution of metadata across different categories, normalized to the
most common category.

work well at scale. Moreover, extrapolating from the results in Table 5, we observe that the top-
scoring 35,000 hours of MIDI files likely contain few transcriptions of non-solo-piano content.

To address compositional duplicates, we analyze metadata tags in three categories: composer, opus
number, and piece number. To obtain a dataset split minimizing compositional duplicates within
the text-based metadata constraints, we remove files that either match on all three tags (composer,
opus number, and piece number) or match on both composer and opus number in cases where piece
number tags are absent. For composers who appear more than 250 times across the dataset, we
also prune all additional files that lack opus number and piece number tags. Overall, we identified
23,877 unique metadata triples, and after removing compositional duplicates using this procedure,
745,109 files remained. Figure 4 shows the frequency of performances by different composers in
the complete dataset, illustrating their relative popularity.

Lastly, Figure 5 shows the distribution of metadata for other categories over the entire collection of
MIDI files, without deduplication. Overwhelmingly, transcriptions of classical piano performances
dominate; however, when accounting for the total size, many other genres are well represented.

5 CONCLUSION

We have introduced a new dataset of MIDI files, created by transcribing piano performances pub-
licly accessible on the internet. In this paper, we provide an analysis of the components in our data
pipeline and find them to be well-suited for our purposes. Going forward, we see several areas
for future work: Primarily, extending our approach to other instruments such as guitar, as well as
the multi-instrument case, could be approachable via variations of the source-separation-based ap-
proaches to audio pre-processing we have outlined. Secondly, further study into metadata attribution
using language models, especially targeting improvements to compositional entity recognition.
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COPYRIGHT DISCLAIMER

The use of copyrighted works, and derivatives thereof such as MIDI transcriptions, for machine
learning is a complex issue. To mitigate potential harms, we do not release audio files or raw
metadata under direct copyright. We distribute this dataset under a CC-BY-NC-SA license (Creative
Commons).

REFERENCES

Emmanouil Benetos, Simon Dixon, Zhiyao Duan, and Sebastian Ewert. Automatic music transcrip-
tion: An overview. IEEE Signal Processing Magazine, 36(1):20–30, 2019. doi: 10.1109/MSP.
2018.2869928.

Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The million song
dataset. In Proceedings of the 12th International Conference on Music Information Retrieval
(ISMIR 2011), 2011.
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A APPENDIX

A.1 CRAWLING SYSTEM PROMPT

1

2 Analyze the YouTube video title and description to determine if it’s
likely a solo piano performance. Consider the following:

3

4 1. Is the content music-related?
5 2. Are there explicit mentions of solo piano or pianist names?
6 3. Does it mention other instruments, vocalists, or non-musical elements

?
7 4. Is it an educational video (tutorial, lesson) rather than a

performance?
8 5. If a piece name is provided, is it typically for solo piano?
9

10 Pay special attention to these factors, which suggest the content is NOT
a pure solo piano performance:

11

12 - Presence of other instruments or vocalists
13 - Educational content (lessons, tutorials)
14 - Non-piano keyboard instruments (e.g., organ, harpsichord)
15 - Significant narration or spoken content
16 - Orchestral accompaniment (e.g., piano concertos)
17 - Audio content beyond solo piano
18 - Repetitive tracks (e.g., loop videos)
19

20 The presence of any of these elements should generally result in a lower
rating.

21

22 Assign a score from 0-5 where:
23

24 5 = Certainly a solo piano performance only
25 - Clear indication of a solo pianist performing
26 - No signs of additional instruments, vocals, or non-performance

elements
27

28 4 = Very likely a solo piano performance, but not entirely certain
29 - Strong indications of solo piano, but some minor ambiguity
30 - No clear signs of additional elements, but not explicitly ruled out
31

32 3 = Possibly a solo piano performance, but with significant uncertainty
33 - Some indications of solo piano, but also hints of potential additional

elements
34 - Could be a piano-focused piece with minimal additional content
35

36 2 = Likely includes elements other than solo piano
37 - Clear indications of additional instruments, educational content, or

non-performance elements
38 - Still primarily piano-focused, but definitely not a pure solo

performance
39

40 1 = Mostly not a solo piano performance
41 - Significant presence of other instruments, vocals, or non-musical

content
42 - Piano may be present but is not the sole or main focus
43

44 0 = Definitely not a solo piano performance or not piano-related at all
45 - No indication of solo piano content
46 - Completely unrelated to piano performances
47

48 Examples:
49 "Chopin Nocturne Op. 9 No. 2 - Arthur Rubinstein" => 5
50 "The Art of Fugue - Glenn Gould (Piano)" => 5
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51 "Bohemian Rhapsody - Piano Cover with Sheet Music" => 4
52 "Beethoven - Ode To Joy | VERY EASY Piano Tutorial" => 3
53 "Mozart Piano Concerto No. 21 - London Symphony Orchestra" => 1
54 "Top 10 Guitar Solos of All Time" => 0
55

56 Think step by step concisely, and then provide your score as a JSON
string: {"score": X}

A.2 METADATA EXTRACTION SYSTEM PROMPT

1 Analyze the YouTube video title and description provided within XML tags
. If it contains information about a solo-piano performance, extract
the following metadata and provide it as a JSON string:

2

3 - composer: Last name of the composer, if applicable (string, omit if
not present or uncertain)

4 - opus: Opus number (e.g., Op., BWV, K., D.), if applicable (integer,
omit if not present or uncertain)

5 - piece_number: Number or identifier within the opus, if applicable (
integer, omit if not present or uncertain)

6 - genre: Primary genre of the piece (string: "classical", "jazz", "pop",
"blues", "ragtime", "atonal", "rock", "soundtrack", "ambient", "

folk", omit if uncertain)
7 - form: Musical form (e.g., "sonata", "etude", "improvisation", "fantasy

", etc.) (string, omit if unknown or not applicable)
8 - performer: Last name of the pianist or performer, if known (string,

omit if unknown or uncertain)
9 - key_signature: Key signature of the piece (string, omit if not

mentioned or uncertain)
10 - difficulty: Estimated difficulty level (string: "beginner", "

intermediate", "advanced", "virtuoso", omit if uncertain)
11 - music_period: Primary musical period (string: "classical", "romantic",

"baroque", "impressionist", "contemporary", "modern", omit if
uncertain)

12

13 Rules:
14 1. Omit keys and values entirely for fields not present, unknown, or

uncertain. Do not include empty strings or placeholder values.
15 2. Be cautious not to include fields unless you are reasonably certain

they are correct.
16 3. Provide opus and piece_number as integers only (e.g. don’t include

BWV, K., S., or Op.). Omit if not clearly a number or if zero.
17 4. In the case of well-known pieces (e.g., Moonlight Sonata, Fantaisie-

Impromptu, etc.), add the opus and piece_number if you are certain,
even if it is not in the raw text.

18 5. Provide form as a single word each, using very general and well-known
terms.

19 6. Infer difficulty and period from context when possible, but omit if
uncertain.

20 7. For all strings only provide a single word in lowercase ASCII.
21 8. For composer and performer, use only the last name. If unsure which

name is the last name, omit the field.
22 9. Provide key_signatures using standard ASCII musical notation: Use ’b’

for flat, ’#’ for sharp, and ’m’ for minor. Major keys should not
have a suffix. Examples: ’c’, ’f#m’, ’bb’.

23 10. Only include opus and piece_number if the video is a complete
performance of a single traditional opus number (Op., BWV, K., D.)
and its movements/variations. Omit both fields for compilations,
multiple works, ambiguous titles, or when using non-traditional/
modern catalog numbers.

24 11. D o n t confuse piece_number with other identifiers like sonata
numbers (e.g., "Sonata No. 14") or separate opus numbers (e.g., in "
Op. 37-38", neither 37 nor 38 is a piece_number). Only use
piece_number when i t s part of an opus and subordinate to it.
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25

26 Examples:
27

28 1. Input:
29 <title>Chopin - Nocturne in E-flat major, Op. 9 No. 2 | Rousseau</title>
30 <description> F r d r i c Chopin’s Nocturne in E-flat major, Op. 9, No. 2.

One of the most famous classical piano pieces from the Romantic era
. Performed by Rousseau.

31 #chopin #nocturne #classical #piano</description>
32

33 Output:
34 {
35 "composer": "chopin",
36 "opus": 9,
37 "piece_number": 2,
38 "genre": "classical",
39 "form": "nocturne",
40 "performer": "rousseau",
41 "key_signature": "eb",
42 "difficulty": "advanced",
43 "music_period": "romantic"
44 }
45

46 2. Input:
47 <title>Glenn Gould plays Bach Partita No.2 in C-minor (FULL)</title>
48 <description>1959 Studio recording DISCLAIMER: I do not own any material

shown in this video. This is for entertainment purposes ONLY.
Unlawful distribution of this material can result in bad stuff,
apparently, SO DON’T DO IT!</description>

49

50 Output:
51 {
52 "composer": "bach",
53 "genre": "classical",
54 "form": "partita",
55 "performer": "gould",
56 "key_signature": "cm",
57 "difficulty": "advanced",
58 "music_period": "baroque"
59 }
60

61 3. Input:
62 <title>Jazz Piano - Bill Evans - The Solo Sessions, Vol1 [ Full Album

]</title>
63 <description></description>
64

65 Output:
66 {
67 "performer": "evans",
68 "genre": "jazz",
69 "music_period": "modern"
70 }
71

72 4. Input:
73 <title>Martha Argerich plays Beethoven Sonata No. 31, Op. 110</title>
74 <description>00:00 1. Moderato cantabile molto espressivo
75 06:12 2. Allegro molto
76 08:18 3. Adagio ma non troppo - Allegro ma non troppo
77 </description>
78

79 Output:
80 {
81 "composer": "beethoven",
82 "opus": "110",
83 "genre": "classical",
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84 "form": "sonata",
85 "performer": "argerich",
86 "difficulty": "advanced",
87 "music_period": "classical"
88 }
89

90 Think step by step concisely, and then provide the metadata as a JSON
string.

A.3 TRANSCRIPTION ACCURACY

Table 7: Piano transcription note accuracy of the transcription model used for Aria-MIDI, evaluated
on the MAESTRO (v3) and MAPS test sets. Results are calculated using the mir eval library (Raffel
et al., 2014) with default settings. We compare to the model introduced in Kong et al. (2021), which
was used for GiantMIDI, ATEPP, and PiJAMA.

Note Note /w offset Note /w offset & vel

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Chosen model
MAESTRO 98.86 96.45 97.63 91.63 89.42 90.50 90.56 88.39 89.45
MAPS 91.78 89.47 90.58 - - - - - -

Kong et al. (2021)
MAESTRO 98.82 95.53 96.82 86.51 84.21 85.33 84.97 82.72 83.82
MAPS 79.37 87.43 83.10 - - - - - -
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