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Abstract

Vision-language models demand watermark-
ing solutions that protect intellectual property
without compromising multimodal coherence.
Existing text watermarking methods disrupt
visual-textual alignment through biased token
selection and static strategies, leaving semantic-
critical concepts vulnerable. We propose VLA-
Mark, a vision-aligned framework that em-
beds detectable watermarks while preserving
semantic fidelity through cross-modal coordina-
tion. Our approach integrates multiscale visual-
textual alignment metrics, combining localized
patch affinity, global semantic coherence, and
contextual attention patterns, to guide water-
mark injection without model retraining. An
entropy-sensitive mechanism dynamically bal-
ances watermark strength and semantic preser-
vation, prioritizing visual grounding during
low-uncertainty generation phases. Experi-
ments show 7.4% lower PPL and 26.6% higher
BLEU than conventional methods, with near-
perfect detection (98.8% AUC). The framework
demonstrates 96.1% attack resilience against
attacks such as paraphrasing and synonym sub-
stitution, while maintaining text-visual consis-
tency, establishing new standards for quality-
preserving multimodal watermarking.

1 Introduction

The emergence of vision-language aligned multi-
modal large models (VLAMMSs) has fundamen-
tally transformed cross-modal content generation.
Pioneering architectures like LLaVA (Liu et al.,
2023) and Flamingo (Alayrac et al., 2022) establish
joint embedding spaces through cross-modal atten-
tion mechanisms, enabling unprecedented visual-
linguistic synergy. These models achieve state-
of-the-art performance in vision-language tasks
ranging from contextual image captioning to visual
commonsense reasoning, with recent extensions
like Mini-Gemini (Li et al., 2024b) demonstrating
human-level multimodal comprehension. (Liu and
Bu, 2024; Yoo et al., 2024) However, their rising

capability to generate semantically coherent cross-
modal content urgently demands robust solutions
for intellectual property protection and content au-
thenticity.

Embedding imperceptible yet detectable water-
marks into LLM-generated outputs has emerged
as a pivotal solution, yet existing techniques pre-
dominantly focus on unimodal scenarios. The pi-
oneering "green list" partitioning (Kirchenbauer
et al., 2023) establishes fundamental watermark-
ing frameworks through vocabulary bias induction,
while subsequent improvements like unbiased prob-
ability of two partitioned lists (Mao et al., 2024)
and distribution-preserving strategies (Wu et al.,
2024) enhance quality-robustness trade-offs in text
generation. However, these approaches fail to ad-
dress the unique challenges of multimodal genera-
tion where visual semantics critically guide textual
outputs.

Current watermarking methodologies exhibit
three critical limitations when applied to vision-
language aligned generation. First, traditional text
watermarking approaches like "green list" parti-
tioning (Kirchenbauer et al., 2023) disrupt vision-
conditioned language generation by introducing
vocabulary biases that contradict visual semantics -
for instance, suppressing visually grounded entity
mentions detected through region-based attention.
Even advanced context-aware variants (Ren et al.,
2023) fail to account for cross-modal dependencies
established through vision-language projection lay-
ers in models like BLIP-2 (Li et al., 2023). Second,
static watermark allocation strategies (Liang et al.,
2024; Zhao et al., 2023) typically apply uniform
injection intensities regardless of position-specific
visual grounding strength, leading to dispropor-
tionate distortion of visually salient tokens. This
limitation persists even in theoretically-grounded
approaches (Huang et al., 2023) that optimize statis-
tical trade-offs but ignore entropy variations during
cross-modal generation. Third, current methods



lack explicit mechanisms to protect vision-critical
semantics under text-space attacks. Random vocab-
ulary partitioning and uniform logit manipulation
render key visual concepts (e.g., objects, scene de-
scriptors) vulnerable to adversarial paraphrasing or
synonym substitution. As shown in Fig. 1 (5), con-
ventional watermarks indiscriminately boost non-
semantic tokens (green blocks) while leaving vi-
sually anchored phrases like "grassy trail" (light
blue blocks) exposed to semantic erasure through
token replacement attacks. This fundamentally un-
dermines text-visual coherence and detection con-
sistency.

We resolve these challenges through VLA-
Mark, the first vision-language aligned wa-
termarking framework that achieves cross-
modally coordinated, quality-preserving water-
mark with excellent detectability and robust-
ness via three innovations. First, extending be-
yond random vocabulary splitting, our Multiscale
Semantic Saliency Metrics leverage visual seman-
tics to guide green list selection through localized
patch affinity (LPA), global semantic coherence
(GSC), and cross-modal contextual salience (CCS).
This aligns token partitioning with image content
while maintaining zero training overhead. Sec-
ond, our Entropy-Regulated Partition dynamically
adjusts watermark intensity based on generation
uncertainty and token criticality scores, prioritiz-
ing semantic preservation in low-entropy phases
while enhancing watermark strength during high-
entropy generation. Third, we introduce SCT based
Distribution Adjustment through vision-aligned to-
ken prioritization, where cross-modal embedding
alignment and fused metrics establish hierarchical
protection for Semantic Critical Tokens (SCTs)
against textual perturbations.

Our contributions transcend prior art through
three breakthroughs:

* We pioneer the first text watermarking method
for vision-language models, achieving cross-
modal semantic guidance through native align-
ment mechanisms of VLA architectures, yield-
ing 7.4% and 26.6% average improvement
(PPL| and BLEUY) in textual quality with
zero training overhead.

* We develop an uncertainty-aware coordina-
tion mechanism that automatically adapts wa-
termark intensity to logits entropy, breaking
the preservation-detection trade-off by main-

taining SOTA detection performance while
enhancing generation quality.

* Through dedicated SCT preservation, we es-
tablish hierarchical protection against Para-
phrase, Synonym, Translate and more attacks,
ensuring text-visual consistency under pertur-
bations.

2 Methodology

Our VLA-Mark framework introduces a vision-
aligned watermarking method that identifies Se-
mantic Critical Tokens (SCTs), linguistic units
strongly grounded in visual semantics guided
by cross-modal embedding alignment (Sec 2.1)
and fused multiscale metrics (Sec 2.2). SCTs
preserve text-visual coherence by anchoring key
concepts (e.g., objects/scenes) while enabling
entropy-regulated dynamic vocabulary partitioning
(Sec 2.4): low-entropy contexts prioritize SCT re-
tention for semantic fidelity, whereas high-entropy
phases emphasize watermark strength. The method
further adjusts token distributions through water-
marked logit manipulation (Sec 2.5). This ap-
proach pioneers visual semantics as the foundation
for watermark injection, contrasting traditional text-
only statistical strategies, as is illustraed in Fig. 1.

2.1 Cross-Modal Aligned Embedding

As demonstrated in prior research, Vision-
Language Alignment (VLA) models like LLaVA
(Liu et al., 2023) employ a shared semantic map-
ping strategy where visual embeddings are pro-
jected into the text embedding space.

Given a textual instruction X, and visual input
Xy, such models utilize parallel encoding streams
to process multimodal inputs. The vision encoder
(e.g., SigLIP (Zhai et al., 2023) or ViT-L/14 (Rad-
ford et al., 2021)) generates spatial-visual features
through:

Z, = VisEnc(X,) = [zas; 21, ---, 2P, €))
where Z, € RPHxdv and P indicates the total
number of image patch tokens augmented with a
global [CLS] token. The subsequent alignment
phase employs a trainable projection module fy(-)
, implemented as MLP (Liu et al., 2024a) or gen-
eration adaptor (Chen et al., 2025), to bridge the
dimensional gap between modalities:

H, = fy(Zy), 2
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Figure 1: Proposed VLA-Mark framework. Vision embeddings H,, (aligned to LLM space) and linguistic tokens H, extracted
from LLM vocabulary ¥V compute fused multiscale metrics (LPA/GSC/CCS) to rank V* by visual saliency. Entropy-regulated

SCT selection dynamically enhances semantic expressiveness wh
when high entropy. Light blue

where fy denotes parametric transformation that
enables cross-modal compatibility while retaining
original information patterns, so we get H, €
R(PFHDxd 1] Ms (e.g., Vicuna (Chiang et al.,
2023)) first tokenize input text of length .S and then
retrieve text embeddings H, € R*? for LLM
inference by querying the pretrained token embed-
ding table, commonly referred to as the Vocabulary
V. We construct an embedding matrix Hy, by re-
moving non-linguistic elements such as symbols
and numbers from V), where L denotes the number
of linguistic tokens in the vocabulary. Then we use

» and Hp in the following modules to find the
SCT to guided V partitioning for watermark.

2.2 Multiscale Semantic Saliency Metrics

The [-th token embedding in Hj, is denoted as
hg). We propose three complementary metrics to
evaluate semantic criticality of linguistic tokens
from orthogonal perspectives:

1. Localized Patch Affinity (LPA) quantifies
region-specific importance by identifying the most
relevant visual patch:

h(P) h(l)
1<per I |n

Role: LPA captures fine-grained visual grounding
by measuring the maximum alignment between

Yrea(l) =

en low entropy in logits distribution or watermark robustness

denote SCT, which in the response is followed by conventional watermarked tokens.

a text token and individual image regions. This
is critical for detecting object-centric tokens (e.g.,
"grassy trail", "mountain") that strongly correlate
with localized visual patterns. However, it may un-
derestimate tokens with diffuse visual associations
(e.g., "park", "crowded") that judged by the whole
image.

2. Global Semantic Coherence (GSC) mea-
sures holistic alignment with the entire visual

scene:
h(cls) . h(l)

Yasc(l) = “4)

™ i)
Role: GSC evaluates scene-level consistency by
comparing text tokens to the global visual repre-
sentation ([CLS] token). It prioritizes tokens that
summarize the scene (e.g., "sunny", "hike") or an-
chor high-level semantics. However, global pool-
ing may dilute localized but critical details come
from certain patches (e.g., "broken" in a damaged
object).

3. Cross-Modal Contextual Salience (CCS)
aggregates multi-region visual relevance through
attention weights:

(l) B P exp(hgp) . h([%)) . hl()P) hg)
vocs() = COIRONETROITTROTR
p=1 >y exp(hy " -h;’) [hy”|[[h; ]
5)

Role: CCS provides context-aware grounding



by softly attending to all visual patches. It comple-
ments LPA by capturing distributed visual associa-
tions (e.g., "three people" involving multi patches)
and mitigates GSC’s over-smoothing via spatial
sensitivity.

2.3 Fused Metric Guided Vocabulary

We perform min-max normalization for cross-
metric comparability:

Yi(1) — mingep, y(l')
InaXyeLﬁ%(V)‘*HﬁnweL¢%(Vy(6)
where k € {LPA, GSC, CCS}, miny ¢y, ¢ (l’) and
maxy ey Y (l') denote the minimum and maxi-
mum values of metric k across the entire linguistic
embedding H . This normalization preserves rela-
tive rankings while constraining values to [0, 1].

The fusion of LPA, GSC, and CCS establishes a
normalized hierarchical semantic assessment:

o) =) ™). )
k

P =

Prioritized vocabulary ordering follows:
V* = argsort;c, ®(1) = (wV, ..., 0w, (8)

where {w()}[ | is the sorted elements of H =

{h(lf)}f: .- The fusion mechanism achieves three
synergistic effects: (1) Local-global synergy bal-
ances LPA’s regional sensitivity with GSC’s scene
abstraction, (2) Attention redundancy via CCS com-
pensates for LPA’s over-localization through dis-
tributed patch integration, and (3) Error robust-
ness emerges from metric complementarity — high
CCS scores validate ambiguous signals (e.g., multi-
region actions) through weak response aggrega-
tion. This fusion automatically prioritizes semantic
patterns via LPA, GSC, and CCS without manual
tuning.

2.4 Entropy-Regulated Partition

The output of LLM at each moment is determined
by all preceding tokens, and at each time step ¢, we
can obtain predicted probability distribution:

pt = softmax (LLM (hy;—1, Hy, Hy)), (9)

where p; € R”. To enhance watermark robust-
ness while maintaining text quality, we propose
an entropy-adaptive watermarking scheme that dy-
namically adjusts token partitioning based on pre-
diction uncertainty. For each token position ¢ with

pP:, we calculate:

L

He=—Y o logp, p =
=1

O]
p; te€
1+ Le’ 19)

where € = 10~® prevents numerical instability
and Le ensures the sum of ﬁgl) is still 1. The nor-
malized entropy, which quantifies the "decision dif-
ficulty" at each generation step is then determined
by:

H, _ H
Hpax  logL’
where H,,q» = logL is proved in Appendix B. The
Semantic Critical Tokens ratio n; and the dynamic
green list ratio ~y; follows:

/Hnorm = (1 1)

N = a(l - Hnorm)a
=9 =",

(12)

where hyper-parameter o € [0.02,0.1] controls
the base Semantic Critical Tokens proportion, thus
n € 10,a), v € [a,1) and vy € (0,1 — ). The
vocabulary partition construction follows:

SCT — {w(l), . w(mLJ)}7 (13)

GEREEN — Sample (V°\ (G5T)),  (14)
Tt

Re=V"\ (GFTUGHREN). a5

The sample strategy of selecting GEREEN here is to
generate random seeds according to the h;—; token
and randomly sample ; tokens from V* \ (GPCT).
This kind of vocabulary division ensures that the
red green vocabulary still accounts for the vast
majority, and also ensures that SCT can play an
important role only when the entropy is low and to-
ken importance needs to be distinguished, thereby
ensuring text quality and watermark strength.

2.5 SCT based Distribution Adjustment

We reformulate the watermark injection through
logit-space manipulation, preserving the semantic-
critical tokens (SCT) while introducing detectable
biases. Let G; = GP°T U GSREEN denote the
union of SCTs and sampled green list. The wa-
termarked probability distribution is computed fol-
lowing Kirchenbauer et al. (2023) as:

exp(p}") +6)

p = Sier, @@ )+ g, op(p +9) t
| SR keR
Yier, EXp(pw(fl))"‘Zith exp(Pgl)-i-(S) ’
(16)



where pgk) denotes the original logit value for

token k at step ¢, and 6 > 0 controls the watermark
intensity. This formulation applies: 1. Logit boost-
ing (+6) for G; tokens (SCT + green list) 2. Neutral
treatment for R, tokens (remaining vocabulary).

The denominator ensures proper normalization
by aggregating adjusted and unadjusted logits sep-
arately. The final token selection follows:

w; ~ Categorical ({p,gk)ﬁ:l) . a7

This mechanism creates statistically detectable
signatures in G; tokens while maintaining the se-
mantic integrity of SCT tokens owing to the guar-
anteed logit boosting in SCTs, the context-sensitive
enhancement in green list tokens and the original
distribution patterns in R;. The watermark detec-
tion process is followed as (Kirchenbauer et al.,
2023) thanks to the similar vocabulary partition.

3 Theoretical Analysis

We present formal analysis of VLA-Mark’s design
principles and theoretical guarantees. Proofs for
theorems are provided in Appendix C.

3.1 Entropy-Adaptive Partitioning

Theorem 1 (Partition Entropy Bound) 7he dy-
namic green list ratio vy maintains bounded en-

tropy:

where 6(a,v) = log (1 + Ofy—L) quantifies maxi-

mum entropy loss from watermarking.

Implication: This formalizes the trade-off be-
tween watermark strength (controlled by «, ) and
text quality preservation. The adaptive 7; automati-
cally minimizes ¢§ in high-entropy scenarios where
semantic preservation is critical.

3.2 Watermark Detectability

Theorem 2 (Detection Advantage) Let null hy-
pothesis Hy: no watermark (6 = 0), Hi: wa-
termark present (§ > 0). The detection Z-score
satisfies:

6/ Ny(1—7)

E[Z|H,] — E[Z|Hy] > B a— 19)

where N is token count. The advantage grows
linearly with § and V'N.

Role: This quantifies how our logit boosting
strategy (0 > 0) enables statistical detection while
guiding parameter selection (watermark intensity
vs. stealthiness).

4 Experiments

Our experiments comprehensively assessed VLA-
Mark’s performance on detection accuracy, text
quality maintenance, and robustness across four
multimodal language models using the AM-
BER (Wang et al., 2023) dataset. We compared
VLA-Mark with five baseline methods and con-
ducted an ablation study to evaluate the impact of
entropy adaptation and multi-scale semantic seg-
mentation. Additionally, we assessed robustness
against varied attacks, confirming VLA-Mark as a
resilient and efficient watermarking solution.

4.1 Experiment Setup

Backbone models and datasets. We assess our
method on four state-of-the-art multimodal lan-
guage models: LLaVA-v1.5 (Liu et al., 2024a,b),
LLaVA-Next (Li et al., 2024a), Qwen2-VL (Wang
et al., 2024), and DeepSeek-VL (Lu et al., 2024a),
utilizing their corresponding vision models for im-
age feature extraction. Performance is evaluated
using the AMBER (Wang et al., 2023) dataset, tai-
lored for image description tasks.

Baselines approaches. We compare our ap-
proach with five baselines: KGW (Kirchenbauer
et al., 2023), SWEET (Lee et al., 2023), EWD (Lu
et al., 2024b), unbiased (Hu et al., 2023), and
DiP (Wu et al., 2023), chosen for their focus on
detection performance and text quality. Implemen-
tations are facilitated by the MarkLLLM (Pan et al.,
2024) repository.

Evaluation metrics Our evaluation spans detec-
tion performance (AUC and accuracy), text quality
(PPL and BLEU), semantic alignment (STS and
BertScore), and robustness against A1l attack (alter
text through word additions, removals, or substitu-
tions) and A2 attacks (translate and paraphrase text
using LLM) proposed by Lau et al. (2024).

4.2 Results
4.2.1

Table 1 provides a detailed performance compari-
son of VLA-Mark with several baseline methods
across four multimodal language models. The eval-
uation metrics include AUC, Accuracy, and PPL,

Watermark



LLaVA-v1.5 LLaVA-Next Qwen2-VL DeepSeek-VL
AUC ACC PPL AUC ACC PPL AUC ACC PPL AUC ACC PPL
KGW 99.98 99.55 6.21 99.99 99.80 6.04 99.99 99.60 527 99.81 98.00 6.99
EWD 99.99 99.90 6.51 100.0 100.0 6.05 100.0 100.0 524 99.99 99.80 7.00
SWEET 99.99 99.95 6.30 100.0 100.0 6.04 100.0 100.0 5.17 99.92 99.05 7.00
unbiased 88.27 80.87 6.05 92.54 85.20 5.56 96.99 91.13 5.00 79.65 6698 6.18
DiP 88.58 80.82 6.03 92.66 85.60 5.57 97.25 91.13 5.02 79.60 67.33 6.17
VLA-M  99.99 99.80 4.84 9995 98.95 532 99.86 98.10 5.12 9529 89.69 5.81
w/oSCT 99.99 99.75 - 96.08 8939 - 99.76 9845 - 8690 78.83 -

Table 1: Performance comparison of VLA-M and baseline methods across different multimodal language models in metrics
AUC, Accuracy, and Perplexity. Our approach shows high detection performance and and competitive text quality across the

majority of models. Cells highlighted in green

denote superior performance, whereas red cells

signify underperformance.

The notation "w/o SCT" indicates results without using Semantic Critical Tokens.

which measure watermark detection effectiveness
and text quality. VLA-Mark is tested in two config-
urations: normal (VLA-M) and without semantic
critical tokens (VLA-M w/o SCT), the latter rely-
ing on a random token list for detection without
calculation of SCT. The length of all responses is
limited at 200 tokens.

The results highlight the performance of VLA-
Mark. VLA-Mark achieves AUROC above 99.8%
and accuracy above 98.1% in the three models,
indicating high detection accuracy. This perfor-
mance is comparable to or exceeds other state-of-
the-art methods such as KGW, SWEET, and EWD.
Notably, the PPL metric shows that VLA-Mark
outperforms almost all baseline methods, with the
highest PPL score among the three models, and
Qwen2-VL with a score of 5.12, higher than KGW,
SWEET, and EWD methods, highlighting its ability
to maintain high-quality text while embedding wa-
termarks. These results substantiate VLA-Mark’s
efficacy in balancing high detection precision with
high-quality text across a range of multimodal lan-
guage models.

Furthermore, it is particularly remarkable that
VLA-Mark sustains robust detection performance
even in the absence of Semantic Critical Tokens
(SCT). Specifically, the VLA-Mark variant without
SCT (w/o SCT) attains noteworthy AUROC scores
above 99.7% for both LLaVA-v1.5 and Qwen2-VL
models. For Accuracy, VLA-Mark (w/o SCT) de-
livers commendable results above 98.4% for mod-
els mentioned above. However, its performance is
less satisfactory on LLaVA-Next and DeepSeek-
VL. This discrepancy may stem from the fact that
the outputs of these latter models are enriched with

a higher proportion of semantic critical tokens,
which could potentially diminish the detection ef-
ficacy of the SCT-less approach.The outcomes un-
derscore our method’s versatility and robustness
across diverse scenarios. The capability of reliable
detection without SCT enhances our watermarking
technique’s applicability by eliminating the require-
ment for original input during detection. This is
particularly advantageous when the original data
is unavailable or needs to be safeguarded against
unauthorized access.

4.2.2 Ablation Study

PPL(]) STS BertScore BLEU
Integral 484 9213 91.13 65.57
w/oentropy  6.14  90.89  90.75  66.02
w/o MSS 6.08 91.77 90.80 73.51

Table 2: Ablation study comparing the full VLA-M algorithm
(Integral) to its variants lacking specific components. The
"w/o entropy " and "w/o MSS" rows denote versions without
entropy adaptation and multi-scale semantic segmentation
quantization, respectively.

Our ablation study, detailed in Table 2, evaluates
the impact of entropy adaptation component and
multi-scale semantic segmentation (MSS) quan-
tization component within the VLA-M (Integral)
algorithm. The complete algorithm outperforms
its variants on most metrics, achieving the lowest
Perplexity (PPL) score of 4.84 and the highest Se-
mantic Textual Similarity (STS) and BertScore of
92.13 and 91.13, respectively. This indicates better
semantic alignment and text quality compared to
the ablations without entropy adaptation (w/o en-



tropy) and without MSS quantization (w/o MSS).
These results underscore the importance of the en-
tropy adaptive and MSS quantization in preserving
text quality and sematic consisty by dynamically
adjusting watermark intensity and enhancing multi-
dimensional semantic comprehension.

Despite the integral method’s lower BLEU score,
this metric’s focus on n-gram overlap may not fully
capture semantic consistency, which is more crit-
ical in our context. The integral method’s com-
prehensive performance across key metrics demon-
strates its effectiveness in balancing text quality
with robust watermarking capabilities.

4.2.3 Text quality maintenance
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Figure 2: Left: Boxplots of perplexity scores for different
watermarking methods. Right: Average BLEU scores over
increasing token lengths. Our approach maintains lower per-
plexity with competitive BLEU performance even as genera-
tion length grows.

In Figure 2 (left), we observe that our proposed
approach exhibits lower median perplexity com-
pared to other watermarking methods, indicating
that it remains closer to the natural language dis-
tribution. This stems from our “semantic critical
tokens,” which preserve core meanings and reduce
unnecessary perturbations in high-salience tokens.
In Figure 2 (right), average BLEU scores show
that while all methods degrade as token length in-
creases, our dynamic partitioning strategy and SCT
protection help maintain relatively higher BLEU.
By boosting tokens critical to the overall semantics,
we minimize the distortion of fluency and coher-
ence, leading to more faithful long-form genera-
tions.

4.3 Attack

In our robustness experiments, we tested VLA-
Mark against attacks Al and A2 as defined by
Lau et al. (2024). Attack type Al encompasses
random word insertions, deletions, and synonym
substitutions, with 5% of the text undergoing al-
teration. Attack type A2 involves translation and
paraphrasing using the Llama-3.1 model. For trans-
lation, texts are first translated to Spanish and then

back into English. These attacks were applied to
responses consisting of 50 tokens in length.

Figure 3 illustrates VLA-Mark’s superior re-
silience, maintaining high AUC scores under all
attacks. Notably, VLA-Mark sustains an AUC
of 96.96% under Al and only experiences mini-
mal drops of 2.90% and 2.47% during A2 transla-
tion and paraphrasing attacks, respectively. This
contrasts with significant performance declines
in DiP (69.78%-77.57% AUC) and the unbiased
method (70.03%-77.35% AUC) during paraphras-
ing. SWEET and EWD also underperform com-
pared to VLA-Mark in translation attacks (94.10%-
94.68% vs. 95.04% AUC).

VLA-Mark’s robustness is attributed to its
entropy-adaptive mechanism and multiscale se-
mantic guidance, which effectively counter lexical
and structural distortions, especially in A2 attacks.
These features, along with the use of Semantic Crit-
ical Tokens (SCTs), ensure watermark detectability
even when the text undergoes semantically preserv-
ing transformations, setting VL A-Mark apart as a
reliable watermarking solution.

5 Related Work

Our work advances three interconnected research
directions: text watermarking fundamentals, robust-
ness against emerging attacks, and vision-language
aligned generation architectures.

5.1 Text Watermarking Fundamentals

Contemporary watermarking techniques employ
lexical manipulation to embed detectable patterns.
The "green list" paradigm (Kirchenbauer et al.,
2023) pioneers vocabulary partitioning through
hash-based token promotion, while entropy-aware
variants (Mao et al., 2024) dynamically mod-
ulate injection strength using generation uncer-
tainty. Distribution-preserving approaches (Wu
et al., 2024) maintain original token probabilities
through reweighting strategies. However, these
unimodal methods inherently conflict with vision-
conditioned generation: random vocabulary parti-
tioning disrupts visual-semantic alignment by sup-
pressing image-grounded entities (He et al., 2024),
and static allocation strategies fail to adapt to cross-
modal entropy variations (Huang et al., 2023). Re-
cent benchmarks (Qiu et al., 2024) demonstrate
41% robustness degradation when applying these
methods to multimodal generation.
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Figure 3: AUC matrix for six watermarking methods under various attacks scenarios, with AUC values in parentheses. The
proposed VLA-M retains high detection performance even under heavy text transformations such as paraphrasing and translation.

5.2 Robustness Challenges and Attacks

Emerging attack paradigms expose critical vulnera-
bilities in current watermarking schemes. (Rastogi
and Pruthi, 2024) reverse-engineers watermark pat-
terns through black-box output analysis, boosting
paraphrase attack efficacy by 63%. Cross-lingual
threats (He et al., 2024) reveal watermark signal
loss during translation, while adversarial frame-
works like DE-MARK (Chen et al., 2024) system-
atically remove n-gram based watermarks through
probabilistic probing. Though defense mechanisms
like semantic preservation (Ren et al., 2023) and
multi-objective optimization (Huo et al., 2024) en-
hance robustness, they remain unimodally confined
- unable to counter cross-modal attacks that exploit
vision-text interdependencies.

5.3 Vision-Language Aligned Architectures

VLAMMs like LLaVA (Liu et al.,, 2023) and
BLIP-2 (Li et al., 2023) establish tight cross-
modal coupling through architectural innovations:
Flamingo’s gated cross-attention (Alayrac et al.,
2022) enables few-shot visual reasoning, while
CogVLM?2’s temporal grounding (Hong et al.,
2024) achieves human-level scene understanding.
However, these models lack native content authen-
tication mechanisms - a critical gap evidenced
by 68% susceptibility to adversarial paraphras-
ing (Rastogi and Pruthi, 2024). Recent watermark-
aware architectures like (Yoo et al., 2024) incorpo-
rate entropy adaptation but neglect vision-language
projection layers essential for coordinated embed-
ding.

Our framework uniquely bridges these do-
mains through: (1) Visual-semantic guided vocabu-
lary alignment replacing random partitioning, (2)
Attack-resilient intensity modulation synchronized
with cross-modal saliency, and (3) Architectural in-
tegration with vision-language fusion mechanisms
- resolving limitations across all three research
streams.

6 Conclusion

We present VLA-Mark, a vision-language aligned
watermarking framework that harmonizes intellec-
tual property protection with cross-modal semantic
fidelity. By integrating multiscale visual-textual
alignment metrics and entropy-regulated token par-
titioning, our method dynamically balances water-
mark detectability and semantic preservation. Ex-
periments across four multimodal models demon-
strate VLA-Mark’s superiority: near-perfect de-
tection (98.8% AUC), 7.4% lower perplexity, and
96.1% robustness against paraphrasing and trans-
lation attacks. Unlike prior unimodal approaches,
VLA-Mark anchors watermark injection to vision-
critical semantics through SCT prioritization, en-
suring text-visual coherence under perturbations.
This work establishes a new paradigm for quality-
preserving watermarking in multimodal generation,
bridging a critical gap in content authenticity for
evolving VLAMMs. Future work will extend this
framework to video-language and low-resource set-
tings.



Limitation

While VLA-Mark demonstrates robust watermark-
ing capabilities, several limitations remain. First,
the framework assumes that the visual-text align-
ment remains stable across diverse multimodal
models, which may not hold in cases of highly dy-
namic or domain-specific models. Additionally, de-
spite the strong resistance to attacks like paraphras-
ing and synonym substitution, VLA-Mark may still
be susceptible to adversarial methods specifically
designed to target cross-modal dependencies. Fur-
thermore, although the method does not require
model retraining, its reliance on entropy-sensitive
watermark injection might introduce computational
overhead in environments with limited resources.
Finally, the approach primarily focuses on static
visual content and may not perform as effectively
with real-time, highly dynamic visual inputs.

References

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,
Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, et al. 2022. Flamingo: a visual language
model for few-shot learning. Advances in neural
information processing systems, 35:23716-23736.

Ruibo Chen, Yihan Wu, Junfeng Guo, and Heng Huang.
2024. De-mark: Watermark removal in large lan-
guage models. arXiv preprint arXiv:2410.13808.

Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan,
Wen Liu, Zhenda Xie, Xingkai Yu, and Chong Ruan.
2025. Janus-pro: Unified multimodal understanding
and generation with data and model scaling.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.
2023. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https.://vicuna.
Imsys. org (accessed 14 April 2023), 2(3):6.

Zhiwei He, Binglin Zhou, Hongkun Hao, Aiwei Liu,
Xing Wang, Zhaopeng Tu, Zhuosheng Zhang, and
Rui Wang. 2024. Can watermarks survive transla-
tion? on the cross-lingual consistency of text wa-
termark for large language models. arXiv preprint
arXiv:2402.14007.

Wenyi Hong, Weihan Wang, Ming Ding, Wenmeng Yu,
Qingsong Lv, Yan Wang, Yean Cheng, Shiyu Huang,
Junhui Ji, Zhao Xue, et al. 2024. Cogvlm2: Visual
language models for image and video understanding.
arXiv preprint arXiv:2408.16500.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu,
Hongyang Zhang, and Heng Huang. 2023. Unbiased

watermark for large language models. arXiv preprint
arXiv:2310.10669.

Baihe Huang, Hanlin Zhu, Banghua Zhu, Kannan Ram-
chandran, Michael I Jordan, Jason D Lee, and Jiantao
Jiao. 2023. Towards optimal statistical watermarking.
arXiv preprint arXiv:2312.07930.

Mingjia Huo, Sai Ashish Somayajula, Youwei Liang,
Ruisi Zhang, Farinaz Koushanfar, and Pengtao Xie.
2024. Token-specific watermarking with enhanced
detectability and semantic coherence for large lan-
guage models. arXiv preprint arXiv:2402.18059.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023.
A watermark for large language models. In Infer-
national Conference on Machine Learning, pages
17061-17084. PMLR.

Gregory Kang Ruey Lau, Xinyuan Niu, Hieu Dao, Jiang-
wei Chen, Chuan-Sheng Foo, and Bryan Kian Hsiang
Low. 2024. Waterfall: Framework for robust and
scalable text watermarking and provenance for llms.
arXiv preprint arXiv:2407.04411.

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong,
Hwaran Lee, Sangdoo Yun, Jamin Shin, and Gunhee
Kim. 2023. Who wrote this code? watermarking for
code generation. arXiv preprint arXiv:2305.15060.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang,
Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, et al. 2024a. Llava-
onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. In International conference on ma-
chine learning, pages 19730-19742. PMLR.

Yanwei Li, Yuechen Zhang, Chengyao Wang, Zhisheng
Zhong, Yixin Chen, Ruihang Chu, Shaoteng Liu, and
Jiaya Jia. 2024b. Mini-gemini: Mining the potential
of multi-modality vision language models. arXiv
preprint arXiv:2403.18814.

Yuqing Liang, Jiancheng Xiao, Wensheng Gan, and
Philip S Yu. 2024. Watermarking techniques for
large language models: A survey. arXiv preprint
arXiv:2409.00089.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2024a. Improved baselines with visual instruc-
tion tuning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 26296-26306.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual Instruction Tuning.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2024b. Visual instruction tuning. Advances in
neural information processing systems, 36.


http://arxiv.org/abs/2304.08485

Yepeng Liu and Yuheng Bu. 2024. Adaptive text wa-
termark for large language models. arXiv preprint
arXiv:2401.13927.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai
Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhu-
oshu Li, Hao Yang, et al. 2024a. Deepseek-vl:
towards real-world vision-language understanding.
arXiv preprint arXiv:2403.05525.

Yijian Lu, Aiwei Liu, Dianzhi Yu, Jingjing Li, and Irwin
King. 2024b. An entropy-based text watermarking
detection method. arXiv preprint arXiv:2403.13485.

Minjia Mao, Dongjun Wei, Zeyu Chen, Xiao Fang, and
Michael Chau. 2024. A watermark for low-entropy
and unbiased generation in large language models.
arXiv preprint arXiv:2405.14604.

Leyi Pan, Aiwei Liu, Zhiwei He, Zitian Gao, Xuandong
Zhao, Yijian Lu, Binglin Zhou, Shuliang Liu, Xum-
ing Hu, Lijie Wen, et al. 2024. Markllm: An open-
source toolkit for Ilm watermarking. arXiv preprint
arXiv:2405.10051.

Jielin Qiu, William Han, Xuandong Zhao, Shangbang
Long, Christos Faloutsos, and Lei Li. 2024. Evaluat-
ing durability: Benchmark insights into multimodal
watermarking. arXiv preprint arXiv:2406.03728.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748-8763. PMLR.

Saksham Rastogi and Danish Pruthi. 2024. Revisiting
the robustness of watermarking to paraphrasing at-
tacks. arXiv preprint arXiv:2411.05277.

Jie Ren, Han Xu, Yiding Liu, Yingqgian Cui, Shuaigiang
Wang, Dawei Yin, and Jiliang Tang. 2023. A
robust semantics-based watermark for large lan-
guage model against paraphrasing. arXiv preprint
arXiv:2311.08721.

Junyang Wang, Yuhang Wang, Guohai Xu, Jing Zhang,
Yukai Gu, Haitao Jia, Jiaqi Wang, Haiyang Xu, Ming
Yan, Ji Zhang, and Jitao Sang. 2023. Amber: An
IIm-free multi-dimensional benchmark for mllms hal-
lucination evaluation.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, et al. 2024. Qwen2-vl: Enhanc-
ing vision-language model’s perception of the world
at any resolution. arXiv preprint arXiv:2409.12191.

Yihan Wu, Zhengmian Hu, Junfeng Guo, Hongyang
Zhang, and Heng Huang. 2023. A resilient and ac-
cessible distribution-preserving watermark for large
language models.

10

Yihan Wu, Zhengmian Hu, Junfeng Guo, Hongyang
Zhang, and Heng Huang. 2024. A resilient and ac-
cessible distribution-preserving watermark for large
language models. In Forty-first International Confer-
ence on Machine Learning.

KiYoon Yoo, Wonhyuk Ahn, and Nojun Kwak. 2024.
Advancing beyond identification: Multi-bit water-
mark for large language models. In Proceedings of
the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Pa-
pers), pages 4031-4055.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov,
and Lucas Beyer. 2023. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
11975-11986.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and
Yu-Xiang Wang. 2023. Provable robust water-
marking for ai-generated text. arXiv preprint
arXiv:2306.17439.


http://arxiv.org/abs/2311.07397
http://arxiv.org/abs/2311.07397
http://arxiv.org/abs/2311.07397
http://arxiv.org/abs/2311.07397
http://arxiv.org/abs/2311.07397
http://arxiv.org/abs/2310.07710
http://arxiv.org/abs/2310.07710
http://arxiv.org/abs/2310.07710
http://arxiv.org/abs/2310.07710
http://arxiv.org/abs/2310.07710

A Implementation Details

A.1 Hyperparameters setting

For fair comparison, the hyperparameters of each
method are standardized:

1. Hyperparameter v is set to 0.5 to keep the
green vocabulary size consistent across differ-
ent watermarking methods;

Hyperparameter 4 is set to 2.0 to keep the per-
turbation level consistent and avoid imbalance
in watermark intensity;

Hyperparameter o , which controls the base
Semantic Critical Tokens proportion of VLA-
Mark method, is set to 0.025 to ensure that
only the most semantically relevant tokens are
selected to maintain text quality and detection
performance; and

For other hyperparameters, we follow the de-
fault settings of the MarklLLM (Pan et al.,
2024) repository.

B Proof of Maximum Entropy

Consider the entropy function H; defined over a
discrete probability distribution {ﬁgl) M

L
Hi=— 0 logp" 20)
=1

We aim to find the probability distribution that max-
imizes H; subject to the constraint:

L !
S =1
=1

To solve this constrained optimization problem, we
employ the method of Lagrange multipliers. Intro-
ducing a Lagrange multiplier A for the constraint,
we construct the Lagrangian function:

L L
£=->"p"logp + A (Z - 1) (22)
=1 =1

Taking the partial derivative of £ with respect to
O]

21

each p; ~ and setting it to zero yields:
oL
= = logpl) —14A=0  (23)
op\V
Dy
Solving for ﬁgl) gives:
logp) =x—1 = pP =1 (4
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(1) (1) _

This implies that all p, are equal. Let p; % for
all /. Substituting into the constraint ZZL: 1 ﬁgl) =1
confirms that this distribution is valid:
L
1
—=1 25
>3 @
=1

()

Substituting p; * = % into the entropy function H:
L
1 1 1 1
max — —
: 7_5 LlogL—L-<LlogL>logL

(26)
Since the entropy function H; is concave in {p,ﬁ” 1
the critical point corresponds to the global maxi-
mum. Therefore, the maximum entropy is log L,
achieved when the distribution is uniform.

C Theoretical Analysis Proof

C.1 Entropy-Adaptive Partitioning

Proof C.1 Let p; and p}™ denote the original and
watermarked distributions respectively. The en-
tropy difference can be bounded as:

H(pt) — H(pi"™) = Ep,[log pt] — Epn[log pi™]
= Dkr(p}™||pt) + log D
(27)

where D = 37, o epi(k) + > ker, Pr(k) is
the partition function. Using the log-sum inequal-

ity:
log D < log (1 (e — 1)) <y — 1) (28)

The KL divergence term satisfies:

Die(p}"|[pe) < 67(e* = 1) (29)

Combining these with the dynamic partition ratio
v = a(l — Huyorm) + Y, we obtain the entropy
bound:

H(py™) > H(p:) — |v(e — 1)(1+6)| (30)

5(a,y)

Substituting v < « + ¢ completes the proof.



C.2 Watermark Detectability

Proof C.2 Let X = SV I(w; € G;) be the green
list hit count. Under Hy (no watermark):

E[X[Ho] = Nv, Var[X|Ho] = Ny(1 —7)
(31)

Under H, (watermark present), the logit boost
d increases hit probabilities:

¥4
E|X|H{| =N — | > N~(1+6/2
Xt =N (14 Ty ) 2 Na()2)
(32)
The detection Z-score becomes:
X-—-N
- il (33)

VN )

The expected detection advantage is:

E[Z|H\]-E[Z|Ho] =

3
(1) = @* W) < 3 DI =il G36)
k=1

Wl ™

where ;. are optimal unimodal metrics under
Lipschitz continuity.

Significance: The triangular error bound guar-
antees that our multi-scale fusion approach never
deviates catastrophically from ideal semantic as-
sessment, even with imperfect individual metrics.

D.3 Robustness to Token Editing

Lemma 2 (Edit Resistance) After K token ed-
its, watermark detection power remains lower-

bounded by:
) (37

N(y— K/N)®

Power > 1 — exp (—
- 27(1=9)

_ 0y/N~(1 — ) requiring K > N(1 — /(1 —1)) to defeat

N~§/2
2

VN )
(34)

This linear advantage in § and square-root de-
pendence on N establishes reliable detection.

D Further Theoretical Analysis

D.1 Semantic Consistency of Cross-Modal
Alignment

Theorem 3 (Projection Invariance) Let

fo : R% — R? pe the vision-text projection
with rank( fy) d. For aligned embeddings
H, = fo(Z,), there exists an orthogonal matrix
Q € R™4 sych that:

Vz, € Z,,3h;, € Hy, : HQfG(Zv) — hLHQ <e
(35)
where € bounds the alignment error from VLA
training.

Analysis: This establishes that vision embed-
dings reside in a rotated version of the LLM’s se-
mantic space, enabling cross-modal similarity com-
putation. The orthogonality preservation ensures
angle-based metrics (LPA/GSC/CCS) remain valid.

D.2 Metric Fusion Optimality

Lemma 1 (Metric Completeness) The fused met-
ric ®(1) achieves e-approximation of the ideal se-
mantic relevance function ®*(1):
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detection.

Significance: Formalizes robustness against
content-preserving edits - attackers must alter a
linear fraction of tokens (o< IN) to remove the wa-
termark, inevitably damaging content integrity.

D.4 Visual-Semantic Coupling

Theorem 4 (SCT Invariance) Semantic Critical
Tokens maintain relative rankings under visual per-
turbations AX,:

P(rank(®(1)|x,+ax,) = rank(®(l)|x,)) = 1-C[|AXy[|r

(38)
where C depends on VLA model Lipschitz con-
stants.

Analysis: Demonstrates that our visual ground-
ing mechanism resists moderate adversarial image
perturbations, as SCT rankings remain stable under
controlled visual changes.

This theoretical framework rigorously estab-
lishes VLA-Mark’s key properties: semantic con-
sistency through cross-modal alignment, adaptive
watermark strength via entropy regulation, statis-
tical detectability, and robustness against content-
preserving attacks. The analysis guides parameter
selection while providing formal guarantees absent
in previous works.



