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ABSTRACT

Offline preference-based reinforcement learning (PbRL) learns rewards and poli-
cies aligned with human preferences without the need for extensive reward engi-
neering and direct interaction with human annotators. However, ensuring safety
remains a critical challenge across many domains and tasks. Previous works on
safe RL from human feedback (RLHF) first learn reward and cost models from
offline data, and then use constrained RL to optimize a safe policy. However,
inaccuracies in the reward and cost learning can impair performance when used
with constrained RL methods. To address these challenges, (a) we introduce a
framework that learns a policy based on pairwise preferences regarding the agent’s
behavior in terms of rewards, as well as binary labels indicating the safety of tra-
jectory segments, without access to ground-truth rewards or costs; (b) we combine
the preference learning module with safety alignment in a constrained optimiza-
tion problem. This optimization problem is solved using a Lagrangian method
that directly learns reward maximizing safe policy without explicitly learning re-
ward and cost models, avoiding the need for constrained RL; (c) to evaluate our
approach, we construct new datasets with synthetic human feedback, built upon a
well-established offline safe RL benchmark. Empirically, our method successfully
learns safe policies with high rewards, outperforming baselines with ground-truth
reward and cost, as well as state-of-the-art RLHF approaches.

1 INTRODUCTION

To align the intelligent agents with human values, preference-based reinforcement learning (PbRL)
(Wirth et al., 2017) (also known as Reinforcement Learning from Human Feedback (RLHF)) has
emerged as a popular learning paradigm by training the agent’s policy from human pairwise pref-
erence over agent’s behavior while no reward engineering is required. Offline PbRL (Shin et al.,
2021) addresses the problem of feedback efficiency by avoiding online interactions with human
annotators. It recently has shown great success when applied to policy learning in control tasks
(Christiano et al., 2017; Lee et al., 2021; Park et al., 2022; Hu et al., 2024; Hejna et al., 2024) and
finetuning large language models (LLMs) (Rafailov et al., 2024; Zhao et al., 2023; Ethayarajh et al.,
2024). While it demonstrates the ability to learn rewards and policy that are consistent with human
preferences, guaranteeing safety remains a significant challenge for PbRL. For instance, a robotic
agent should avoid collisions with the environment and human co-workers during a control task. For
finetuning LLMs, the agent should always generate harmless content without violating social norms
and morals. In this paper, we aim to learn a policy that is

• consistent with human pairwise preferences, and
• aligned with human safety considerations.

Recently, safe RLHF (Dai et al., 2024) provides an approach for finetuning LLMs to generate help-
ful, harmless responses. It assumes access to pairwise human preferences for both rewards and costs
as well as safety labels for each response. The proposed method learns reward and cost models from
human feedback, based on which a policy is optimized using constrained RL. In this paper, we fo-
cus on the continuous control tasks which present additional challenges compared to safe RLHF for
LLMs. LLMs finetuning is viewed as a contextual bandit problem, while continuous control tasks
are usually modeled as a sequential decision-making process using RL. Additionally, safe RLHF
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method follows the conventional two-phase PbRL learning paradigm. In the first phase, reward and
cost models are learned from human feedback. In the second phase, constrained RL is applied to
optimize a policy based on the learned reward and cost. However, inaccuracies during the reward
and cost learning phase can undermine policy performance, and rollout sampling or bootstrapping
in the constrained RL phase may introduce optimization challenges.

In this paper, we introduce the framework of Offline Safe Policy Optimization from Human Feedback
(POHF), where a policy is learned using offline datasets that include two types of human feedback:
(a) pairwise preferences of agents’ behavior regarding rewards, and (b) binary labels indicating
whether the trajectory segment is safe or not. Notably, pairwise preference of agent’s behavior
regarding cost is not required as in prior work (Dai et al., 2024) since it is relatively scarce and
expensive to collect in practice (Ethayarajh et al., 2024). To address the aforementioned challenges,
we first present a novel method for learning a policy that generates safe behavior based solely on
safety labels. Next, we transform the safety alignment objective into an optimization constraint by
demonstrating that it implicitly defines a feasible set of policies. This safety alignment module is
then integrated into the preference alignment module and the Lagrangian method is employed to
learn a policy directly using the offline dataset. As a result, we derive a fully supervised learning
objective, eliminating the need for additional reward and cost learning and constrained RL.

To evaluate our approach, we constructed a new dataset based on the well-established offline safe
RL benchmark, DSRL (Liu et al., 2023a). We synthesized human feedback using the ground truth
rewards and costs provided in the original offline dataset as they are not accessible during training
in our setting. The dataset includes 29 continuous control tasks across two prevailing domains,
providing a robust platform for testing offline safe policy optimization from human feedback and
facilitating further study. We compare our method against baselines from offline safe RL (Liu et al.,
2023a; Xu et al., 2022; Liu et al., 2023b), which use ground truth reward and cost, as well as
offline RLHF approaches, including a variant of safe RLHF. The results suggest that, compared to
the baselines, our method effectively learns a policy that achieves high rewards while adhering to
constraints implicitly encoded in the human feedback.

The contributions of this paper are threefold. First, we introduce the Offline Safe POHF framework
for control tasks, where a policy is learned using the offline dataset including pairwise agent behavior
preferences related to reward, and binary safety labels for each trajectory segment. Second, we
propose a practical solution by integrating preference and safety alignment modules to define a
constrained optimization objective, and the policy is optimized using the Lagrangian method. This
approach removes the need for reward and cost learning, as well as an additional constrained RL
phase. Third, we extensively evaluate our approach using newly synthesized datasets, demonstrating
the effectiveness of the proposed method.

2 RELATED WORK

Preference-based Reinforcement Learning To avoid reward engineering which requires expert
knowledge and may suffer from negative effects of reward misspecification (Pan et al., 2022),
Preference-based Reinforcement Learning (PbRL) (also known as Reinforcement Learning from
Human Feedback (RLHF)) provides a promising paradigm to learn a policy from human feed-
back (Wirth et al., 2017). There has been significant advances recently, both for control tasks
(Christiano et al., 2017; Lee et al., 2021; Park et al., 2022; Liu et al., 2022; Shin et al., 2021;
Hejna & Sadigh, 2024; Kang et al., 2023; Hejna et al., 2024) and LLM finetuning (Ziegler et al.,
2019; Stiennon et al., 2020; Ouyang et al., 2022; Bai et al., 2022; Zhao et al., 2023; Rafailov et al.,
2024; Ethayarajh et al., 2024). Besides preference alignment, researchers also start to focus on how
to ensure safety for policy learning. Safe RLHF (Dai et al., 2024) is proposed to finetune an LLM
that generates helpful and harmless responses. This approach is specifically designed for LLMs,
meaning it applies to contextual bandits settings, rather than RL, which is a multi-step sequential
decision-making setting. Safe RLHF needs to explicitly learn reward and cost models and perform
constrained RL using such learned models. While effective, the inaccuracies in reward and cost
model learning may adversely impact the policy learning using constrained RL. In this paper, we
introduce a framework for Offline Safe Policy Optimization from Human Feedback (POHF) for
continuous control tasks, and aim to learn a safe policy directly with pairwise preference and binary
safety labels.
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Offline Safe Reinforcement Learning Offline safe RL provides a practical framework for learn-
ing safe policies using pre-collected datasets (Liu et al., 2023a). Previous work has addressed this
problem through various approaches such as sequential modeling (Liu et al., 2023b), distribution
correction estimation (Lee et al., 2022), Q-learning (Xu et al., 2022), and feasible region identifi-
cation (Zheng et al., 2024). These offline datasets typically consist of agent rollouts with ground
truth rewards and costs for each timestep, often designed by experts to ensure the data quality for
policy learning. However, in many complex real-world domains and tasks, it is difficult to manually
design reward and cost functions that accurately reflect human values. Therefore, with the advances
of PbRL, we propose to learn policies from pre-collected human feedback, replacing ground truth
rewards and costs with human pairwise preferences regarding agent behavior for rewards and binary
labels indicating whether the behavior is safe or not.

3 PROBLEM DEFINITION

We model our problem as a Markov Decision Process (MDP), denoted as a tuple M =
(S,A,P, r, ρ0, γ). S is the state space, A is the action space. P(s′|s, a) denotes the transition
dynamics. r : S ×A → R is the reward function. ρ0 is the distribution of starting state and γ is the
discount factor. Safe RL is usually modeled as constrained MDP, M∪ C, where C = {(ci, bi)}mi=0.
ci is the cost function and bi is the cost threshold. The discounted cumulative reward with respect
to a policy π is defined as V r

π (s) = Eπ[
∑∞

t=0 γ
tr(st, at)|s0 = s]. The discounted cumulative cost

with respect to a policy π is V ci
π (s) = Eπ[

∑∞
t=0 γ

tci(st, at)|s0 = s]. The objective function of
such a constrained RL problem is:

maxEs∼ρ0
[V r

π (s)], s.t., Es∼ρ0
[V ci

π (s)] ≤ bi,∀i (1)

Figure 1: Offline Safe POHF versus Offline PbRL
for control tasks. Besides pairwise preference
between agent’s trajectory segments, the dataset
of offline safe RLHF additionally includes binary
safety labels of each segment, which is used to
align the policy with implicit safety constraints.

In this paper, we consider learning a policy us-
ing an offline dataset. We assume no access
to ground truth reward and cost. Instead, pair-
wise preference between trajectory segments
regarding reward, and binary safety labels for
each segment are provided. Since there are
two different types of human feedback in the
offline dataset unlike the preference-only ap-
proach typical in offline PbRL, we refer to our
problem framework as Offline Safe Policy Op-
timization from Human Feedback (POHF)1, as
shown in Figure 1. Typically, we are given a
dataset D = {(σ+, y+, σ−, y−)}, where σ =
(s1, a1, s2, a2, · · · , sk, ak) is a k-length trajec-
tory segment. The human preference between
two segments is expressed as σ+ ≻ σ−, with
+ indicating the preferred segment and − the
unpreferred segment. Each segment is also as-
signed a binary safety label y ∈ {−1,+1} where y+ is the safety label of σ+ and y− is the safety
label of σ−, with −1 denoting unsafe and +1 indicating safe. Our goal is to learn a policy that
maximizes rewards while ensuring safety, using the segment preferences and safety labels. To ad-
dress the challenges, we first decompose the problem into two modules, preference alignment and
safety alignment, and then integrate them into a constrained optimization problem. In the following
sections, we will discuss the each module in detail individually and propose an approach to merge
them into a unified objective function.

4 PRELIMINARIES

Contrastive Preference Learning (CPL) for Preference Alignment To learn a policy that aligns
with human pairwise preferences, we consider a preference dataset Dpref = {(σ+, σ−)}. The con-

1The main difference from Safe RLHF (Dai et al., 2024) is that the human preference is for reward only.
The preference of agent’s behavior related to cost is not required.
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ventional PbRL learning paradigm offers a class of methods that typically involve two phases (Chris-
tiano et al., 2017). In the first phase, it assumes the human preference model is distributed according
to cumulative rewards and a reward model is learned by optimizing the negative log-likelihood of
human preferences. In the second phase, a policy is trained by using the learned reward model.
However, there exist two main challenges of applying this conventional PbRL paradigm. First, the
assumption that human preferences are reward-based has been criticized as incompetent at capturing
true human preference (Knox et al., 2024). Second, the RL training in the second phase would suffer
from substantial computational difficulties (Hejna et al., 2024; Rafailov et al., 2024).

To address the issues, Contrastive Preference Learning (CPL) (Hejna et al., 2024) has been proposed
as a method to learn a policy directly without the need for reward learning and RL. In CPL, human
preference is modeled using regret instead of reward (Knox et al., 2024). By leveraging the equiv-
alence of negated regret and the discounted sum of optimal advantages, the regret-based preference
model is given by:

P [σ+ ≻ σ−] =
exp

∑
σ+ γtA∗

r(s
+
t , a

+
t )

exp
∑

σ+ γtA∗
r(s

+
t , a

+
t ) + exp

∑
σ− γtA∗

r(s
−
t , a

−
t )

(2)

where A∗
r(st, at) is the optimal advantage function of a single timestep (st, at) with respect to

a reward model r; shorthand “+” and “-” index the states and actions of segments σ+ and σ−.
According to the principle of maximum entropy (Ziebart, 2010; Hejna et al., 2024), the optimal
advantage function A∗

r(s, a) for a Kullback–Leibler divergence (KL)-regularized RL problem can
be expressed in terms of the optimal policy π∗ as:

A∗
r(s, a) = α log

π∗(a|s)
πref(a|s)

(3)

where πref is a reference policy used to regularize π∗, and α is a temperature parameter that deter-
mines the extent to which the reference policy πref influences π∗. Consequently, the loss function
for learning a parameterized policy πθ (i.e., an approximation of π∗) is formulated by optimizing
the negative log-likelihood of human preferences:

LCPL-KL(πθ, Dpref) = E(σ+,σ−)∼Dpref

[
− logPπθ

[σ+ ≻ σ−]
]

(4)

With Equation 3, the loss functionLCPL-KL(πθ, Dpref) presents a closed-form formulation for directly
learning a policy that aligns with human preferences.

Prospect Theory and Human-Aware Losses Prospect theory is a behavioral economics frame-
work that explains how individuals evaluate gains and losses in uncertain events, often in an asym-
metric manner. There are three key principles when modeling human decision-making through the
lens of prospect theory, a) the use of a reference point to determine relative gains or losses, b) con-
cavity in relative gains (i.e., diminishing sensitivity as they move farther from the reference point);
and c) loss aversion, meaning individuals are more sensitive to losses compared to gains. Building
on prospect theory, Ethayarajh et al. (2024) introduced a family of human-aware losses (HALOs)
to to better understand the mechanism of RLHF for finetuning LLM. A function f is a HALO such
that:

f(πϕ, π
LLM
ref ) = Ex,y∼DLLM [ax,yv(rπϕ

(x, y)− EQ[rπϕ
(x, y′)])] + CDLLM (5)

Here, πϕ : X → P(Y) is the parameterized LLM model to be aligned, where x ∈ X is an input to
a LLM, y ∈ Y is a response generated by the model. πLLM

ref is the reference model for regularizing
πϕ. The sign ax,y ∈ {+1,−1} indicates whether the outcome is a gain or a loss. The implied
reward rπϕ

is defined as rπϕ
(x, y) = l(y) log[πϕ(y|x)/πLLM

ref (y|x)], where l : Y → R+ is a normalizing
factor. Q(Y ′|x) is a reference point distribution over Y , and v : R → R is a non-decreasing function
that is concave over (0,∞). DLLM is the feedback data and CDLLM ∈ R is a data-specific constant.
As the LLM is finetuned by optimizing the loss function f , the model is expected to assign higher
rewards to desirable responses through rπϕ

(i.e., πϕ is more likely to generate desirable responses)
and lower rewards to undesirable ones. Empirically, HALOs approaches either match or outperform
non-HALO methods across various scales of LLMs (Ethayarajh et al., 2024).

5 OFFLINE SAFE POLICY OPTIMIZATION FROM HUMAN FEEDBACK

In the Offline Safe POHF setting, we assume access to additional safety annotations y ∈ {−1,+1}
for each trajectory segment. Setting aside pairwise preferences, we can frame safety alignment as

4
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policy optimization based solely on binary feedback. Ethayarajh et al. (2024) recently introduced
a novel approach (i.e., KTO) for finetuning LLMs using binary safety feedback. However, KTO
is tailored specifically for contextual bandit settings. In section 5.1, we show how to extend the
ideas behind KTO, such as prospect theory (Tversky & Kahneman, 1992) and human aware losses
(HALOs), to our sequential decision making setting. Additionally, CPL (Hejna et al., 2024) is
developed for learning from pairwise preference feedback, it does not take into account the safety
aspect. We cannot optimize safety and reward preferences independently. Therefore, one of our key
contributions is the principled integration of safety modeling from prospect theory perspective with
preference optimization in a sequential safe RL setting, which will be discussed in detail in section
5.2.

5.1 SAFETY ALIGNMENT WITH BINARY SAFETY LABELS

Inspired by prospect theory (Tversky & Kahneman, 1992) and human-aware losses (HALOs) (Etha-
yarajh et al., 2024) which have been applied to align LLM with human values using binary signals
of desirability, we derive the objective function for safety alignment in the context of continuous
control tasks.

5.1.1 SAFETY ALIGNMENT FOR CONTINUOUS CONTROL TASKS

Although HALOs are introduced for the LLM setting (i.e., the contextual bandit framework), they
offer a novel perspective for understanding safe RLHF. For continuous control tasks which involve
multi-step sequential decision-making, we derive a loss function specifically for safety alignment.
We begin by defining the utility function of a trajectory segment σ as:

u(σ) ≜ ψπ(σ)− zref (6)

where ψπ(σ) produces a scalar score of σ based on policy π, and zref serves as a reference point
that determines the relative gain or loss when evaluating the outcome of σ against all possible tra-
jectory segments; score function ψπ(σ) is analogous to r in Equation 5. Inspired by the definition
of HALOs, we can express ψπθ

(σ) with a parameterized policy πθ 2 as follows:

ψπθ
(σ) =

T∑
t=0

γtβ log
πθ(at|st)
πref(at|st)

(7)

It is the cumulative logarithm of πθ along the trajectory segment, regularized by the reference policy
πref, with the hyperparameter β governing the degree of influence πref has on πθ. Accordingly,
we define zref as the expected score of all segments σ that humans have encountered under policy
πθ using offline data, which serves as a biased estimate of the ground truth reference point, i.e.,
ẑref = Eσ

[∑T
t=0 γ

tβ log πθ(at|st)
πref(at|st)

]
. To ensure stable training, we do not backpropagate through

ẑref, it exists solely to regulate the loss saturation (Ethayarajh et al., 2024).

To develop a feasible objective function, we adopt the practices outlined in Ethayarajh et al. (2024)
to facilitate optimization. We use sigmoid function as v in HALO, as it aligns with the principle
of prospect theory by being concave in gains and convex in losses. Additionally, we introduce two
weight values, λs and λu, for safe and unsafe segments respectively. These weights indicate the
importance of σ during policy training and reflect the concept of loss aversion in prospect theory
(Tversky & Kahneman, 1992). Therefore, the loss function for safety alignment is written as:

Lsafety(πθ, D) = λsEσ∼Dsafe [1− sigmoid (u(σ))] + λuEσ∼Dunsafe [1− sigmoid (−u(σ))] (8)

The offline dataset D is divided into two subdataset. Dsafe contains all the safe segments while
all the unsafe segments are in Dunsafe. The weights λs and λu are determined by the ratio of the
number of safe segments ns to the number of unsafe segments nu in the offline dataset, specifically,
λsns

λunu
= η. The hyperparameter η regulates the relative importance of safe and unsafe segments. By

optimizing Equation 8, we assign high scores to safe segments and low scores to unsafe ones. Ac-
cordingly, based on the formulation of ψπθ

(σ) in Equation 7, a policy can be learned that generates
safe trajectories with high probability while avoiding unsafe behavior. We also show the following
result to justify our choice of trajectory score and the loss function. The proof is in appendix A.

2To maintain consistency, we use the same θ as in the preference alignment module.
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Lemma 5.1. Minimizing the loss function in Equation 8 increases the log probability of safe trajec-
tories in the safe dataset Dsafe and decreases the log probability of trajectories in the unsafe dataset
Dunsafe under policy π.

5.2 INTEGRATING PREFERENCE AND SAFETY ALIGNMENT (PRESA)

From the above discussion, we can learn a policy that aligns with human preferences using pairwise
comparisons or adheres to implicit safety constraints using binary safety labels. However, integrat-
ing both safety and reward preferences is required in our setting. Combining these two objectives
in an ad-hoc manner may not result in a stable and robust method. Therefore, we propose a method
to integrate these two learning modules in a principled manner into a single objective function that
satisfies both criteria. We refer to our approach as PreSa.

5.2.1 SAFETY ALIGNMENT AS DEFINING FEASIBLE POLICY SET

The two components in Equation 8 address safe and unsafe segments separately, corresponding to
the safety labels for each segment. We can rewrite the equation by combining these two components
using the safety labels:

Lsafety(πθ, D) = Eσ∼D [w(yσ)(1− sigmoid (yσ(ψπθ
(σ)− zref)))] (9)

where yσ is the safety label of the corresponding segment σ and w(yσ) is the weights for safe and
unsafe segments respectively:

w(yσ) =

{
λs if yσ = +1

λu if yσ = −1
(10)

Let us temporally ignore the weights w(yσ) as they are irrelevant to this discussion, and focus on
the latter term in Equation 9. We observe that yσ(ψπθ

(σ)− zref) serves as a scalar score of segment
σ and the sigmoid function can be interpreted as providing the probability of predicting the label
yσ for the corresponding segment σ under the policy πθ,

p(Y = yσ|σ;πθ) ≜ sigmoid (yσ(ψπθ
(σ)− zref)) (11)

Therefore, in the context of a typical binary classification problem, minimizing the loss function in
Equation 9 is equivalent to maximizing the probability of correctly classifying each segment with
respect to safety. This classification-like objective determines which segments are safe, and which
are unsafe. Consequently, we find that the safety alignment objective can be transformed to define a
feasible policy set as follows,

Π = {π|p(Y = yσ|σ;π) ≥ δ, ∀σ} (12)

where δ is a predefined parameter that controls the stringency with which we accept a segment as
being correctly classified according to the safety labels provided by humans. When δ is close to
1, we expect each segment to be classified correctly with a very high probability. In this case, if
the ground truth label is +1, the segment’s score should be high, and the learned policy should
assign high probabilities to this segment according to Equation 7. If the ground truth label is −1, the
segment’s score should be low, and the learned policy should assign low probabilities to it. When δ
is more relaxed, we allow for greater tolerance, which may lead to a policy that occasionally violates
the implicit safety constraints.

5.2.2 UNIFIED OBJECTIVE OF PRESA

As the preference alignment module ensures consistency with human preferences and the safety
alignment module implicitly defines a feasibility policy set, we can now integrate them into a single
objective function within a constrained optimization framework. The unified objective is presented
as follows,

min
πθ

E(σ+,σ−)∼D

[
− logPπθ

[
σ+ ≻ σ−]]

s.t., E(σ,yσ)∼D [p(Y = yσ|σ;πθ)] ≥ δ (13)

where the objective term for reward preference is defined analogous to the CPL objective in Equation
2 without explicitly learning the rewards. Compared to the objective function of safe reinforcement

6
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learning in Equation 1, the term of minimizing negative log-likelihood of preferences in Equation
13 corresponds to the maximization of cumulative reward. The feasible policy set determined by the
safety alignment module corresponds to the one defined by the cumulative cost constraints. Given
the above constrained objective, we expect to learn a policy that maximizes reward while adhering
to the safety constraints implicitly encoded in the safety labels. Notably, PreSa does not require
learning of reward and cost functions, and avoids doing constrained RL. To solve this constrained
optimization problem, we employ the Lagrangian method to convert the constrained primal problem
into an unconstrained dual form:

min
πθ

max
ν≥0

L(πθ, ν,D) = E(σ+,σ−)∼D

[
− logPπθ

[
σ+ ≻ σ−]]+ν·(δ − E(σ,yσ)∼D [p(Y = yσ|σ;πθ)]

)
(14)

where ν ≥ 0 is the Lagrange multiplier. By introducing the weights w(yσ) back, the above objective
function is rewritten as,

L(πθ, ν,D) = E(σ+,σ−)∼D

[
− logPπθ

[
σ+ ≻ σ−]]+ν·E(σ,yσ)∼D [w(yσ) · (δ − p(Y = yσ|σ;πθ))]

(15)

Interestingly, the optimization of preference learning may sometimes conflict with the objective
of optimizing safety alignment, though they can also complement each other in learning a better
policy. That is because preference and safety do not influence each other in a monotonic manner.
For instance, some unsafe segments might be preferred while some unpreferred segments could be
safe as well. Thus, in Equation 15, the Lagrange multiplier ν dynamically manages the mutual
influence. To address the optimization problem, we iteratively update the policy parameter θ and the
Lagrange multiplier ν using gradient descent, which helps avoid over-emphasizing one objective at
the expense of the other due to a fixed optimization ratio.

6 EXPERIMENTS

In this section, we present experiments to evaluate the effectiveness of PreSa in achieving both high
reward performance and adherence to safety constraints. We aim to address the following questions:

• How does PreSa compare to Offline Safe POHF baselines and those from offline safe RL
using ground truth reward and cost?

• How do the preference alignment and safety alignment modules perform individually?
• How does PreSa perform with varying trajectory segment lengths and different offline

dataset sizes?
• What ingredients of PreSa are important for enhanced performance and safety alignment?

6.1 EXPERIMENTAL SETTING

We conduct our experiments using the well-established DSRL benchmark (Liu et al., 2023a) which
is designed for offline safe RL, leveraging it to generate synthetic human feedback for evaluation.
This benchmark provides pre-collected offline data across 29 tasks in two widely used domains:
SafetyGym (Ray et al., 2019; Ji et al., 2023) and BulletGym (Gronauer, 2022). These tasks feature
various agents aiming to achieve high rewards or goals while avoiding obstacles or maintaining a
predefined safe velocity. To ensure fair comparison and evaluation, we adopt the constraint variation
evaluation method introduced in DSRL (Liu et al., 2023a). Each method is tested on every task using
three different cost thresholds and three random seeds to ensure consistency. Evaluation metrics
include normalized reward and normalized cost, where a cost below 1 signifies safety (Liu et al.,
2023a; Fu et al., 2020).

For the practical implementation of PreSa, we follow a similar training pipeline to CPL (Hejna et al.,
2024). Initially, the policy is pretrained using behavior cloning (BC) with the offline dataset, which
is then retained as the reference policy, πref. Following this, the policy is optimized with PreSa using
human pairwise preferences and binary safety labels.

Synthetic Human Feedback For evaluation, we generate synthetic human feedback from the offline
dataset provided by DSRL. We first randomly select 10,000 pairs of trajectory segments with varying
lengths from each dataset, which allows for testing with fewer feedbacks via random sampling.

7
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Pairwise trajectory segments are then labeled using the ground truth rewards from the original offline
dataset. We base pairwise preferences on cumulative rewards rather than estimated advantages from
a trained policy, as in the dense reward setting, the optimal advantage is essentially a reshaped
version of the reward, leading to the same optimal policy (Hejna et al., 2024). Additionally, we label
trajectory segments for safety using ground truth cost values and predefined safety thresholds. In
line with the experimental settings in DSRL, these safety thresholds apply to the entire trajectories.
When labeling trajectory segments, we use a reshaped threshold that is adjusted proportionally based
on the length of the segment relative to the maximum trajectory length within each domain.

Baselines We compare our approach against several baselines to demonstrate its effectiveness, which
are across Offline Safe POHF setting and offline safe RL setting with ground truth rewards and costs.
In Offline Safe POHF setting, we consider three baseline methods: 1) Binary Alignment: Inspired
by Ethayarajh et al. (2024), unified binary labels are generated based on comparative preferences
and binary safety labels. Segments that are both safe and preferred are assigned a label of +1, while
all others −1. The policy is then learned solely using the safety alignment module. 2) BC-Safe-Seg:
A behavior cloning (BC) approach trained only on safe trajectory segments. 3) Safe-RLHF (CDT)
(Dai et al., 2024): A variant of Safe-RLHF adapted to our setting where reward and cost models
are learned from human feedback and a state-of-the-art offline safe RL approach, CDT Liu et al.
(2023b) is applied for policy optimization. Additionally, we select three baselines from offline safe
RL setting. They assume access to ground truth reward and cost: 1) BC-All: BC trained on the entire
dataset. 2) BC-Safe: BC trained exclusively on safe trajectories that meet safety constraints. 3) CDT:
A sequence modeling approach that incorporates safety constraints into Decision Transformers.

6.2 RESULTS

Figure 2: Ratio of safe agents learned by differ-
ent approaches.

How Does PreSa Perform? Extensive experi-
ments were conducted to evaluate PreSa’s perfor-
mance against baselines across all 29 tasks within
SafetyGym and BulletGym. Figure 2 shows the
proportion of safe policies learned by each ap-
proach in both domains. PreSa surpasses all Of-
fline Safe POHF baselines with more safe policies
learned. Compared to offline safe RL baselines,
PreSa performs comparably in SafetyGym, outper-
forming two baselines by a significant margin, ex-
cept for BC-Safe, while in BulletGym, PreSa outper-
forms all baselines with most safe policies learned.
Notably, the offline safe RL baselines have access to
ground truth data, while PreSa relies solely on hu-
man feedback which has much less information. Despite this, PreSa matches or exceeds the perfor-
mance of these baselines, highlighting its effectiveness.

The complete results using normalized rewards and costs are presented in Table 1. Among the
Offline Safe POHF baselines, Binary Alignment achieves low costs but also results in very low
rewards across all tasks. This occurs because +1 is assigned to safe but often low-reward segments,
as they are only marginally better than their counterparts. BC-Safe-Seg achieves relatively high
average rewards, but this is largely due to unsafe agents. Safe-RLHF (CDT) manages to learn
higher rewards but struggles with safe policy learning. PreSa outperforms all Offline Safe POHF
baselines by successfully adhering to implicit safety constraints while also achieving high rewards.
Similarly, although the offline safe RL baselines achieve high rewards, they struggle to learn safe
behaviors. In contrast, PreSa shows significantly better performance in learning safe policies.

Individual Performance of Preference and Safety Alignment Modules We illustrate the results
for all tasks within the BulletGym domain in Figure 3. The preference alignment module is de-
signed to learn a policy that aligns with human pairwise preferences, implicitly capturing reward
information without accounting for safety. Consequently, the policy learned by this module tends
to achieve relatively high rewards. In contrast, the safety alignment module leverages binary safety
labels, which encode implicit safety constraints, and successfully learns safe policies for most tasks.
The effectiveness of each alignment module forms a solid foundation for learning high-reward, safe
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Table 1: All evaluation results of normalized reward and cost. The ↑ symbol indicates that the higher reward,
the better, while the ↓ symbol signifies that the lower cost (up to a threshold of 1), the better. Bold: Safe agents
whose normalized cost is below 1. Blue: Safe agent with the highest reward among offline safe RL baselines.
Orange: Safe agent with the highest reward among approaches learning from offline synthetic human feedback.

Task
BC-All BC-Safe CDT Binary Alignment BC-Safe-Seg Safe-RLHF (CDT) PreSa (Ours)

reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓
PointButton1 0.1 1.05 0.06 0.52 0.53 1.68 0.02 0.55 0.06 0.81 0.06 0.78 0.09 0.84
PointButton2 0.27 2.02 0.16 1.1 0.46 1.57 -0.03 0.5 0.22 1.57 0.18 1.33 -0.1 0.74
PointCircle1 0.79 3.98 0.41 0.16 0.59 0.69 -0.23 1.21 0.32 1.09 0.37 2.97 0.4 0.21
PointCircle2 0.66 4.17 0.48 0.99 0.64 1.05 -0.24 8.3 0.44 1.89 0.66 4.87 0.16 0.96
PointGoal1 0.65 0.95 0.43 0.54 0.69 1.12 0.31 0.42 0.48 1.17 0.34 0.52 0.37 0.73
PointGoal2 0.54 1.97 0.29 0.78 0.59 1.34 0.39 1.15 0.52 2.08 0.35 2.5 0.16 0.96
PointPush1 0.19 0.61 0.13 0.43 0.24 0.48 0.14 0.51 0.19 0.6 0.1 0.36 0.14 0.4
PointPush2 0.18 0.91 0.11 0.8 0.21 0.65 0.17 1.69 0.18 0.8 0.08 0.22 0.12 0.9
CarButton1 0.03 1.38 0.07 0.85 0.21 1.6 -0.01 2.52 0.02 1.42 0.05 3.96 0.12 1.87
CarButton2 -0.13 1.24 -0.01 0.63 0.13 1.58 -0.06 1.36 -0.03 1.01 0.02 1.77 -0.04 1.27
CarCircle1 0.72 4.39 0.37 1.38 0.6 1.73 -0.32 4.71 0.61 4.53 0.27 3.53 -0.26 2.86
CarCircle2 0.76 6.44 0.54 3.38 0.66 2.53 -0.23 0.0 0.63 4.23 0.5 3.91 0.23 0.22
CarGoal1 0.39 0.33 0.24 0.28 0.66 1.21 0.29 0.38 0.25 0.3 0.4 0.61 0.26 0.14
CarGoal2 0.23 1.05 0.14 0.51 0.48 1.25 0.18 0.64 0.17 1.03 0.18 1.01 0.14 0.35
CarPush1 0.22 0.36 0.14 0.33 0.31 0.4 0.16 0.34 0.21 0.51 0.17 0.96 0.15 0.56
CarPush2 0.14 0.9 0.05 0.45 0.19 1.3 0.07 0.69 0.07 0.91 0.1 1.81 0.1 0.52

SwimmerVelocity 0.49 4.72 0.51 1.07 0.66 0.96 -0.04 0.7 0.33 2.61 0.66 1.1 0.39 1.96
HopperVelocity 0.65 6.39 0.36 0.67 0.63 0.61 -0.02 0.0 0.64 0.64 0.17 1.27 0.42 5.89

HalfCheetahVelocity 0.97 13.1 0.88 0.54 1.0 0.01 0.05 0.0 0.92 0.54 0.93 0.37 0.71 4.11
Walker2dVelocity 0.79 3.88 0.79 0.04 0.78 0.06 -0.01 0.0 0.78 0.01 0.11 1.42 0.79 0.0

AntVelocity 0.98 3.72 0.98 0.29 0.98 0.39 -0.06 0.0 0.96 0.3 0.93 0.23 0.96 0.27
SafetyGym Average 0.46 3.03 0.34 0.75 0.54 1.06 0.03 1.22 0.38 1.34 0.32 1.7 0.25 1.23

BallRun 0.6 5.08 0.27 1.46 0.39 1.16 0.31 4.79 0.37 1.13 0.35 1.65 0.19 0.09
CarRun 0.97 0.33 0.94 0.22 0.99 0.65 0.94 0.0 0.97 0.95 0.87 1.16 0.96 0.0

DroneRun 0.24 2.13 0.28 0.74 0.63 0.79 0.11 0.17 0.17 5.97 0.47 3.12 0.16 0.33
AntRun 0.72 2.93 0.65 1.09 0.72 0.91 0.09 0.01 0.66 1.38 0.72 1.04 0.61 0.63

BallCircle 0.74 4.71 0.52 0.65 0.77 1.07 0.06 0.24 0.39 0.68 0.68 1.2 0.22 0.03
CarCircle 0.58 3.74 0.5 0.84 0.75 0.95 0.06 0.35 0.56 1.76 0.57 0.84 0.08 0.91

DroneCircle 0.72 3.03 0.56 0.57 0.63 0.98 -0.23 1.59 0.61 1.9 0.61 0.87 0.54 0.72
AntCircle 0.58 4.9 0.4 0.96 0.54 1.78 0.48 3.03 0.54 3.15 0.45 2.04 0.55 3.78

BulletGym Average 0.64 3.36 0.52 0.82 0.68 1.04 0.23 1.27 0.53 2.11 0.59 1.49 0.41 0.81

Figure 3: Visualization of normalized reward and cost for each task within BulletGym domain. The dotted
blue vertical lines mark the cost threshold of 1. Each round dot represents a task, where green dots indicate
tasks meeting safety constraints, and red dots indicate tasks with constraint violations.

policies. When both modules are integrated, PreSa refines the preference-aligned policy to simulta-
neously prioritize safer behaviors.

PreSa Performance With Different Trajectory Segment Lengths, Dataset Sizes To further in-
vestigate how PreSa performs in different settings, we evaluate its effectiveness compared to base-
lines across varying segment lengths and offline dataset sizes. The results of DroneCircle task,
shown in Figure 4, indicate that as the length of the segments increases, PreSa consistently learns
policies with lower costs while maintaining stable reward performance, compared to other baselines.
Moreover, PreSa demonstrates a stable and better performance as more offline data becomes avail-
able. These results show that PreSa outperforms other baselines across different segment lengths
and dataset sizes.

What Contributes To PreSa’s Performance? Ablation studies are conducted to assess the impact
of varying the hyperparameters α and β, which are used by the preference alignment and safety
alignment modules, respectively, to regularize the learning policy with a pretrained reference policy.
The results for BallRun and DroneCircle tasks are shown in Table 3. We find that PreSa remains
robust across different selections of α and β, although higher performance could likely be achieved
with further hyperparameter tuning.
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(a) Different segment lengths. (b) Different sizes of the offline dataset.

Figure 4: Performance of Offline Safe POHF methods across varying trajectory segment lengths, dataset sizes.

Table 3: Ablation study of varying values of α and β.

Task
α = 0.2 α = 0.4 α = 0.6 α = 0.8 β = 0.25 β = 0.5 β = 0.75 β = 1.0

reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓
BallRun 0.19 0.09 0.19 0.1 0.38 2.8 0.19 0.12 0.18 0.11 0.18 0.09 0.34 2.67 0.19 0.09

DroneCircle 0.54 0.72 0.5 0.92 0.27 1.9 0.54 1.09 0.52 1.04 0.49 0.98 0.32 1.45 0.54 0.72

Table 2: Ablation study of zref.

Task
w/o zref PreSa

reward↑ cost↓ reward↑ cost↓
BallRun 0.29 1.59 0.19 0.09
CarRun 0.95 0.0 0.96 0.0

DroneRun 0.61 2.77 0.16 0.33
AntRun 0.67 2.68 0.61 0.63

BallCircle 0.39 0.67 0.22 0.03
CarCircle 0.46 0.96 0.08 0.91

DroneCircle 0.32 1.52 0.54 0.72
AntCircle 0.59 5.67 0.55 3.78

Average 0.53 1.93 0.41 0.81

We also investigate the effect of the reference point zref,
which is used to determine the “gain” or “loss” of a tra-
jectory segment based on the relative difference between
the segment’s score and the reference point. In our ap-
proach, zref is an estimated average score for all segments.
To demonstrate its effectiveness, we performed an abla-
tion study on zref, as shown in Table 2. The results indi-
cate that without the reference point, PreSa’s performance
drops significantly, making it difficult to find safe poli-
cies. This occurs because, without the reference point, the
utility of a segment is based solely on its absolute score
rather than a relative value, which destabilizes the learn-
ing process and degrades performance.

7 CONCLUSION

In this paper, we present Offline Safe POHF, a framework in which a policy is learned using hu-
man pairwise preferences and binary safety labels for each trajectory segment, without access to
ground truth rewards and costs. We first analyze the problem through two distinct modules: pref-
erence alignment and safety alignment, which can be applied individually for policy learning based
on preferences or safety labels, respectively. We then introduce an approach for Offline Safe POHF
problems, called PreSa, which integrates both modules into a single constrained optimization ob-
jective, as the safety alignment module implicitly defines a feasible set of policies. Given offline
human feedback data, PreSa directly learns a policy without the need to develop additional reward
and cost models or employ constrained safe RL. Empirical results demonstrate that PreSa not only
outperforms baselines from the Offline Safe POHF setting but also matches or surpasses offline safe
RL approaches that assume access to ground truth rewards and costs.

Limitations For evaluation, we generate synthetic human feedback based on the offline safe RL
benchmark, DSRL. While utilizing synthetic human feedback is a common practice in PbRL re-
search (Christiano et al., 2017; Lee et al., 2021; Park et al., 2022), and synthetic labels can effectively
approximate real human feedback under certain conditions (Metcalf et al., 2024), it is important to
note that scripted human labelers may not achieve perfect consistency with actual human labelers.
Future work will involve conducting extended experiments with real human participants.

REPRODUCIBILITY STATEMENT

We include the necessary proofs and detailed experimental settings in the Appendix to facilitate the
reproduction of the experiments and results presented in this paper.
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A SCORE FUNCTION JUSTIFICATION

We first make an assumption that discount factor γ is close to 1, which is often the case in practice.
Lemma A.1. Minimizing the loss function in Equation 8 increases the log probability of safe trajec-
tories in the safe dataset Dsafe and decreases the log probability of trajectories in the unsafe dataset
Dunsafe under policy π.

Proof. For simplicity, we ignore the β term from Equation 7. We have:

u(σ) ≈
T∑

t=0

log π(at|st)−
T∑

t=0

log πref(at|st)− zref(π) (16)

The approximation sign is due to ignoring the discount factor (being close to 1); zref(π) is defined
as the average over all trajectories (both safe, unsafe): Eσ

[∑T
t=0 γ

tβ log π(at|st)
πref(at|st)

]
.

The log progability of a trajectory σ as per policy π is given as:

log p(σ;π) =
T∑

t=0

log π(at|st) + constants (17)

where constant terms refer to the log of transition function, which is independent of π. Using
Equation 16, we have:

log p(σ;π) ≈ u(σ) +

T∑
t=0

log πref(at|st) + zref(π) + constants

= u(σ) + zref(π) + constants (18)

Notice that zref(π) only depends on policy π and is the same for all the trajectories in the safe and
unsafe datasets. Minimizing the loss function in Equation 8 would optimize the policy πθ such that
higher score u is assigned to safe trajectories σ+ and lower scores to σ−. Thus, as per Equation
18, log probabilities of safe trajectories would tend to increase and unsafe trajectories would tend to
decrease.

B EXPERIMENTAL DETAILS

This section provides the experimental details required to reproduce the experiments and results
presented in our paper.

B.1 TASK DESCRIPTION

We conducted our experiments and generated synthetic human feedback using the well-established
DSRL benchmark Liu et al. (2023a), which offers datasets specifically designed for offline safe RL
research. This benchmark includes 29 datasets with various safe RL environments and difficulty
levels in SafetyGym Ray et al. (2019); Ji et al. (2023) and BulletGym Gronauer (2022).

• SafetyGym is a suite of environments built on the Mujoco physics simulator, with a diverse
set of tasks. It features two types of agents, Car and Point, each tasked with four different
activities: Button, Circle, Goal, and Push. The difficulty of these tasks is further
distinguished by levels, denoted by 1 and 2. In each task, the agents must reach a goal while
avoiding hazards and obstacles. Moreover, SafetyGym includes five velocity-constrained
tasks for different agents: Ant, HalfCheetah, Hopper, Walker2d, and Swimmer.
Figure 5a illustrates the agents and tasks within SafetyGym.

• BulletGym is a collection of environments built using the PyBullet physics simulator. Sim-
ilar to SafetyGym, it focuses on safety-critical tasks but has shorter time horizons and a
wider variety of agents. The suite includes four types of agents: Ball, Car, Drone, and
Ant, each with two tasks: Circle and Run. The agents and tasks within BulletGym are
shown in Figure 5b.
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(a) SafetyGym (b) BulletGym

Figure 5: Visualization of agents and tasks in SafetyGym and BulletGym.

B.2 SYNTHETIC HUMAN FEEDBACK

To evaluate our approach in the Offline Safe POHF setting, we generate synthetic human feedback
consisting of pairwise preferences regarding agent behavior and safety labels indicating whether the
agent’s actions are safe or not. For pairwise preferences, we follow the method used in CPL (Hejna
et al., 2024), assuming that the human model follows a regret-based preference framework. Given
that negated regret is equivalent to the discounted sum of optimal advantages, we provide preference
feedback based on the cumulative advantages of the compared trajectory segments. However, since
obtaining optimal advantages requires running RL for each task, we simplify the process by using
cumulative rewards instead. This is because optimal advantages are essentially a reshaped version
of the reward, leading to the same optimal policy.

For the binary safety labels, we use the ground truth cost data from the original offline dataset to
assess the safety of each trajectory segment. Safety labels are then assigned based on predefined cost
thresholds, which are generally defined for the entire task or trajectory. To label individual segments
(which are parts of full trajectories), we proportionally adjust the cost threshold according to the
segment’s length relative to the maximum trajectory length in each domain.

B.3 EVALUATION METRICS

To assess the algorithm’s performance, we adopt the evaluation methodology from DSRL (Liu et al.,
2023a), using normalized reward and normalized cost as metrics. The normalized reward is defined
as follows:

Rnormalized =
Rπ − rmin

rmax − rmin

whereRπ is the cumulative reward under policy π, and rmax and rmin denote the empirical maximum
and minimum reward returns. The normalized cost is represented as:

Cnormalized =
Cπ + ϵ

κ+ ϵ

where Cπ is the cumulative cost under policy π. The cost threshold is given by κ, and ϵ is a
small positive constant added to ensure numerical stability when κ = 0. According to the DSRL
benchmark, a task is considered safe if the normalized cost does not exceed 1.

B.4 TRAINING DETAILS AND HYPERPARAMETERS

Our approach follows a two-step training process. In the first step, we pretrain the policy using
behavior cloning (BC) on all trajectory segments, establishing a reference policy, denoted as πref,
which will later regulate the learning policy π. In the second step, we optimize the policy by applying
PreSa with offline human feedback.
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Table 4: Hyperparameters of PreSa for tasks in two domains.

Hyperparameters BulletGym SafetGym

Training Steps 100k 200k
Pretraining Steps 30k 60k

Batch Size 32 96
Policy network architecture [256, 256] MLP [256, 256] MLP

Policy network dropout 0.1 0.25
Optimizer Adam Adam

Policy learning Rate 0.0001 0.0001
Temperature α 0.2 0.2
Temperature β 1.0 0.2

Discount factor γ 1.0 1.0
Balancing factor η 0.1 2.0

Constraint lower bound δ 0.95 0.9
Lagrange multiplier learning rate 0.005 0.0005

The hyperparameters used in the experiments are summarized in Table 4. We assume all policies
to be Gaussian with a fixed variance. Actions are predicted using a standard multi-layer perceptron
(MLP), and the log probability log π(a|s) is calculated as −|π(s)− a|22, following the implementa-
tion design from CPL. The policy networks are structured with two hidden layers, each containing
256 hidden units and employing ReLU activation functions, with dropout applied. Different values
for the hyperparameters in PreSa are used depending on the specific domain.

C EXTENDED RESULTS

In this section, we provide supplementary results, which include PreSa’s performance across differ-
ent segment lengths and dataset sizes, comprehensive ablation studies on several main hyperparam-
eters (such as α, β, and η), and the learning curves of PreSa for all 29 tasks.

C.1 PERFORMANCE OF PRESA WITH VARYING SEGMENT LENGTHS AND DATASET SIZES

The comprehensive results of PreSa with varying segment lengths are presented in Table 5. Overall,
PreSa demonstrates strong performance across different segment lengths. However, for certain spe-
cific tasks, such as DroneRun and BallCircle, the policies learned under different segment lengths
exhibit varying performance.

Table 6 presents the results of PreSa trained with different sizes of offline datasets. Unsurprisingly,
when trained on only 100 pairs of trajectory segments, PreSa struggles to learn safe policies. How-
ever, as the size of the offline datasets increases, we observe that PreSa trained on a few hundred to
thousands segment pairs can achieve performance comparable to that of models trained on 10,000
pairs. This suggests the effectiveness of PreSa.

C.2 PERFORMANCE OF PRESA WITH IMPERFECT SAFETY FEEDBACK

To evaluate the effectiveness of PreSa under imperfect safety feedback, we simulate different lev-
els of imperfection by introducing noise into the safety feedback. At each level, a subset of the
feedback is randomly selected, and its True/False labels are flipped. The results, shown in Table
7, demonstrate that PreSa consistently outperforms the baselines across varying levels of imperfect
safety feedback, although its performance gradually declines as the noise level increases.

C.3 ADDITIONAL BASELINES

We conducted experiments on additional baselines, with the results presented in Table 8 and Table 9.
Unified Comparison: Unified pairwise preferences were used, where high-reward and safe trajecto-
ries were preferred. Safe-RLHF (CDT) (Cost: binary label only): A variant of Safe-RLHF (CDT) in

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 5: Performance of PreSa with varying segment lengths

Segment Length
32 64 128

reward↑ cost↓ reward↑ cost↓ reward↑ cost↓
BallRun 0.26 1.12 0.19 0.09 - -
CarRun 0.96 0.0 0.96 0.0 0.96 0.0

DroneRun 0.17 0.18 0.16 0.33 -0.01 0.0
AntRun 0.64 0.79 0.61 0.63 0.69 1.26

BallCircle 0.36 0.25 0.22 0.03 0.22 0.05
CarCircle 0.11 1.29 0.08 0.91 0.07 0.79

DroneCircle 0.58 0.99 0.54 0.72 0.51 0.32
AntCircle 0.56 3.88 0.55 3.78 0.57 3.88

BulletGym Average 0.45 1.06 0.41 0.81 0.43 0.9

Table 6: Performance of PreSa with varying offline dataset sizes

Offline Data
100 pairs 500 pairs 2000 pairs 5000 pairs 10000 pairs

reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓
BallRun 0.27 1.67 0.21 0.23 0.19 0.14 0.19 0.14 0.19 0.09
CarRun 0.91 0.0 0.96 0.0 0.96 0.0 0.96 0.0 0.96 0.0

DroneRun 0.38 5.11 0.2 2.6 0.19 0.52 0.17 1.24 0.16 0.33
AntRun 0.5 1.72 0.61 0.95 0.64 0.88 0.59 0.61 0.61 0.63

BallCircle 0.26 0.77 0.24 0.07 0.21 0.06 0.2 0.02 0.22 0.03
CarCircle 0.26 1.55 0.17 0.85 0.1 0.56 0.09 1.18 0.08 0.91

DroneCircle 0.28 1.61 0.51 0.93 0.51 0.62 0.52 0.64 0.54 0.72
AntCircle 0.5 3.67 0.52 3.09 0.56 3.91 0.57 3.86 0.55 3.78

BulletGym Average 0.42 2.01 0.43 1.09 0.42 0.84 0.41 0.96 0.41 0.81

which the cost model is trained using binary labels only. The results indicate that PreSa outperforms
these additional baselines. This performance gap is attributed to the baselines incorporating less
information during learning, resulting in weaker performance.

C.4 EVALUATION WITH FILTERED PREFERENCE DATASET

To investigate whether rewards matter when safety constraints are violated, we conducted exper-
iments with PreSa using filtered preference data. Specifically, we excluded pairs where both seg-
ments were unsafe and pairs where the preferred segment was unsafe. The results, presented in Table
10, show that with such filtered preference data, the performance of our approach drops significantly
and fails to learn safe behaviors.

C.5 ABLATION STUDY

We explore the influence of several key hyperparameters used in PreSa. The results are shown in
Tables 11, 12, 13, 14. These results indicate that while PreSa generally performs well across various
hyperparameter settings, further fine-tuning can lead to improved performance.

C.6 LEARNING CURVES

We train PreSa with the parameters in Table 4 for all 29 tasks. The learning curves are shown in
Figure 6, 7, 8, and 9. In each figure, the dotted vertical line marks the point where πref pretraining
stops, while the dotted horizontal line indicates the cost threshold of 1.
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Table 7: Evaluation results with imperfect binary safety labels: The noise level represents the per-
centage (e.g., 0.1 means 10%) of binary safety labels that are randomly selected for label flipping.

Task Noise Level
Binary Alignment BC-Safe-Seg Safe-RLHF (CDT) PreSa (Ours)

reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓

BallRun

0.0 0.31 4.79 0.37 1.13 0.35 1.65 0.19 0.09
0.1 0.2 0.04 0.8 3.98 0.46 3.15 0.21 0.37
0.2 0.2 0.03 0.71 3.51 0.52 2.87 0.24 0.92
0.3 0.2 0.13 0.64 3.34 0.39 2.43 0.29 1.49

BallCircle

0.0 0.06 0.24 0.39 0.68 0.68 1.2 0.22 0.03
0.1 0.14 0.03 0.48 1.57 0.66 1.34 0.22 0.07
0.2 0.14 0.03 0.6 2.07 0.69 1.96 0.27 0.26
0.3 0.16 0.07 0.53 1.52 0.68 2.21 0.32 0.49

DroneRun

0.0 0.11 0.17 0.17 5.97 0.47 3.12 0.16 0.33
0.1 0.24 0.32 0.4 0.6 0.6 4.0 0.15 0.37
0.2 0.25 0.31 0.22 0.82 0.36 2.07 0.14 0.44
0.3 0.26 0.32 0.59 1.67 0.26 0.76 0.14 0.26

DroneCircle

0.0 -0.23 1.59 0.61 1.9 0.61 0.87 0.54 0.72
0.1 0.51 1.33 0.53 1.61 0.59 1.21 0.57 0.92
0.2 0.53 1.37 0.71 2.79 0.58 1.44 0.59 1.2
0.3 0.54 1.49 0.72 2.78 0.59 1.4 0.61 1.41

Figure 6: Training curves for the 8 tasks in BulletGym.
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Figure 7: Learning curves for the 8 Car tasks in SafetyGym.
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Figure 8: Learning curves for the 8 Point tasks in SafetyGym.

Figure 9: Learning curves for the 5 velocity constraint tasks in SafetyGym.
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Table 8: Additional evaluation results of normalized reward and cost. The ↑ symbol indicates that
the higher reward, the better, while the ↓ symbol signifies that the lower cost (up to a threshold of
1), the better. Bold: Safe agents whose normalized cost is below 1. Orange: Safe agent with the
highest reward among approaches learning from offline synthetic human feedback.

Task
Unified Comparison Binary Alignment BC-Safe-Seg Safe-RLHF (CDT) PreSa (Ours)

reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑
BallRun 0.27 0.77 0.31 4.79 0.37 1.13 0.35 1.65 0.19 0.09
CarRun 0.97 0.0 0.94 0.0 0.97 0.95 0.87 1.16 0.96 0.0

DroneRun 0.54 3.01 0.11 0.17 0.17 5.97 0.47 3.12 0.16 0.33
AntRun 0.48 0.4 0.09 0.01 0.66 1.38 0.72 1.04 0.61 0.63

BallCircle 0.44 0.21 0.06 0.24 0.39 0.68 0.68 1.2 0.22 0.03
CarCircle 0.54 1.47 0.06 0.35 0.56 1.76 0.57 0.84 0.08 0.91

DroneCircle 0.44 1.42 -0.23 1.59 0.61 1.9 0.61 0.87 0.54 0.72
AntCircle 0.5 3.91 0.48 3.03 0.54 3.15 0.45 2.04 0.55 3.78

BulletGym Average 0.52 1.4 0.23 1.27 0.53 2.11 0.59 1.49 0.41 0.81

Table 9: Evaluation results for additional baselines using cost models trained exclusively on binary
labels for Safe-RLHF.

Task
Comparison Alignment Binary Alignment BC-Safe-Seg Safe-RLHF (CDT) Safe-RLHF (CDT) (Cost: binary label only) PreSa (Ours)

reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓
BallRun 0.27 0.77 0.31 4.79 0.37 1.13 0.35 1.65 0.31 1.52 0.19 0.09

DroneCircle 0.44 1.42 -0.23 1.59 0.61 1.9 0.61 0.87 0.61 1.19 0.54 0.72

Table 10: Evaluation results using a filtered preference dataset, excluding pairs where both segments
are unsafe or where the preferred segment is unsafe.

Task
Preference w/ safety PreSa

reward↑ cost↓ reward↑ cost↓
BallRun -0.08 5.46 0.19 0.09
CarRun 0.44 0.0 0.96 0.0

DroneRun 0.02 0.0 0.16 0.33
AntRun 0.35 0.46 0.61 0.63

BallCircle -0.0 5.03 0.22 0.03
CarCircle -0.1 3.23 0.08 0.91

DroneCircle -0.26 0.03 0.54 0.72
AntCircle 0.0 0.0 0.55 3.78

Average 0.05 1.77 0.41 0.81

Table 11: Performance of PreSa with varying α.

Hyperparameter α
α = 0.2 α = 0.4 α = 0.6 α = 0.8

reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓
BallRun 0.19 0.09 0.19 0.1 0.38 2.8 0.19 0.12
CarRun 0.96 0.0 0.95 0.0 0.95 0.0 0.95 0.0

DroneRun 0.16 0.33 0.2 2.49 0.41 2.67 0.2 2.47
AntRun 0.61 0.63 0.65 1.85 0.63 2.88 0.68 1.86

BallCircle 0.22 0.03 0.15 0.03 0.3 1.06 0.17 0.04
CarCircle 0.08 0.91 0.2 0.87 0.32 1.01 0.23 0.99

DroneCircle 0.54 0.72 0.5 0.92 0.27 1.9 0.54 1.09
AntCircle 0.55 3.78 0.57 3.85 0.57 4.65 0.58 4.25

BulletGym Average 0.41 0.81 0.43 1.26 0.48 2.12 0.44 1.35
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Table 12: Performance of PreSa with varying β.

Hyperparameter β
β = 0.25 β = 0.5 β = 0.75 β = 1.0

reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓
BallRun 0.18 0.11 0.18 0.09 0.34 2.67 0.19 0.09
CarRun 0.95 0.0 0.95 0.0 0.95 0.0 0.96 0.0

DroneRun 0.22 2.61 0.22 2.49 0.26 2.13 0.16 0.33
AntRun 0.6 0.88 0.64 1.37 0.53 2.14 0.61 0.63

BallCircle 0.16 0.03 0.16 0.03 0.3 1.09 0.22 0.03
CarCircle 0.22 0.83 0.2 0.79 0.27 1.24 0.08 0.91

DroneCircle 0.52 1.04 0.49 0.98 0.32 1.45 0.54 0.72
AntCircle 0.58 4.01 0.54 4.07 0.51 4.36 0.55 3.78

BulletGym Average 0.43 1.19 0.43 1.23 0.44 1.88 0.41 0.81

Table 13: Performance of PreSa with varying η.

Hyperparameter η
η = 0.1 η = 0.5 η = 1.0 η = 5.0

reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓
BallRun 0.19 0.09 0.66 4.4 -0.53 4.68 -0.17 5.46
CarRun 0.96 0.0 0.94 0.0 0.91 0.0 0.6 0.01

DroneRun 0.16 0.33 0.35 3.41 0.32 3.14 0.21 1.85
AntRun 0.61 0.63 0.6 0.7 0.57 0.71 0.5 0.65

BallCircle 0.22 0.03 0.13 0.14 0.05 3.14 0.09 5.45
CarCircle 0.08 0.91 0.11 0.46 0.07 0.42 0.01 9.2

DroneCircle 0.54 0.72 0.38 0.6 0.25 1.12 -0.26 0.04
AntCircle 0.55 3.78 0.51 3.51 0.48 6.17 0.0 0.0

BulletGym Average 0.41 0.81 0.46 1.65 0.26 2.42 0.12 2.83

Table 14: Ablation study of varying values of δ.

Task
δ = 0.65 δ = 0.75 δ = 0.85 δ = 0.95

reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓
BallRun 0.2 0.16 0.19 0.12 0.19 0.12 0.19 0.09

DroneCircle 0.57 0.94 0.56 0.87 0.56 0.88 0.54 0.72
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