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ABSTRACT

Make-on-demand combinatorial synthesis libraries (CSLs) like Enamine REAL
have significantly enabled drug discovery efforts. However, their large size presents
a challenge for virtual screening, where the goal is to identify the top compounds
in a library according to a computational objective (e.g., optimizing docking score)
subject to computational constraints under a limited computational budget. For
current library sizes—numbering in the tens of billions of compounds—and scoring
functions of interest, a routine virtual screening campaign may be limited to scoring
fewer than 0.1% of the available compounds, leaving potentially many high scoring
compounds undiscovered. Furthermore, as constraints (and sometimes objectives)
change during the course of a virtual screening campaign, existing virtual screening
algorithms typically offer little room for amortization. We propose the approximate-
but-exhaustive search protocol for CSLs, or APEX. APEX utilizes a neural network
surrogate that exploits the structure of CSLs in the prediction of objectives and
constraints to make full enumeration on a consumer GPU possible in under a
minute, allowing for exact retrieval of approximate top-k sets. To demonstrate
APEX’s capabilities, we develop a benchmark CSL comprised of more than 10
million compounds, all of which have been annotated with their docking scores
on five medically relevant targets along with physicohemical properties measured
with RDKit such that, for any objective and set of constraints, the ground truth
top-k compounds can be identified and compared against the retrievals from any
virtual screening algorithm. We show APEX’s consistently strong performance
both in retrieval accuracy and runtime compared to alternative methods.

1 INTRODUCTION

The search for novel therapeutic agents is a cornerstone of modern medicine and drug discovery.
In recent years, the emergence of ultra-large combinatorial synthesis libraries (CSLs), such as the
Enamine REAL library, has significantly transformed this pursuit. These libraries, containing billions
or even trillions of make-on-demand compounds, offer an unprecedented opportunity to explore a vast
and diverse chemical space, significantly increasing the potential for identifying novel hit compounds
with desirable properties. However, the sheer scale of these libraries presents a formidable challenge
to traditional approaches to virtual screening.

State-of-the-art scoring functions used in virtual screening, like docking/affinity/co-folding scores, are
too computationally expensive to render an exhaustive evaluation over modern CSLs, which number
in the billions, practical. A number of virtual screening approaches have been developed to identify
high-scoring compounds from large compound libraries under a limited evaluation budget. These
methods include heuristic algorithms (Sadybekov et al., 2022), reinforcement learning (Pedawi et al.,
2023; Klarich et al., 2024; de Oliveira et al., 2024), active learning (Graff et al., 2021; Mehta et al.,
2021), and approaches that utilize generative models constrained to the library (Pedawi et al., 2022;
Cretu et al., 2024; Luo et al., 2024; Gao et al., 2025). However, since these algorithms effectively
assess only a small fraction of the total library—usually less than 1% of available compounds—
they leave the vast majority of the chemical space unexplored and potentially overlook valuable
compounds. Many of the listed strategies above include a surrogate modeling component, in which
a more inference efficient model (such as a neural network) is trained to approximate the oracle
scoring function to enable exhaustive evaluation with the surrogate (Gentile et al., 2020; Graff et al.,
2022). But this too is impeded by the size of modern CSLs, which would naively require billions of
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neural network evaluations to score exhaustively with the trained surrogate. Indeed, the growing size
of CSLs and the computational demands of modern scoring functions in virtual screening create a
pressing need for more efficient and comprehensive approaches.

At its core, virtual screening can be framed as a search problem, where the objective is to identify
the top k compounds that optimize a specific scoring function while satisfying a set of program-
specific constraints, namely desired physicochemical or ADMET properties like molecular weight,
lipophilicity, and permeability. The ability to effectively handle constraints is particularly crucial in
a virtual screening: for any given drug discovery project, the number of compounds in a screening
library that violate these constraints can be orders of magnitude larger than those that satisfy them.
This often complicates the workflow and can lead to the exploration of irrelevant chemical space or
aggressive post-filtering.

In this work, we introduce APEX (approximate-but-exhaustive search), a new paradigm for searching
ultra-large CSLs that enables fast, declarative queries. Once trained, an APEX model allows for
efficient retrieval of the (approximate) top-k compounds from a CSL according to a user-specified
objective subject to a set of user-specified constraints. More than a virtual screening algorithm,
APEX allows for low latency exploration of massive CSLs without the need for a complex, iterative
workflow. The core of this capability is a neural network surrogate model that exploits the library’s
combinatorial structure and amortizes the computation required for repeated querying, enabling
real-time search across the entire enumerated CSL with remarkable efficiency on a modern GPU.

This paper details the theoretical underpinnings of the APEX methodology and demonstrates its
practical application in virtual screening.

2 DATA

2.1 COMBINATORIAL SYNTHESIS LIBRARIES

A combinatorial synthesis library (CSL) is organized into a collection of multi-component reactions,
each of which has a fixed number of components called R-groups which indicate placeholders for
molecular building blocks called synthons. Hence, each product in a CSL can be identified by
its reaction and R-group assignment. Due to their combinatorial design, commercially available
make-on-demand CSLs such as the Enamine REAL library span a chemical space numbering in the
tens of billions of compounds today from a few hundred thousand synthons.

In this work, we designed our own open CSL as an alternative to existing proprietary CSLs for
benchmarking and reproducibility purposes. We used a random sample of 1 million “lead-like”
compounds from the ZINC22 database (Tingle et al., 2023) as a starting point for library construction.
Our main focus here is on developing a large virtual library of valid CSL-like molecules, so we do
not consider or ensure synthetic feasibility. We used the BRICS fragmentation algorithm (Degen
et al., 2008), which breaks specific bonds based on defined chemical environments, to fragment each
sampled molecule into two or three fragments. Each fragment is labeled with numbered pseudoatoms
at the break points, with the BRICS rules determining which pseudoatom types can be joined to
form a new bond. We applied the BRICS rules (as implemented in RDKit) to enumerate two- and
three-component reactions that recombined these fragments into valid chemical products. This results
in a set of fragmentation rules and fragments analogous to the reactions and synthons of a CSL.

Our final CSL comprises over 10B molecules and is by design evenly split between two- and three-
component reactions. Additionally, we generated two smaller libraries by uniformly downsampling
each reaction. These smaller libraries contain over 12M and 1M products and are fully enumerated to
enable exhaustive docking and calculation of physiochemical properties. To address data leakage
concerns, for all experiments in the paper, the surrogate is trained on the 1M compound CSL and
evaluation is performed using either the 12M or 10B compound CSLs.

2.2 DOCKING SCORES AND PHYSIOCHEMICAL PROPERTIES

For benchmarking purposes, we selected five diverse protein targets: PARP1 (an enzyme), MET
(a kinase), DRD2 (a GPCR), F10 (a protease), and ESR1 (a nuclear receptor). Receptor structures
and binding sites were obtained from the DOCKSTRING dataset (García-Ortegón et al., 2022).
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Figure 1: Beyond commercially available make-on-demand CSLs, it is relatively straightforward
to design an ultra-large CSL for virtual screening using publicly available libraries of enumerated
compounds like ZINC22 and cheminformatics tools like RDKit. These designs are incredibly valuable
for virtual screening due to their ability to densely cover large swaths of relevant chemical space.

Molecules from this smaller library were embedded with RDKit and docked against these five targets
using an accelerated implementation of the AutoDock Vina (Trott & Olson, 2010) scoring function
designed to run on GPU (Morrison et al., 2020). In addition to docking scores, we calculated various
physicochemical properties (e.g., molecular weight, number of hydrogen bond donors and acceptors;
full list can be seen in Figure 7) for each molecule in this enumerated library.

3 METHODOLOGY

Given a CSL D, which defines the chemical space XD of eligible compounds, our goal is to identify
the top-k compounds from the library that maximize an objective subject to constraints. This retrieval
problem can be expressed as

X∗
k := arg max

Xk⊂XD
|Xk|≤k

∑
x∈Xk

f0(x),

subject to ℓi ≤ fi(x) ≤ ui, ∀x ∈ Xk, i = 1, . . . ,m,

(1)

where f0 : X → R is the objective and fi : X → R, i = 1, . . . ,m, are the constraints with bounds
ℓi < ui. This problem is complicated by the present and rapidly growing size of CSLs, |XD| > 1010,
combined with the fact that many objectives and constraints of interest—such as docking or co-folding
scores—are computationally expensive to evaluate, which precludes exhaustive evaluation. We can
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Figure 2: The APEX (approximate-but-exhaustive) search protocol, enabling rapid, on-the-fly virtual
screening of ultra-large CSLs. APEX consists of three main steps. Step 1: Train the surrogate.
Given an enumerated and labeled dataset, a multi-task neural network is trained to predict molecular
properties of interest, like docking scores. Step 2: Train the factorizer. Given a CSL, the reaction
factorizer is trained to reconstruct embeddings of the surrogate model from reaction and R-group
assignment pairs. The factorizer induces an approximation of surrogate properties that is amenable
to substantial amortization in executing top-k retrieval on ultra-large CSLs with respect to those
properties. Step 3: Run approximate-but-exhaustive search. Given a search query (e.g., minimize
docking score on target of interest subject to drug-likeness constraints), factorized surrogate properties
are calculated for all compounds in the CSL and the top-k are retrieved based on the objective subject
to constraints. An efficient GPU implementation allows for running a top-k search with k = 1 million
on a 10 billion compound CSL in approximately 30 seconds with a single T4 GPU.

relax (1) by substituting the original objective and constraints with surrogate models:

X̂∗
k := arg max

Xk⊂XD
|Xk|≤k

∑
x∈Xk

f̂0(x),

subject to ℓi ≤ f̂i(x) ≤ ui, ∀x ∈ Xk, i = 1, . . . ,m,

(2)

Neural network surrogates that operate directly on a 2D molecular graph or a 1D representation like
SMILES are a good choice, but exhaustive evaluation of ultra-large CSLs with such surrogates is still
far from a routine computational task, requiring O(|XD|) neural network evaluations.

We develop a surrogate-based modeling strategy that permits (2) to be solved efficiently for ultra-large
CSLs. First, let us discuss the parameterization of the surrogate models admissible under this design.

3.1 SURROGATE MODEL PARAMETERIZATION

Let gθ : X → Rd be a neural network that encodes a molecule x ∈ X into a d-dimensional
embedding space. We place no restrictions on gθ beyond this, i.e., it can be a transformer that operates
on the SMILES representation of x, a GNN that operates on a 2D graph representation of x, or some
other similarly appropriate choice. We model each task i = 0, . . . ,m as a linear function of the
molecular embedding,

f̂i(x) = w⊤
i gθ(x) + bi, (3)

where wi ∈ Rd and bi ∈ R. Given labeled data from each task, written pi(x, y) where y = fi(x),
the surrogate model is trained to minimize the prediction error relative to ground truth:

min
θ,{(wi,bi)}m

i=0

m∑
i=0

Epi(x,y)Ep(εεε)
[
(w⊤

i (gθ(x) + εεε) + bi − y)2
]
. (4)
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The surrogate is trained with noise added to the embeddings, sampled from a simple distribution p(εεε)
like an isotropic normal. The relevance of this particular detail will be explained shortly.

3.2 FACTORIZATION OF SURROGATE EMBEDDINGS

As a review (see Pedawi et al. (2022) for additional details), we can represent a CSL D ≡
(T,R, S, ψ, ϕ) hierarchically, with synthons (molecular fragments) S at the bottom of the hier-
archy, R-groups R in the middle, and reactions T at the top. Every synthon index s ∈ S is associated
with a corresponding molecular representation xs ∈ X∗ (again, SMILES or 2D graph), where
X∗ ⊃ X extends X to include attachment points, represented by the token “*”. An R-group, denoted
by the index r ∈ R, is comprised of a set of synthons that constitute valid assignments to the
associated component in a multi-component reaction. A multi-component reaction t ∈ T , together
with a valid assignment of synthons to their constituent R-groups, produces a single molecule via
chemical synthesis as output. We denote by ψT→R : T → P(R) the function that returns the
set of R-groups ψT→R(t) ⊂ R associated with a reaction t, where P(·) denotes the power set
function. Similarly, ψR→S : R → P(S) returns the set of synthons ψR→S(r) ⊂ S that can be
assigned to a particular R-group. Each molecule in D can be referenced by a multi-index, denoted
by χχχ = (t, {(r, s) : ∃s ∈ ψR→S(r),∀r ∈ ψT→R(t)}), which describes the reaction and R-group
assignment used to construct the molecule, x := ϕ(χχχ).

We utilize the design proposed in Pedawi et al. (2022) to model an associated hierarchy of represen-
tations that describe the library at these three levels of resolution. First, the SynthonEncoder :
X∗ → RdS produces an embedding for each synthon s as a function of its molecular representation
xs. Next, a deep set network called the RgroupEncoder : RdS × · · · × RdS → RdR produces
an embedding for each R-group r as a function of the representations of its constituent synthons.
Finally, another deep set network, ReactionEncoder : RdR × · · · × RdR → RdT , produces an
embedding for each reaction t as a function of the representations of its constituent R-groups. This is
described by the following computational stack:

hSs = SynthonEncoder(xs), (5)

hRr = RgroupEncoder({hSs : ∀s ∈ ψR→S(r)}), (6)

hTt = ReactionEncoder({hRr : ∀r ∈ ψT→R(t)}). (7)

From these representations, we aim to reconstruct the molecular embedding gθ(ϕ(χχχ)) as a function
of the associated multi-index χχχ in a manner which will permit fast and efficient approximations
of (3). To do this, we model the embedding space of gθ via a linear associative map of the R-
group assignments. In particular, we introduce a SynthonValueEncoder : RdS → RdU and
RgroupKeyEncoder : RdR × RdT → Rd×dU which produce intermediate representations that
are combined as follows to arrive at a prediction of the molecule’s latent representation:

vs = SynthonValueEncoder(hSs ), (8)

Kr = RgroupKeyEncoder(hRr ,h
T
ψR→T (r)), (9)

ur,s = Krvs, (10)

ĝλ(χχχ) =
∑

(r,s)∈χχχ

ur,s. (11)

The SynthonEncoder, RgroupEncoder, ReactionEncoder, SynthonValueEncoder,
and RgroupKeyEncoder all combine to form the ReactionFactorizer or just the “factor-
izer” for short, which we represent by the function ĝλ(χχχ). Given a library D and the frozen surrogate
encoder gθ, we train the factorizer to minimize the reconstruction error of the surrogate embeddings,

min
λ

Ep(χχχ|D)

[
∥gθ(ϕ(χχχ))− ĝλ(χχχ)∥22

]
. (12)
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3.3 PUTTING IT TOGETHER

We can factorize the surrogate predictions by substituting (11) into (3), which simplifies as follows:

ˆ̂
fi(χχχ) = w⊤

i ĝλ(χχχ) + bi, (13)

= w⊤
i

 ∑
(r,s)∈χχχ

ur,s

+ bi, (14)

=
∑

(r,s)∈χχχ

w⊤
i ur,s + bi, (15)

=
∑

(r,s)∈χχχ

vi,r,s + bi, (16)

where the vi,r,s terms are called synthon associative contributions. We use the shorthand ˆ̂
fi(x) to

denote ˆ̂
fi(ϕ(χχχ)) when x = ϕ(χχχ), i.e., we can express ˆ̂

fi : XD → R. We call the expression in
(16) the approximate-but-exhaustive (APEX) factorization, because it permits us to solve the top-k
problem (2) under the approximation (16) via exhaustive evaluation on D:

ˆ̂
X∗
k := arg max

Xk⊂XD
|Xk|≤k

∑
x∈Xk

ˆ̂
f0(x),

subject to ℓi ≤ ˆ̂
fi(x) ≤ ui, ∀x ∈ Xk, i = 1, . . . ,m.

(17)

Since the surrogate is trained with noise added to the embeddings as per (4) (and therefore learns
embeddings whose linear projections are robust to such perturbations), the APEX prediction induced
by the substitution in (13) is robust to the so-called errors-in-variables problem (Griliches, 1974).
The addition of isotropic normal noise in (4) is therefore a technique to statistically regularize the
surrogate to ensure that it remains robust to the subsequent factorization.

To demonstrate, let’s consider a simplified CSL comprised of a single three-component reaction
with 10,000 distinct synthons for each R-group, i.e., |S| = 30, 000. This yields a total of one trillion
products in D. Exhaustive screening with f̂θ would therefore require one trillion neural network
evaluations. APEX, on the other hand, produces all intermediate representations for the library with
just 30,000 neural network evaluations. The associative embeddings (10) can be cached as a |S| × d
matrix for later re-use. Supposing d = 1024, this would require about 120 MB of memory. In contrast,
to cache the latent representations for all of the one trillion products in D would require about 4 PB
of memory. With the associative embeddings in our possession, we can calculate their dot products
with the task weight wi, which is just 2|S| × d − |S| = 61.41 million floating point operations.

Once these terms have been computed, each ˆ̂
fi(x) can be calculated with just a few floating point

operations (three in this case: the summation of the three synthon associative contributions and the
bias term bi). Hence, we can approximate the surrogate predictions for all compounds in D with just
three trillion floating point operations (i.e., 3 TFLOP). Noting that the NVIDIA Tesla T4 GPU is
able to perform 8.1 TFLOPS, the APEX factorization (16) theoretically permits evaluation of all one
trillion compounds in the CSL in just a few seconds.

To construct the top-k set ˆ̂
X∗
k for the retrieval problem (17), we can stream the pre-computed synthon

associative contributions for each task and add them with the bias to form the APEX prediction (16).
We can compute the constraint violation under the APEX predictions,

ˆ̂c(x) = −
m∑
i=1

max(0, ℓi − ˆ̂
fi(x))−

m∑
i=1

max(0,
ˆ̂
fi(x)− ui), (18)

which is zero if all of the predicted constraints are satisfied and negative if there is any violation.

Hence, for each compound in D, we form a two-dimensional vector (ˆ̂c(x), ˆ̂f0(x)) that is used to
enter compounds into a priority queue of size k that organizes them in lexicographical order. Once
we have exhausted through all compounds in D, we can remove any compound from the top-k set

where ˆ̂c(x) < 0. The result is the solution ˆ̂
X∗
k to (17).
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3.4 TOP-k RETRIEVAL

The exposition in the previous subsection on runtime only considers evaluation of APEX predictions
over the entire CSL and ignores overhead introduced by maintenance of the top-k set. APEX
implements custom top-k algorithms for the CPU and GPU within a PyTorch CUDA C++ extension

module. The CPU PyTorch operator calculates each molecule’s APEX objective ˆ̂
f0(x) and constraint

violation ˆ̂c(x) on the fly and streams them directly into a priority queue. However, APEX is uniquely
suited for the GPU, as it requires only a small initial data transfer from CPU to GPU, and all
intermediate calculations can be performed entirely on-GPU. To leverage the high compute capability
and memory bandwidth of the GPU, the CUDA PyTorch operator employs a chain-of-batches strategy
with the GPU-compatible AIR top-k algorithm (Zhang et al., 2023). Additional details are provided
in Appendix A.3.

4 EVALUATION

To demonstrate APEX’s capabilities on a variety of pertinent virtual screening queries, we evaluate
its ability to accurately retrieve the top-k compounds in a large, representative CSL by docking score
across the five selected targets (PARP1, MET, DRD2, F10, and ESR1) and against a number of
relevant constraint sets used in drug discovery (described in Appendix A.4).

In all reported experiments, the surrogate is trained on the 1M compound CSL described in Section 2
(this is the only step in which labels are provided to the model) and the factorizer is trained on either
the 12M or 10B compound CSL (in the absence of labels) to reconstruct embeddings produced by the
trained surrogate model. We use an embedding dimension of d = 64. No extensive hyperparameter
tuning was performed; we opted for a lightweight model for purposes of demonstrating APEX (but
note that runtime for APEX search is not a function of d once pre-calculations have been performed).

4.1 TOP-k RETRIEVAL

For a library D, objective f0, constraints {(fi, ℓi, ui)}mi=1, and evaluation budget k, we are ultimately
interested in a screening algorithm’s ability to accurately retrieve the ground truth top-j set X∗

j in (1),
where j ≤ k. For example, we might have the budget to evaluate k = 100,000 compounds but wish
to quantify what percent of the top-j = 100 were correctly retrieved. For APEX, this quantity can be
expressed simply as

Recall-j-at-k =
|X∗

j ∩ X̂∗
k |

|X∗
j |

. (19)

Of course, this requires knowing the ground truth top-j set X∗
j for a given search query. We use the

12M enumerated and exhaustively scored CSL to perform such an evaluation.

Results are shown in Figure 3A. With a budget of k = 100,000 retrievals (representing 0.803% of
compounds in the CSL), the ground truth top-j compounds are recovered at rates far exceeding
selection with a random baseline across all targets and for all sets of constraints. In addition to
the search without constraints, the recall is highest for the Veber set of constraints, which are the
least stringent and are satisfied by most compounds in the library (Figure 3B). The Astex Rule-of-3
constraints are designed for fragment-based drug discovery but we include them here as an example
of a more stringent constraint set. While the rate of constraint satisfaction is lowest for this set, it is
still much higher than the baseline rate of constraint satisfaction in the library.

4.2 COMPARISON WITH THOMPSON SAMPLING

As a more challenging baseline, we also compare APEX to Thompson sampling (TS). As TS is
run on each reaction separately, we limit the comparison to the top five largest reactions in our
12M CSL (in total comprising over 4 million products). The total number of evaluations for TS is
|S| × w + i, where S is the set of synthons for that particular reaction, w is the number of warmup
steps, and i is the number of TS iterations and output molecules. We run TS for 100, 1000, or
10,000 iterations, with 3 warmup steps for two-component reactions and 10 for three-component
reactions (as suggested in Klarich et al. (2024)). As this TS implementation does not directly support

7
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Figure 3: (A) Percent of compounds in the ground truth top-j set retrieved by the APEX top
k = 100,000 set from the 12M compound CSL. A random baseline will achieve a recall below 0.01.
(B) Constraint satisfaction rates for the APEX retrievals. Black line denotes the base fraction of
satisfying compounds in the library for each set of constraints. (C) Recall of different top-j sets
without constraints as a function of increasing evaluation budget. Recall is averaged over all five
targets, with error bars showing the standard deviation. Per-target recall curves are shown in Figure 9
of the Appendix. The dashed line corresponds to k = 100,000, the budget used for (A) and (B).

constraints on molecular properties, we perform the comparison in the unconstrained case for both
APEX and TS, only minimizing docking score as the objective. For each reaction and number of
TS iterations, we set k for APEX to the total number of TS evaluations, and evaluate top-j recall
within a particular reaction. Full results are shown in Figure 8 in the Appendix. While results vary
across targets and reactions, APEX consistently outperforms or matches TS at recalling the top-j
compounds, showing particular strength at lower evaluation budgets.

4.3 DOCKING SCORE ENRICHMENT ON ULTRA-LARGE LIBRARIES

Figure 4 plots the empirical CDF of docking scores across the five targets for the APEX top-k set in
both the 10B and 12M compound CSLs against the background distribution of scores from the 12M
compound library. This result demonstrates clear enrichment in the APEX top-k sets relative to the
background set, and further highlights the value of screening larger CSLs to identify higher scoring
compounds enabled by APEX’s accelerated runtime and ability to scale to ultra-large combinatorial
libraries.
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Figure 4: Docking scores for the APEX top k = 100,000 on the 10B library are enriched with respect
to the background distribution and with respect to the top-k set from the smaller 12M library. Lower
scores are better (i.e., indicate better interaction between ligand and receptor).

4.3.1 ZERO-SHOT APPLICATION TO THE ENAMINE REAL LIBRARY

In addition to the BRICS CSLs, we also apply APEX to the commercial Enamine REAL library
(9-2024 version). This library contains more than 70B compounds and serves as a test of APEX’s
generality, both in scaling to even larger library sizes and as an application of a pretrained surrogate
and factorizer in a zero-shot manner.

Figure 4 presents the docking score distributions from this library alongside a background score
distribution generated from 100,000 random compounds. Despite the surrogate and factorizer being
trained on a different, much smaller library, APEX is able to enrich docking scores with respect
to the background distribution of the Enamine library and, in most cases, with respect to the top-k
of the 10B BRICS library. The lowest enrichment is from MET kinase, which also corresponds
to the largest drop-off in R-squared in this zero-shot application of the factorizer (Figure 7 in the
Appendix). While these results demonstrate APEX’s capabilities in a zero-shot context on ultra-large
vendor CSLs today, even greater docking score enrichment is likely achievable through fine-tuning
the surrogate (and subsequently the factorizer) using labeled data from the target CSL.

4.4 EXECUTION SPEED OF APEX ON ULTRA-LARGE CSLS

Table 1 reports runtimes of APEX top-k search on the BRICS and Enamine libraries for different
choices of k, evaluated on a single NVIDIA Tesla T4 GPU. The reported runtimes represent end-to-
end execution, i.e., from problem specification to an output dataframe with APEX top-k SMILES
and their associated APEX-predicted objective and constraint values. In screening the 10B and
70B compound libraries, we observe an order of magnitude speedup in runtime when using the
GPU top-k implementation as opposed to CPU. Further, as constraints are included, the gap widens
significantly, with the CPU implementation’s runtime increasing approximately linearly in the number
of constraints added. Using the GPU top-k implementation, APEX is able to retrieve the approximate
top k = 1,000,000 compounds from a 10B compound library in less than thirty seconds under
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standard drug likeness constraints, making it a highly performant and scalable search protocol for
ultra-large CSLs.

Unconstrained Lipinski Rule of 5

k BRICS 12M BRICS 10B REAL 70B BRICS 12M BRICS 10B REAL 70B

10,000 0.3 (0.4) 10.9 (130.7) 168.4 (838.5) 0.3 (0.7) 13.9 (437.7) 186.1 (3163.2)
100,000 1.2 (1.2) 11.6 (131.4) 169.3 (847.2) 0.9 (1.7) 14.6 (443.7) 187.5 (3184.6)

1,000,000 10.9 (12.7) 21.2 (147.6) 184.0 (858.9) 10.8 (12.9) 24.3 (462.2) 202.4 (3142.5)

Table 1: Runtime of APEX top-k search across constraints and library sizes in seconds. Times are
averaged over five runs (one with each target’s docking score as an objective), with GPU runtime
reported first and CPU runtime reported in parentheses.

5 CONCLUSION

In this paper, we proposed the APEX search protocol for the virtual screening of combinatorial
synthesis libraries, enabling the rapid execution of declarative queries that scales to ultra-large
libraries (in excess of 10 billion compounds). While traditional virtual screening algorithms are
limited by design to evaluate only a small fraction of the eligible search space, APEX enables a fast,
exhaustive evaluation over the entire search space by taking advantage of the structure of CSLs. This
allows researchers to rapidly identify high-scoring compounds virtually that satisfy design constraints.
We demonstrated APEX’s capabilities on a benchmark CSL of over 10 million compounds, all
annotated with ground truth docking scores and physiochemical properties. Our results show that
APEX consistently achieves high recall rates for the ground truth top-k compounds at low k and
effectively satisfies diverse constraint sets, far exceeding random baselines.

APEX is a significant step towards making exhaustive virtual screening a routine computational task.
Its ability to efficiently screen entire CSLs ensures that valuable, high-scoring compounds are not
overlooked. Moreover, due to its rapid execution speed—virtually screening a CSL in excess of
10 billion compounds in less than 30 seconds with a single Tesla T4 GPU—APEX enables rapid
hypothesis testing and interactive exploration of chemical space.

USE OF LARGE LANGUAGE MODELS (LLMS)

The use of LLMs in this paper was limited to minor stylistic and grammatical improvements.
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A APPENDIX

A.1 THE VIRTUAL LIBRARY

Figure 5 displays twenty randomly selected molecules from the 10B compound CSL constructed
as part of this study. In Figure 6, the distribution of molecular properties for the fully enumerated
12M compound CSL are shown for both two- and three-component reactions. We note that com-
pounds originating from three-component reactions tend to be larger than those from two-component
reactions.

Figure 5: Example molecules from the 10B compound CSL.
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Figure 6: Distribution of molecular properties in the 12M compound CSL.

A.2 REGRESSION PERFORMANCE BY ENDPOINT

Figure 7 displays the R-squared for the surrogate (original and APEX-factorized) across all 28
endpoints considered in this study measured on a random sample of compounds from the 12M fully
enumerated CSL. For the five docking score endpoints we additionally report rank correlation with
Kendall’s tau-b and Spearman’s rho.

A.3 GPU IMPLEMENTATION OF FACTORIZED TOP-k SEARCH

The factorized top-k search employed in APEX is particularly well suited for GPUs. Each operation
(score calculation, element tracing, and index decoding) can be performed independently for each
compound in the CSL. Moreover, NVIDIA’s CCCL library (CCCL Development Team, 2023)
provides an efficient batch-based AIR top-k method (Zhang et al., 2023), which we leverage in our
implementation using a chain-of-batches strategy.

We first partition the CSL into batches of (reaction, first R-group assignment) pairs of some chunk size

(e.g., one billion compounds) and evaluate scores, the two-dimensional pair (ˆ̂c(x), ˆ̂f0(x)) denoting
the APEX-predicted constraint violation and objective value, for all compounds in a batch on the
GPU. For example, a batch can contain all compounds from the first three reactions (all R-groups
fully enumerated) and all compounds from the fourth reaction where the first R-group assigned one
of the first five eligible synthons, such that the total number of products is less than or equal to the
specified chunk size.

Within a batch, compound scores are computed in parallel: CUDA blocks iterate over (reaction, first
R-group assignment) pairs, while threads loop through subsequent R-group assignments. Synthon
associative contributions are accumulated in shared memory for higher compute throughput. If a
reaction has more than two R-groups, the remaining ones are processed with plain loops.

After score computation, results are passed to CCCL’s AIR top-k method to filter for the top-k
indices for that batch. For subsequent batches, previously selected elements are prepended to the
score arrays before the next AIR top-k call, and the indices within the full CSL are tracked, enabling
chain-of-batches. We carefully trace the movement of elements: an index larger than k means a new
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Figure 7: Accuracy of predicted (A) docking scores and (B) physiochemical properties for the original
surrogate model as well as factorized version.

element from the current batch is within top k; otherwise the element is from previous batches but its
location within top k could have shifted. The kept indices array is updated accordingly.

Once the CSL is exhausted, each of the global top-k indices within the library is decoded, again on
GPU, using the (reaction, R-group assignment) mapping. The final results are then returned to the
user for downstream processing (e.g., conversion of reaction and R-group assignment to SMILES).

A.4 CONSTRAINT SETS

Table 2 provides details on the constraints used in this paper’s experiments.

A.5 COMPARISON WITH THOMPSON SAMPLING

Figure 8 plots the recall of APEX against Thompson sampling across the five most prevalent reactions
in the 12M compound CSL and against the five targets considered in this paper.
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Rule Property Value

Lipinski Rule of 5 (Lipinski et al., 1997) Molecular weight ≤ 500 Da
logP ≤ 5
H-bond donors ≤ 5
H-bond acceptors ≤ 10

Veber (Veber et al., 2002) Rotatable bonds ≤ 10
TPSA ≤ 140 Å2

Pfizer 3/75 (Hughes et al., 2008) logP ≤ 3
TPSA ≥ 75 Å2

Wager CNS (Wager et al., 2010) Molecular weight ≤ 360 Da
logP ≤ 3
TPSA ≥ 40 Å2, ≤ 90 Å2

H-bond donors ≤ 1

Astex Rule of 3 (Congreve et al., 2003) Molecular weight ≤ 300 Da
logP ≤ 3
H-bond donors ≤ 3
H-bond acceptors ≤ 3
Rotatable bonds ≤ 3
TPSA ≤ 60 Å2

Table 2: Constraint sets used for experiments in Figure 3.

A.6 RECALL OF TOP-j COMPOUNDS AT INCREASING EVALUATION BUDGET

Figure 9 shows the recall of top compounds (in the absence of constraints) as a function of increasing
evaluation budget, expressed as the fraction of the library evaluated with the oracle.

A.7 SCORE-BASED CONSTRAINTS AND COMPOSITE OBJECTIVES

To further test the robustness of the surrogate docking score predictions, we ran APEX search in a
counter-screening scenario, where one target is chosen as the objective to minimize and constraints
are added that the other four targets all score above their 50th percentile. Figure 10 shows the mean
docking scores of the best 100 compounds (re-ranked by the true objective) after a k = 100, 000
search (BRICS 12M library), represented in terms of their eCDF. While these counter-screening
constraints are generally effective at increasing the “specificity” of the top compounds, they do result
in worse absolute docking scores for the objective. We also tested defining a composite objective as
the sum of all five targets’ docking scores, which proved quite effective at finding compounds that
score well across all targets.
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Figure 8: Top-j recall for APEX and Thompson sampling (TS) using matched evaluation budgets.
APEX search run using k set to the number of total evaluations for TS. Thompson sampling compari-
son was run using three and ten warmup steps for two- and three-component reactions, respectively,
and 10, 1000, or 10,000 iterations of Thompson sampling.
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Figure 9: Recall of ground truth top-j compounds at different evaluation budgets. No constraints
were imposed. Dashed line corresponds to a budget of k = 100,000 compounds, which was used for
the evaluations in Figure 3.
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Figure 10: Inclusion of constraints on non-objective docking scores allows for APEX to be used
in a counter-screening fashion. Each row is the result of a single APEX search (k = 100,000),
either unconstrained or with “counter-screening” constraints (non-objective docking scores > 50th
percentile). Cells are outlined if they were used as the objective, and values are the eCDF of the mean
docking score for the top 100 molecules after re-ranking by the true objective. (Last row) APEX
search with composite objective of all five targets’ docking scores.
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