
Magic Fixup: Streamlining Photo Editing by Watching Dynamic Videos
HADI ALZAYER, University of Maryland & Adobe, USA
ZHIHAO XIA, Adobe, USA
XUANAR ZHANG, Adobe, USA
ELI SHECHTMAN, Adobe, USA
JIA-BIN HUANG, Adobe, USA
MICHAEL GHARBI, Adobe, USA

Fig. 1. Applications of Magic Fixup.We propose a diffusion model for image editing. Starting from an input image (a), a user specifies their desired changes
by rearranging automatically segmented scene objects using simple 2D transforms to produce a coarse edit (b). Our model transforms this coarse edit into a
realistic image (c), correctly accounting for secondary effects critical for realism, such as reflections on the water (top) or changes in depth-of-field (bottom),
producing much more plausible edits than state-of-the-art methods (d). Photos sourced from ©Unsplash.

We propose a generative model that, given a coarsely edited image, synthe-
sizes a photorealistic output that follows the prescribed layout. Our method
transfers fine details from the original image and preserve the identity of
its parts. Yet, it adapts it to the lighting and context defined by the new
layout. Our key insight is that videos are a powerful source of supervision
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for this task: objects and camera motions provide many observations of how
the world changes with viewpoint, lighting, and physical interactions. We
construct an image dataset in which each sample is a pair of source and
target frames extracted from the same video at randomly chosen time inter-
vals. We warp the source frame toward the target using two motion models
that mimic the expected test-time user edits. We supervise our model to
translate the warped image into the ground truth, starting from a pretrained
diffusion model. Our model design explicitly enables fine detail transfer
from the source frame to the generated image, while closely following the
user-specified layout. We show that by using simple segmentations and
coarse 2D manipulations, we can synthesize a photorealistic edit faithful to
the user’s input while addressing second-order effects like harmonizing the
lighting and physical interactions between edited objects. Project page and
code can be found at https://magic-fixup.github.io

CCS Concepts: • Computing methodologies → Image editing.

Additional Key Words and Phrases: Photorealistic editing, Spatial editing,
Learning from videos
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1 Introduction
Image editing is a labor-intensive process. Although humans can
quickly and easily rearrange parts of an image to compose a new
one, simple edits can easily look unrealistic, e.g., when the scene
lighting and physical interactions between objects become inconsis-
tent. Fixing these issues manually to make the edit plausible requires
professional skills and careful modifications, sometimes down to
the pixel level. The success of recent generative models [Dhariwal
and Nichol 2021; Esser et al. 2021; Ho et al. 2020; Rombach et al.
2022] paves the way for a new generation of automated tools that
increase the realism of image edits while requiring much sparser
user inputs [Andonian et al. 2021; Couairon et al. 2023; Kim et al.
2022; Sarukkai et al. 2024]. Generative methods providing explicit
spatial keypoints control have been proposed but are either limited
to certain domains [Pan et al. 2023] or modest changes [Shi et al.
2024]. State-of-the-art approaches, however, regenerate pixels based
on a user-specified text prompt and a mask of the region to influ-
ence [Brooks et al. 2023; Cao et al. 2023; Wang et al. 2023; Xie et al.
2023]. This interface is not always natural. In particular, it does not
allow spatial transformations of the existing scene content, as we
show in Figure 2, and object identities are often not fully preserved
by the re-synthesis step [Chen et al. 2024; Song et al. 2023].
In this paper, we propose a new approach to image editing that

offers the controls of conventional editing methods and the realism
of the modern generative model (Figure 1). Our method uses human
inputs where it shines: users can segment the image and rearrange
its parts manually in a “cut-and-transform” approach, e.g., using
simple 2D transforms, duplication, or deletion to construct their
desired layout, just like a collage [Sarukkai et al. 2024]. We call our
collage-like editing interface the Collage Transform. We then train
a diffusion model to take care of the hard work of making the edit
photorealistic. Our model “projects” the coarsely edited image onto
the natural image manifold, fixing up all the low-level image cues
that violate its image prior, such as tweaking poses, blending object
boundaries, harmonizing colors, adding cast shadows, reflections
and other second-order interactions between the object and the
environment.
Crucially, we explicitly fine-tune a latent diffusion model [Rom-

bach et al. 2022] so its output deviates as little as possible from the
user’s specifications and the appearance of the original objects in
the scene. This is essential for photographers, as they spend sig-
nificant effort capturing their images and would like to retain the
content identity as much as possible. When editing an image, there
is a subtle balance between being faithful to the original image
and harmonizing the edited image to preserve realism. This is the
regime that our work focuses on. Our insight is that videos provide
a rich signal of how an edited photo’s appearance should change
to preserve photorealism. From videos, we can learn how objects’
appearances change in the real world as they deform and move
under changing light. Camera motion and disocclusions give us

priors about what hides behind other objects and how the same
object looks under changing perspectives.

To exploit these cues, we build a paired image dataset from a large-
scale video corpus. Each pair corresponds to two frames sampled
from the same video: source and target frames. We then automat-
ically segment [Kirillov et al. 2023], and transform objects in the
source frame to match the pose of the corresponding objects in
the target frame, using two motion models based on optical flow,
designed to simulate the coarse edits a user would make using our
Collage Transform interface. Since the images are now roughly
aligned, we can train our model to convert the coarsely edited im-
age into the ground truth target frame in an image-to-image [Isola
et al. 2017; Saharia et al. 2022] fashion. This alignment procedure
encourages the model to follow the user-specified layout at test time
closely. Additionally, our model is carefully designed to transfer fine
details from the reference source frame to preserve the identity and
appearance of objects in the scene.
Our approach can produce plausible and realistic results from

real user edits, and effectively projects coarse user edits into photo-
realistic images, confirming our insights on the advantages of using
video data and a carefully designed motion model. Compared to the
state-of-the-art, we show our outputs are preferred 89% of the time
in a user study.

In short, our contributions are as follows:
• the Collage Transform, a natural interface for image editing
that allows users to select and alter any part of an input
image using simple transforms and that automatically turns
the resulting edit into a realistic image,

• a new paired data generation approach to supervise the con-
version from coarse edits to real images, which extracts pairs
of video frames and aligns the input with the ground truth
frame using simple motion models,

• a conditioning procedure that uses: 1. the warped image to
guide layout in the diffusion generator, and 2. features from
a second diffusion model to transfer fine image details and
preserve object identity.

• a comprehensive analysis on the model’s generalization to
diverse editing tasks, like spatial editing, colorization, 3D
transformation, NS perspective warping.

2 Related Work

Classical image editing. Classical image editing techniques offer vari-
ous types of user controls to achieve diverse objectives. For instance,
image retargeting aims to alter an image’s size while preserving
its key features and content [Avidan and Shamir 2007; Rubinstein
et al. 2008; Simakov et al. 2008; Wang et al. 2008]. In contrast, image
reshuffling rearranges an image’s content based on user-provided
rough layouts and imprecise mattes [Barnes et al. 2009; Cho et al.
2008; Simakov et al. 2008]. Image harmonization integrates objects
from different images, adjusting their low-level statistics for a seam-
less blend [Jia et al. 2006; Sunkavalli et al. 2010]. A common thread
in these classical image editing applications is the crucial role of
user interaction, which provides the necessary control for users to
realize their vision. Our method aligns with this approach, allowing
users to reconfigure a photograph based on their preliminary edits.
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Fig. 2. Comparison with text based control. Our method directly takes a coarse user edit and makes it photorealistic. Our editing is both easy and precise,
and our model can harmonize the global illumination appropriately. Text-based editing methods [Brooks et al. 2023; Cao et al. 2023] on the other hand, are not
able to perform such edits, resulting in global appearance changes [Brooks et al. 2023] or unrealistic image [Cao et al. 2023].

Controllable image generation. The rapid advancement in photoreal-
istic image generation has inspired researchers to adapt generative
models for image editing tasks. Early efforts focused on high-level
edits, like altering age or style, by manipulating latent space of Gen-
erative Adversarial Networks (GANs) [Abdal et al. 2019, 2020; Chai
et al. 2021]. In a vein similar to our work, Generative Visual Ma-
nipulation [Zhu et al. 2016] involves projecting user-edited images
onto the natural image manifold as approximated by a pre-trained
GAN. The recent introduction of CLIP embeddings [Radford et al.
2021] has further propelled image editing capabilities, particularly
through text prompts [Avrahami et al. 2022; Brooks et al. 2023;
Crowson et al. 2022; Gal et al. 2022; Hertz et al. 2023; Kim et al.
2022; Mokady et al. 2023]. DragGAN [Pan et al. 2023] introduces
fine control in image editing by using key-handles to dictate object
movement, and follow-up works extend the drag-control idea to
diffusion models [Luo et al. 2024; Mou et al. 2024; Shi et al. 2024].
Image Sculpting [Yenphraphai et al. 2024] takes a different approach
by directly reposing the reconstructed 3D model of an object and
re-rendering it, providing high level of control, but time consum-
ing editing process unlike our Collage Transform interface that is
designed to increase editing efficiency. CollageDiffusion [Sarukkai
et al. 2024] guides text-to-image generation by using a collage as
additional input. However, while CollageDiffusion focuses on con-
trolling the generation of an image from scratch, we focus on using
collage-like transformation to edit a reference image, and focus on
preserving its identity.

Reference-based editing with generative models. To extend control-
lable image generation into editing real (non-generated images),
one can invert the image back to noise [Song et al. 2021], and then
guide the iterative denoising process to control the image genera-
tion[Bansal et al. 2023; Cao et al. 2023; Meng et al. 2022]. However,
naively guiding the model without any grounding can lead to a loss
in image identity. Prior work [Chen et al. 2024; Epstein et al. 2023;
Yang et al. 2023] preserves the image identity through a pretrained
feature extractor like CLIP [Radford et al. 2021] or DINO [Oquab
et al. 2024], using a Control-Net like feature-injection [Chen et al.
2024; Zhang et al. 2023a], a dual-network approach [Cao et al. 2023;
Hu 2024], or a combination of those approaches [Chen et al. 2024;

Xu et al. 2024]. We adopt the dual-network approach, as it allows
us to fully fine-tune the model and taylor it to our photorealistic
editing task using our video-based dataset. AnyDoor [Chen et al.
2024] similarly uses video frames during training, but their focus is
to recompose individual objects into the scene. On the other hand,
we use video data to recompose the entire scene and use motion
models designed for a convenient photo editing interface. Closest
to our work is MotionGuidance [Geng and Owens 2024] that uses
optical flow to guide editing the reference frame with diffusion
guidance [Bansal et al. 2023] for a highly user-controllable edit.
However, dense optical flow is difficult to manually provide for a
user, unlike simple cut-and-transform edits in our Collage Trans-
form. Furthermore, they rely on a prohibitively time-consuming
guidance that take as long as 70 minutes for a single sample. On
the other hand, our approach takes less than 5 seconds to fix up the
user edit, allowing for interactive editing process.

3 Method
We aim to enable an image editing workflow in which users can
select objects in a photograph, duplicate, delete or rearrange them
using simple 2D transforms to produce a realistic new image (§ 3.1).
We leverage image priors from pretrained diffusionmodels to project
the coarsely edited image onto the natural image manifold, so the
user can focus on specifying high-level changes without worrying
about making their edits plausible (§ 3.2). Existing diffusion models
can produce impressive results but often do so at the expense of
control and adherence to the user input [Meng et al. 2022]. In partic-
ular, they tend to “forget” the identity and appearance of the edited
object [Yang et al. 2023], and often only loosely conform to the user-
specified pose [Chen et al. 2024]. Our method addresses these issues
using two mechanisms. First, our synthesis pipeline is a conditional
diffusion model (§ 3.4) that follows the coarse layout defined by the
user, and transfers fine details from the reference input image (§ 3.3)
to best preserve the original image content. Second, we construct a
supervised dataset exploiting object motion from videos to finetune
the pretrained model to explicitly encourage content preservation
and faithfulness to the input edit (§ 3.5).
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Fig. 3. Overview. Our pipeline (left panel) uses two parallel models, a detail extractor (top) and a synthesizer (bottom), to generate a realistic image from a
coarse user edit and a mask recording missing regions caused by the edit. The detail extractor processes the reference image, a noisy version of the reference
and the mask, to produce a set of features that guide the synthesis and allow us to preserve the object appearance and fine details from the reference image.
The synthesizer generates the output conditioned on the mask and coarse edit. The features from the detail extractor are injected via cross-attention at
multiple stages in the synthesizer, in order to transfer details from the input. Both models are finetuned on our paired dataset. The right panel shows a
detailed view of our cross-attention detail transfer operator. Photos sourced from ©Adobe Stock.

3.1 Specifying coarse structure with simple transforms

Starting from an image 𝐼 ∈ R3ℎ𝑤 , ℎ = 𝑤 = 512, we run an automatic
segmentation algorithm [Kirillov et al. 2023] to split the image into
non-overlapping semantic object segments. The user can edit this
image by applying 2D transformations to the individual segments
(e.g., translation, scaling, rotation, mirroring). Segments can also be
duplicated or deleted. Figure 1 illustrates this workflow. We keep
track of holes caused by disocclusions when moving the segment
in a binary mask 𝑀 ∈ {0, 1}ℎ𝑤 , and inpaint them using a simple
algorithm [Bertalmío et al. 2001]. We denote the resulting, coarsely
edited image by 𝐼coarse ∈ R3ℎ𝑤 .
We operate in an intermediate latent space for efficiency, but

our approach also applies to pixel-space diffusion. With a slight
abuse of notation, in the rest of the paper 𝐼 , 𝐼coarse ∈ R3ℎ𝑤 , with
ℎ = 𝑤 = 64 refer to the input and coarse edit after encoding with
the latent encoder from Stable Diffusion [Rombach et al. 2022], and
𝑀 the mask downsampled to the corresponding size using nearest
neighbor interpolation. The latent triplet (𝐼 , 𝐼coarse, 𝑀) forms the
input to our algorithm.

3.2 From coarse edits to realistic images using diffusion
We want to generate a realistic image that (1) follows the large-scale
structure defined by the coarse user edit, and (2) preserves the fine
details and low-level object appearance from the unedited image,
filling in the missing regions. Our pipeline, illustrated in Figure 3,
uses 2 parallel models.
The first, which we call synthesizer 𝑓synth, generates our final

output image. The second model, which we name detail extractor
𝑓detail, transfers fine-grained details from the unedited reference
image 𝐼 to our synthesized output during the diffusion process. It
modulates the synthesizer by cross-attention at each diffusion step,

an approach similar to Masa-Ctrl [Cao et al. 2023] and AnimateAny-
one [Hu 2024]. Both models are initialized from a pretrained Stable
Diffusion v1.4 model [Rombach et al. 2022], and finetuned on our
paired dataset (§ 3.5). Since we have a detailed reference image 𝐼 to
guide the synthesis, we do not need the coarse semantic guidance
provided by CLIP, so we remove the CLIP cross-attention from the
model.

Let𝑇 ∈ N∗ be the number of sampling steps, and 𝛼0, . . . , 𝛼𝑇 ∈ R+

be the alphas of the diffusion noise schedule [Ho et al. 2020]. Starting
from an image 𝑥0 ∈ R3ℎ𝑤 , the forward diffusion process progres-
sively adds Gaussian noise, yielding a sequence of increasingly noisy
iterates:

𝑥𝑡 ∼ N
(√
𝛼𝑡𝑥𝑡−1; (1 − 𝛼𝑡 )I

)
. (1)

The base diffusionmodel 𝑓 is trained to reverse this diffusion process
and synthesize an image iteratively, starting from pure noise 𝑥𝑇 ∼
N(0, 𝐼 ). The synthesizer and detail extractor in our approach make
a few modifications to this base model, which we describe next.

3.3 Extracting details from the reference image
During inference, at each time step 𝑡 , we start by extracting a set
of features 𝐹𝑡 from the reference image using 𝑓detail (Figure 3, top).
These features will guide the synthesis model and help preserve
realistic image details and object identity. Since we use a pretrained
diffusion model as a feature extractor, we start by adding noise to
the reference unedited image:

𝐼𝑡 =
√
𝛼𝑡 𝐼 + (1 − 𝛼𝑡 )𝜖, (2)

with 𝜖 ∼ N(0, I), 𝛼𝑡 =
∏𝑡

𝑠=1 𝛼𝑠 . We extract the feature tensors
immediately before each of the 𝑛 = 11 self-attention blocks in the
model:

𝐹𝑡 := [𝑓 1
𝑡 , . . . , 𝑓

𝑛
𝑡 ] = 𝑓detail ( [𝐼𝑡 , 𝐼 , 𝑀]; 𝑡), (3)
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where [·] denotes concatenation along the channel dimension. Our
feature extractor also takes as input the clean reference image since
it is always available for detail transfer and mask, so the model
knows which regions need inpainting. Since the pretrained model
only takes 𝐼 as an input, we modify the first layer at initialization
by padding its weight with zeros to accept the additional channel
inputs. Using a noisy version of the reference ensures the extracted
features are comparable to those in the cross-attention operators of
the synthesis model.

3.4 Image synthesis by detail transfer to the coarse edit
The synthesizer 𝑓synth generates the final image, conditioned on the
detail features 𝐹𝑡 . Unlike standard diffusion sampling, we do not
start from pure Gaussian noise. Instead, inspired by SDEDit [Meng
et al. 2022], we start from an extremely noisy version of the coarsely
edited image:

𝑥𝑇−1 =
√
𝛼𝑇−1𝐼coarse + (1 − 𝛼𝑇−1)𝜖, (4)

so we effectively bypass the first denoising step with adding noise
to the edit rather than pure noise. This initialization circumvents
a commonly observed issue where diffusion models struggle to
generate images whose mean and variance deviate from the normal
distribution. This is particularly important in our setup as the user
input can have arbitrary color distribution, andwe need themodel to
match the user input. This has been shown to stem from a domain
gap between training and sampling [Guttenberg 2023; Lin et al.
2024]: the model never sees pure noise during training, but a sample
from the normal distribution is the starting point for inference.
Our latent initialization addresses this issue by directly bridging
the gap between training and inference. In Fig. 5 we show how
initializing with pure noise leads to a low contrast image, while our
initialization allows the model to preserve the input color range
well. For subsequent steps during inference, we update the current
image estimate 𝑥𝑡 at each time step 𝑡 , using the following update
rule:

𝑥𝑡−1 = 𝑓synth ( [𝑥𝑡 , 𝐼coarse, 𝑀]; 𝑡, 𝐹𝑡 ). (5)

We provide the mask and coarse edit as conditions by simple con-
catenation, but because we need to extract fine details from the
reference, we found passing the reference information by cross-
attention with the features 𝐹𝑡 provided richer information. Again,
we extend the weight tensor of the first convolution layer with zeros
to accommodate the additional input channels.

Detail transfer via cross-attention. We use the intermediate fea-
tures 𝐹𝑡 = [𝑓 1

𝑡 , . . . , 𝑓
𝑛
𝑡 ], extracted before the detail extractor’s self-

attention layers to transfer fine image details from the reference
image to our synthesis network by cross-attention with features
[𝑔1
𝑡 , . . . , 𝑔

𝑛
𝑡 ] extracted after the corresponding self-attention layers

in the synthesis model. See the right panel of Fig. 3 for an illus-
tration, where 𝑄 , 𝐾 , 𝑉 are linear projection layers to compute the
query, key, and value vectors, respectively, and𝑊 𝑡

𝑖
is the matrix of

attention scores for layer 𝑖 , at time step 𝑡 . The feature tensors 𝑔𝑖𝑡 , 𝑓
𝑖
𝑡

are 2D matrices whose dimensions are the number of tokens and
feature channels, which depend on the layer index 𝑖 .

3.5 Training with paired supervision from video data
We train our model on a new dataset obtained by extracting image
pairs from videos to reconstruct a ground truth frame given an input
frame and a coarse edit automatically generated from it. Our insight
is that motion provides useful information for the model to learn
how objects change and deform. Videos let us observe the same
object interact with diverse backgrounds, lights, and surfaces. For
example, skin wrinkles as a person flexes their arm, their clothes
crease in complex ways as they walk, and the grass under their feet
reacts to each step. Even camera motion yields disocclusion cues
and multiple observations of the same scene from various angles.

Concretely, each training sample is a tuple (𝐼 , 𝐼gt, 𝐼coarse, 𝑀), where
𝐼 and 𝐼gt are the input and ground-truth frames, respectively, ex-
tracted from the video with a time interval sampled uniformly at
random from {1, . . . , 10} seconds between them. However, if the
computed flow between the two frames was too large (at least 10
percent of the image has a flow magnitude of 350 pixels), we re-
sample another pair. This is to ensure that the warping produces
reasonable outputs. We construct the coarse edit 𝐼coarse and corre-
sponding mask 𝑀 using an automated procedure that warps 𝐼 to
approximately match 𝐼gt, in a way that mimics our Collage Trans-
form interface. For this, we use one of 2 possible editing models: a
flow-based model and a piecewise affine motion model (Fig 4).

Flow-based editing model. We compute the optical flow using
RAFT-Large [Teed and Deng 2020] for each consecutive pair of
frames between 𝐼 and 𝐼gt and compose the flow vectors by back-
ward warping the flow to obtain the flow between the two frames.
We then forward warp 𝐼 using softmax-splatting [Niklaus and Liu
2020], to obtain 𝐼coarse, which roughly aligns with the ground truth
frame. The forward warping process creates holes in the image.
We record these holes in the mask𝑀 . Our model needs to learn to
inpaint these regions and those we have no correspondence (e.g.,
an object appearing in the frame). Using flow-based warping helps
the model learn to preserve the identity of the input, rather than
always hallucinating new poses and content.

Piecewise affine editing model. Optical flow warping can some-
times match the ground truth too closely. As we discuss in Section 4
and Figure 10, training the flow-based editing model only can limit
the diversity of our outputs, leading to images that do not deviate
much from the coarse edit. Flow-warping is also reasonably distinct
from our expected test-time user inputs (§ 3.1). Our second editing
model addresses these issues by transforming the reference frame
as a collage. We compute a depth map for the image using MiDaS
[Ranftl et al. 2021, 2020] and automatically segment the image using
SegmentAnything [Kirillov et al. 2023].

We then transform each segment using the affine transformation
that best matches the optical flow for this segment, compositing
them back to front according to each segment’s average depth. For
the image regions that are not segmented, we use the optical flow
warping scheme described above. Due to the coarser alignment, the
model learns how different parts of the scene interact in a realistic
setting, like associating objects and their shadows and reflections.
We use a dataset consisting of 12 million 5-10 second clips of

stock videos, and we filter out keywords that indicate static scenes
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Fig. 4. Dataset synthesis. Our dataset synthesis pipeline starts by sampling two frames from a video. We set one frame to be the reference, which we warp
by one of our motion models, and set the other frame to be the target that we warp the reference towards. To generate aligned training pairs, we use 2 motion
model to warp the reference frame towards the ground truth (target frame). The first model uses optical flow (left). It provides the most accurate alignment
but does not correspond to what the user would provide during inference. This motion model encourages adherence of our model’s output to the layout
specified using the coarse edit. To generate training pairs closer to the collage-like user inputs, we use a second motion model (right). For this, we segment
everything in the image [Kirillov et al. 2023] and apply similarity transforms to each segment, estimated from the flow within the segment. Figure 10 analyses
the impact of these motion models on the final result. Photos sourced from ©AdobeStock.

Fig. 5. Effects of Latent Initialization. Starting from pure noise, as is
standard practice, the model struggles to generate images with deep blacks
and synthesizes nonsensical content to keep the image’s mean and standard
deviation close to the starting Gaussian noise. This is a known issue with
current diffusion models [Guttenberg 2023; Lin et al. 2024]. Instead, during
inference, we initialize the latent to the warped image with a very large
amount of Gaussian noise before running the diffusion. This simple change
makes a drastic difference and lets the model preserve the image content.
Photo sourced from ©Unsplash.

or synthetic/animated videos, as we are only interested in photo-
realistic videos and also highly dynamic scenes where the motion is
too large (like car racing). For each valid clip, we sample one pair and
compute the warping using both motion models. After filtering for
desired motion, we use 2.5 million clips, creating a dataset consists
of 2.5 million samples for each motion model, making a total of 5
million training pairs.

3.6 Implementation details
We finetune both models jointly for 120,000 steps with a batch size
of 32, using Adam [Kingma and Ba 2014], with a learning rate of
1 × 10−5 on 8 NVIDIA A100 GPUs, which takes approximately
48 hours. Note that this is considerably more efficient than recent
compositing work [Yang et al. 2023] that uses 64 NVIDIA V100
GPUs for 7 days. We hypothesize that the stronger input signal
helps the model converge faster. We use a linear diffusion noise
schedule, with 𝛼1 = 0.9999 and 𝛼𝑇 = 0.98, with 𝑇 = 1000. During
inference, we sample using DDIM for 50 denoising steps.

4 Experimental Results
We evaluate our method qualitatively on a set of user edits to demon-
strate real-world use cases, as well as on a held-out validation dataset
created in the same way as our training set (§ 3.5) for quantitative
evaluation. In the appendix, we show additional applications of the
model on editing tasks beyond spatial recomposition, like colorization,
perspective editing, and 3D transformation.
Our model is trained on a synthetically-generated dataset. We

validate that it generalizes to real user edits using a prototype inter-
face illustrating our segment-based editing workflow. The user can
segment any part of the image and transform, duplicate, or delete it.
We provide a video demonstrating this editing interface in the sup-
plementary materials, and contrast the user’s edit with the model’s
output. To the best of our knowledge, no previous work focuses
exactly on our use case (photorealistic spatial edits), so we adapt
closely related techniques to our problem setting for comparison.
Specifically, we compare to the following baselines:

(1) SDEdit [Meng et al. 2022]: a general text-based editingmethod
that trades off the adherence to the input image and the
faithfulness to the text. This is the most general method we
compare against, as we can directly provide it with the coarse
user edit and a generated caption. Since SDEdit can take the
coarse edit directly as an input, we emphasize it the most in
our comparisons.

(2) DragDiffusion [Shi et al. 2024]: a drag-based editing model
that takes source-target key-handles to move parts of the
object for re-posing.

(3) InstructPix2Pix [Brooks et al. 2023]: a text-based editing
method that follows an instruction-like style captions.

(4) MasaCtrl [Cao et al. 2023]: a text-based editing method that
achieves a consistent identity preservation through a self-
attention mechanism. However, it relies on DDIM inversion
as an essential step, which can compromise the method’s
robustness.
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Fig. 6. MagicFixup applications.Our method can generalize to a large number of different applications. We just need to create a coarse edit, and MagicFixup
realistically clean up the edit. Here we show a selection of tasks we used MagicFixup to achieve, like image recomposition, perspective editing, reposing, 3D
transformation, and colorization. We show the coarse edits for these examples throughout the appendix. Photos sourced from ©Unsplash and CC licensed
images.

Adapting the baselines. We convert our inputs to the interface
expected by these baselines for comparison. SDEdit requires choos-
ing a strength parameter dictating the amount of noise added to
the input and trades off between faithfulness and unconstrained
synthesis. We set the strength to 0.4 in all experiments, i.e. we start
at 40% of the way through the diffusion process, adding the corre-
sponding level of noise to 𝐼coarse. Unlike ours, their model expects
a text input, which we automatically compute using BLIP [Li et al.
2022]. We use the same generated caption with the other text-based
methods (MasaCtrl and InstructPix2Pix) for the quantitative eval-
uation on our large corpus. For the qualitative evaluation on user
edits, we choose a caption that describes the user edit to the best of
our abilities. However, we note that text description of spatial edits

is inherently ambiguous (which is the motivation of our proposed
method).
To compare with DragDiffusion [Shi et al. 2024], we record the

segment motion in our user interface, compute the motion vectors
for each pixel, and use this information to automatically create the
keypoint-handles input needed by DragDiffusion.

4.1 Quantitative evaluation
While the task of image editing is inherently subjective, a natural
task is to evaluate our method on edits generated from videos using
the motion models we discuss earlier. We use a held-out split of
our dataset, and evaluate our method against the baselines on the
performance at reconstructing the target frame. In Table 1 we show
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Fig. 7. Spatial editing. We show example of scene recompositing. Our model is capable of synthesizing compelling effects that harmonize realistically with
the rest of the image such as: changing the depth of field (row 2), adjusting the global illumination (green reflection on the cube, row 3), and removing or
adding reflections (row 6). Photos sourced from ©Unsplash.
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Fig. 8. Comparison to Anydoor [Chen et al. 2024]. Anydoor was trained to insert objects from one image to another. We can repurpose their approach for
our image editing task by using the same image as source and target. Their approach does not preserve the dog’s identity in this example. AnyDoor also does
not harmonize the lighting properly (the sun direction and shadows are wrong), the image is too bright, and some blending seams are visible. On the other
hand, our output shows natural shadows and plausible contacts with the ground, adding realistic moving sand consistent with the pose. Photo sourced from
©Unsplash.

Fig. 9. Comparison with DragDiffusion. We use the Drag Diffusion [Shi et al. 2024] to generate the results in the right column. We seed dragging control
points this method expects for each of the modified image segments, and displace them using the same affine transform used to produce our coarse edit
(second column). DragDiffusion generates fairly conservative image edits, and collapses with more drastic reposing edits. However, our method successfully
handles wide range of reposing levels. Photos sourced from ©Unsplash.

that our method significantly outperforms the baselines on recon-
struction metrics. We also computed the flow error, by comparing
the RAFT optical flow between the reference and target, and the
flow between the reference and the output. Intuitively, the smaller
the flow error, the more that the method is faithful to the user edit.
We show that our method is significantly outperforming all the
baselines across all metrics. The second best method is DragDiffu-
sion, which is likely due to the fact that it accepts a form of spatial
edit as an input (through drag handles), and the LoRA optimization
on each image to preserve identity. Across all text-based methods,
SDEdit performs the best in general likely due to the fact that it can
directly accept the user edit as an input rather than purely relying
on the caption to perform the edit.

1We find that DragDiffusion fails to produce an output on edits with large motion, so
we restricted this evaluation to the subset where it is able to produce an output. Note
that the ordering of the methods remains the same if we restrict all methods to the
same subset.

Table 1. Quantitative evaluation. Perceptual loss, SSIM, and flow error on
a held-out validation subset of our video dataset. Our method significantly
outperforms all the baselines across all metrics.

Method Motion Model LPIPS ↓ SSIM ↑ Flow (px) ↓
MasaCtrl [Cao et al. 2023] - 0.44 0.49 23.1

IP2P [Brooks et al. 2023] - 0.47 0.42 24.9

DragDiff∗ [Shi et al. 2024] 1 Piecewise affine 0.26 0.58 16.9
Flow-based 0.26 0.59 15.8

SDEdit [Meng et al. 2022] Piecewise affine 0.40 0.57 24.7
Flow-based 0.37 0.61 22.4

Ours Piecewise affine 0.21 0.70 5.33
Flow-based 0.16 0.78 3.06

4.2 Evaluation on user edits
The training dataset we use for MagicFixup allows for a host of
different applications. In Fig. 6 we highlight 12 different example
applications we generated using MagicFixup, which includes edits
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Fig. 10. Motion models ablation.We compare how the 2 motion models we use to create our coarse edits (column 2) during training affect the model’s
behavior. If we warp the reference frame (column 1) using the flow only (column 3), the model learns how to harmonize the edges of the edited regions, but
remains very conservative and does not add much details to increase realism. On the other extreme, if we only use the piecewise affine motion model (column
4), the model learns to hallucinate excessively, losing its ability to preserve object identity. Our full solution trains with both motion models (column 5) to
increase the model versatility, allowing the model to generate realistic details while still maintaining good adherence to the user input. Photos sourced from
©Unsplash.

Fig. 11. Architecture ablation.Without the detail extractor branch and using CLIP to extract the reference features (3rd column), the model struggles
with spatial reasoning as it cannot access the grounding of the original reference image (1st column). This ablation’s outputs are overly conservative, not
steering too far away from the coarse edit (2nd column). Our full model produces much more realistic edits (4th column), with harmonious shadows and
object-background contact. It refines object boundaries and synthesizes plausible reflections. Photos sourced from ©Roeselien Raymond and ©Unsplash.

outside of the training data, like perspective edits, 3D transforma-
tions, and even colorization. In this section, we discuss edits gen-
erated using our Collage Transform interface and compare against
pose-editing baselines. We further highlight additional applications
beyond image recomposition in the appendix.

Collage transform editing. Using our user interface, we created a
collection of edits that spatially recompose photos. In Fig. 7 we show
how our model adds realistic details to objects moved to a region of
sharper focus, snaps disconnected objects together, and resynthe-
sizes shadows and reflections as needed. Another natural baseline
for spatial recomposition is inpainting an object and reinserting it
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in the image. We use AnyDoor [Chen et al. 2024] as the insertion
method, and compare the recomposition result. In Fig. 8, we used
our model to delete the dog (and automatically remove the shadow),
and then re-inserted the dog using AnyDoor. The dog’s identity un-
derwent significant changes, and AnyDoor does not harmonize the
composite with the ground. It also does not completely remove the
halo caused by the inpainting mask in the destination region. In con-
trast, our model synthesizes a coherent output without discontinuity
artifacts. We also used AnyDoor in duplicating the snake in Fig. 1,
and we show that AnyDoor has a loss of identity on the snake, while
our method correctly introduces some defocus blur to adjust for the
reference’s shallow depth of field. We compare against text-only
editing methods in Fig. 2, and show that InstructPix2Pix [Brooks
et al. 2023] only alters the apperance without following the spatial
edit instruction prompt, and MasaCtrl [Cao et al. 2023] completely
loses the input identity due to the failure of DDIM inversion. In the
appendix, we also show additional comparisons against text-only
methods.
Image reposing. Since we allow the user to edit the image by
selecting segments of arbitrary size, the user can re-pose objects
by selecting sub-parts and applying an affine transformation on
them, effectively animating the object. We compare our method
to DragDiffusion [Shi et al. 2024] that uses drag handles, and Mo-
tion Guidance [Geng and Owens 2024] that uses flow to guide the
diffusion sampling to follow the user edit. To ensure a fair compar-
ison, we keep track of dense pixel correspondence in our Collage
Transform user interface for the user edit. Using the dense corre-
spondence maps, we can directly generate the drag handles and flow
inputs these baselines require. In Fig. 9, DragDiffusion moves the
lion’s body higher up, which loosely aligns with the user edit, but
is inconsistent with the user’s intent of only moving the head. This
example highlights how a non-interactive point-dragging interface
can be at odds with the user’s desired output, because it does not
provide a good preview of what the model would generate before
running it. Our Collage Transform interface is more immediate, and
our coarse edit aligns with the final output. On the other hand, de-
spite having dense flow, Motion Guidance completely fails to follow
the user edit as the test time optimization process is unreliable. In
the second example, DragDiffusion collapses, likely because the user
input is complex and goes beyond a minimal displacement of the
subject that it can handle, and Motion Guidance lifts the horse up
in the air but fails to keep it in one piece.
Note that both DragDiffusion and Motion Guidance require a

costly test-time optimization for each input. On NVIDIA A100,
DragDiffusion takes approximately 2 minutes, and Motion Guid-
ance takes nearly an hour for a single input. In contrast, our method
only requires the feed-forward sampling, taking approximately 5
seconds.
Perceptual user study. To evaluate the realism of our editing, we
conducted a user study comparing the quality of our edits against
three baselines: SDEdit [Meng et al. 2022], InstrictPix2Pix [Brooks
et al. 2023], and Masa-Ctrl [Cao et al. 2023]. We used 11 diverse
photo edits, with 21 students participating and voting for all pairs
of images. For each pair, we provided the users with the reference
image as well as the intended user edit, and asked for each sample

Fig. 12. User study results. We asked 21 users to compare the editing
results from our method and the outputs using baselines. For each baseline,
the user directly compares between our method’s output and the baseline’s.
Overall, the users overwhelmingly preferred our method. Out of 231 votes,
only 14 votes were for SDEdit [Meng et al. 2022], 10 votes were for Instruct-
Pix2Pix [Brooks et al. 2023], and 19 votes for MasaCtrl [Cao et al. 2023]

the following “For the following edit, which of those images do you
find a more realistic result?” in a 2-alternative forced-choice (2AFC)
format. In Fig. 12 we show the aggregated votes for our method
against each baseline. We see that our method is overwhelmingly
preferred. For each baseline comparison we have 231 total votes, and
only 14 votes were for SDEdit [Meng et al. 2022], 10 votes were for
InstructPix2Pix [Brooks et al. 2023], and 19 votes for MasaCtrl [Cao
et al. 2023]. We show comparison results against those baselines in
Appendix D, and we encourage the reader to compare the results
directly.

4.3 Ablation studies
In this section, we evaluate the role that different motion models
play, as well as the importance of cross-reference attention.
Motion models ablation. Intuitively, training the model only
on flow-warped images would prevent the model from learning to
synthesize drastic changes, since flow-warping tends to be well-
aligned around the edges. On the other hand, using the piecewise-
affine motion model requires the model to adjust the pose of each
segment (and learn to connect them together nicely), which forces
the model to only use the input as a coarse conditioning. In Fig. 10,
we show that the behavior of the model trained on different motion
models is consistent with our intuition, where the model trained
on flow-only preserves the content and refines the edges, while
the model trained only on the piecewise-affine model struggles
with preserving identity. On the other hand, the model trained on
different motion models falls in the sweet-spot where it addresses
user edits faithfully while adding content as needed.
Architecture ablation. Prior work relies on using Image-CLIP em-
beddings or DINO features to encode the information of the content
being inpainted or inserted into the image [Chen et al. 2024; Yang
et al. 2023]. The CLIP features are a reminiscent of the way Stable-
Diffusion is trained with cross-attention with text CLIP embeddings.
However, as we believe that CLIP features only carry semantic
features that are too weak to pass useful information about the
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Fig. 13. Ablating reference input. When passing an arbitrary image as a reference to the detail extractor network independent of the input of the synthesis
network, we find an effect similar to style transfer. The model preserves the spatial structure of the "coarse edit" input while maintaining the style and global
appearance of the "reference." This behavior likely contributes to the model robustness in generalization to new domains and processing new types of edits.
The scream painting is now in public domain, and remaining photos were sourced from ©Unsplash.

Table 2. Quantitative ablations. Perceptual loss on a held-out validation
set from our video dataset.

Model & Training Data Test Data LPIPS ↓
Piecewise affine Piecewise affine 0.231 ± 0.007

Flow-based 0.220 ± 0.007

Flow-based Piecewise affine 0.229 ± 0.007
Flow-based 0.190 ± 0.007

Both motion models Piecewise affine 0.327 ± 0.007
(no cross-ref attn) Flow-based 0.269 ± 0.008

Both motion models Piecewise affine 0.231 ± 0.007
(Full method) Flow-based 0.196 ± 0.007

reference structure. We use a cross-reference mechanism, similar to
Masa-Ctrl [Cao et al. 2023], and unlike prior work, we completely
remove the CLIP cross-attention layer. To validate our design de-
cision, we compare using CLIP image embedding of the reference
for cross-attention as opposed to the cross-reference-attention we
propose. We observe that when relying only on CLIP embeddings,
the model struggles in harmonizing the edited regions as shown in
Fig. 11. We find that the ablated model is conservative, and cannot
address secondary effects like reflections.
Quantitative comparison. We evaluate our ablations on a held-
out validation dataset from our video dataset. In the table on the
right, Table 2, we show that the model trained with flow-data and
affine-motion are the top performers on perceptual loss on both
types of test and that dropping the cross-reference attention and
replacing it with CLIP embedding causes a severe drop in perfor-
mance.

Detail extractor inputs To better understand how the model is
utilizing the reference image in preserving the image details, we ask,
what would happen if the provided "reference image" is completely
independent from the provided "coarse edit?" Note that this case
never occurs in training, but by modifying the inputs, we can gain
insights on the inner workings of the model. In Fig. 13 we show
how the model behaves when provided an unrelated reference and
edited images, and highlight diverse samples from the model. We
notice that the model preserves the "style" and global appearance
of the reference image, while preserving the spatial structure of the
coarse edit. Intuitively, the reference image provides a sample of a
clean image is supposed to look like, while the coarse edit provides
the guidance of the spatial structure that the user intends to keep.
This also touches on recent style transfer work [Hertz et al. 2024]
that achieves style transfer through shared attention layers, which
is similar to the effect we see here where the model transfers the
style of the reference to the coarse edit. In Appendix E we provide
additional quantitative analysis ablating the inputs of the detail
extractor and synthesis UNets, like the disocclusion masks and the
denoising timestep embedding.

4.4 Generalization beyond real photos
While we only use video data of real videos, and filter out the major-
ity of non-photorealistic videos in our training data, we explore the
model’s ability to generalize to completely new domains. In Fig. 14
we show the model’s ability to generalize to new domains, like car-
toons and vector art. We find that the model smoothly re-connects
any disconnected parts of the image, and correctly re-synthesizes
the art’s outline that was lost in the editing process. On the other
hand, we find that SDEdit fails on all of those domains.
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Fig. 14. Beyond real photos. Despite training the model on exclusively real videos, we find that the model can generalize to new domains beyond the
training data, like cartoons and vector art. Photos are using public domain materials and CC licensed images.

Fig. 15. Limitations. Since the model can was only trained on spatial edits by rearranging the parts of a single image, the model struggles in inserting objects
from outside the original image. Here we see that the model attempt to stylize the bunny to have an appearance similar to the teddy bear, but struggles to
preserve the bunny’s identity. Photos sourced from ©Unsplash.

5 Limitations and conclusions
We present a method of assisting artists in photo editing through
generative models while retaining a large level of control that tra-
ditional editing pipelines provide. We observe that with the appro-
priate motion model, we can use videos to train a model that can
serve as a direct plugin in the editing process. We hope that our
work inspires future editing research that can simply remove the
cumbersome last-mile work by the press of a button.
Our generative model is trained for spatial compositions using

video data. It can spatially re-compose parts of the image but would
struggle to insert objects from a completely different image as shown

in Figure. 15. Furthermore, we inherit the limitations of Latent
Diffusion Models, which we use as our base models, especially for
generating hands, faces, and small objects.
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A Appendix: Additional applications
We trained MagicFixup on inputs edited using affine transforms and
flowwarping. In this section, we explore how themodel works under
different types of edits, to better understand how the model function
and cleans up different types of coarse edits.We find that themodel is
surprisingly robust and consistently produces photorealistic outputs,
even in extreme edits like colorization that were completely different
from our training data.
Colorization Out model was only trained to enable spatial edits.
So, we do not expect it to work well on significantly different image
editing tasks like changing an object’s color: our model’s inputs only
provide spatial transform information. We tried to see what happens
nonetheless. In this task, we coarsely edited an object’s color, before
passing this coarse edit to our model. We show the results in Fig. 18
To our surprise, we found that our model can generate reasonable
re-colorings!
Perspective editing The task of perspective editing involves warp-
ing the image to simulate capturing different parts of image with dif-
ferent focal lengths. Previously, Zoomshop [Liu et al. 2022] achieves
perspective editing by estimating the depth map of the image, un-
projecting, then reprojecting different depth ranges. The warping
operation creates holes, which are then inpainted using an off the
shelf method. However, a critical limitation of Zoomshop is that
it can take as long as 4 hours of manual editing to achieve a clean
edit, as the authors state. This is because the method requires a
perfect depth map that is carefully edited by the user, as well as
manually cleaning up the inpainting. However, MagicFixup excels
at cleaning up coarse edits, so we implemented our own perspec-
tive editing pipeline to test our model. This pipeline lets the user
unproject the scene into a set of Multi-Plane-Images [Tucker and
Snavely 2020], and reprojects each plane using the user’s desired
field of view. In Fig. 19 we show the results of MagicFixup for per-
spective editing. We attempted to visually match the edits shown
in ZoomShop, and include their results as a reference only (we do
not have access to the original intermediate edits from ZoomShop).
We find that MagicFixup introduces a super-resolution effect when
enlarging distant background objects like the hill in the background,
and also seamlessly cleans up the holes and seams created from the
reprojection.
More complex deformations. To allow for more complex spatial
edits than simple affine transformations, we experimented with
Adobe Photoshop’s Puppetwarp tool to create more complex defor-
mations. In Fig. 21 we show results of a bonsai tree reshaped into a
dancing-like figure. We also applied Puppetwarp to edit a portrait
to add a very coarse smile, and our model significantly improves
the quality of the edit, even adding subtle face wrinkles associated
with the smile, on the cheeks and around the eyes.
3D transformations. To apply 3D transformations, Diffusion-
Handles [Pandey et al. 2024] proposes to use depth estimation to
unproject the image, and applying 3D transformation on the ob-
ject of interest followed by reprojection. In DiffusionHandles, the
authors use the transformed depth map as the input to a depth
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conditioned ControlNet [Zhang et al. 2023b]. We can directly use
the (coarse) reprojected RGB as input to our model to enable similar
3D reprojections. In Fig. 20 we show 3D editing results using Mag-
icFixup. We show we can handle 3D transformations similarly to
DiffusionHandles, and we outperform DiffusionHandles in preserv-
ing the identity of the image content. In the first example, we see
that DiffusionHandles alters the wall on the right, and in the second
example it changes the number of cars parked in the background.
In the last row, the reflections on the mug in the background are
altered, and the shading of the plate the mug was placed on became
unnatural. On the other hand, MagicFixup completely preserves
object identity.

B Appendix: Reproducibility
To ensure the reproducibility of our results, we plan to release our
code along with a version of the model trained on a public video
dataset. We use the public Moments in Time dataset (MiT) [Monfort
et al. 2020] for our open-source model, due to the similarity of the
types of videos in our dataset, as our dataset contains stock-like
clips similar to the ones in Moments in Time [Monfort et al. 2020]
andWebVid10M [Bain et al. 2021]. We use 700k pairs of frames from
MiT in contrast to 2.4M in the main model to train the model. We
avoid using the larger WebVid10M dataset as it was recently taken
down and the legality of using it is unclear. In Figure 22 we show
that the open source model can achieve similar effects of addressing
secondary artifacts like shadows and reflections.

C Appendix: Samples of our training data
In Fig. 24 we show samples processed from our internal dataset
that we used to train the model (show ref frame, target frame, flow
warped, affine warped frames). Our videos come from stock-like
internal dataset that is free of watermarks, unlike the commonly
used public video datasets like WebVid10M [Bain et al. 2021].

D Appendix: Additional comparisons with text based
methods

While text based editing methods lack the spatial control required to
recompose photos precisely, we include additional qualitative com-
parisons for a comprehensive evaluation in Figure 23. We compare
against InstructPix2Pix [Brooks et al. 2023] and MasaCtrl [Cao et al.
2023], and include our main baseline, SDEdit [Meng et al. 2022] for
reference. To preserve input identity, MasaCtrl relies on a DDIM
inversion step to reconstruct the input. However, inversion is not
always reliable and can result in images that are similar in the high
level appearance but with a different content from the input, as we
show in the fox example. In contrast, we pass the input in a feed
forward manner that allows the network to reliably preserve the
input identity. On the other hand, InstructPix2Pix either leaves the
input image intact with minimal changes, or severely alter the image
identity, making it unreliable for spatial editing. We find that SDEdit
is the most reliable baseline as it can take the user edit directly as
an input, improving the spatial controllability. As a result, we use
SDEdit as our primary baseline in the main paper.

E Appendix: Ablation on models inputs
For a comprehensive ablation study of the inputs to the detail ex-
tractor and synthesis UNets. We analyze the role of the mask to
the different UNets, and we experiment with dropping the timestep
embedding from the detail extractor UNet. Dropping the time em-
bedding in the detail extractor is equivalent to doing a one-time
feature extraction, which would make it similar in style to using
CLIP or DINO features rather than doing a feature extraction that
depends on the current denoising step. We finetune our main model
for each of these configurations on images generated using WebVid-
10M as we no longer have access to the original internal data. For
fairness, we also finetune the main model on the same dataset. We
show the results in Tab. 3. Overall, timestep embedding in the refer-
ence UNet is essential. Providing the mask to the reference UNet is
not needed, but the performance difference is within the standard
error.
We find that providing the timestep embedding is essential for per-
formance, which indicates that the detail extractor network extracts
different features from the reference throughout the denoising pro-
cess. This supports the intuitive understanding that the image gen-
eration process requires different levels of details for each step, as
diffusion model generally starts by generating the coarse structure
of the output and then synthesizing the higher frequency details
later on. For the disocclusion mask, we find that the providing the
mask is essential to the synthesis network, but provides no addi-
tional information to the detail extractor network. We also ablate
including the noisy reference in the detail extractor UNet, and find
that its effect on performance is negligible as expected.

F Appendix: Quantiative evaluation using CLEVR
We used evaluation dataset generated through our dataset construc-
tion pipeline, as it provides a natural test set for spatial editing. It is
challenging to construct large scale evaluation datasets without de-
veloping a novel motion model that we avoid training on. However,
to substantiate our results further, we rely on the CLEVR dataset.
CLEVR places objects with varying materials on a surface board,
and includes multiple lights that showcase interesting shadows and
shading. To levarage CLEVR to evaluate our model, we generate 50
random collection of objects, and rearrange each collection 3 times.
Then, for an image in a given collection, we warp it to match the
two other arrangements. This way we can automatically construct
coarse edits, and have access to ground truth data for quantitative
evaluation at the same time. In total, the test dataset consists of 300
edits. In Fig. 16, we show two samples and the outputs of Magic-
Fixup against SDEdit and DragDiffusion. We find that our method
synthesizes new shadows and harmonizes the objects layering. On
the other hand, while SDEdit can preserve the target arrangements,
and DragDiffusion struggles to spatially relocate the objects. Since
DragDiffusion cannot rearrange the objects, we restrict our quan-
tiative evaluation in Table 4 to our method and SDEdit, and we
find that our method outperforms the baseline in all metrics. While
the CLEVR dataset is an imperfect test set, and out of distribution
for our method, we find that the results further corroborate the
robustness of our method and support our qualitative results.
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Table 3. Ablation on models inputs. Here we ablate the inputs to the detail-extractor and synthesis UNets. We find that the providing the mask is essential
to the synthesis network, but provides no additional information to the detail extractor network. We also find that providing the timestep embedding is
essential for performance, which indicates that the detail extractor network extracts different features from the reference throughout the denoising process.

Motion model Flow motion model Piecewise affine motion model

Method LPIPS ↓ SSIM ↑ Flow (px) ↓ LPIPS ↓ SSIM ↑ Flow (px) ↓
w/o mask in either UNet 0.277 ± 0.01 0.615 ± 0.01 35.554 ± 2.14 0.294 ± 0.01 0.596 ± 0.01 34.066 ± 2.19
w/o mask in detail ext. 0.187 ± 0.01 0.715 ± 0.01 35.682 ± 1.88 0.220 ± 0.01 0.667 ± 0.01 36.051 ± 2.09
w/o timestep in detail ext. 0.504 ± 0.01 0.498 ± 0.01 71.769 ± 3.58 0.579 ± 0.01 0.457 ± 0.01 73.004 ± 3.49
w/o noisy input in detail ext. 0.207 ± 0.01 0.699 ± 0.01 37.654 ± 2.03 0.242 ± 0.01 0.655 ± 0.01 37.126 ± 1.99
ours 0.194 ± 0.01 0.708 ± 0.01 35.716 ± 1.93 0.232 ± 0.01 0.657 ± 0.01 35.785 ± 1.93

Fig. 16. CLEVR rearranging. We modify the CLEVR dataset generation pipeline to generate random sets of objects in different spatial arrangements, and
synthesize a coarse edit that corresponds to re-aligning one arrangement to the other. Compared to the baselines, our method can better preserve the objects
and harmonizes it with the environments. We find that Drag based methods like DragDiffusion struggle in generating motion beyond reposing, and SDEdit
drastically morphs the objects.

Table 4. CLEVR rearranging evaluation.We generate a version of the
CLEVR dataset where synthesize 50 random collections of objects, and
rearrange each collection in three different ways. We evaluate the method’s
performance in realistically rearranging the objects against the ground
truth.

Method LPIPS ↓ SSIM ↑ Flow (px) ↓
SDEdit 0.156 ± 0.007 0.886 ± 0.002 26.02 ± 2.57
Ours 0.078 ± 0.007 0.913 ± 0.003 8.03 ± 1.20

G Iterative editing
One interesting question is how we can iteratively edit in image
instead of making all the changes in one shot. In Figure 17 we
iteratively edited the photo of the fox next to the water in a manner
that is almost similar to stop-motion animation. In each step, we
apply the edit on the model’s output from the previous step. So we
set the model’s output as the "reference" for the new edit. We find
that the model gracefully handles the first three iterative edits, and
notice that the model’s output. In the second edit, we see that the
model auto-completes the body of the fox, and allows additional
edits that are not possible with the original reference.We believe that

our work paves a path for a future research direction that allows
a human in the loop to interactively edit their photos alongside
generative models.

H Appendix: Collage transform interface
To facilitate creating user edits quickly, we created our own interface
that supports the user selecting any object or parts they would
like to edit, and make the edit by apply an affine transformation,
duplication, or deletion.We show our user interface with an example
demonstrating its usage in Figure. 25 The interface allowed our
users to create edits smoothly without any prior editing experience.
Several of the edits used in this paper were created by novice users
with no editing background. Beyond the simplicity of the interface,
we maintain a dense correspondence map between the pixels in the
original image and the edit. The correspondence maps are critical
to fairly compare against the baselines that take drag handles or
dense flow as an input, as we can directly use the correspondence
to compute the needed input.

I Appendix: Expanded user study with SDEdit
Since SDEdit [Meng et al. 2022] is our primary baseline, we conduct
an additional study only comparing our method with SDEDit, and
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Fig. 17. Iterative editing. We iteratively edit the photo by setting the model’s output as the new "reference" in each step, and spatially editing the model’s
output. Note that the model can coherently maintain the image’s identity before it starts degrading with the fourth edit. We find that the iterative approach
opens new possible edits. For example, in output 2 above, the model adds the rest of the fox’s body, which provides context for additional edits that are not
possible directly from the original image. Photo sourced from ©Roeselien Raymond.

significantly more user edits. We used 30 diverse photo edits, with
27 students participating and voting for all pairs of images. We
conducted the study similar to the user study described in Section 4,
in a 2-alternative forced-choice (2AFC) format. For 80% of the edits,
at least 75% of the users preferred our method. For the remaining

images, except for one image, users preferred our method 65−80% of
the time. For one image in out of domain edit (editing a non-realistic
artistic painting), users preferred both edits almost equally likely
(52 % of users preferred SDEdit).
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Fig. 18. Colorization. Even though our motion models only included spatial transformations, we experiment with running the model on out of domain
coarse edits. Surprisingly, we find the model to synthesize realistic colorized outputs. The model also cleans up uneven coarse edges. For example, the lightning
drawn on the Mustang contains uneven curvy edges, and the model cleans it up nicely. We also show multiple samples to highlight the diversity of the outputs
the model can generate to address these edits. Photos sourced from ©Unsplash.

Fig. 19. Perspective editing. By unprojecting the scene, then reprojecting different regions using variable camera parameters, we can manipulate perspective
and make distant objects appear larger. While it is time consuming to create a high quality perspective edit (ZoomShop [Liu et al. 2022] takes as long as 4
hours of manual labor), by using MagicFixup we can take a coarse reprojection and make it realistic. Here we attempt to reproduce the results from ZoomShop
with our method, and include their results as a point of reference. Photos sourced from ZoomShop [Liu et al. 2022].
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Fig. 20. 3D transformations. By unprojecting the image, applying 3D transformations on the unprojected point cloud, and reprojecting, we can achieve
coarse 3D edits. We show that MagicFixup can addresses the artifacts generated from the reprojection, while preserving the image identity. On the other
hand, we find DiffusionHandles [Pandey et al. 2024] to alter the background identity on the right wall of the first example, the number of cars in the second
example, and the shading of the plate and altering the identity of the spoon next to the white mug. Photos sourced from ©Unsplash.
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Fig. 21. Photoshop’s puppet warp.We experiment with finer grain deformation using Photoshop’s puppet warp feature. We deform the bonsai tree to
resemble a dancing figure, and introduce a rough smile to a person’s face. Our model then improves the realism of the edit. Note that in the second row, the
model introduced a natural smile along with wrinkles around the mouth and eyes to display a more natural smile. Photos sourced from ©Unsplash and CC
materials.
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Fig. 22. Comparison with model trained on public data. To maximize reproducibility, we train a version of the model on public video datasets that we
plan to publicly release and open source. Here we show that the model trained on public data can similarly address secondary artifacts like reflections, and
clean up artifacts due to coarse selection and editing as shown in the first row example with a coarse segmentation of the fox. Photos sourced from ©Roeselien
Raymond ©Unsplash.
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Fig. 23. Additional text comparisons. We compare our method against text conditioned baselines MasaCtrl [Cao et al. 2023] and InstructPix2Pix [Brooks
et al. 2023]. To preserve the input identity, MasaCtrl requires a DDIM inversion step to the input image, which is prone to failing in reconstructing the input
(as we show in the first two rows, the output identity is completely different from the input due to DDIM inversion failure), and in the cases where it succeeds
in DDIM inversion, it is not possible to convey the user intent through a text prompt. Similarly, InstructPix2Pix either completely changes the identity of the
image, or fails into editing the image to follow the text instruction. We show the text captions we used for both baselines under the image. We show the
SDEdit [Meng et al. 2022] output as a reference, and we see that it is much more effective in following the user edit than the text baselines, which is why we
rely on it as our main baseline. Photos sourced from ©Roeselien Raymond, ©Unsplash, and public domain data.
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Fig. 24. Dataset samples.We highlight some examples from our dataset along with the outputs of the flow and affine motion models. Note that the flow
model densely aligns the reference image to the target, while the affine transformations provide much coarser alignment. For example, notice in the last
row that in the flow warped image, the woman’s smile and facial expression is aligned with the target, while in the affine warped we only see an alignment
through scaling and shifting the person’s segmentation mask. Media sourced from ©Adobe Stock.
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Fig. 25. Collage transform interface. To create user edits while maintaining correspondences between the original image and the edit, we created the
Collage transform interface. The user can select any object or part they would like to edit, apply the desired affine transformation, duplication, or deletion.
The correspondence map that we maintain allow us to accurately and fairly compare against the baselines by computing flow or drag keyhandles using the
correspondence maps. Photo sourced from ©Roeselien Raymond.
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