
RoboFlow: a Data-centric Workflow Management
System for Developing AI-enhanced Robots

Qinjie Lin∗, Guo Ye∗, Jiayi Wang, Han Liu
Department of Computer Science, Northwestern University

Abstract: We propose RoboFlow, a cloud-based workflow management sys-
tem orchestrating the pipelines of developing AI-enhanced robots. Unlike most
traditional robotic development processes that are essentially process-centric,
RoboFlow is data-centric. This striking property makes it especially suitable for
developing AI-enhanced robots in which data play a central role. More specifi-
cally, RoboFlow models the whole robotic development process into 4 building
modules (1. data processing, 2. algorithmic development, 3. back testing and
4. application adaptation) interacting with a centralized data engine. All these
building modules are containerized and orchestrated under a unified interfacing
framework. Such an architectural design greatly increases the maintainability and
re-usability of all the building modules and enables us to develop them in a fully
parallel fashion. To demonstrate the efficacy of the developed system, we ex-
ploit it to develop two prototype systems named “Egomobility” and “Egoplan”.
Egomobility provides general-purpose navigation functionalities for a wide vari-
ety of mobile robots and Egoplan solves path planning problems in high dimen-
sional continuous state and action spaces for robot arms. Our result shows that
RoboFlow can significantly streamline the whole development lifecycle and the
same workflow is applicable to numerous intelligent robotic applications2.

Keywords: AI-enhanced robots, robotic development workflow management,
data-centric development, cloud-based robotic development

1 Introduction

We propose RoboFlow, a cloud-based workflow management system for developing data-centric and
AI-enhanced robots. This work is done in the context that significant progresses have been made
in robotics development and a paradigm shift from process-centric development to data-centric de-
velopment is being witnessed, especially for learning robots. Specifically, traditional robot develop-
ment workflow [1, 2, 3, 4, 5, 6] is essentially process-centric, which emphasizes more on designing,
developing and integrating different “processing modules” interacting and inter-operating with each
other in a complex fashion. Such a process-centric robotic development model, though natural for
humans, is not suitable for developing modern AI-enhanced robotic systems (aka., learning robots)
that are essentially data-centric [7, 8, 9, 10, 11, 12]. Some key reasons are that the development
processes of AI-enhanced robots generally involve managing and interacting with massive amounts
of data, and even after the systems have been deployed, continuous modification and improvement
are still needed when more data get acquired. Such an extra “data-centric” dimension of learning
robots causes a dramatic increase in both coding complexity and maintaining complexity of the tra-
ditional process-centric robotic development workflow, thus a new data-centric robotic development
workflow is crucially is needed. To bridge this gap, we propose RoboFlow.

A high-level overview of RoboFlow is illustrated in Figure 1. In the most abstract fashion, the
RoboFlow system divides the whole pipeline of developing AI-enhanced robots into 4 building
modules (1. data processing, 2. algorithmic development, 3. back testing and 4. application adap-
tation) interacting with a centralized data engine. Specifically, the data engine can be viewed as an
“oracle” that abstracts out all the data management details and is interacting (e.g., being queried
or manipulated) with all the 4 building modules in an asynchronous fashion. Centered around the

∗Authors contributed equally
2Project site: https://sites.google.com/u.northwestern.edu/roboflow

Blue Sky Papers, 5th Conference on Robot Learning (CoRL 2021), London, UK.

Figure 1: An overview of RoboFlow. The robot development pipeline consists of 4 modules interacting with
a centralized data engine. The data engine manages the large-scale dataset, and publishes data from robot. The
data preprocess module encodes raw input to data that algorithm development module can easily parse. The
algorithms development module develops customized control policy. The back testing module tests the policy
in various environments. The application adaption module deploys the learned policy in real world.

data engine, the 4 building modules follow an iterative spiral model. Unlike the classical spiral
model[13] for software development, these building blocks mainly interact with data engine, thus
can be developed in a fully parallel fashion and each module could have different “versions”. Such a
data-centric design dramatically decreases the developing and maintaining complexities, making it
especially suitable for developing AI-enhanced robots. The framework in Figure 1 is quite generic
and described in a fully abstract way. To understand this framework better, we put it in a concrete
context of developing learning robots. From a learning perspective, the data processing module
transforms and encodes data into a state that other modules can easily parse. The algorithm module
represents the planning policy of the robots, which is in charge of the robots’ actions. The back
testing module evaluates the policy of the learning robot based on large-scale collected or simulated
data. The application adaptation module puts the developed policy into real-world environments
once the back testing meets a designed criterion. More details about these modules will be provided
in Section 3.

This paper has 3 major contributions: (i) we proposed a novel data-centric robot development model
which improves upon the traditional routines in terms of development flexibility and maintain-
ability. (ii) We implement a first prototype system using containerization techniques (specifically,
Docker[14] and Kubernetes [15]). (iii) Using this system, we develop two platforms: Egomobil-
ity and Egoplan. Egomobility exploits deep reinforcement learning to provide navigation ability
for turtlebot and Egoplan uses imitation learning to solve complex motion planning problems for
sawyer robots. These studies demonstrate the efficacy of RoboFlow in various intelligent robotics
applications. The rest of this paper is organized as below. Section 2 introduces related work. Sec-
tion 3 describes implementation of RoboFlow. Section 4 presents two platforms to showcase the
usefulness of RoboFlow.

2 Related Work
The two most relevant lines of work related to RoboFlow are the workflow management system
and data management engine for data-centric robot systems. For the workflow management system,
earlier robot development pipelines try to simplify the workflow of robotics development and re-
duce re-programming efforts. For example, Fetch robotics[16] launches a Workflow Builder which
allows customers to design, implement, and redesign their own workflows. But their available tools
are not designed for large-scale dataset processing. In the machine learning field, frameworks like
Kubeflow[17] and MLFlow[18] have been developed to manage the workflow of model develop-
ment but they are not designed for robot development. For the data management engine, researchers
in bioinformatics community developed system tools to manage data workflows in an end-to-end
fashion[19, 20]. Nevertheless, in robotics, few works emphasize on the data-centric aspect of the
development processes except some proposals related to cyber-physical systems which view robots
as data-gathering nodes [21, 22, 23, 24, 25, 26, 21]. In recent work, Farzad et al. [27] proposed a
cloud framework aiming to facilitate the development of IoT applications. but it is not straightfor-
ward on how to apply it to the more heavy-weighted data-centric robotic systems.

2

3 System Architecture and Software Implementation
The RoboFlow architecture builds upon the containerization and container orchestration techniques.
More specifically, a container platform (e.g., the Docker) packages applications so that they can
access a specific set of resources on a physical or virtual host. The main benefit, especially for
developers, is that containers isolate different applications and are elastic, i.e., come and go as
demanded by need. This is particularly useful for developing massive robotic systems in which
developers may contribute code in different programming languages and application frameworks.
In such scenarios, we could exploit a container platform to establish many containers to isolate and
manage all the developed applications. To manage containers at scale, we can utilize a container
orchestrate system (e.g., Kubernetes, Docker Swarm) to automate the deployment, management,
scaling, networking, and availability of all the containers. In the rest of this section, we describe the
system architecture and software implementation of the RoboFlow system.

System Architecture. Figure 2 illustrates the system architecture of RoboFlow. It has 4 essential
modules(1.Data Preprocess 2.Algorithm Development 3.Back Testing 4.Application Adaptation) in-
teracting with a centralized data engine. Each module is employed into a containerized environment
by bundling it together with all related configuration files, libraries and dependencies. These module
containers run isolated processes on the system, thus enabling RoboFlow to be developed in a fully
parallel fashion. In addition, any change in these module containers is recorded, making version
control easy to implement. These containers exploit DDS (Data Distribution Service) to manage
real-time communication between them and the data engine. DDS implements a publish-subscribe
pattern for sending and receiving data and each process running in RoboFlow are considered as
DDS nodes to communicate data with other process. Also, a networked filesystem named Glusterfs
is also ultilized for sharing large-scale files (e.g., large neural network models or training datasets)
between modules. Such integration of DDS and Glusterfs make RoboFlow suitable for developing
data-driven methods on robotics. RoboFlow also provides a web-based frontend to ease developers
to monitor, analyze, and manage the robotic development process.

version1
version2
version3

version1
version2
version3

version1
version2
version3

version1
version2
version3

Glusterfs

simulation real robotdatasetmodel real robotreal robot

Topic A Topic B Topic C Storage A Storage B Storage C

Data Preprocess Algorithm Development Back Testing Application Adaptation

Figure 2: The architecture of RoboFlow. RoboFlow provides a graphical user interface for developers to
access all containerized modules. These modules interact with the data engine through shared storage and DDS
topics. The data engine consists of large-scale datasets and model data stored in the shared folder, simulation
containers and robots connected to the RoboFlow system through DDS topics.

Software Implementation. To implement RoboFlow, we wrap each module as a docker image.
For this, we specify the software environment (e.g., the operating system distribution and pre-
installed packages) of an image in a Dockerfile. The obtained module images are installed with
juypter lab and ROS2. Some modules may need additional packages. For example, the algorithm
development module is equipped with the deep learning libraries tensorflow and pytorch, while
the data engine image utilizes several robot simulators like Gazebo, Stage and OpenRave.The suc-
cessfully built images are stored in a cloud-based storage space named cargo, which can be viewed
as on-premise dockerhub of the RoboFlow system. During the run time, each instance of a built
image is deployed as a container and RoboFlow utilizes Kubernetes to deploy and manage these
containers. We exploit the React javascript library to implement a graphical user interface (GUI).
Through this GUI users can choose desired versions of the docker images and allocate computational
resources (e.g., CPUs or GPUs) to the container being created. Once such configuration information
is submitted, it is turned into a YAML file which will be serialized and deployed by Kubernetes.

3

4 Two Case Studies and Performance Evalaution
In this section, we exploit RoboFlow to develop two prototype systems named “Egomobility” and
“Egoplan”. Egomobility provides a general-purpose navigation platform for managing a wide vari-
ety of mobile robots and Egoplan is a motion planning platform for robot arms. To demonstrate the
efficacy of RoboFlow, we also conduct some performance analysis of the two case studies.

a. Process Module b. Algorithm Module

c. Egomobility d. Egoplan

Figure 3: Graphical User interface of RoboFlow. Figure a illustrates the edit page of preprocess module, which
allows developers to specify the image name, version, required CPU number, memory size, and GPU number.
Figure b illustrates the algorithm module, enabling users to access the code editor and simulator view, monitor
the progress of a learning robot training process. Figure c illustrates the Egomobility platform. This adaptation
page provides real-time camera stream and current position, velocity and battery usage. Figure d illustrate the
Egoplan, which provides the simulation views, rviz view and status panel.

Case Study 1: The Egomobility platform for Mobile Robots. In this study, we exploit RoboFlow
to develop a mobile robot navigation platform named Egomobility, which is a data-centric AI-
enhanced robot system using data from a Stage simulator [28] as training data. Within this en-
vironment, a mobile robot takes 3 raw laser frames and its velocity as input. Our goal is to train a
reinforcement learning policy that outputs a velocity guiding the robot avoiding dynamic obstacles.
The deployment page of Egomobility is provided in Figure 3.
Case Study 2: The Egoplan Platform for Arm Robots. In this study, we exploit RoboFlow to
develop a robot arm motion planning Platform named EgoPlan. More specifically, we exploit the
NEXT (Neural Exploration-Exploitation Trees) algorithm proposed in[29] to learn a motion plan
policy for solving path planning problems in 7-dimensional state space and 7-dimensional action
space. In each planning task, we simulate a robot arm and a shelf in the openrave [30] simulator in
our data engine. Each level of the shelf is horizontally divided into multiple bins. The task for the
robot arm is to plan a collision-free path from an initial pose to grab an object placed in a shelf. The
main strategy is to exploit BIT* [31] to solve the planning problem in a brutal force way but collect
the data to learn a smarter motion planning policy.
Performance. Through the above two case studies, the benefit of RoboFlow for managing a data-
centric robotic system development pipeline is quite obvious: RoboFlow enables developers to de-
velop all the component modules in a fully-parallel fashion. For example, in developing Egomo-
bility, algorithm developers can join in the RoboFlow to develop the navigation algorithm indepen-
dently without interfering with each other. The developers for the application adaptation module can
simultaneously test many learned policies without the need of complex communication processes. In
addition, due to the usage of sophisticated container-orchestration techniques, the resulting systems
developed by RoboFlow is much more reliable and maintainable.

Conclusion and Discussion. We propose RoboFlow, a data-centric workflow management sys-
tem orchestrating the pipelines of developing AI-enhanced robots. The data-centric features of
RoboFlow illustrate high maintainability and re-usability of each module. We hope this data-centric
model brings a new approach to the community.

4

Acknowledgments

Han Liu’s research is supported by the NSF BIGDATA 1840866, NSF CAREER 1841569, NSF
TRIPODS 1740735, DARPA-PA-18-02-09-QED-RML-FP-003, along with an Alfred P Sloan Fel-
lowship and a PECASE award.

References
[1] R. Arumugam, V. R. Enti, L. Bingbing, W. Xiaojun, K. Baskaran, F. F. Kong, A. S. Kumar,

K. D. Meng, and G. W. Kit. Davinci: A cloud computing framework for service robots. In 2010
IEEE international conference on robotics and automation, pages 3084–3089. IEEE, 2010.

[2] R. Bouziane, L. S. Terrissa, S. Ayad, J.-F. Brethe, and O. Kazar. A web services based solution
for the nao robot in cloud robotics environment. In 2017 4th International Conference on
Control, Decision and Information Technologies (CoDIT), pages 0809–0814. IEEE, 2017.

[3] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kitsukawa, A. Monrroy,
T. Ando, Y. Fujii, and T. Azumi. Autoware on board: Enabling autonomous vehicles with em-
bedded systems. In 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems
(ICCPS), pages 287–296. IEEE, 2018.

[4] Y. Lei, Z. Fengyu, W. Yugang, Y. Xianfeng, Z. Yang, and C. Zhumin. Design of a cloud
robotics visual platform. In 2016 Sixth International Conference on Instrumentation & Mea-
surement, Computer, Communication and Control (IMCCC), pages 1039–1043. IEEE, 2016.

[5] S. Dennis, L. Alex, L. Matthias, and S. Christian. The smartmdsd toolchain: An integrated
mdsd workflow and integrated development environment (ide) for robotics software. 2016.

[6] G. Huang, P. S. Rao, M.-H. Wu, X. Qian, S. Y. Nof, K. Ramani, and A. J. Quinn. Vipo: Spatial-
visual programming with functions for robot-iot workflows. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems, pages 1–13, 2020.

[7] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation learning via
meta-learning. arXiv preprint arXiv:1709.04905, 2017.

[8] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning for robotic manipula-
tion with asynchronous off-policy updates. In 2017 IEEE international conference on robotics
and automation (ICRA), pages 3389–3396. IEEE, 2017.

[9] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard. Socially compliant mobile robot navi-
gation via inverse reinforcement learning. The International Journal of Robotics Research, 35
(11):1289–1307, 2016.

[10] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser. Learning synergies
between pushing and grasping with self-supervised deep reinforcement learning. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 4238–
4245. IEEE, 2018.

[11] F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine. Visual foresight: Model-based deep
reinforcement learning for vision-based robotic control. arXiv preprint arXiv:1812.00568,
2018.

[12] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg. Dex-
net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp
metrics. arXiv preprint arXiv:1703.09312, 2017.

[13] B. W. Boehm. A spiral model of software development and enhancement. Computer, 21(5):
61–72, 1988.

[14] Docker. https://www.docker.com/.

[15] Kubernetes. https://kubernetes.io/.

[16] F. Robotics. Fetch research robot.

5

https://www.docker.com/
https://kubernetes.io/

[17] Kubeflow. https://www.kubeflow.org/.

[18] Mlflow. https://mlflow.org/.

[19] A. M. Comeau, G. M. Douglas, and M. G. Langille. Microbiome helper: a custom and stream-
lined workflow for microbiome research. MSystems, 2(1), 2017.

[20] T. W. Backman and T. Girke. systempiper: Ngs workflow and report generation environment.
BMC bioinformatics, 17(1):388, 2016.

[21] P. Gil, I. Maza, A. Ollero, and P. Marrón. Data centric middleware for the integration of
wireless sensor networks and mobile robots. In proc. 7th Conference on Mobile Robots and
Competitions, ROBOTICA. Citeseer, 2007.

[22] K. Römer, O. Kasten, and F. Mattern. Middleware challenges for wireless sensor networks.
ACM SIGMOBILE Mobile Computing and Communications Review, 6(4):59–61, 2002.

[23] Y. Yu, B. Krishnamachari, and V. K. Prasanna. Issues in designing middleware for wireless
sensor networks. IEEE network, 18(1):15–21, 2004.

[24] T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans, J. George, S. George, L. Gu, T. He, S. Kr-
ishnamurthy, et al. Envirotrack: Towards an environmental computing paradigm for distributed
sensor networks. In 24th International Conference on Distributed Computing Systems, 2004.
Proceedings., pages 582–589. IEEE, 2004.

[25] S. L. Remy and M. B. Blake. Distributed service-oriented robotics. IEEE Internet Computing,
15(2):70–74, 2011.

[26] N. Mohamed, J. Al-Jaroodi, and I. Jawhar. Middleware for robotics: A survey. In 2008 IEEE
Conference on Robotics, Automation and Mechatronics, pages 736–742. Ieee, 2008.

[27] F. Khodadadi, R. N. Calheiros, and R. Buyya. A data-centric framework for development and
deployment of internet of things applications in clouds. In 2015 IEEE Tenth International
Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP),
pages 1–6. IEEE, 2015.

[28] R. Vaughan. Massively multi-robot simulation in stage. Swarm intelligence, 2(2-4):189–208,
2008.

[29] B. Chen, B. Dai, Q. Lin, G. Ye, H. Liu, and L. Song. Learning to plan in high dimensions
via neural exploration-exploitation trees. In International Conference on Learning Represen-
tations, 2020. URL https://openreview.net/forum?id=rJgJDAVKvB.

[30] R. Diankov and J. Kuffner. Openrave: A planning architecture for autonomous robotics.
Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-08-34, 79, 2008.

[31] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Bit*: Batch informed trees for optimal
sampling-based planning via dynamic programming on implicit random geometric graphs.
arXiv preprint arXiv:1405.5848, 2014.

6

https://www.kubeflow.org/
https://mlflow.org/
https://openreview.net/forum?id=rJgJDAVKvB

	Introduction
	Related Work
	System Architecture and Software Implementation
	Two Case Studies and Performance Evalaution

