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ABSTRACT

Most pruning methods remove parameters ranked by impact on loss (e.g., mag-
nitude or gradient). We propose Budgeted Broadcast (BB), which gives each
unit a local traffic budget—the product of its long-term on-rate a; and fan-out
k;. A constrained-entropy analysis shows that maximizing coding entropy under
a global traffic budget yields a selectivity—audience balance, log =+ 1-ai — gk, BB
enforces this balance with simple local actuators that prune either fan -in (to lower
activity) or fan-out (to reduce broadcast). In practice, BB increases coding entropy
and decorrelation and improves accuracy at matched sparsity across Transformers
for ASR, ResNets for face identification, and 3D U-Nets for synapse prediction,
sometimes exceeding dense baselines. On electron microscopy images, it attains
state-of-the-art F1 and PR-AUC under our evaluation protocol. We further imple-
ment BB for large language models using both unstructured and structured one-
shot pruning.BB is easy to integrate and suggests a path towards learning more
diverse and efficient representations.

1 INTRODUCTION

Biological neural circuits are masterpieces of efficiency, sculpted by evolution to operate under
strict metabolic and material constraints. This constant pressure for resource optimization fosters
diverse and robust neural codes capable of navigating a complex world. In stark contrast, modern
deep neural networks, trained with abundant compute, often learn highly redundant representations
and falter on rare, long-tail events. This discrepancy raises a central question: can principles of
biological resource efficiency be formalized and transferred to artificial neural networks to make
them more robust and diverse?

Most pruning methods developed for artificial networks focus almost exclusively on a neuron’s util-
ity: its importance as measured by weight magnitude, gradient information, or direct contribution
to the loss. Such approaches target the function each unit provides, but remain blind to the costs
those units impose. We argue that this narrow, opportunistic strategy overlooks a key dimension
emphasized in biological systems. Inspired by formal models of metabolic pressure in developing
neuromuscular junctions, particularly activity-dependent synaptic competition (Barber & Lichtman)
1999), we introduce the orthogonal axis of a neuron’s metabolic cost, defined by the ongoing re-
sources required to broadcast its signal to its downstream partners.

We formalize this cost as a neuron’s traffic, t; = a;k;: the product of how often it ‘speaks’ (its
long-term firing rate, a;) and the size of its ‘audience’ (its axonal fan-out, k;). Biologically, this
traffic is a proxy for the amount of neurotransmitter release and synaptic material turnover required
per unit time to maintain these synapses in a functional state. In artificial networks, it provides a
principled analogue: the ongoing compute and representational bandwidth consumed by a neuron’s
outgoing connections. Our method, Budgeted Broadcast (BB), directly enforces a local budget
on this traffic. In its simplest form, a unit prunes its weakest connections if and only if its traffic
t; exceeds a threshold 7. Intuitively, this has a direct consequence of protecting highly selective,
rare-feature detectors (low a;) by treating them as metabolically cheap, while curtailing the fan-out
of over-active, low-selectivity units. This enforces a tradeoff: neurons can ‘speak’ loudly to a small
audience (high activity, low fan-out) or quietly to a large one (low activity, high fan-out), but not
both.
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Figure 1: The conceptual framework of Budgeted Broadcast, from biology to a predictive the-
ory. (Left) Our method models a neuron’s metabolic cost as traffic, t; = a;k; (long-term activity
x fan-out). If traffic exceeds a budget 7, connections are pruned. This can be achieved by reducing
fan-out (axonal pruning) or reducing fan-in to lower activity (dendritic pruning). (Top Right) This
rule is inspired by Henneman’s size principle (Henneman, [1957; Henneman et al., |1965)), where
large motor neurons (large size, analogous to fan-out k;) have lower average activity levels (a;).
(Bottom Right) Our resource- preservation rule predicts a linear relationship between a unit’s fan-

This tradeoff mirrors a classic organizational rule in the motor system called “the size principle”
Henneman| (1957)), where the most active motor neurons connect to fewer muscle fibers compared
to less active neurons that connect to many. In contrast to “lazy-neuron” pruning (e.g., (Hu et al.,
2016))), BB reallocates connectivity toward a more efficient and diverse code.

This simple, local rule gives rise to a global organizing principle. An analysis of the network’s
coding entropy, which we detail later, predicts that this budget pressure drives the network to self-
organize into a measurable equilibrium, which we term selectivity—audience balance (Fig.[1] bottom
right). In learned codes where unit activities are only weakly correlated (Amaril, 2002)), this balance
is attained when the unit’s fan-out k; is proportional to its inactivity log-odds:

log =% ~ B,
a;
This condition couples a unit’s structure (node degree) with its function (node activity), and we
show that, under standard assumptions, it is equivalent to maximizing the entropy of the learned
code. We show that while it emerges as a regularity in a budgeted network, it is absent in networks
trained (and/or pruned) with standard methods. In practice, we directly use this linear relationship
to progressively modify the connections during learning.

Contributions. Our contributions follow a progression from empirical neuroscience to learning
theory and ends with large-scale deployment of pruned LLMs. (1) We formalize a traffic budget
originally studied in the context of the neuromuscular connectome, now as a constrained-entropy
objective that yields the testable selectivity-audience balance (log~ 1-ai — gE,), akin to the biologi-
cal system, identifying the precise equilibrium solved by our controller (2) We provide a learnlng-
theoretic analysis of the controller, including stability guarantees for two input and output-pruning
actuators and empirical diagnostics that certify the predicted balance. (3) We validate the properties
of this mechanism on controlled didactic tasks, verifying the predicted balance, structural safety for
rare-but-relevant signals, and the ability to overcome optimization barriers. (4) We demonstrate the
breadth of BB across five domains: automatic speech recognition (ASR), face identification, change
detection, synapse prediction, and autoregressive language modeling on Llama 3.1-8B—where it
consistently improves tail or rare-event metrics at matched sparsity (Sec. [5.2] [5.3] [5.4] 5.3 [5.6).
These experiments confirm that the theoretical predictions hold across diverse architectures and
scales, including one-shot, structured, and foundation-model settings.



Under review as a conference paper at ICLR 2026

2 RELATED WORK

Many pruning algorithms have been studied in the past decade. Recent approaches include mag-
nitude pruning (Han et al., 2015; 2016)) and layer-wise L; regularization as in MorphNet (Gordon
et al.| [2018); early saliency and Hessian-based criteria (LeCun et al.,[1990)); sparse trainable subnet-
works in the Lottery Ticket framework (Frankle & Carbin, 2019); and connectivity-based proxies
such as SynFlow (Tanaka et al., 2020).

For modern large language models, SparseGPT (Frantar & Alistarh| |2023) formulates pruning as
a local reconstruction problem and uses second-order information to minimize activation error,
and is therefore conceptually quite different from our competition-based mechanism. In contrast,
activation-aware method Wanda (Sun et al.l 2024)) is closer in spirit to our work in that they ex-
plicitly take activation magnitude into account and score connections using products of weights and
activations. However, their criteria effectively favor already-strong connections (“rich get richer”)
and does not impose any activity-dependent global broadcast budget on the total signal a neuron
can distribute across its outgoing connections, which is the key constraint in our formulation. Clos-
est to our model is the bipartite-matching model of |Dasgupta et al.| (2024)), which simulates neural
competition and reallocation of resources across outgoing edges.

Like Dasgupta et al., our approach draws inspiration from biological principles but differs funda-
mentally from existing pruning methods in both motivation and mechanism.

Activity-dependent synapse elimination: Our work operationalizes a specific form of homeo-
static regulation observed during neural development: activity-dependent synapse elimination. This
process is captured by the two-force dynamic model of the neuromuscular junction of Barber &
Lichtman|(1999), in which a neuron’s finite metabolic budget induces a trade-off between firing rate
and audience size—high a; to few targets (low k;) or low a; to many (high k;). Our traffic metric
t; = a;k; is the direct computational expression of this trade-off. We translate the model’s forces
into our rule: (1) the presynaptic resource limit becomes the budget gate t; > 7 that triggers pruning,
and (2) postsynaptic competition is modeled by removing the weakest outgoing weight |w;;|. BB
therefore implements structural homeostasis, turning foundational neurodevelopmental principles
into a practical algorithm for sculpting network connectivity.

Activity-Based Pruning: Methods that prune based on activity (a;) alone are an intuitive starting
point, but they risk conflating a neuron’s importance with its firing rate. In contrast, BB’s traffic
metric ¢; = a;k; is more nuanced in intuiting that a highly selective unit (low a;) may be critically
important and thus require a large audience (high k;), hence protecting this ’quiet specialist.’

Gradient-Based Methods: SNIP and GraSP estimate importance from gradients (Lee et al., 2019;
Wang et al., 2020), while methods like RigL use gradient information to guide dynamic regrowth.
While effective, these approaches rely on optimization signals that may lag optimal connectivity
patterns. Unlike these gradient-driven methods, BB is a developmental controller derived from first
principles. It operates using local, label-free statistics (a;, k;) and can reshape connectivity indepen-
dently of gradient updates, acting as an autonomous homeostatic process analogous to biological
circuit refinement.

Structured Patterns: While hardware-aligned patterns like N:M sparsity deliver predictable
speedups, our focus is on the allocation principle rather than the implementation pattern. BB can
first allocate audience under a budget, then the resulting connectivity can be projected to hardware-
friendly patterns for deployment-separating the biological principle from engineering constraints.

3 METHOD — BUDGETED BROADCAST (LOCAL BROADCAST RULE)

Our method, Budgeted Broadcast (BB), is governed by a local traffic-control rule. For each unit ¢,
we periodically evaluate its traffic score:

ti:ai-ki

where a; is the long-term average activation (on-rate), tracked via an Exponential Moving Average
(EMA), and k; is its current fan-out. If ¢; exceeds a predefined budget 7, the unit is marked for
pruning in either or both ways: 1) A fraction of its weakest outgoing connections is removed (an
‘SP-out’ action), directly reducing k; to bring the unit back within budget. 2) incoming connections
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Figure 2: SP-out (Axonal pruning). Activation-aware fan-out pruning that masks a hidden unit’s
outgoing connections to the next layer, enforcing the per-unit traffic budget ¢ = a; k against a
metabolic threshold 7. High-activity units (large a) shed more outgoing edges; low-activity units
keep more. Right: the learned binary mask sparsifies the dense hidden— L+1 matrix according to
E=dy+ 31 log1 2 clipped to [1, Noy]. SP-in performs the complementary, opposite operation

(fan-in prumng) see Appendix. @]

are removed (an ‘SP-in’ action) to reduce the neuron’s activity a;. These actions force a reallocation
of network connectivity from high-traffic to low-traffic units. In practice, we keep each unit’s "audi-
ence" proportional to how quiet or busy it is. Let a be a unit’s activity Exponential Moving Average
(EMA); the target degree is

1_
k = do+ 8 'og —2

k € [m, D].

Every A step we recompute k per unit and reselect Top-k by |W|, enabling natural regrowth. We
apply this at FFN fan-in (SP-in) and optionally fan-out (SP-out), with a variance-preserving rescale
to keep layer scale stable.

Entropy maximization. This degree controller satisfies the conditions needed to globally maxi-
mize coding entropy H (h) of the network, subject to a total traffic budget >, a;k; < Tinax. The
Lagrangian £ = H(h) — 3(3_; a;k; — Tiax) is stationary for log % = Bk, consistently with the
controller (see Appendix [ST]and the Theory section for the full derlvatlon)

In practice, we implement BB inside FFN blocks (the 1 x 1 paths) by multiplying W; and W5 with
binary masks that refresh periodically (Fig.[23)). For simplicity, most of our theory is derived for the
SP-out actuators: at the first projection Wy, row masks (SP-out@W/;) limit a source unit’s broad-
cast by reducing its fan-out k; at the second projection Ws, row masks (SP-out@W5) analogously
limit a hidden unit’s broadcast. We provide in the appendix theoretical accounts for the complemen-
tary SP-in actuator, implemented as column masks at W that reduce fan-in to modulate activity a
(Appendix. @ In this work, other components (e.g., attention, embeddings) remain dense. To min-
imize overhead, we avoid per-weight counters and store only a channel-wise EMA and the binary
masks.

We defer the full refresh pseudocode to the Appendix (Alg. ).

4 THEORY

A central question is why a simple, local pruning rule should lead to a globally coherent and efficient
network structure. We get some insight by viewing our rule as a decentralized algorithm for solving
a global optimization problem. Imagine we could design the network’s connectivity to perfectly
adhere to its function (a ‘god’s-eye view’) with the goal of maximizing the total information-coding
capacity of the hidden units (measured by their entropy), subject to a fixed total ‘energy’ budget.

While this constrained-entropy view implicitly leads to the selectivity-audience balance log = loa; —

Bk; (formally derived in the appendlx) we can establish a more direct link between our local rule
and the network’s function using information theory. Under a standard noisy channel model for
interlayer communication (see Assumption Al in Appendix , the mutual information I(Z;Y")
between a layer’s code Z and the next layer’s preactivations Y is upper-bounded by the trace of the
output covariance: I(Z;Y) < 55 tr(W " Cov(Z)W). When correlations are weak (a regime BB
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Figure 3: The selectivity—audience balance emerges under budget pressure on controlled XOR
tasks. The balance is a direct consequence of budget-driven structural adaptation, not an artifact of
gradient-based training. Left panel: In networks trained with Budgeted Broadcast, a robust linear
relationship emerges between unit fan-out (k;) and inactivity log-odds, confirming our theoretical
prediction. Middle panel: A one-shot traffic-threshold variant that prunes when ¢; = a;k; > 7
produces a similar trend but with a wider variability band and mild curvature, consistent with the
threshold gate being a local approximation to the KKT stationary law log 1;‘” = Pk;. Right panel:
In control networks trained with SGD alone, fan-out remains constant at the initialization value (64),
eliminating any correlation with activity (see Sec.[5.I1.T)

and SGD promote and we observe empirically) and weights are bounded, this reduces to I(Z;Y) <
% >, aik;, so total traffic serves as a simple proxy for downstream information flow (derivation

in Appendix [ST.T).
C
I(Z;Y) < 252 Ez a;k;

This indicates that the total traffic in a learning network serves as a tractable upper bound on the
downstream information flow. Consequently, a BB refresh that prunes the weakest outgoing edges
from high-traffic units produces a descent step on a composite objective L = Ly + A ZZ aik;
(Lemma [] in Appendix [ST.T). Hence, the observed network homeostasis observed in biological
networks (Barber & Lichtman, |1999) and in our experiments is a consequences of optimizing a
single, principled objective. Specifically, we show that neurons in a budgeted network are more
decorrelated than neurons trained with standard methods, while maintaining accuracy, and that total
traffic is a good linear predictor of the estimated mutual information (Appendix Fig. [I4). The full
formal treatment is provided in Appendix [ST.1]

Input versus output pruning. We also find that the two BB pruning actuators, SP-in and SP-out,
provide complementary forces that drive the network toward this balance. A local linear-response
analysis (see Appendix [ST.3)) shows that SP-in shocks primarily adjust a unit’s activity (a;), while
SP-out shocks primarily adjust its audience (k;). Together, the system can efficiently correct devia-
tions from the optimal state.

5 EXPERIMENTS

We treat experiments as hypothesis tests for the learning-theoretic predictions. We first provide
clean-room validation of BB’s core properties on controlled didactic tasks (balance, safety for rare
features, and overcoming optimization barriers), then demonstrate the principle’s breadth on large-
scale benchmarks (ASR, face identification, change detection, synapse prediction), and conclude
with an autoregressive language-modeling study on Llama 3.1-8B that highlights BB’s behavior in
a fifth, foundation-model domain.

5.1 DIDACTIC VALIDATION: MECHANISM, SAFETY, AND HARDNESS

We first use simple MLP architectures to investigate three consequences of BB on controlled
tasks—mechanism (XOR balance), feature safety (DNF+rare), and optimization hardness (DNF
witness). While the specific controller implementation can vary (e.g., using a global budget with
adaptive [ or a fixed local threshold 7), all variants operate on the same core idea: pruning is
triggered when a unit’s traffic ¢; = a;k; becomes excessive. This allows us to cleanly study the
emergence of the predicted balance, the inherent safety for rare features, and the ability to overcome
optimization challenges.
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5.1.1 EMERGENCE OF THE SELECTIVITY-AUDIENCE BALANCE

To provide a visualization of the selectivity—audience balance, we use a simple 3-layer MLP trained
on the XOR task (Input—H1(64)—H2(128)—Output, with ReL.U activations). We use SP-out on
Ws (row-mask on W5) to control the output fan-out of the first hidden layer (H1). Activity (a;) is
measured as the post-ReLU EMA of the H1 units. As shown in Figure[3] this setup produces a stable
linear relationship between fan-out (k;) and the log-odds of inactivity (log2= “7) ensuring that the
BB mechanism achieves the theoretically predicted balance (100% accuracy; linear fit with slope

B =0.540.02 and R?=0.98 + 0.005 on non-saturated units across 7 seeds).

5.1.2 DNF TASKS: SAFETY AND OPTIMIZATION

We study two aspects of BB on Disjunctive Normal Form (DNF; an OR of several AND clauses)
tasks: rare-feature safety and optimization barrier removal.

Safety for Rare Features. We first test if the BB rule is able to protect rare but important signals.
We construct a DNF task containing features with varying frequencies of activation: rare (p~0.11),
common (p~0.72), and moderately selective (p~0.22). As shown in Figure Eh the BB controller
demonstrates remarkable selectivity. The rare feature’s traffic (t;=asks) is low and only moderately
reduced to go below the pruning threshold 7. In contrast, the common feature is actively managed,
its traffic sharply curbed by pruning. This empirically validates that by budgeting traffic, BB can
distinguish between features based on their usage patterns, safeguarding the pathways for infrequent
events.

Overcoming an Optimization Barrier. To test BB’s ability to reshape learning dynamics, we de-
signed a DNF task that is difficult for standard gradient-based methods. The task uses W + 1 disjoint
clauses, where each AND clause operates on a unique set of inputs. The ideal network should learn
a sparse “‘one-unit-per-clause” representation, allocating one hidden unit for each clause.

This setup creates a severe credit assignment problem for standard SGD, particularly in “lazy” learn-
ing regimes where weights change little from their random initialization. We train the network on a
witness set, where each input is designed to activate only one specific clause. We predict that when
a mini-batch contains witnesses for different clauses, the averaged gradient is weak and ambiguous,
failing to specialize any single unit to its target clause, causing the network to get stuck (being un-
able to break the initial symmetry of its random weights). Theory predicts (and our experiments
confirm) that such a learner will fail to solve the problem about half the time (Fig. Bp),consistent
with Cover’s separability fraction (formalized in Theorem [T1] (Appendix)).

In contrast, alternating SGD with our BB controller consistently escapes this barrier. After a few
SGD steps, units that responded non-specifically to multiple inputs develop slightly higher aver-
age activity. The BB controller, being agnostic to the ambiguous gradients, simply identifies these
“uselessly busy” units by their high traffic and prunes their connections. This structural change
breaks the learning symmetry, allowing other units to specialize and “capture” a clause in the next
training phase. This iterative process acts as a powerful search mechanism. As shown in Figure @b
and [dc, BB consistently solves the task, and the number of cycles required scales predictably as
O(W log W). This empirically matches the “coupon collector” behavior we formally analyze in the
appendix (Theorem [I0)), where the network “collects” the solution for each of the TV clauses one by
one.

Homeostatic Resilience to Structural Shocks. Finally, we tested the dynamic resilience con-
ferred by the BB rule. In a “shock—recovery” experiment, we subjected a trained network to sudden,
large-scale pruning events and observed its response. The network exhibited graceful degradation
in performance, followed by rapid, autonomous recovery once training resumed. This demonstrates
that BB creates not just a statically efficient architecture, but a dynamically stable one with robust
homeostatic properties. The full protocol and results are detailed in Appendix

5.2 DOMAIN 1: AUTOMATIC SPEECH RECOGNITION (ASR)

To test BB on a foundational sequence-to-sequence task, we employed a standard encoder-decoder
Transformer trained on the LibriSpeech (Panayotov et al.| (2015)) train-clean—-100 dataset.
For a controlled comparison, all methods (including baselines) followed an identical three-stage



Under review as a conference paper at ICLR 2026

Selective Safety 0 O(W In W) scaling

Naatarngnne . —fem

rate=1.00
DNF witness set success (poolep}10-+

=60 - OLs fit: R?=0.981
=¥ Median * IQR

101 =~ Cover bound (0.5) T 35

©
3
it
g

— - Budget threshold = 3.0
2 Safety region

=axk
@
2
)

&
3

Cycles to fit

Traffic t
5

:

o

2500 5000 7500 10000 12500 15000 17500 20000 5 10 15

20 25 E
Training Step Frozen SGD (lazy) SGD+BB W In(W+1) [natural log]

(a) Selective Safety (b) Optimization Barrier (c) Convergence Scaling

Figure 4: BB’s core properties validated on controlled DNF tasks. These experiments confirm
the mechanism, safety, and optimization benefits of the BB principle. (a) BB inherently protects
rare features (green line), whose traffic remains safely below the budget 7, while actively pruning
over-active common features (red line). (b) BB consistently solves a DNF task designed to make
standard SGD fail, overcoming a lazy-learning barrier. (¢) The number of cycles for BB to solve the
DNF task follows a predictable O(W log W) scaling law. All setup details are in Appendix
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Figure 5: ASR on LibriSpeech. (a) Overall Word Error Rate Reduction (WERR) test_clean;
(b) Bucketed AWord Error Rate (WER) test_clean (Head/Mid/Tail fixed at 20/70/10; buckets
are fixed across methods); (¢c) Overall WERR test_other; (d) Bucketed AWER test_other.
Shaded bands/bars are mean =+ std over seeds; dashed line is Dense (WERR / AWER= 0).

training schedule, beginning with decoder dense pre-training and encoder-only align training before
enabling sparsification for the final full-transformer training.

To establish a fair and empirically-grounded sparsity budget, we applied the final network density
of 0.85 for all baseline methods, and mask refreshes occurred every 25 optimizer steps with no
regrowth rule (detail in Appendix[3). This setup allowed us to fairly evaluate the impact of different
pruning principles on Word Error Rate (WER), particularly on rare words.

Under the identical schedule and budget, BB (SP-in) is consistently best (Fig. E}a,c), while BB (SP-
out) is roughly neutral and Magnitude/Top-k trails.

To localize gains, Fig. [5p,d report bucketed AWER using the fixed Head/Mid/Tail buckets. We
assign utterances to Head/Mid/Tail by sorting items by frequency and taking disjoint quantiles
(20%/70%/10%); buckets are fixed across methods and runs. All results are under matched bud-
get, placement, schedule, and seeds. Averaged across seeds, SP-in improves all buckets and is
largest on the long tail; SP-out shows smaller gains; Magnitude is negative on Head and near zero
on Mid/Tail. This suggests that while magnitude pruning may harm performance on common words,
BB’s traffic-based approach reallocates resources to benefit the entire frequency spectrum, especially
the challenging long tail.
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Figure 6: Pareto fronts on VGGFace2-7k. Left: Top-1 classification accuracy vs. budget (effective
density). Right: verification accuracy vs. budget on a held-out pair set. Each curve shows the best
checkpoint per method at each density; the dense reference is the gray point at 1.0. Across a broad
range of budgets, SP-in forms or matches the upper envelope while using fewer active parameters

5.3 DOMAIN 2: FACE IDENTIFICATION

For face identification, we utilized a standard ResNet-101 (He et al.| (2016))) backbone with its final
layer adapted for the 7,001 identities in our curated VGGFace2-7k dataset (Cao et al.l 2018). To
test BB in a modern convolutional architecture, we applied it as a fan-in mask (SP-in) to the 1 x 1
projection kernels within each bottleneck block. This specific placement allows us to investigate the
effect of budgeting traffic between channels in a ResNet. All sparse methods, including baselines
like Magnitude pruning and Rigl. (Evci et al) 2020), were applied to the same set of kernels to
ensure a fair comparison based on Top-1 classification and verification accuracy.

We pre-specify the budgets before training. Concretely, we sweep six target sparsity levels s €
{0.9,0.7,0.6,0.5,0.4,0.3} and enforce the same target for all methods on the identical layer subset
and fan-in masking side. Masks are refreshed every 200 optimizer steps with regrowth enabled
at each refresh (i.e., previously pruned edges may re-enter via top-k). This protocol isolates the
pruning principle itself under matched budgets and placement (details in Appendix [)).

For each density, we sweep 30 epochs and pick the best validation checkpoint per method. Fig. [f]
plots Top-1 (left) and verification (right) against effective density. Across 0.3-0.7, SP-in forms
or matches the upper envelope and often exceeds the dense references around 0.5-0.7. RigL is
competitive at higher densities; magnitude degrades as sparsity increases; activation Top-k shows
inconsistent peaks but does not dominate.

Under a matched controller and budgets, SP-in consistently gives the strongest classification Pareto
front and competitive-to-best verification, revealing a practical region (~0.5-0.7) where it beats
dense networks on both tasks while using fewer active parameters.

5.4 DOMAIN 3: CHANGE DETECTION

To evaluate BB’s performance in a pixel-wise prediction task, we addressed bi-temporal building
change detection on the LEVIR-CD dataset (Chen & Shi, [2020). We used a lightweight, Siamese
encoder-decoder architecture (FC-Siam-conc) that processes two temporal images to produce a bi-
nary change mask. For this model, SP-in was applied as a fan-in mask to the first 3 x 3 convolution
in each encoder block, with the decoder remaining dense. We report mean Intersection-over-Union
(IoU) and F1-score on the held-out test set, comparing against the unpruned dense model under an
identical training schedule.

We compare BB(SP-in) against the dense model without pre-specifying a sparsity target using de-
fault hyperparameters. This yields a final global density of 0.70. Masks use a warm-up of 1,000
optimizer steps, then refresh every 50 steps, with regrowth enabled at each refresh (i.e., previously
pruned edges may re-enter via top-k). This protocol ensures a fair comparison under matched place-
ment and schedule while allowing SP-in to discover an empirically grounded budget (details in
Appendix ).

Under the same 30-epoch schedule and fixed decision threshold, SP-in improves over Dense in all
runs, as summarized below.
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Figure 7: Change detection on LEVIR-CD: Dense vs. SP-in (top-%£ qualitative). The first two
columns show the before/after image pair (t1, t2), and the third shows the ground truth. Dense-only
true positives are highlighted in red, and SP-in-only true positives are highlighted in green.

Synapse GT Dense Mask @thr=0.50 (2=62) Mag Mask @thr=0.50 (2=62) BB Mask @thr=0.50 (2=62)

Figure 8: Synapse prediction (per-method Best-F1). Qualitative overlays and operating-point
comparison. Red arrows denote false negatives (omitted GT synapses). Right overlay: Dense=red,
BB=green, Mag=Dblue; yellow marks consensus. Further details in Appendix

Averaged across runs, this represents a relative improvement of +10.8% in IoU and +7.9% in F1
(details in Appendix [S3.8).

SP-in recovers substantially more true positives inside the GT regions, especially for small, spatially
scattered changes, while preserving major detections shared with Dense.

5.5 DOMAIN 4: SYNAPSE PREDICTION (EM)

As a capstone test of architectural generality, we applied BB(SP-in) (magnitude-based, row-wise
fan-in masks) to a residual-SE 3D U-Net for synapse segmentation on volumetric EM from the
SmartEM dataset (Meirovitch et al.[(2023)); GT1 for training, GT2 held-out for testing). Concretely,
we attach BB to all main 3 x 3 x 3 convolutions (both conv1 and conv2) across encoder and decoder
blocks, while leaving ConvTranspose upsampling layers and skip concatenations dense. We com-
pare against a dense baseline and a standard magnitude pruning baseline, reporting PR-AUC and
Best F1 on the held-out test set.

For synapse prediction, we use a fixed budget ratio of 0.70, apply a 1,000-step warm-up, then
linearly ramp to the target over 8,000 steps; masks are refreshed every 200 optimizer steps, with
variance-preserving rescaling /prev/cur per output channel. Pruning is applied to all Conv3d lay-
ers in encoder and decoder blocks (including SE 1x1x1 and residual 1x1x1 projections), while
ConvTranspose3d upsampling layers and skip concatenations remain dense. Dense and pruned
models share the exact same pipeline; inference uses sliding windows with 8x flip TTA, and we
report PR-AUC and best F1 on the held-out GT2 set (detail in Appendix [6).

Table E]reports three seeds (mean=+std). BB attains the best mean PR-AUC and F1, with a small but
consistent ROC-AUC gain; Magnitude lies between BB and Dense with slightly larger variance.

5.6 DOMAIN 5: SCALING TO LLMS AND HARDWARE-ALIGNED CONSTRAINTS

We next studied whether BB scales to modern, large-scale architectures by using it to prune the
Llama 3.1-8B model (Grattafiori et al., [2024) focusing on feedforward blocks (5.64B params). We
evaluated in separate standard unstructured sparsity and hardware-compatible N:M structured spar-
sity. Comparisons include Magnitude (MAG) and Wanda (Sun et al) 2024), a strong activation-
based baseline.

Unstructured Pruning and the Preservation of Rare Features. Our theory predicts that limiting
total traffic (a;k;) protects rare but informative features: units with low activity effectively “pay less”
for connections, maintaining a larger audience. The results on TinyStories (Appendix Table[I0) and
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Method PR-AUC ROC-AUC BestF1 BestloU

Dense 0.6952 4+ 0.010 0.9889 4+ 0.0004 0.6578 4+ 0.0070 0.4906 4+ 0.0080
BB (SP-in)  0.7407 +0.014 0.9906 4+ 0.0006 0.6752 + 0.0090 0.5099 £ 0.0100
Mag 0.7253 + 0.019 0.9896 + 0.0009 0.6643 4+ 0.0120 0.4981 4+ 0.0140

Table 1: Synapse prediction (3 seeds, mean+tstd). Results are computed at each method’s own
Best-F1 threshold and then averaged across seeds.

Table 2: Llama 3.1-8B on Wikitext-2. Perplexity (PPL) across sparsity levels. At s = 0.7,
activation-based methods suffer massive degradation on Rare tokens (Wanda: 2782), while BB re-
mains robust (68.69).

All tokens Common bucket Rare bucket
Method  Category s=05 s=06 s=07 s=05 s=06 s=07 s=05 s=06 s=0.7
Dense Baseline - 6.11 - - 5.87 - - 8.33 -
BB Unstructured 6.18 7.19 11.31 6.01 6.77 10.88 18.27 24.53 68.69
WANDA  Unstructured 8.50 14.91 82.33 7.22 11.72 53.22 31.95 105.06  2782.85
BB-G4R N:M 15.97 18.54 33.33 12.45 14.18 23.77 119.75 162.50 513.63
WANDA N:M 15.34 23.01 93.28 12.03 17.14 59.15 109.62 249.24  3667.68

Wikitext-2 (Table @) validate this selectivity-audience balance. In the unstructured regime, BB
yields strictly lower perplexity across all sparsity levels. The advantage is critical in the Rare token
bucket. At s = 0.7 on Wikitext-2, Wanda degrades catastrophically on rare tokens (PPL 8.33 —
2782), likely mistaking low activity for low utility. In contrast, BB maintains robust performance
(68.69), outperforming the baseline by orders of magnitude and confirming that the metabolic budget
successfully distinguishes between “lazy” neurons and quiet specialists.

Hardware-Aligned N:M Structured Pruning. We further test compatibility with NVIDIA A100-
80GB 2:4 sparse tensor cores using “BB-G4R” (BB applied locally within groups of 4). In this
rigid setting, results are more nuanced: Wanda holds a slight edge at moderate sparsity (s = 0.5),
but BB proves significantly more robust as the constraint tightens. At s = 0.7 on TinyStories, BB-
G4R suppresses perplexity to 12.32 (vs. 29.22 for Wanda), a ~2.4x gap; on Wikitext-2 rare tokens
the difference is even more dramatic (513 vs. 3668). These results suggest that while activation
heuristics suffice for mild pruning, the traffic-based allocation provides a more stable signal for
structural selection when the model is pushed to hardware-imposed limits.

6 DISCUSSION & FUTURE WORK

This work introduces a new axis for structural plasticity in artificial neural networks, shifting the
focus from a component’s utility to its metabolic cost. We formalized this cost as traffic (a;k;)
and showed that a simple, local budget on this traffic can organize connectivity. The emergent se-
lectivity—audience balance (log = 1-ai ~ Bk;) is a predictable equilibrium that links structure (k;)
to function (a;). Future work should study application of budgeted neural activity beyond FFNs
and CNNgs, and in particular to lateral connections and attention models. While our method intro-
duces modest, amortized overhead from EMA tracking and periodic mask updates, its scalability
makes it a promising candidate for foundation models where protecting the long tail of knowledge
is paramount. A Budgeted Attention mechanism would extend our per-neuron budget to a dynamic
per-token budget. A token’s ‘traffic’ could be defined as t; = f(A;) X kew(j), where f(A;) is a
function of the token’s activation norm (how ‘loud’ it is) and kege(f) 1s its effective fan-out.

This computational framework provides a unified explanation for seemingly distinct biological phe-
nomena from Henneman'’s size principle (Henneman| [1957) to the competitive dynamics of synapse
elimination (Barber & Lichtman, 1999), reframing them as convergent solutions to the problem of
efficient information broadcast. The success of the Budgeted Broadcast rule on diverse benchmarks,
even when scaled to modern LLMs, provides empirical support for this structural perspective of
neural organization in both biological and artificial settings.

10



Under review as a conference paper at ICLR 2026

REFERENCES

S-I Amari. Information geometry on hierarchy of probability distributions. IEEE transactions on
information theory, 47(5):1701-1711, 2002.

Mark J. Barber and Jeff W. Lichtman. Activity-driven synapse elimination leads paradoxically to
domination by the remaining, less active axon. Journal of Neuroscience, 19(22):9975-9985,
1999. doi: 10.1523/INEUROSCI.19-22-09975.1999.

Qiong Cao, Li Shen, Weidi Xie, Omkar M. Parkhi, and Andrew Zisserman. Vggface2: A dataset for
recognising faces across pose and age. In 2018 13th IEEE International Conference on Automatic
Face & Gesture Recognition (FG 2018), pp. 67-74, 2018.

Hao Chen and Zhenwei Shi. A spatial-temporal attention-based method and a new dataset for
remote sensing image change detection. Remote Sensing, 12(10), 2020. ISSN 2072-4292. doi:
10.3390/rs12101662. URL https://www.mdpi.com/2072-4292/12/10/1662.

Sanjoy Dasgupta, Yaron Meirovitch, Xin Zheng, Ian Bush, Jeff W. Lichtman, and Saket Navlakha.
A neural algorithm for computing bipartite matchings. Proceedings of the National Academy of
Sciences, 121(37):2321032121, 2024. doi: 10.1073/pnas.2321032121.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 2943-2952. PMLR, 13-18 Jul 2020. URL https://proceedings.mlr.
press/v119/evci20a.html.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In Proceedings of the 40th International Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pp. 10323—10337, Honolulu, Hawaii, USA, 2023.
PMLR. URL https://proceedings.mlr.press/v202/frantar23a.htmll

Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and Edward Choi. Mor-
phnet: Fast & simple resource-constrained structure learning of deep networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1586-1595, 2018.

Aaron Grattafiori et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems, 2015.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In International Conference on Learning
Representations, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
770-778, 2016.

E. Henneman, G. Somjen, and D. O. Carpenter. Functional significance of cell size in spinal mo-
toneurons. Journal of Neurophysiology, 28(3):560-580, 1965.

Elwood Henneman. Relation between size of neurons and their susceptibility to discharge. Science,
126(3287):1345-1347, 1957. doi: 10.1126/science.126.3287.1345.

Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250,
2016.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in Neural
Information Processing Systems, 1990.

11


https://www.mdpi.com/2072-4292/12/10/1662
https://proceedings.mlr.press/v119/evci20a.html
https://proceedings.mlr.press/v119/evci20a.html
https://proceedings.mlr.press/v202/frantar23a.html

Under review as a conference paper at ICLR 2026

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Snip: Single-shot network pruning
based on connection sensitivity. In International Conference on Learning Representations, 2019.

Yaron Meirovitch, Core Francisco Park, Lu Mi, Pavel Potocek, Shashata Sawmya, Yicong Li, Yue-
long Wu, Richard Schalek, Hanspeter Pfister, Remco Schoenmakers, et al. Smartem: machine-
learning guided electron microscopy. bioRxiv, 2023. doi: 10.1101/2023.10.05.561103. URL
https://www.biorxiv.org/content/10.1101/2023.10.05.561103!

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An ASR
corpus based on public domain audiobooks. In ICASSP, pp. 5206-5210, 2015.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models. In Proceedings of the Twelfth International Conference on Learning
Representations, 2024. doi: 10.48550/arXiv.2306.11695. URL https://arxiv.org/abs/
2306.11695. ICLR.

Hidenori Tanaka, Daniel Kunin, Daniel Yamins, and Surya Ganguli. Pruning neural networks with-
out any data by iteratively conserving synaptic flow. In Advances in Neural Information Process-
ing Systems, 2020.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020.

12


https://www.biorxiv.org/content/10.1101/2023.10.05.561103
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2306.11695

Under review as a conference paper at ICLR 2026

APPENDIX for Budgeted Broadcast: An
Activity-Dependent Pruning Rule for Neural
Network Efficiency

USAGE OF LLMS

LLMs were used to help search prior work and to polish text, and mathematical derivations in the
appendix. All ideas, designs, and results originate from the authors. Mathematical derivations were
reviewed and reworked by the authors before inclusion.

ETHICS STATEMENT

We sparsify ASR and face identification models on public datasets. We report matched-compute
comparisons and release configs to aid scrutiny. The rare-feature protection mechanism may ben-
efit fairness by preserving signals from underrepresented groups; evaluating this requires careful,
domain-specific study.

STRUCTURE OF THE APPENDIX

This appendix is mostly a self-contained companion to the main paper. It is organized into three
parts that parallel the paper’s pillars: mechanism and theory in Theoretical Foundations (S1),
reproducibility and implementation details in S2. Experimental Details and Reproducibility (S2),
and additional evidence and support in Supplementary Results and Analyses (S3).

S1. Theoretical Foundations (. We state the assumptions (A1-A3) and derive a general
mutual-information bound for linear-Gaussian channels, which we specialize to a traffic surrogate
depending only on activity and fan-out (§S1.1} Cor.[2)). We then present the variational/KKT station-
arity that yields the selectivity—audience balance log;—i‘” = [Bk; and the practical degree controller
it induces (§51.2). We analyze complementary local linear responses of SP-in and SP-out (§51.3),
collect the formal statements (rare-feature safety, SP-out descent step, near-KKT tube) with sketches
(§51.4), and summarize extensions and limits, including shadow-price sensitivity and finite-width

considerations (§51.3).

S2. Experimental Details and Reproducibility (§S2). We define statistical conventions (§S2.1))
and the protocols/metrics used across tasks (shock—recovery, balance-plane displacement, decorrela-
tion, MI proxy, representation diversity; §S2.2). Implementation details cover Conv2d instantiation,
variance-preserving rescale, and selection statistics. Domain-specific setups and hyperparameter
tables for ASR, Face Identification, Change Detection, and Synapse Prediction appear in (Ta-
bles BH6). We include concise pseudocode for the didactic utilities and the full BB refresh (§52.4),
and an actuator taxonomy for quick reference (Table[7).

S3. Supplementary Results and Analyses (§53). We report mechanistic validation via shocks
(immediate drop, recovery, edges-removed; §S3.1), empirical tests of the theory’s assumptions
(§53.2), controller stability and sensitivity (§53.3)), ablations and learning curves (§53.4), and rep-
resentation diversity results (§53.3). We also provide didactic supporting results, qualitative panels
for change detection and synapse prediction (§53.6), actuator schematics (§53.7), and additional
change-detection results (§53.8).

Intuition. Each unit has a selectivity a (how often it fires) and an audience k& (how many down-
stream targets it talks to). Budgeted Broadcast (BB) balances them by the relation logle“ = Bk:
very selective (rare) units can afford a bigger audience, while frequently active units should broad-
cast less. SP-in changes a (dendritic pruning), SP-out changes & (axonal pruning); together they
steer the system toward this balance under a global traffic budget.

13
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S1 THEORETICAL FOUNDATIONS

This section provides the formal backing for Budgeted Broadcast (BB). We first upper-bound in-
formation under mild assumptions and specialize that bound to a simple traffic surrogate. We then
show how KKT stationarity induces our degree controller and summarize the complementary local
linear responses of SP-in and SP-out.

Notation (S1-S3) (Here H (h) denotes entropy; the plain H denotes the EMA horizon.)

h Hidden activations; h = max{0, z}.

a; EMA on-rate of unit ¢ (post-ReLU).

ki Audience (fan-out) of unit 7.

t; Traffic of unit 7, t; = a;k;.

8 Shadow price (dual variable) for the traffic budget.
H(h) Coding entropy of the hidden code.
H 3
A
-

Entropy at the stationary balance (log 1;3 = Bk;).
Mask refresh period; H EMA horizon. '

Traffic threshold for shocks/pruning.

Ko Centering constant (intercept) in the OLS balance fit.
amin  Saturation cutoff for on-rate when fitting the balance line.
Hp(-) Bernoulli entropy function (used in ), Hp(a:)).

do Baseline degree offset in the controller.
m, D  Degree clip bounds (m min, D max) in clip(-, m, D).
a; EMA estimate of the on-rate used by the controller.

B Upper cap for the dual S (practical stability).
Tmax  Global traffic budget.
5 Small numerical stabilizer in ratios/entropies.

S1.1 ASSUMPTIONS, MI BOUND, AND TRAFFIC BOUND

We assume an AWGN readout, decorrelated codes, and bounded edge energy, leading to a mutual-
information (MI) bound and a traffic corollary.

Assumptions.
Assumption 1 (AWGN readout). (A1) Y = W T Z + ¢ withe ~ N(0,021).
Assumption 2 (Approximate decorrelation). (A2) Cov(Z) ~ diag(a;(1—a;)) (weak correlations).

Assumption 3 (Bounded edge energy). (A3) Row energy bounded by degree: y wfj < Ck; fora
constant C.

General MI bound. For any Z obeying (Al),
I(Z;Y) < 3 to(WT Cov(Z)W). (1)
Traffic bound (corollary). Under (A1)—(A3),

H(Z;Y) < 5 aik. )

Proof sketch. Use data processing (I(Z;Y) < I(U;U + ¢), U = W Z), Gaussian-input upper
bound, and log det(I + A) < tr(A) to obtain the general bound. Under (A2),

tr(WT diag(a;(1 — a;))W) = Za,;(l —a;) waj < Zai Zw?j,

2

since a;(1 — a;) < a; for a; € [0,1]. Under (A3), >~ w3; < C'k;, hence I(Z;Y) < 22 >, aiki.

14
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S1.2 CONTROLLER DERIVATION AND KKT STATIONARITY

Maximizing coding entropy H (h) under a global traffic budget » ", a;k; < Tax yields Lagrangian
L = H(h) — B(Y; aiki — Timax). KKT stationarity gives 0H/da; = Bk;, i.e.,

1—(li

log = B k;.

7

Operationally we implement this fixed point via a degree controller

1—a
k“—clip(do-i-ﬂ_l log ~a 7maD)7
Qs

7
followed by row-wise TopK(k;) selection at refresh for each unit.

Practical note. We cap 3 < f3 so the implied degrees stay comfortably inside [m, D], preventing
clip-induced churn.

Rare-feature safety. If a rare input fires with probability ps and you cap its fan-out by kp,ax SO
that pskmax < 7, then t5 = asks < pskmax < 7 at all times, so no outgoing edge of = is ever
pruned. This formalizes the intuitive protection of “quiet specialists.”

Remark 1 (Entropy model and proxy). We view the hidden code as a population code with per-
unit on-rates a;. Under an independence approximation, the coding entropy decomposes as H (h) =
> Hp(a;) with Hg(p) = —plog p—(1—p) log(1—p). When weak correlations exist, maximizing
>; Hp(a;) acts as a tractable surrogate/upper bound for H (h), which is what our controller targets
in practice.

Remark 2 (On-rate vs. source probability in Lemma 3). For an upstream source x that fires with
probability ps under stationary sampling, the EMA on-rate a, tracks ps. The lemma (see Lemma 3]
in §ST.4) only requires the mild bound a, < p,, which holds whenever z, is the sole gate for that
unit or appears in a conjunction with probability at most p;.

S1.3 LOCAL LINEAR-RESPONSE (SP-IN VS SP-0UT)

Define ®; = (log =g 61@-)2. A small SP-in shock primarily lowers a; at fixed k; (downward

1—

motion), whereas an iSP—out shock lowers k; at weakly perturbed a; (leftward motion), yielding
complementary corrections toward the balance surface.

First-order response. Let ¢; = log % — Pk; with a¢; € (0,1). Then V&, =
2@(,%, fﬁ). For SP-in (da; < 0,0k; ~ 0), 0®; ~ 2@(7@) Sa;; for SP-out

(6/4,‘1 <0, 6&1'%0), 0b; ~ 2(;51(—,8)(5]{51

S1.4 FORMAL STATEMENTS AND PROOFS

Theorem 1 (Mutual-information bound). ForY = W Z + & with e ~ N(0,021), (I) holds.

Sketch. Data processing 1(Z;Y) < I(U;U + ¢) with U = W " Z, Gaussian-input upper bound,
and log det(I + A) < tr(A). O

Corollary 2 (Traffic bound). Under (Al)—(A3), holds.

Lemma 3 (Rare-feature safety). If an input fires with probability ps and ks < kpax With pskmax <
T, then ts = asks < T at all times; no outgoing edge of x s is pruned by a T-threshold rule.

Sketch. Since as < ps and ks < kpyax by design, we have ty = asks < pskmax < T at initialization
and after every refresh. Inducting over refreshes, the threshold rule can never target z. O

Lemma 4 (SP-out descent step under traffic regularization). For £ = L + A El a;k;, an SP-out
refresh that reduces ., a;k; by 6T > 0 yields AL < —\ 0T (first-order).
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Sketch. At the refresh instant, the task term is unchanged to first order, while the regularizer de-
creases by AdT because §(>; a;k;) = —0T < 0 with a; treated quasi-static during selection.
Hence AL < —A 7T up to higher-order effects. O

Proposition 5 (SP-in weakly lowers on-rate under symmetric drive). Let h = max{0, z} with
2= cn wiki + b, where (x;) are i.i.d., zero-mean, symmetric, and independent of (w;). Prune
a subset of the smallest-|w;| inputs from a unit’s column and apply the variance-preserving rescale
so that Var[z] is unchanged. Then the on-rate a = Pr[h > 0] weakly decreases. Consequently, at
fixed audience k, traffic t = a k weakly decreases.

Sketch. Under symmetric « and fixed variance for z, magnitude pruning followed by variance-
preserving rescale concentrates mass nearer to zero, which weakly lowers Pr[z > 0] and thus the
ReLU on-rate. The conclusion follows by monotonicity of Pr[z > 0] under such contractions. [

Lemma 6 (Finite number of prune events (no-sprouting regime)). Under hard-delete refreshes with
no sprouting/regrowth, each prune removes at least one active edge, so ), k; decreases by > 1 per
event. Since y . k; > 0, only finitely many prune events can occur.

Proposition 7 (Near-KKT e-tube). For non-saturated units, log% — Bk; concentrates with
bounded residual; see displacement metric in §52.2]

Sketch. Away from saturation, the OLS fit of log 1;“ on k yields sub-Gaussian residuals under weak
dependence, giving a bounded tube whose width matches the empirical displacement. O

S1.5 EXTENSIONS AND LIMITS

We summarize finite-width considerations, shadow-price sensitivity djiw
max

sions; these explain how the global budget maps to (3, dy) in practice.

< 0, and small- expan-

Finite-width considerations. In lazy/neural tangent kernel (NTK)-like regimes, fixed-magnitude
pruning can stall when initial effective degree is too low to represent disjoint features; BB avoids
this by reallocating audience rather than only shrinking weights (see S3 didactic experiments).

Proposition 8 (Shadow-price sensitivity (explicit)). At the KKT stationary point log 1;?“ = Bk;
with fixed degrees k;, we have

g 1
= — < 0.
dTmax 21 kzg al(l — ai)
Sketch. Differentiating 7" = > . a;(8)k; with a;(3) = 1+elﬂki gives % = =Y, ka1l — a;),
hence the stated reciprocal. O
Proposition 9 (Small-/3 expansion). At stationarity log a;Z = Bki, 50 af = 1w For |Bki| <

L
aj = 3— Tk + O((Bk:)%),

and the budget relation T' = )", a} k; gives the explicit approximation

45 X ki — Tnax)
b~ S K2

Theorem 10 (Static BB convergence on disjoint DNF). Consider a disjoint DNF with W +1 clauses
and a witness set of size 2(W+1). Train a width-(W+1) two-layer ReLU under a schedule that
alternates K = ©(log W) gradient steps (step size n = O(1/v/N)) with BB refreshes using a
fixed prune fraction p € (0, 1) and threshold T. Suppose degree updates follow the controller with
row-wise Top-k selection and variance-preserving rescale, and that at each refresh true literals rank
above distractors with probability at least pg > 0. Then there exists a constant C' > 0 such that
after C W log W cycles the network fits the witness set with probability 1 — e~ W),

as 3 — 0.
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Sketch. (i) Latent alignment at init: concentration at random initialization yields a constant fraction
of hidden units weakly aligned to some clause. (ii) Capture before de-fan-out: over the next K
steps, the would-be owner’s output weight grows by (7)) each time its clause is seen while its traffic
t = a k remains below 7, so pruning does not preempt ownership. (iii) Owner permanence: by rare-
feature safety (Lemma [3])) and monotone activity with fixed degree once ¢t < 7, ownership persists.
(iv) Coupon collector: each cycle an unowned clause is claimed with probability at least a constant

Py > 0, s0 all W+1 clauses are claimed after C' W log W cycles with probability 1 — e~ W) [J

Remark 3 (On the ranking assumption). The constant-success step uses that, at each refresh, true
literals rank above distractors with probability pg > 0 (e.g., a fixed margin event). This can arise
from mild separation of clause activations or aggregation over mini-batches.

Theorem 11 (Finite-width barrier for lazy learning). Consider a disjoint DNF with W+1 clauses
and a witness set of size 2(W+1). A width-(W+1) two-layer ReLU network trained in the lazy
regime (GD/SGD with step size 1 = O(1/v/N)) achieves zero training error with probability at
most 5 + o(1).

Sketch. (i) With n < ¢/ VN the dynamics stay close to initialization, so training is well-
approximated by linear regression on frozen random features. (ii) Under general position of wit-
nesses and standard concentration for random features, the realized dichotomy among 2(W+1)
points in RW+! is linearly separable with probability at most %+0(1) by Cover’s counting argu-
ment. Hence zero error occurs with probability < %—&—0(1) in the lazy regime. O

Proposition 12 (Static SP-out traffic descent). With variance-preserving rescale and sufficiently
small refresh steps, an SP-out refresh that reduces total traffic Y, a;k; yields a monotone descent of
the traffic term and empirically approaches the balance plane (tracked by the displacement metric
in §§S2.2). A full proof would require explicit Lipschitz and step-size conditions.

S2 EXPERIMENTAL DETAILS AND REPRODUCIBILITY

This section serves as the single source of truth for protocols, setups, and hyperparameters.

S2.1 STATISTICAL CONVENTIONS

Unless stated otherwise, we report mean+SD over independent seeds (didactic: 7; domains: 3-5 as
specified in S2 tables). Error bars are 95% confidence intervals computed as Clos = t9.975, n—1 -
SD/+/n with n seeds. For matched-sparsity comparisons we report CIs; significance is visual unless
otherwise noted. Random seeds are fixed per run so that data order and augmentations are consistent
across methods.

S2.2 PROTOCOLS AND METRICS

Shock-recovery protocol; balance-plane displacement; lifetime sparseness; effective rank; decorre-
lation metric; MI proxy. Each method references S1 where theory appliesﬂ

Compute and budget parity. We match training compute across methods as follows: (i)
same optimizer, schedule, batch size, and number of optimizer updates; (ii) identical data
pipelines/augmentations and tokenization/decoding settings; (iii) identical mask refresh cadence A
(refresh work counted inside the step budget); and (iv) identical target kept density or global traffic
budget when applicable. Wall-clock measurements use the hardware listed in the domain tables and
include pruning/refresh overhead.

'MI proxy: [ = 1 3= log (1 4 Var(U;)/6%) with U = W Z and 62 estimated per layer from AWGN
residuals via a linear fit on held-out batches (same protocol across tasks).
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Representation diversity (exports and metrics). For each decoder layer ¢ and maps VVl(Z)7 WQ(K),
export final-epoch histograms of | V| (bin centers by, counts cy,). Let So = >, ¢k, S1. =Y. cibg,
Sy = >, cibi. We compute: Coefficient of Variation CV = o/(u + €); Gini index via pairwise
differences; normalized Participation Ratio PRyorm = S7/(S0S2 + €); Shannon entropy of py =
(ckbr)/(S1 +¢€). We report layer-wise A% relative to Dense and aggregate over seeds (mean+SD).
See §53.5|for a results pointer.

Entropy-at-balance H* and gap. Let H(h) be the coding entropy of the hidden code and H*
1;a = Pk; under the traffic budget (see S1). We
report AH* = H* — H(h) over training and across seeds.

*
i

the entropy at the stationary balance solving log

Balance diagnostic (OLS). We fit log1=% = 3 (k; — k() on non-saturated units, reporting slope

Qs

B and R? per run; saturated units (a; € [@min, 1 — amin]) are excluded. Unless otherwise noted we
use apin = 1072 and estimate x as the OLS intercept.

Balance-plane displacement. We measure disp = \/ + 3 (logl=ae — Bki)Q over non-
saturated units, with § taken from the OLS fit unless noted.

Conv2d instantiation and variance-preserving rescale. For a Conv2d with weights W &
RO*Ixkxk we keep a broadcastable fan-in mask M € {0,1}9*7X1x1 and compute y =

Conv2d(x, W ® M). We apply a variance-preserving rescale s[o] = max(d Z~IM[0i ) to

the pre-BN outputs. The activity proxy for output channel o is the EMA of the ReLU on-rate,
which feeds the degree-setting equation. Selection statistic. Unless noted, we use row-wise Top-k
by mean(|W /o, i,:,:]|) per out-channel o; ties break by a stable index order. Rescale locus. ASR
applies the rescale pre-LN in the decoder FFN; Change Detection applies it pre-BN in encoders;
other tasks apply the rescale pre-activation in masked layers. min_keep. We enforce min_keep per
row to avoid collapse under early shocks.

Didactic hyperparameters. Rare-feature safety: Three-layer MLP (301—128—128—11), SGD
(Ir=0.01, momentum=0.9), batch size 256, 20k steps with 4k burn-in. Optimization barrier: Two-
layer MLP (10—32—1), SGD (Ir=0.01, momentum=0.9), batch size 512, 50-120 epochs; prune
every A after burn-in b € {0, 10, 20,40} with fractions p € {0.2,0.5}.

S2.3 DOMAIN SETUPS AND HYPERPARAMETERS

We list per-domain settings (data, model, schedule, controller) to reproduce results.

ASR / LibriSpeech (seq2seq Transformer). Data splits; model dims; optimizer and schedule;
sparsification locus (decoder FEN); global density 0.85; refresh A = 25; rescale=sqrt; SP-in/SP-out
controllers with prune-only (LibriSpeech |Panayotov et al.[(2015)).

Face Identification / VGGFace2-7k (ResNet-101). Placement: 1x1 bottleneck convs (SP-in);
densities {0.90,0.70,0.60, 0.50,0.40,0.30}; refresh A = 200; regrowth on; rescale=sqrt (VG-
GFace2 |Cao et al.| (2018)); ResNet-101 |He et al.| (2016)).

Change Detection / LEVIR-CD (FC-Siam-conc). Placement: encoder first 33 conv per block
(SP-in); decoder dense; final kept density 0.70 emergent; refresh A = 50; warmup 1000; rescale
pre-BN.

Synapse Prediction / SmartEM (3D U-Net Res-SE). Placement: all Conv3d in residual/SE
blocks (SP-in); ConvTranspose and skips dense; target density 0.70; refresh A = 200; regrowth
on; rescale=sqrt.
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Table 3: ASR / LibriSpeech (seq2seq Transformer) — data, model, schedule, controller.

Data
features
Train/Val/Test train-clean-100/dev-clean/test-clean, test-other
Tokenizer token_type=1k (shared)
Features 80-dim fbank; norm=cepstral

Batch/workers batch_size=16, NUM_WORKERS=4
SpecAugment Freq masks ny=4, width < 4; Time masks n;=8, width < 50
Embed dropout 0.1

Decoding beam=10, lenpen=1.0, no external LM (greedy for ablations)
Model
dmodet / di 384 /1536
Encoder/Decoder 4/8/0.1 each (layers/heads/dropout)
Strides time_stride=4, feature_stride=2
Optimization
schedule
Optimizer/LR AdamW, 2 x 10™*; WarmupCosine (0.1)
Stages (S1) Dense 50e; (S2) encoder-only 10e; (S3) fine-tune 60e
Seeds 5 (mean=std); decoding/tokenization identical
Sparsification (decoder FFN)
Budget target density 0.85 (all methods)
Refresh A = 25; warmup_steps=0
Rescale variance-preserving (sqrt); min_keep=8
Methods SP-in (in FEN;), SP-out (FFN3); prune-only
Hardware 1xA100 40GB; amp=fp16; cudnn.benchmark=true

Table 4: Face Identification / VGGFace2-7k (ResNet-101) — data, schedule, controller.

Model
placement

Backbone ResNet-101; final FC adapted to 7,001 ids
Placement 1x 1 bottleneck convs; SP-in (row-wise)

Optimization
schedule

Optimizer/LR/WD  AdamW; 1 x 1073;1 x 1074
Warmup/epochs 3/ 30; mixed precision fp16; batch 128

Data pipeline RandResizedCrop(224), RandomHorizontalFlip
Workers/pin NUM_WORKERS=8, pin_memory=true
Determinism fixed seeds (report mean=std over 5)
Eval protocol Identification Top-1 @224; center-crop at test
Sparsification
Budgets kept density {0.90,0.70,0.60,0.50,0.40,0.30}
Refresh A = 200; regrowth on; min_keep=8; rescale=sqrt
Baselines Magnitude (row-wise); RigL (row-wise refresh); Top-k gating
Hardware 1xA100 40GB; amp=tp16
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Table 5: Change Detection / LEVIR-CD (FC-Siam-conc) — data, model, controller.

Task
metrics

Dataset/input LEVIR-CD; A/B images; resized to 256 x 256
Loss/metrics BCE-with-logits; mean IoU; mean F1 (threshold 0.5)

Epochs/runs 30 epochs; 3 runs (report mean=std)
Model

Architecture FC-Siam-conc; shared Siamese encoders + UNet decoder
Mask placement Encoder: first 3x3 conv per block; decoder dense
Rescale Pre-BN variance preservation 4/base/kept

Controller
Budget no preset; emergent final kept density 0.70
Refresh/warmup A = 50; warmup_steps=1000
Allocation ky =do+ 8 -1 log 1;3“ ; row-wise Top-k.,
Selection rule Row-wise Top-k per out-channel by mean(|W/)
Regrowth on (pruned large-magnitude edges can re-enter)
Hardware 1xA100 40GB; amp=fp16

Table 6: Synapse Prediction / SmartEM (3D U-Net Res—SE) — data, schedule, controller.

Data
sampling
Dataset/split SmartEM; GT1 train, GT2 test
Patches (train) 3D crops (5,257, 257) with flips; norm to [—1, 1]
Batch/workers 2 /0 (safe)
Optimization
schedule
Optimizet/LR/WD  AdamW; 8 x 10™%; 1 x 10™*; grad clip 3.0
LR scheduler Warmup+Cosine; warmup_steps=1000; MAX_ITERS=20000
Checkpoints every 5000 steps
Sparsification
Placement All Conv3d in residual/SE blocks; upsamplers/skips dense
Refresh A = 200; regrowth on; min_keep=8; rescale=sqrt
Target density 0.70
Inference Sliding window (5, 257, 257), stride (2, 128, 128); 8 x flip test-time augmentation
(TTA); reflect padding
Eval PR-AUC, ROC-AUC; Best-F1 and Best-IoU from threshold sweep; no
connected-components (CC) post-processing
Hardware 1xA100 40GB; amp=fp16

S2.4 PSEUDOCODE AND UTILITIES

We include the full BB refresh in Alg.]and list the didactic EMA/refresh/controller utilities below
for clarity.

Algorithm 1: EMA Activity Update (Didactic)

Input: activations h for a minibatch, EMA vector a, horizon H
Qutput: updated EMA vector a

1 A exp(—1/H)

2 a4+ A-a+ (1 —X)-mean_over_batch(1[h > 0])

3 return a
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Algorithm 2: Mask Refresh (Didactic Traffic-Threshold Rule)

Input: weights W, mask M, degrees k, prune fraction p, threshold 7, EMA a, min_keep
Output: updated mask M and degrees k
t—a®k
for each channel i with t; > T do
q < max{0, min{|p- k;], k; —min_keep}}
S <+ indices of smallest ¢ outgoing edges from channel 4
M; s+ 0

return M, k

Algorithm 3: Budgeted Broadcast Controller (Didactic)

Input: horizon H, refresh period A, burn-in B, prune frac set P, threshold 7
initialize EMA a < 0.5, degrees k from masks
for epoche =1,2,... do
update a via Alg.|l{each step
if e > B and e mod A = 0 then
choose p € P (fixed or schedule)
L refresh masks via Alg. [2| with (p, 7)

Algorithm 4: Budgeted Broadcast (BB) Refresh — Full

Input: weights (W7, Ws), masks (Mi,, Moy ), EMA on-rates a, degrees k, horizon H, refresh
period A, min_keep, bounds (m, D), controller params (dy, /3, 5)

for each training stept =1,2,... do

>A) EMA update

a<+exp(—1/H)-a+ (1 —exp(—1/H)) - Epaen[1[h > 0]]

if t mod A = 0 then

>B) Degree update (controller)

B < min(B, B)
ki clip(do + B loglzi | m, D)

a;

>C) Row-wise selection (SP—-in locus on Wj)

For each out-channel o, rank fan-in indices by mean(|W1[o, i, :, :]|) and set
Miqo, 1] + 1 for the top k, entries (others + 0), enforcing min_keep

>D) Variance-preserving rescale

For each out-channel o, set s[o] = , /m and apply the locus-specific

rescale (pre-LN/BN or pre-activation as in
>E) Optional SP-out on Wi
If SP-out is enabled, apply the same row-wise Top-k rule on Wy with degree targets k

Table 7: Actuator taxonomy and effects.

Actuator Mask locus Immediate knob Immediate Traffic variable = KKT/entropy
effect lens
SP-out@W; rows of W; k (audience) J broadcast of ti = ak; Inputs’ a; fixed
inputs (inputs) by data; treat as
upstream units
SP-in columns of W1 a (selectivity) | on-rate of t; = azk; Directly enforces
hidden unit (hidden) log =% = Bk;
SP-out@W, rows of W k (audience) J broadcast of t; = ajk; Consistent with
hidden unit (hidden) KKT; adjusts k&
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Figure 9: Population-code optimization and budget tracking during training.
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Figure 10: Immediate accuracy drop (didactic MLP; 7 seeds) grows smoothly with shock size Ap.
Dashed line: sham (pause only).

S3 SUPPLEMENTARY RESULTS AND ANALYSES

Breadth and robustness evidence grouped by question. Didactic experiments use 7 seeds; domain
tasks report 3—5 seeds as specified in S2 tables.

S3.1 MECHANISTIC VALIDATION VIA SHOCKS

Protocol: every A steps, apply a sham (pause) or a shock of size Ap € {2,5,10}%; freeze training
for m € {200,500, 1000} steps; measure immediate drop Lpost — Lpre and recovery Lyee — Lpog.
Plots of immediate drop vs shock size; recovery vs freeze length; drop vs edges removed; and
difference-in-differences. Pointer to protocol details in §S52.2}

To benchmark proximity to the theoretical optimum, we define H* as the maximum coding entropy
attainable if the network perfectly satisfies the balance with its current fan-outs k; (solve the balance
relation for the implied activities and sum entropies). The nonnegative gap 6H = H* — H(h)
measures distance from this optimal coding state. Panel (a) shows H(h) steadily increasing and
closing the gap to H*; panel (b) shows total traffic ), a;k; rapidly converging to and tracking the
target budget T,,,x With periodic corrections at each mask refresh.

S3.2 EMPIRICAL TESTS OF ASSUMPTIONS

Fashion-MNIST-style checks: decorrelation over training; MI vs traffic linear relation.
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Figure 11: Recovery gain (didactic MLP; 7 seeds) increases with freeze length m. Points: means
over seeds; bars: 95% Cls.
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Figure 12: Immediate drop (didactic MLP; 7 seeds) increases with the number of edges pruned.

S3.3 CONTROLLER STABILITY AND SENSITIVITY

Heatmaps over EMA horizon and refresh period for R2, slope B, accuracy, and H* gap.

S3.4 ABLATIONS

Grouped ablations (e.g., SP-in toggles: regrowth, rescale, refresh, EMA «) and loss curves; figures
reused without duplication of prose.

S3.5 REPRESENTATION DIVERSITY RESULTS

Methods in §S2.2| Layer-wise PR/entropy A% panels for all decoders are included in the repository
and can be regenerated from the exported CSVs (see §52.2). Representative panels appear in the
main text; extended per-layer plots can be included here if needed.

S3.6 QUALITATIVE PANELS

Change detection overlays and synapse overlays; captions reference shared color semantics.

S3.7 ACTUATOR SCHEMATICS

SP-in and SP-out diagrams shown adjacently for mechanism complementarity.
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Figure 13: Difference-in-differences (didactic MLP; 7 seeds): drop after subtracting the sham base-

line retains the same increasing trend with Ap.

Table 8: FMNIST validation: grid, multi-seed summary, and hubness diagnostics.

Grid (SP-in/SP-out x 7)

mode T Acc (%) Decorr ADecorr Traffic drop
SP-in 20 88.74 0.1173 —0.0003 0.208
SP-in 30 88.72 0.1186 —0.0017 0.183
SP-in 40 88.88 0.1088 +0.0082 0.200
SP-in 50 89.08 0.1192 —0.0023 0.190
SP-out 20 88.74 0.1203 —0.0033 0.695
SP-out 30 89.09 0.1180 —0.0011 0.679
SP-out 40 88.91 0.1143 +0.0027 0.687
SP-out 50 88.70 0.1192 —0.0022 0.645

Multi-seed (epoch 12; mean + SD over 5 seeds)
Dense 88.54 + 0.42 0.1120 £ 0.0047
BB (SP-in,7=40) 88.63 + 0.46 0.1164 + 0.0037

Hubness (20-epoch diagnostic)

Model Gini(a) Gini(k) Top-5% traffic share
Dense 0.4085 0.0000 0.1098
BB (SP-in,7=40) 0.4050 0.0942 0.1050

S3.8 ADDITIONAL CHANGE DETECTION EXAMPLES

Table 10: Llama 3.1-8B on TinyStories. Perplexity (PPL) by sparsity s and token frequency. BB
protects rare tokens significantly better than baselines at high sparsity (e.g., at s = 0.7, BB-G4R is

~2.3x better than Wanda). Bold indicates best value.

All tokens Common bucket Rare bucket

Method  Category s=05 s=06 s=07 s=05 s=06 s=07 s=05 s=06 s=0.7
Dense Baseline - 3.88 - - 3.53 - - 5.90 -
BB Unstructured 3.95 4.49 7.02 3.83 4.31 6.60 6.30 7.08 11.78
WANDA  Unstructured 443 6.77 23.73 4.38 6.45 21.08 8.51 15.45 100.96
MAG Unstructured 11.35 23.98 791.34 10.23 17.81 485.62 58.75 234.86 3.5e4
BB-G4R N:M 7.11 7.91 12.32 6.82 7.72 11.72 16.69 19.22 35.18
WANDA N:M 6.83 8.78 29.22 6.57 8.56 25.84 15.79 24.19 115.23
MAG N:M 21.24 65.19 1.4e4 17.63 49.12 1.1e4 165.06 1.3e3 1.5e6
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Figure 14: Empirical validation: (left) decorrelation over epochs; (right) MI vs traffic.
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Figure 15: Controller sensitivity on XOR MLP. Stable performance over broad bands of (H, A).

Figure 16: Balance sanity check: higher log % (quieter units) = larger k; pattern stable across
layers.
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Figure 17: Selectivity—audience balance is stable across 7 seeds (distributions of fitted slope B and
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Figure 18: SP-in ablations on ResNet-101 (VGGFace2-7k). See - for exact knobs.

Table 9: Change Detection (LEVIR-CD): per-run metrics and mean across 3 runs.

Dense BB (SP-in)  Absolute Gain
Run ToU F1 TIoU F1 AloU  AF1

1 054 065 055 0.66 +0.01 +0.01
2 047 058 062 071 +0.15 +0.13
3 057 066 058 0.67 +0.01 +0.01

Mean 0.527 0.630 0.583 0.680 +0.057 +0.050
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b. Synapse GT d. Same Threshold

Figure 21: Synapse prediction at a shared decision threshold vs method-specific Best-F1 threshold
(qualitative).
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