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ABSTRACT

Transformers robustly exhibit the ability to perform in-context learning, whereby
their predictive accuracy on a task can increase not by parameter updates but
merely with the placement of training samples in their context windows. Re-
cent works have shown that transformers achieve this by implementing gradient
descent in their forward passes. Such results, however, are restricted to standard
transformer architectures, which handle finite-dimensional inputs. In the space
of PDE surrogate modeling, a generalization of transformers to handle infinite-
dimensional function inputs, known as “continuum transformers,” has been pro-
posed and similarly observed to exhibit in-context learning. Despite impres-
sive empirical performance, such in-context learning has yet to be theoretically
characterized. We herein demonstrate that continuum transformers perform in-
context operator learning by performing gradient descent in an operator RKHS.
We demonstrate this using novel proof strategies that leverage a generalized repre-
senter theorem for Hilbert spaces and gradient flows over the space of functionals
on a Hilbert space. We further show the operator learned in context is the Bayes
Optimal Predictor in the infinite depth limit of the transformer. We then pro-
vide empirical validations of this result and demonstrate that the parameters under
which such gradient descent is performed are recovered through pre-training.

1 INTRODUCTION

LLMs, and transformers more broadly, have demonstrated a remarkable ability to perform in-context
learning, in which predictive performance improves without the need for parameter updates, merely
by providing training samples in the LLM context window Minaee et al. (2024); Dong et al. (2022).
With workflows increasingly relying on such fine-tuning in place of traditional weight updates due
to its computational efficiency, much interest has gone into providing a theoretical explanation of
this phenomenon Akyürek et al. (2022); Garg et al. (2022); Dai et al. (2022). Such works have
demonstrated that, with particular choices of transformer parameters, an inference pass through
such models is equivalent to taking steps of gradient descent for the in-context learning task.

While LLMs were the first setting in which in-context learning abilities of transformers were ex-
ploited, interest is increasing in its broader application to other sequence prediction tasks. In par-
ticular, a seemingly orthogonal subfield of machine learning is that of accelerating the solution of
partial differential equations (PDEs) Li et al. (2020a); Du et al. (2023); Liu et al. (2023); Jafarzadeh
et al. (2024); Oommen et al. (2024); You et al. (2022). In this setting, the sequence is no longer of
finite-dimensional vectors, but instead of infinite-dimensional functions. Nonetheless, transformers
have been adapted to this setting, with an architecture known as “continuum transformers” Calvello
et al. (2024). More surprising still is that such transformers continue to exhibit in-context learning,
whereby related PDEs can be efficiently solved with the similar placement of solution pairs in the
continuum transformer context window Cao et al. (2024); Yang et al. (2023); Meng et al. (2025).

Unlike in the finite-dimensional setting, this generalized, functional in-context learning yet remains
to be theoretically characterized. We, therefore, herein extend this line of theoretical inquiry to
characterize the continuum transformers that have been leveraged for in-context operator learning
Calvello et al. (2024). Our contributions, therefore, are twofold: the insights afforded by such
theoretical analysis and the development of a mathematical framework for doing such analysis, as
we highlight in greater detail in the main text. In particular, our contributions are as follows:
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• Proving continuum transformers perform in-context operator learning by performing gra-
dient descent in a Reproducing Kernel Hilbert Space of operators and that the resulting
in-context predictor recovers the Bayes Optimal Predictor under well-specified parameter
choices of the transformer. Such proofs required the modeling of a generalized continuum
attention mechanism and subsequent novel usages of a generalized representer theorem for
Hilbert spaces and Gaussian measures over Hilbert spaces.

• Proving that such parameters under which continuum transformers implement operator gra-
dient descent are minimizers of the training process of such transformers, leveraging a
novel gradient flow analysis over the space of functionals on a Hilbert space.

• Empirically validating that continuum transformers perform in-context operator gradient
descent upon inference with the exhibited parameters and that such parameters are recov-
ered with transformer training across a diverse selection of operator RKHSs.

2 BACKGROUND

2.1 NEURAL OPERATORS

Neural operator methods, while more broadly applicable, most often seek to amortize the solution
of a spatiotemporal PDE. Such PDEs are formally described by spatial fields that evolve over time,
namely some u : Ω × [0,∞) → R, where x ∈ Ω ⊂ Rd are spatial coordinates and t ∈ [0,∞) is a
time coordinate. While the more abstract operator learning framework can be formulated as seeking
to learn a map Ĝ : A → U between two function spaces A and U , we are most often interested
in learning time-rollout maps, in which the input and output function spaces are identical. In such
cases, it is assumed a dataset of the form D := {(u(0)i , u

(T )
i )} is available, where u(0) : Ω → R is

the initial condition, for which there exists some true operator G such that, for all i, u(T )
i = G(u(0)i ).

While many different learning-based approaches have been proposed to solve this operator learning
problem, they all can be abstractly framed as seeking

min
Ĝ

||Ĝ − G||2L2(U,U) =

∫
U
||Ĝ(u0)− G(u0)||2U du0. (1)

Within this broad family of operator learning, the most widely employed classes are the Deep Op-
erator Networks (DeepONets) Lu et al. (2021; 2019); Wang et al. (2021); Kopaničáková & Kar-
niadakis (2025) and Fourier Neural Operators (FNOs) Li et al. (2020b;c;a); Bonev et al. (2023).
FNOs are parameterized as a sequence of layers of linear operators, given as kernel integral trans-
forms, with standard intermediate ReLU nonlinearities. Formally, a single layer is then given by
σ(F−1(Rℓ ⊙ F(u))), where F denotes the Fourier transform and Rℓ the learnable kernel parame-
ter. This layer encodes a translationally invariant kernel integral transform.

2.2 IN-CONTEXT LEARNING AND CONTINUUM TRANSFORMERS

The standard attention mechanism is parameterized by θ := {Wk,Wq,Wv}, where Wk ∈ Rdk×d,
Wq ∈ Rdq×d, and Wv ∈ Rdv×d for sequential data X ∈ Rd×n Vaswani (2017). Formally,

Attn(X) := (WvX)MH ((WqX), (WkX)) , (2)

where M ∈ Rn×n is a masking matrix and H : Rdq×n × Rdk×n → Rn×n is a nonlinear
transform of key-query similarity measures. This resulting matrix H(Q,K) is referred to as the
“attention weights” matrix. Most often, dk = dq and H := softmax, i.e. [H(Q,K)]i,j =
exp(Q⊤

i Kj)/
∑

ℓ exp(Q
⊤
i Kℓ) Cheng et al. (2023). Transformers are repeated compositions of such

attention blocks with residual connections and feedforward and normalization layers.

We now highlight the “continuum attention” mechanism proposed in Calvello et al. (2024) that
generalizes transformers to operator learning; “continuum” here highlights that such an architecture
models data in its discretization-agnostic function form as with other neural operator methods. In
particular, in place of xi ∈ Rd, xi ∈ X for some Hilbert space X . The natural generalization
of the attention mechanism for function inputs then replaces the Wk,Wq , and Wv matrices with
linear operators. For a sequence x ∈ Xn, the key, query, and value operators respectively map
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Wk : Xn → Kn, Wq : Xn → Qn, and Wv : Xn → Vn, where K,Q, and V are Hilbert
spaces. Notably, the original framing of continuum transformers Calvello et al. (2024) generalizes
attention by considering an infinite index set, rather than considering infinite-dimensional tokens as
we do here; we discuss how these two seemingly distinct notions are equivalent in Appendix A. In
practice, such operators are implemented as kernel integral transforms, as Wqxi = F−1(Rq⊙Fxi),
where Rq is the Fourier parameterization of the query kernel, with Rk and Rv similarly defined for
the key and value kernels. The continuum attention mechanism assumes K = Q and defines

ContAttn(X) := (WvX)M softmax ((WqX), (WkX)) (3)

where the interpretation of M remains the same as that in Equation (2). In particular, while the key,
query, and value operators are generalized, the resulting attention weights matrix still lies ∈ Rn×n.
Transformer architectures, most notably in LLMs, have been observed to exhibit an unexpected
behavior known as “in-context learning” (ICL), in which they perform few-shot learning without
any explicit parameter updates but merely by having training examples in their context windows.
We follow the conventions of Cheng et al. (2023) in formalizing the ICL phenomenon. We suppose
the dataset D := {(Xi, yi)}ni=1 on which the transformer was trained has samples of the form

Xi =

[
x
(1)
i x

(2)
i . . . x

(n)
i x

(n+1)
i

y
(1)
i y

(2)
i . . . y

(n)
i 0

]
yi = y

(n+1)
i . (4)

We then suppose y(t)i = fi(x
(t)
i ), where fi ̸= fj for i ̸= j. This is the critical difference in the

in-context learning setting: in the standard setting, fi = f is fixed across samples and matches the
f ′ at test time, meaning the goal for the learner is to learn such an f . In ICL, however, the learning
algorithm must be capable of “learning” an unseen f ′ at inference time without parameter updates.

2.3 OPERATOR META-LEARNING

Significant interest has emerged in meta-operator learning for spatiotemporal PDEs, in which a
single network maps from initial conditions to final states across system specifications Wang et al.
(2022); Zhang (2024); Sun et al. (2024); Liu et al. (2024); Cao et al. (2024); Chakraborty et al.
(2022). Formally, unlike the traditional setting discussed in Section 2.1, here the dataset consists
of sub-datasets D := ∪iDi, where Di := {(u(j)i;0 , u

(j)
i;T )}

ni
j=1, for which the true operator can vary

across sub-datasets, i.e. Gi satisfies u(j)i;T = Gi(u
(j)
i;0 ) ∀j ∈ [ni] but Gi ̸= Gi′ for i ̸= i′. The goal is to

then, given only a limited number of training samples D̃ := {(ũ(j)0 , ũ
(j)
T )}ñj=1 with ñ ≪

∑
i ni for

a fixed, potentially unseen operator G′, learn an approximation Ĝ ≈ G̃. Most often, this is done by
pre-training a meta-learner GML on D and then fine-tuning GML on D̃ to arrive at G̃.

Building off of the observed ICL of transformers, the fine-tuning of these meta-learners too can be
performed via explicit weight modification or via in-context learning. An entire offshoot of meta-
learning known as in-context operator networks (ICONs) has spawned from the latter Cao et al.
(2024); Yang et al. (2023); Meng et al. (2025); Yang & Osher (2024). Recent works in this vein have
demonstrated notable empirical performance leveraging bespoke transformer architectures built atop
the continuum attention from Equation (3) Cao et al. (2024); Alkin et al. (2024); Cao et al. (2025);
Cao (2021). Such behavior has been observed but has yet to be theoretically characterized.

3 THEORETICAL CHARACTERIZATION

3.1 IN-CONTEXT LEARNING MODEL

For quick reference, we provide a compilation of the notation used throughout this and the remaining
sections in Appendix L. We now consider a generalization of the continuum attention, paralleling
that of Equation (2), allowing for more general key-query similarity measures. In particular, instead
of restricting Q = K as required for Equation (3) to be well-defined, we allowH : Qn+1×Kn+1 →
(L(V))(n+1)×(n+1), where L(V) denotes the set of bounded linear operators from V to V; note that
the “n+ 1” convention is adopted as data is of the form given by Equation (4). This generalization
subsumes the softmax form assumed in Equation (3), where for c ∈ R, c ∈ L(V ) is understood
to be defined as cfv for fv ∈ V , from which we can similarly view softmax : Qn+1 × Kn+1 →

3
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(L(V))(n+1)×(n+1). If V = X , an m-layer continuum transformer T : Xn+1 → Xn+1 consisting
of generalized continuum attention layers with residual connections is well-defined as T := Tm ◦
... ◦ T0, where

Xℓ+1 = Tℓ(Xℓ) := Xℓ +
(
H(Wq,ℓXℓ,Wk,ℓXℓ)M(Wv,ℓXℓ)

T
)T
, (5)

where we now view M : Vn+1 → Vn+1 as a mask operator acting on the value functions. Note
that we present this using a “double-transpose” notation as compared to Equation (2) to follow
the mathematical convention of writing an operator to the left of the function it is acting upon.
Notably, in the setting of in-context learning for PDEs, the pairs (f (j), u(j)) are generally time
rollout pairs (f (i), u(i)) = (u((i−1)∆t), u(i∆t)) for some time increment ∆t, elaborated upon more
in Appendix B. We, thus, assume f (i), u(i) ∈ X , that is, that they lie in a single Hilbert space.
Following the formalization established in Cole et al. (2024), we then seek to learn in-context a map
X → X , for which we construct a context window consisting of training pairs z(i) ∈ Z = X ⊕ X :

Z0 =

(
f (1) f (2) . . . f (n) f (n+1)

u(1) u(2) . . . u(n) 0

)
∈
(
Xn+1

Xn+1

)
, (6)

where {(f (i), u(i))}ni=1 are n input-output pairs, z(i) := (f (i), u(i)), and T : Zn+1 → Zn+1. We
predict u(n+1) as −[T (z)]2,n+1. As in the typical ICL formalization, the key, query, and nonlinearity
operators only act upon the input functions. That is, denoting X0 = [f (1), f (2), ..., f (n), f (n+1)] ∈
Xn+1 as the vector of input functions and Xℓ ∈ Xn+1 similarly as the first row of the matrix Zℓ,

Zℓ+1 = Zℓ +
(
H̃(Wq,ℓXℓ,Wk,ℓXℓ)M(Wv,ℓZℓ)

T
)T

, (7)

with the layer ℓ query and key block operators Wq,ℓ : Xn+1 → Qn+1 and Wk,ℓ : Xn+1 → Kn+1

only acting on the restricted input space and Wv,ℓ : Zn+1 → Zn+1 on the full space. The mask

block operator matrix M is set as
[
In×n 0
0 0

]
, with In×n denoting the n×n block identity operator.

We denote the negated in-context prediction for an input f (n+1) := f after ℓ layers by

Tℓ(f ; (Wv,Wq,Wk)|z(1), . . . , z(n)) := [Zℓ]2,n+1 (8)

The in-context loss is given as follows, where we critically note that the plus sign arises from the
convention that the final ICL prediction carries a negative:

L(Wv,Wq,Wk) = EZ0,u(n+1)

(
∥[Zm+1]2,n+1 + u(n+1)∥2X

)
(9)

Notably, the very modeling of the generalized continuum layer in Equation (5) by introducing H :
Qn+1×Kn+1 → (L(V))(n+1)×(n+1) was a non-obvious generalization of Equation (3) in introduc-
ing this operator-valued nonlinearity. The more natural thing would have been to simply consider
a scalar-valued function “similarity” measure, i.e. defining H : Qn+1 × Kn+1 → R(n+1)×(n+1).
However, critically, doing so does not lend itself to characterization in an RKHS, upon which our
analysis over the remaining section is based. Thus, the mathematical framing of this problem as
above is a worthwhile contribution that the broader community can use for further analysis.

3.2 IN-CONTEXT LEARNING OCCURS VIA GRADIENT DESCENT

We now show that continuum transformers can perform in-context learning by implementing op-
erator gradient descent. For in-context samples {(f (i), u(i))}ni=1, the in-context task is to find
O∗ := minO∈O L(O) := minO∈O

∑n
i=1 ∥u(i) − Of (i)∥2X . Naturally, such an operator learning

problem can be solved by iteratively updating an estimate Oℓ+1 = Oℓ − ηℓ∇L(Oℓ). Our result,
therefore, roughly states that the prediction of u(n+1) by the ℓ-th layer of a continuum transformer,
with particular choices of key, query, and value parameters, is exactly Oℓf for any test function
f . We defer the full proof of the theorem to Appendix E but here highlight novelties of the proof
strategy in demonstrating this result. The strategy involves deriving an explicit form of the oper-
ator gradient descent steps and then showing, under a specific choice of (Wv,Wq,Wk), inference
through a layer of the continuum transformer recovers this explicitly computed operator gradient

4
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expression (see Appendix D). While the general strategy parallels that of Cheng et al. (2023), the
explicit construction of the gradient descent expression over operator spaces is not as directly evi-
dent as it is over finite-dimensional vector spaces. In particular, we had to invoke a generalized form
of the Representer Theorem to obtain this result, as compared to its classical form leveraged therein.
Theorem 3.1. Let κ : X×X → L(X ) be an arbitrary operator-valued kernel and O be the operator
RKHS induced by κ. Let {(f (i), u(i))}ni=1 and L(O) :=

∑n
i=1 ∥u(i) − Of (i)∥2X . Let O0 = 0 and

let Oℓ denote the operator obtained from the ℓ-th operator-valued gradient descent sequence of L
with respect to ∥ · ∥O as defined in Equation (23). Then there exist scalar step sizes r′0, . . . , r

′
m such

that if, for an m-layer continuum transformer T := Tm ◦ ... ◦ T0, [H̃(U,W )]i,j = κ(u(i), w(j)),

Wv,ℓ =

(
0 0
0 −r′ℓI

)
, Wq,ℓ = I , and Wk,ℓ = I for each ℓ = 0, ...,m, then for any f ∈ X ,

Tℓ(f ; (Wv,Wq,Wk)|z(1), . . . , z(n)) = −Oℓf.

3.3 IN-CONTEXT LEARNING RECOVERS THE BEST LINEAR UNBIASED PREDICTOR

In the finite-dimensional setting, it was shown in Cheng et al. (2023) that if {y(j)} are outputs from
the marginal of a Gaussian process with kernel κ(·, ·) for inputs {x(j)}, a transformer of depth
m → ∞ with [H(U,W )]i,j = κ(u(i), w(j)) recovers the Bayes optimal predictor in-context for a
window of {(x(j), y(j))}. Roughly speaking, this result demonstrates the optimality of recovering
the true f in-context if the distribution on the function space from which f was sampled is Gaussian.
We, therefore, seek to establish a similar result for the setting of operator-valued kernels, which
requires defining a Gaussian measure on the operator space from which the true O is sampled.

Notably, paralleling how the finite marginals of finite-dimensional Gaussian processes induce dis-
tributions over functions, characterizing the finite marginals of a Hilbert space-valued Gaussian
process induces a distribution over operators. Doing so, however, requires the formalization of
a Gaussian measure on Hilbert spaces. A Hilbert space-valued random variable F is said to be
Gaussian if ⟨φ, F ⟩X is Gaussian for any φ ∈ X Menafoglio & Petris (2016). We now present the
generalization of Gaussian processes to Hilbert spaces from Jorgensen & Tian (2024).
Definition 3.2. κ Gaussian Random Variable in Hilbert Space (Definition 4.1 of Jorgensen &
Tian (2024)) Given an operator-valued kernel κ : X × X → L(X ), we say U |F ∼ N (0,K(F )),
where U = [u(1), . . . , u(n+1)], F = [f (1), . . . , f (n+1)] and [K(F )]i,j := κ(f (i), f (j)) if, for all
v(1), v(2) ∈ X and (f (i), u(i)), (f (j), u(j)) ∈ X 2,

E[⟨v(1), u(i)⟩X ⟨v(2), u(j)⟩X ] = ⟨v(1), κ(f (i), f (j))v(2)⟩X (10)

⟨v(1), u(i)⟩X ∼ N
(
0, ⟨v(1), κ(f (i), f (i))v(1)⟩X

)
. (11)

Such Hilbert-space valued GPs have been leveraged in Hilbert-space kriging, notably studied in
Menafoglio & Petris (2016); Luschgy (1996). They proved that the Best Linear Unbiased Predictor
(BLUP) precisely coincides with the Bayes optimal predictor in the MSE sense, meaning the f :
Xn → X amongst all measurable functions that minimizes E[∥Xn+1 − f(X)∥2X ], for zero-mean
jointly Gaussian random variables X = (X1, . . . , Xn) ∈ Xn and Xn+1 ∈ X , is the BLUP. Their
formal statement is provided for reference in Appendix F.1.

We now show that the in-context learned operator is the Best Linear Unbiased Predictor as m→ ∞
and thus, by Theorem F.1, Bayes optimal if the observed data are κGaussian random variables and if
H̃ matches κ. We again highlight here the approach and main innovations in establishing this result
and defer the full presentation to Appendix F.2. Roughly, the approach relied on establishing that the
infinite composition T∞ := ...◦Tm◦...◦T0 converges to a well-defined operator and that this matches
the BLUP known from Hilbert space kriging literature. The careful handling of this compositional
convergence and connection to Hilbert space kriging are novel technical contributions.
Proposition 3.3. Let F = [f (1), . . . , f (n+1)], U = [u(1), . . . , u(n+1)]. Let κ : X × X → L(X ) be
an operator-valued kernel. Assume that U |F is a κ Gaussian random variable per Definition 3.2.
Let the activation function H̃ of the attention layer be defined as [H̃(U,W )]i,j := κ(u(i), w(j)).
Consider the operator gradient descent in Theorem 3.1. Then as the number of layers m→ ∞, the
continuum transformer’s prediction at layer m approaches the Best Linear Unbiased Predictor that
minimizes the in-context loss in Equation (9).
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3.4 PRE-TRAINING CAN CONVERGE TO GRADIENT DESCENT PARAMETERS

We now demonstrate that the aforementioned parameters that result in operator gradient descent
from Theorem 3.1 are in fact minimizers of the continuum transformer training objective. This, in
turn, suggests that under such training, the continuum transformer parameters will converge to those
exhibited in the previous section. Similar results have been proven for the standard Transformer
architecture, such as in Cheng et al. (2023). Demonstrating our results, however, involved highly
non-trivial changes to their proof strategy. In particular, defining gradient flows over the space of
functionals of a Hilbert space requires the notion of Frechet-differentiability, which is more gen-
eral than taking derivatives with respect to a matrix. Additionally, rewriting the training objective
with an equivalent expectation expression (see Equation (39)) required careful manipulation of the
covariance operators of the data distributions as described in the symmetry discussion that follows.

The formal statement of this result is given in Theorem 3.6. This result characterizes a station-
ary point of the optimization problem in Equation (12) when the value operators Wv,ℓ have the form[
0 0
0 rℓI

]
and theWq,ℓ andWk,ℓ operators have a form relating to the symmetry of the data distribu-

tion, as fully described below. If the symmetry is characterized by a self-adjoint invertible operator
Σ, we establish that there exists a fixed point of the form Wq,ℓ = bℓΣ

−1/2 and Wk,ℓ = cℓΣ
−1/2 for

some constants {bℓ} and {cℓ}. This fixed point relates to Section 3.2 and Section 3.3, since if Σ = I ,
we recover the parameter configuration under which functional gradient descent is performed.

This proof relies on some technical assumptions on the F and U |F distributions and transformer
nonlinearity; such assumptions are typical of such optimization analyses, as seen in related works
such as Cheng et al. (2023); Ahn et al. (2023); Dutta & Sra (2024). As mentioned, the proof proceeds
by studying gradient flow dynamics of the Wk,ℓ and Wq,ℓ operators over the P(F,U) distribution.
Direct analysis of such gradient flows, however, becomes analytically unwieldy under unstructured
distributions P(F,U). We, therefore, perform the analysis in a frame of reference rotated by Σ−1/2.
By Assumption G.3, this rotated frame preserves the P(F,U) distribution and by Assumption G.4
also the attention weights computed by the continuum transformer, allowing us to make conclusions
on the original setting after performing the analysis in this rotated coordinate frame. We demonstrate
in Section 5.3 that common kernels satisfy Assumption G.4. We defer the full proof to Appendix G.
Assumption 3.4. (Rotational symmetry) Let PF be the distribution of F = [f (1), ..., f (n+1)] and
K(F ) = EU |F [U ⊗ U ]. We assume that there exists a self-adjoint, invertible operator Σ : X → X
such that for any unitary operator M, Σ1/2MΣ−1/2F

d
= F and K(F ) = K(Σ1/2MΣ−1/2F ).

Assumption 3.5. For any F1, F2 ∈ Xn+1 and any operator S : X → X with an inverse S−1, the
function H̃ satisfies H̃(F1, F2) = H̃(S∗F1, S

−1F2).
Theorem 3.6. Suppose Assumption 3.4 and Assumption 3.5 hold. Let f(r,Wq,Wk) :=

L

(
Wv,ℓ =

{[
0 0
0 rℓI

]}
ℓ=0,...,m

,Wq,ℓ,Wk,ℓ

)
, where L is as defined in Equation (9). Let S ⊂

Om+1 × Om+1 denote the set of (Wq,Wk) operators with the property that (Wq,Wv) ∈ S if
and only if for all ℓ ∈ {0, . . . ,m}, there exist scalars bℓ, cℓ ∈ R such that Wq,ℓ = bℓΣ

−1/2 and
Wk,ℓ = cℓΣ

−1/2. Then

inf
(r,(Wq,Wk))∈Rm+1×S

m∑
ℓ=0

[
(∂rℓf)

2 + ∥∇Wq,ℓ
f∥2HS + ∥∇Wk,ℓ

f∥2HS

]
= 0. (12)

Here ∇Wq,ℓ
and ∇Wk,ℓ

denote derivatives with respect to the Hilbert-Schmidt norm ∥ · ∥HS.

4 RELATED WORKS

We were interested herein in providing a theoretical characterization of the in-context learning exhib-
ited by continuum attention-based ICONs, paralleling that done for finite-dimensional transformers
Akyürek et al. (2022); Garg et al. (2022); Dai et al. (2022). While previous works have yet to for-
mally characterize ICL for continuum transformers, a recent work Cole et al. (2024) began a line of
inquiry in this direction. Their work, however, studied a fundamentally distinct aspect of functional
ICL, characterizing the sample complexity and resulting generalization for linear elliptic PDEs.
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Most relevant in the line of works characterizing finite-dimensional ICL is Cheng et al. (2023).
Loosely speaking, they demonstrated that, if a kernel κ(·, ·) is defined with H denoting its associated
RKHS and a transformer is then defined with a specificWk,Wq,Wv and [H(Q,K)]i,j = κ(Qi,Kj)

from Equation (2), an inference pass through m layers of such a transformer predicts y(n+1)
i from

Equation (4) equivalently to f̂(x(n+1)
i ), where f̂ is the model resulting from m steps of functional

gradient descent in H. They then demonstrated that the predictor learned by such ICL gradient
descent is Bayes optimal under particular circumstances. These results are provided in Appendix C.

Notably, these results required non-trivial changes to be generalized to operator RKHSs as we did
herein; as discussed, such mathematical tooling is more general than its application to the setting
considered herein. In particular, our approach to performing the analysis in the infinite-dimensional
function space directly without requiring discretization required formalizing several notions to rig-
orously justify being able to lift the proofs from finite to infinite dimensions. We view this as a
significant contribution to the community. Now that we have gone through this formalism, the
broader community can directly use these analysis strategies to further study in-context learning or
unrelated inquiries. This is highly valuable, since it suggests that theoreticians can often follow their
finite-dimensional intuitions and defer to our infinite-dimensional results to rigorously justify their
results. In other words, our proof strategies suggest to other researchers working on similar prob-
lems that they need not be bogged down in the details of the error convergence minutiae that often
arise in approaches relying on finite projections and can instead work with these clean abstractions.

Similarly, this work opens up the space for who can contribute to further the theoretical study of op-
erator ICL. Much of the classical optimization community, for instance, may not be intimately famil-
iar with the mathematical formalisms required around operator spaces. However, with our formal-
ism, they can provide insights with little change from how they would approach finite-dimensional
analyses. We, therefore, believe this framework, consisting of the generalized transformer and char-
acterization of its optimization, is a worthwhile contribution to the theory community.

5 EXPERIMENTS

We now wish to empirically verify the theoretically demonstrated claims. We provide setup details
in Section 5.1 and then study the claims of Section 3.3 in Section 5.2 and those of Section 3.4 in
Section 5.3. Code for this verification will be made public upon acceptance.

5.1 EXPERIMENTAL SETUP

In the experiments that follow, we wish to draw κGaussian Random Variables, as per Definition 3.2.
To begin, we first define an operator-valued covariance kernel κ. In particular, we consider one com-
monly encountered in the Bayesian functional data analysis literature Kadri et al. (2016a), namely
the Hilbert-Schmidt Integral Operator. Suppose kx : X × X → R and ky : Ω × Ω → R are both
positive definite kernels, where ky is Hermitian. Then, the following is a well-defined kernel:

[κ(f (1), f (2))u](y) := kx(f
(1), f (2))

∫
ky(y

′, y)u(y′)dy′. (13)

Notably, similar to how functions in a scalar RKHS can be sampled as f =∑S
s=1 α

(s)k(x(s), ·) for α(s) ∼ N (0, σ2) over a randomly sampled collection {x(s)}Ss=1,
we can sample operators by sampling a collection {(φ(s), ψ(s))}Ss=1 and defining O =∑S

i=s α
(s)
(
kx(φ

(s), ·)
∫
ky(y

′, y)ψ(s)(y′)dy′
)

with α(s) ∼ N (0, σ2). We focus on X = L2(T2),
for which the functions φ(s), ψ(s) can be sampled from a Gaussian with mean function 0 and co-
variance operator α(−∆+ βI)−γ , where α, β, γ ∈ R are parameters that control the smoothness of
the sampled functions and ∆ is the Laplacian operator. Such a distribution is typical of the neural
operators literature, as seen in Subedi & Tewari (2025); Kovachki et al. (2021); Bhattacharya et al.
(2021), and is sampled as

φ(s) :=
∑

|ν|∞≤N/2

(
Z(s)
ν α1/2(4π2||ν||22 + β)−γ/2

)
eiν·x where Z(s)

ν ∼ N (0, 1), (14)

where N/2 is the Nyquist frequency assuming a discretized spatial resolution of N × N . Such
sampling is similarly repeated for ψ(s). We consider standard scalar kernels kx and ky to define

7
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Figure 1: In-context learning loss curves over the number of layers in the continuum transformer.
The kernels of the data-generating processes are given in the titles of the sub-figures. Curves show
the mean ±1/2 standard deviation from 50 i.i.d. draws of the operator.

Hilbert-Schmidt kernels. For kx, we consider the Linear, Laplacian, Gradient RBF, and Energy
kernels and for ky , the Laplace and Gaussian kernels. The definitions of such kernels is deferred
to Appendix H. To finally construct the in-context windows, we similarly sample functions f (j) per
Equation (14) and evaluate u(j) = Of (j) using the sampled operator. To summarize, a single ICL
context window i of the form Equation (6) is constructed by defining an operator Oi with a random
sample {(α(s)

i , φ
(s)
i , ψ

(s)
i )}Ss=1, sampling input functions {f (j)i }, and evaluating u(j)i = Oif

(j)
i .

5.2 BEST LINEAR UNBIASED PREDICTOR EXPERIMENTS

We now empirically demonstrate the claim of Proposition 3.3, specifically using the Hilbert-Schmidt
operator-valued kernels described in the previous section. In particular, we demonstrate the opti-
mality of the continuum transformer in-context update steps if the nonlinearity is made to match
the kernel of the data-generating process. We consider four pairs of the aforementioned (kx, ky)
to define the operator-valued kernels and then fix the model parameters to be those given by The-
orem 3.1. Notably, as Wk,ℓ and Wq,ℓ are implemented as FNO kernel integral layers, we do so by
fixing Rk,ℓ = Rq,ℓ = 1(N/2)×(N/2) ∀ℓ. The results are shown in Figure 1. As expected, we find
the in-context loss curves to decrease over increasing layers when the kernel matches the nonlinear-
ity, as each additional layer then corresponds to an additional step of operator gradient descent per
Theorem 3.1. For each setup, we also construct the BLUP to demonstrate the desired convergence,
whose explicit prediction is given by

O∗
BLUPf =

n∑
i,j=1

κ(f, f (i))[K̂−1]iju
(j). (15)

We see the optimality of matching the kernel and nonlinearity across the different choices of kernels
in the limit of ℓ→ ∞, namely in converging to the same error as the BLUP. We see that this result is
robust over samplings of the operator, as the results in Figure 1 are reported over 50 independent tri-
als. We visualize the in-context learned predictions for each setup combination in Appendix I, which
reveals that, when kx matches the data-generating kernel, the resulting field predictions structurally
match the true Of .

8
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Figure 2: In-context learning loss curves over the number of layers in the continuum transformer for
the Poisson equation samples. Curves show the mean ±1/2 standard deviation from 50 i.i.d. draws
of the operator.

5.2.1 POISSON EQUATION

In the previous experiment, we demonstrated the optimality of the estimator when its kernel matches
that of the data-generating RKHS. In practical settings, however, selecting κ in this fashion may not
be possible, as estimating the kernel of the RKHS from which samples are drawn is often difficult.
We, therefore, now study the robustness of this exhibited behavior in a realistic PDE learning setting.

In particular, we study the 2D Poisson equation. The 2D Poisson equation is given by ∆u(x) =
f(x), where u : T2 → R is the scalar field of interest and f : T2 → R is the source field. In
this setting, we wish to learn the solution operator G : f → u. The f source fields were again
drawn from a GRF, as described in the Section 5.1, and corresponding solutions u computed using
an analytic FFT-based Poisson solver. Representative samples are visualized in Appendix J.

The results are shown in Figure 2. We see that the exhibited parameters of the continuum transformer
continue to display the desired optimization characteristics over layers even in this case where the
explicit kernel is unknown. In particular, we find the linear kernel to exhibit optimal performance
here; future work exploring the systematic selection of the optimal κ in practical settings would
be of great interest. Note that the BLUP achieves near-perfect estimation accuracy here, since the
solution operator of the Poisson Equation over periodic boundary conditions is linear in f .

5.3 OPTIMIZATION EXPERIMENTS

We now seek to empirically validate Theorem 3.6, namely that Wk,ℓ = bℓΣ
−1/2 and Wq,ℓ =

cℓΣ
−1/2 are fixed points of the optimization landscape. Direct verification of this statement, how-

ever, is not feasible, since do not have an explicit form of the Σ−1/2 operator. Nonetheless, we
can verify that, for any ℓ1, ℓ2 and i, j ∈ {q, k} (indicating whether we are comparing a key-key,
query-query, or key-query operator pair), ⟨Wi,ℓ1 ,Wj,ℓ2⟩HS → 1, where W := W/||W||HS denotes
the normalized operator. Since we are working over the space X = L2(T2) and considering Fourier
kernel parameterization for the operators, this Hilbert-Schmidt inner product can be computed over
the kernels, i.e. ⟨Ri,ℓ1 , Rj,ℓ2⟩F, where ⟨·, ·⟩F is the Frobenius inner product. The final metric is then

cos θ(t) :=
1

4m2

∑
i,j∈{k,q}

∑
ℓ1,ℓ2∈{1,...,m}

⟨Ri,ℓ1 , Rj,ℓ2⟩F
||R(t)

i,ℓ1
||F ||R(t)

j,ℓ2
||F

, (16)

representing the average pairwise cosine similarity at step t of the optimization between the learned
operators. Since we again consider a 250-layer continuum transformer, naively computing Equa-
tion (16) is computationally expensive; we, therefore, report this metric over a random sampling of

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 3: Pairwise convergence of the key-key, key-query, and query-query operators of the contin-
uum transformer in Hilbert-Schmidt cosine similarity across different kernels kx over training steps.
Curves show the mean ±1 standard deviation from 5 i.i.d. trials of training procedure.

m′ = 10 layers of the network. We repeat this optimization procedure over 5 independent trials,
where randomization occurs in the sampling of the datasets across trials and network initializations.

As required by Theorem 3.6, we constrain the optimization of Wv,ℓ to be over operators of the form[
0 0
0 rℓ

]
. This procedure is repeated across each of the kx kernels considered in the previous section

with ky fixed to be the Gaussian kernel; we demonstrate that the Linear kx kernel satisfies Assump-
tion G.4 in Appendix K.1. Notably, the other choices of kx do not satisfy this assumption, yet we
find that the convergence result holds robustly to this violation. Specific hyperparameter choices of
the training are presented in Appendix K. The results are presented in Figure 3. As mentioned, we
see that the operators all converge pairwise on average, validating the characterization of the fixed
points given by Theorem 3.6. As in the previous experiment, we find results to consistently replicate
across training runs, pointing to this finding being robust to initializations.

6 DISCUSSION

In this paper, we provided a theoretical characterization of the ICL phenomenon exhibited by con-
tinuum transformers and further validated such claims empirically. Unlike in the language learning
context, this insight suggests a practical direction for improving ICL for meta-learning in PDEs,
namely by estimating κ for specific PDE meta-learning tasks and using this directly to parameterize
H̃ in the continuum transformer architecture. Such RKHSs are often not explicitly defined but rather
induced by distributions on parameters of the PDE and its parametric form. Additionally, the results
of Section 5.3 suggest that a stronger version of Theorem 3.6 should hold, in which the convergence
result is independent of ℓ; proving such a generalization would be of great interest.
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7 REPRODUCIBILITY STATEMENT

The code for the experiments conducted herein will be released upon acceptance. All code associ-
ated with the paper is self-contained and contains instructions on how to reproduce the results shown
herein, where the experiments are also deterministically seeded to result in the same results shown
above. The proofs of all the claims made herein are also comprehensively shown in the appendices
provided, with associated intuitive explanations provided both in the proofs and the main text.

8 LLM USAGE

LLMs were not used in the writing of the manuscript; they (specifically Gemini) were used as a tool
to help with the debugging of some pieces of the code for the experiments.
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A CONTINUUM TRANSFORMER TOKEN DETAILS

In Calvello et al. (2024), the setting of interest was in extending the standard vision transformers that
typically act on finite-dimensional images RH×W to instead act on a continuum, i.e. over a function
mapping Ω → R for Ω ⊂ R2. In doing so, they had to generalize the typical notions of patching
that are introduced in vision transformers, by considering patches that decompose the domain, i.e.
Ωi such that ∪iΩi = Ω and Ωi ∩ Ωj = ∅. From here, each patch becomes a separate function
fi : Ωi → R, which necessitated dealing with infinite-dimensional tokens in their architecture, as
we assumed directly for our setting.

B TIME ROLLOUT META LEARNING

As discussed in the main text, the pairs (f (j), u(j)) are generally time rollout pairs (f (j), u(j)) =
(u((j−1)∆t), u(j∆t)). We elaborate on this common setting below. In the context of doing time-
rollouts, a pre-training dataset of the form D := {(U (0:T−1)

i , U
(T )
i )} is available, where U (0:T )

i :=

[u
(0)
i , u

(∆T )
i , ..., u

((T−1)∆T )
i ], with u(t)i ∈ L2(Ω). Notably, such a setup is equivalent to having

n = T/∆T training pairs {(u((t−1)∆T )
i , ut∆T

i )}nt=1. It is further assumed that, for each sample i,
there is a true, deterministic solution operator Gi ∈ O, where O is a space of operators, that maps
from the spatial field at some time t to its state at some later t+∆T . The in-context learning goal,
thus, is, given a new sequence of Ũ (0:T−1) generated by some unseen operator G̃, predict Ũ (T ), i.e.

Z0 =

 ũ(0) ũ(∆t) . . . ũ((n−1)∆t) ũ(n∆t)

ũ(∆t) ũ(2∆t) . . . ũ(n∆t) 0


C RKHS FUNCTIONAL GRADIENT DESCENT THEOREMS

We provide here the precise statements of the relevant results from Cheng et al. (2023).
Proposition C.1. (Proposition 1 from Cheng et al. (2023)) Let K be an arbitrary kernel. Let H
denote the Reproducing Kernel Hilbert space induced by K. Let z(i) = (x(i), y(i)) for i = 1, . . . , n
be an arbitrary set of in-context examples. Denote the empirical loss functional by

L(f) :=

n∑
i=1

(
f(x(i))− y(i)

)2
. (17)

Let f0 = 0 and let fℓ denote the gradient descent sequence of L with respect to ∥ · ∥H, as defined in
(3.1). Then there exist scalars stepsizes r0, . . . , rm such that the following holds:

Let H̃ be the function defined as

H̃(U,W )i,j := K(U (i),W (j)), (18)

where U (i) and W (j) denote the ith column of U and W respectively. Let

Vℓ =

[
0 0
0 −rℓ

]
, Bℓ = Id×d, Cℓ = Id×d. (19)

Then for any x := x(n+1), the Transformer’s prediction for y(n+1) at each layer ℓ matches the
prediction of the functional gradient sequence (3.1) at step ℓ, i.e., for all ℓ = 0, . . . , k,

Tℓ(x; (V,B,C)|z(1), . . . , z(n)) = −fℓ(x). (20)
Proposition C.2. (Proposition 2 from Cheng et al. (2023)) Let

X =
[
x(1), . . . , x(n+1)

]
, Y =

[
y(1), . . . , y(n+1)

]
. (21)

Let K : Rd × Rd → R be a kernel. Assume that Y |X is drawn from the K Gaussian process. Let
the attention activation

H̃(U,W )ij := K(U (i),W (j)), (22)
and consider the functional gradient descent construction in Proposition 1. Then, as the number
of layers L → ∞, the Transformer’s prediction for y(n+1) at layer ℓ (2.4) approaches the Bayes
(optimal) estimator that minimizes the in-context loss (2.5).
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D GRADIENT DESCENT IN OPERATOR SPACE

We start by some defining notation that we will use in the next sections. We denote by X = {x :
DX → R} and Y = {y : DY → R} the separable Hilbert spaces in which our input and output
functions lie in respectively. We denote by C(X ,Y) the space of continuous operators from X to Y .
Let L(Y) denote the set of bounded linear operators from Y to Y .

We begin by defining gradient descent in operator space. Let O denote a space of bounded operators
from X to Y equipped with the operator norm ∥ · ∥O. Let L : O → R denote a loss function. The
gradient descent of L is defined as the sequence

Oℓ+1 = Oℓ − rℓ∇L(Oℓ) (23)

where

∇L(O) = argmin
G∈O,∥G∥O=1

d

dt
L(O + tG)

∣∣∣∣
t=0

.

Suppose we have n input-output function pairs as f (1), . . . , f (n) ∈ X and u(1), . . . , u(n) ∈ Y and
we define L as the weighted empirical least-squares loss

L(O) =

n∑
i=1

∥u(i) −Of (i)∥2Y .

Then ∇L(O) takes the form

∇L(O) = argmin
G∈O,∥G∥O=1

d

dt

n∑
i=1

∥u(i) − (O + tG)f (i)∥2Y
∣∣∣∣
t=0

. (24)

For simplification, suppose that we denote by G∗ the steepest descent direction. Then the method
of Lagrange multipliers states that there exists some λ for which the problem in Equation (24) is
equivalent to

G∗ = argmin
G∈O

d

dt

n∑
i=1

∥u(i) − (O + tG)f (i)∥2Y
∣∣∣∣
t=0

+ λ∥G∥2B(X ,Y) (25)

= argmin
G∈O

n∑
i=1

2⟨u(i) −Of (i), Gf (i)⟩Y + λ∥G∥2B(X ,Y). (26)

The second line can be calculated by thinking of the loss function as a composition of functions
L = L2 ◦ L1, L1 : R → Y which takes

L1(t) = u(i) − (O + tG)f (i)

and L2 : Y → R where
L2(y) = ⟨y, y⟩.

Then L′
1(t)(s) = Gu(i) and L′

2(y)(h) = 2⟨y, h⟩. We have

(L2 ◦ L1(t))
′(s) = L′

2(L1(t)) ◦ L′
1(t)(s)

= L′
2(u

(i) − (O + tG)f (i))(Gf (i))

= 2⟨u(i) − (O + tG)f (i), Gf (i)⟩Y .

Evaluating the derivative at t = 0 gives the desired expression

D.1 GRADIENT DESCENT IN OPERATOR RKHS

We now introduce the RKHS framework on our space of operators by using an operator-valued
kernel. The following definitions were posed in Kadri et al. (2016b) (Section 4, Definitions 3 and
5).
Definition D.1. Operator-valued Kernel An operator-valued kernel is a function κ : X × X →
L(Y) such that

16
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(i) κ is Hermitian, that is, for all f1, f2 ∈ X , κ(f1, f2) = κ(f2, f1)
∗ where ∗ denotes the

adjoint operator.

(ii) κ is positive definite on X if it is Hermitian and for every n ∈ N and all (fi, ui) ∈ X ×
Y ∀ i = 1, 2, . . . , n, the matrix with (i, j)-th entry ⟨κ(fi, fj)ui, uj⟩ is a positive definite
matrix.

Definition D.2. Operator RKHS Let O be a Hilbert space of operators O : X → Y , equipped
with an inner product ⟨·, ·⟩O. We call O an operator RKHS if there exists an operator-valued kernel
κ : X × X → L(Y) such that

(i) The function g → κ(f, g)u for X belongs to the space O for all f ∈ X , u ∈ Y .

(ii) κ satisfies the reproducing kernel property:

⟨O, κ(f, ·)u⟩O = ⟨Of, u⟩Y
for all O ∈ O, f ∈ X , u ∈ Y .

We now state the Representer Theorem for operator RKHS’s, as stated in Theorem 11 of Stepani-
ants (2023). Assume that O can be decomposed orthogonally into O = O0 ⊕ O1 where O0 is a
finite-dimensional Hilbert space spanned by the operators {Ek}rk=1 and O1 is its orthogonal com-
plement under the inner product ⟨·, ·⟩O. We denote the inner product ⟨·, ·⟩O restricted to O0,O1 as
⟨·, ·⟩O0

, ⟨·, ·⟩O1
respectively.

Theorem D.3. Let ψ : R → R be a strictly increasing real-valued function and let L(X×Y×Y) →
R be an arbitrary loss function. Then

Ô = argmin
O∈O

L
(
{f (i), u(i), Of (i)}ni=1

)
+ ψ(∥projO1

O∥O1)

has the form

Ô =

r∑
k=1

dkEk +

n∑
i=1

κ(f (i), ·)αi

for some d ∈ Rr, Ek ∈ O0 for all k ∈ {1, . . . , r} and αi ∈ Y for all i ∈ {1, . . . , n}.

We use this theorem to simplify the expression for gradient descent in operator space.
Lemma D.4. Given any O ∈ O, let G∗ denote the steepest descent direction of the weighted least-
squares loss with respect to ∥ · ∥O as given in equation 25. Suppose O is an RKHS with kernel κ.
Then

G∗(·) = c

n∑
i=1

κ(f (i), ·)(u(i) −Of (i)) (27)

for some scalar c ∈ R+.

Proof. We apply theorem D.3 to equation Equation (25) with O0 the trivial subspace and ψ(s) =
λ
2 s

2. Then our solution has the form

G∗(·) =
n∑

i=1

κ(f (i), ·)αi. (28)

We also know that

∥G∗∥2O =

n∑
i,j=1

⟨κ(f (i), ·)αi, κ(f
(j), ·)αj⟩O =

n∑
i,j=1

⟨κ(f (i), f (j))αi, αj⟩Y

where the last equality follows from the RKHS property. We observe that
n∑

i,j=1

⟨κ(f (i), ·)αi, κ(f
(j), ·)αj⟩O =

n∑
i,j=1

⟨αi, κ(f
(i), f (j))αj⟩Y

17
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by the same RKHS property. Note that κ(f (i), f (j)) ∈ L(Y), that is, is a linear operator from Y to
Y . Let U ∈ Xn, F ∈ Yn be such that Ui = u(i) and Fi = Of (i). Then

α∗ = argmin
α∈Yn

n∑
i,j=1

2⟨u(i) −Of (i), κ(f (i), f (j))αj⟩Y + λ⟨αi, κ(f
(i), f (j))αj⟩Y

= argmin
α∈Yn

n∑
i,j=1

⟨2(u(i) −Of (i) + λαi), κ(f
(i), f (j))αj⟩Y

Taking the gradient of α as zero, that is, ∇α = 0 gives us α ∝ U − OF (here we are looking at α
as an element of Yn). We also note that since ∥G∗∥O = 1,

n∑
i,j=1

⟨αi, κ(f
(i), f (j))αj⟩Y = 1.

It follows that

α∗ =
1∑n

i,j=1⟨u(i) −Of (i), κ(f (i), f (j))(u(j) −Of (j))⟩Y
(U −OF ).

Therefore

G∗(·) = 1∑n
i,j=1⟨u(i) −Of (i), κ(f (i), f (j))(u(j) −Of (j))⟩Y

n∑
i=1

κ(f (i), ·)(u(i) −Of (i)).

This gives us an exact form of c as stated in equation Equation (27).

E IN-CONTEXT LEARNING VIA GRADIENT DESCENT PROOF

We first recall some notation from section 3.2. We are given n demonstrations (f (i), u(i)) ∈ X ×X
for all i ∈ [n]. We set Y = X for our purpose. The goal is to predict the output function for f (n+1).
We stack these in a matrix Z0 that serves as the input to our transformer:

Z0 = [z(1), . . . , z(n), z(n+1)] =

(
f (1) f (2) . . . f (n) f (n+1)

u(1) u(2) . . . u(n) 0

)
.

Zℓ denotes the output of layer ℓ of the transformer as given in equation 7.

Theorem E.1. Let κ : X × X → L(X ) be an arbitrary operator-valued kernel and O be the
operator RKHS induced by κ. Let {(f (i), u(i))}ni=1 and L(O) :=

∑n
i=1 ∥u(i)−Of (i)∥2X . Let O0 =

0 and let Oℓ denote the operator obtained from the ℓ-th operator-valued gradient descent sequence
of L with respect to ∥ · ∥O as defined in Equation (23). Then there exist scalar step sizes r′0, . . . , r

′
m

such that if, for anm-layer continuum transformer T := Tm◦ ...◦T0, [H̃(U,W )]i,j = κ(u(i), w(j)),

Wv,ℓ =

(
0 0
0 −r′ℓI

)
, Wq,ℓ = I , and Wk,ℓ = I for each ℓ = 0, ...,m, then for any f ∈ X ,

Tℓ(f ; (Wv,Wq,Wk)|z(1), . . . , z(n)) = −Oℓf.

Proof. From calculations in subsection Appendix D.1, we know that the ℓ-th step of gradient descent
has the form

Oℓ+1 = Oℓ + r′ℓ

n∑
i=1

κ(f (i), ·)(u(i) −Oℓf
(i)).

From the dynamics of the transformer, it can be easily shown by induction that Xℓ ≡ X0 for all ℓ.

We now prove that

u
(j)
ℓ = u(j) + Tℓ(f (j); (Wq,Wv,Wk)|z(1), . . . , z(n)) (29)
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for all j = 0, . . . , n. In other words, “u(j) − u
(j)
ℓ is equal to the predicted label for f , if f (j) = f”.

We prove this by induction. Let’s explicitly write the dynamics for layer 1.

Z1 = Z0 +
(
H̃(Wq,0X0,Wk,0X0)M(Wv,0Z0)

T
)T

= Z0 +

(
H̃(X0, X0)

[
I 0
0 0

]([
0 0
0 −r′0I

] [
f (1) . . . f (n) f
u(1) . . . u(n) u(n+1)

])T
)T

= Z0 +

(
H̃(X0, X0)

[
0 . . . 0 0

−r′0u(1) . . . −r′0u(n) 0

]T)T

= Z0 +



κ(f (1), f (1)) κ(f (1), f (2)) . . . κ(f (1), f (n)) κ(f (1), f)
κ(f (2), f (1)) . . . κ(f (2), f (n)) κ(f (2), f)

...
...

κ(f, f (1)) . . . κ(f, f (n)) κ(f, f)



0 −r′0u(1)
...

...
0 −r′0u(n)
0 0




T

= Z0 − r′0

[
0 . . . 0 0∑n

i=1 κ(f
(1), f (i))u(i) . . .

∑n
i=1 κ(f

(n), f (i))u(i)
∑n

i=1 κ(f, f
(i))u(i)

]
=

[
f (1) . . . f (n) f

u(1) − r′0
∑n

i=1 κ(f
(1), f (i))u(i) . . . u(n) − r′0

∑n
i=1 κ(f

(n), f (i))u(i) −r′0
∑n

i=1 κ(f, f
(i))u(i)

]
.

By definition, T1(f ; (Wq,Wv,Wk)|z(1), . . . , z(n)) = −r′0
∑n

i=1 κ(f, f
(i))u(i). if we plug in x =

x(j) for any column j, we recover the j-th column value in the bottom right. In other words, for the
1-layer case, we have

u
(j)
1 = u(j) + T1(f (j); (Wq,Wv,Wk)|z(1), . . . , z(n)).

For the rest of the proof, we use Tℓ(f) to denote Tℓ(f); (Wq,Wv,Wk)|z(1), . . . , z(n)) to simplify
notation. We now prove the induction case. Suppose that u(i)ℓ = u(i) + Tℓ(f (i)). Then, by exactly
the same calculation above, for the ℓ+ 1 layer:

Zℓ+1 = Zℓ +
(
H̃(Wq,ℓXℓ,Wk,ℓXℓ)M(Wv,ℓZℓ)

T
)T

= Zℓ +
(
H̃(X0, X0)M(Wv,ℓZℓ)

T
)T

= Zℓ − r′ℓ

[
0 . . . 0 0∑n

i=1 κ(f
(1), f (i))u

(i)
ℓ . . .

∑n
i=1 κ(f

(n), f (i))u
(i)
ℓ

∑n
i=1 κ(f, f

(i))u
(i)
ℓ

]
(30)

where the second equation follows from the fact that Wq,ℓ and Wv,ℓ are identity operators and
Xℓ = X0. We now apply the induction hypothesis to the right hand side and get[

f (1) . . . f (n) f
u(1) + Tℓ(f (1))− r′ℓ

∑n
i=1 κ(f

(1), f (i))(u(i) + Tℓ(f (i)) . . . Tℓ(f)− r′ℓ
∑n

i=1 κ(f, f
(i))(u(i) + TFℓ(f

(i))

]
.

Now Tℓ+1(f) = Tℓ(f) − r′ℓ
∑n

i=1 κ(f, f
(i))(u(i) + Tℓ(f (i)). Substituting f (j) in place of f gives

us

u
(j)
ℓ+1 = u(j) + Tℓ+1(f

(j)).
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We now proceed to the proof of the theorem using induction. At step 0, Z0 := 0 = O0. Now assume
Tℓ(f ; (Wq,Wv,Wk)|z(1), . . . , z(n)) = −Oℓf holds up to some layer ℓ. For the next layer ℓ+ 1,

Tℓ+1(f ; (Wq,Wv,Wk)) = Tℓ(f ; (Wq,Wv,Wk)|z(1), . . . , z(n))− r′ℓ

n∑
i=1

[H̃(X0, X0)]n+1,iu
(i)
ℓ

= Tℓ(f ; (Wq,Wv,Wk)|z(1), . . . , z(n))− r′ℓ

n∑
i=1

[H̃(X0, X0)]n+1,i(u
(i) −Oℓf)

= −Oℓf − r′ℓ

n∑
i=1

κ(f, f (i))(u(i) −Oℓf)

= −Oℓ+1f.

Here, the first line follows from plugging in Wq,Wv,Wk in Equation (30). The second line follows
from Equation (29) and the induction hypothesis.

F BEST LINEAR UNBIASED PREDICTOR

F.1 BLUP COINCIDES WITH BAYES OPTIMAL

We now provide the formal statement that the Best Linear Unbiased Predictor (BLUP) and Bayes
Optimal predictors coincide in this Hilbert space kriging setting of interest.
Theorem F.1. (Theorem 4 of Menafoglio & Petris (2016)) LetXn+1 ∈ X and X = (X1, . . . , Xn) ∈
Xn be zero-mean jointly Gaussian random variables. Assume that the covariance operator CX is
invertible. Then

E(Xn+1|X) = LX,

where the L is the linear operator given by L = CXn+1XC
−1
X . Hence, the conditional expectation

is an unbiased predictor and minimizes the mean squared prediction error

E[∥Xn+1 − f(X)∥2X ]

among all the measurable functions f : Xn → X . The best predictor, in the mean squared norm
sense, coincides with the Best Linear Unbiased Predictor.

F.2 IN-CONTEXT LEARNING BLUP PROOF

Proposition F.2. Let F = [f (1), . . . , f (n+1)], U = [u(1), . . . , u(n+1)]. Let κ : X × X → L(X ) be
an operator-valued kernel. Assume that U |F is a κ Gaussian random variable per Definition 3.2.
Let the activation function H̃ of the attention layer be defined as [H̃(U,W )]i,j := κ(u(i), w(j)).
Consider the operator gradient descent in Theorem 3.1. Then as the number of layers m→ ∞, the
continuum transformer’s prediction at layer m approaches the Best Linear Unbiased Predictor that
minimizes the in-context loss in Equation (9).

Proof. The notion of Best Linear Unbiased Predictor (BLUP) for a Gaussian random variable when
all but one of the variables is observed, has been studied extensively in the literature on ‘kriging’.
This problem was solved for random variables in a Banach space in Luschgy (1996). Hilbert-space
valued random variables would be a special case of this. This was dealt with in Menafoglio &
Petris (2016). We use these results to find the BLUP for u(n+1) conditional on u(1), . . . , u(n). First
we partition the covariance operator K(F ) into K̂, which represents the top-left n × n block. Let
ν ∈ L(X )n denote the vector given by νi = Ki,n+1-

K =

[
K̂ ν
νT Kn+1,n+1

]
.

We note that K̂ is the covariance operator of the random variable Û = [u(1), . . . , u(n)] ∈ Xn. The
vector ν is the cross-covariance operator between the random variable u(n+1) ∈ X and Û . Following
Theorem 2 in Luschgy (1996), we assume that K̂ is injective. Then Theorem 3 in Menafoglio &
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Petris (2016) (which is a Hilbert-space version of Theorem 2 in Luschgy (1996)) states that the Best
Linear Unbiased Predictor with respect to the mean squared norm error

E(∥u(n+1) − f(Û)∥2X )

among all measurable functions f : Xn → X , is given by

νT K̂−1Û =

n∑
i,j=1

κ(f (n+1), f (i))[K̂−1]iju
(j).

From the premise of 3.1, we know that Wq,ℓ = I,Wk,ℓ = I,Wv,ℓ =

[
0 0
0 −r′ℓI

]
. Set rℓ = δI for

all ℓ, where δ is a positive constant satisfying ∥I − δK̂∥ < 1, where the norm is the operator norm.
From previous calculations done in Equation (30), we have:

u
(i)
ℓ+1 = u

(i)
ℓ − δ

n∑
j=1

κ(f (i), f (j))u
(j)
ℓ .

We define the vector Ûℓ := [u
(1)
ℓ , . . . , u

(n)
ℓ ]. Then in vector notation,

Ûℓ+1 = (I − δK̂)Ûℓ.

Using induction on ℓ gives us:
Ûℓ+1 = (I − δK̂)ℓÛ .

Again, using Equation (30), we have:

u
(n+1)
ℓ+1 = u

(n+1)
ℓ − δ

n∑
j=1

κ(f (n+1), f (j))u
(j)
ℓ .

In vector notation, this gives us

u
(n+1)
ℓ+1 = u

(n+1)
ℓ − δνT Ûℓ = −δνT

ℓ∑
k=0

Ûℓ = −δνT
ℓ∑

k=0

(I − δK̂)kÛ .

Since δ was chosen such that ∥I − δK̂∥ < 1, K̂−1 = δ
∑∞

k=0(I − δK̂)k. Hence, as L → ∞,
u
(n+1)
ℓ+1 → νT K̂−1Û , which is the BLUP of u(n+1).

G OPTIMIZATION CONVERGENCE PROOF

We begin by reviewing some basic notions of differentiation in Hilbert spaces, for which we follow
Clément (2009).

Definition G.1. Let L : X → R be a functional from a Hilbert space X to real numbers. We say
that L is Fréchet-differentiable at f0 ∈ X if there exists a bounded linear operator A : X → R and
a function ϕ : R → R with lims→0

ϕ(s)
s = 0 such that

L(f0 + h)− L(f0) = Ah+ ϕ(∥h∥X ).

In this case we define DL(f0) = A.

Definition G.2. If L is Fréchet-differentiable at f0 ∈ X with DL(f0) ∈ X , then the X -gradient
∇XL(f0) ∈ X is defined by

⟨∇XL(f0), f⟩ = DL(f0)(f)

for all f ∈ X .

We now state the assumptions required to prove the results of the optimization landscape.
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Assumption G.3. (Rotational symmetry of distributions) Let PF denote the distribution of F =
[f (1), . . . , f (n+1)] and K(F ) = EU |F [U ⊗ U ]. We assume that there exists a self-adjoint, invertible

operator Σ : X → X such that for any unitary operator M, Σ1/2MΣ−1/2F
d
= F and K(F ) =

K(Σ1/2MΣ−1/2F ).
Assumption G.4. For any F1, F2 ∈ Xn+1 and any operator S : X → X with an inverse S−1, the
function H̃ satisfies H̃(F1, F2) = H̃(S∗F1, S

−1F2).
Theorem G.5. Suppose Assumption G.3 and Assumption G.4 hold. Let f(r,Wq,Wk) :=

L

(
Wv,ℓ =

{[
0 0
0 rℓ

]}
ℓ=0,...,m

,Wq,ℓ,Wk,ℓ

)
, where L is as defined in Equation (9). Let S ⊂

Om+1 × Om+1 denote the set of (Wq,Wk) operators with the property that (Wq,Wv) ∈ S if
and only if for all ℓ ∈ {0, . . . ,m}, there exist scalars bℓ, cℓ ∈ R such that Wq,ℓ = bℓΣ

−1/2 and
Wk,ℓ = cℓΣ

−1/2. Then

inf
(r,(Wq,Wk))∈Rm+1×S

m∑
ℓ=0

[
(∂rℓf)

2 + ∥∇Wq,ℓ
f∥2HS + ∥∇Wk,ℓ

f∥2HS

]
= 0. (31)

Here ∇Wq,ℓ
and ∇Wk,ℓ

denote derivatives with respect to the Hilbert-Schmidt norm ∥ · ∥HS.

The key insight to generalizing the proof in the functional gradient descent case in Cheng et al.
(2023) is that the Hilbert space there is the space of all matrices, Rd×d, equipped with the Frobenius
norm. We are now working with an arbitrary Hilbert space. We refer the reader to Clément (2009)
for discussion on the existence and uniqueness of gradient flows in Hilbert spaces.

Proof. We define S-gradient flows as
d

dt
rℓ(t) = ∂rℓL(r(t),Wq(t),Wk(t))

d

dt
Wq,ℓ(t) = B̃ℓ(t)

d

dt
Wk,ℓ(t) = C̃ℓ(t)

where
bℓ(t) := ⟨∇Wq,ℓ

L(r(t),Wq(t),Wk(t)),Σ
1/2⟩ B̃ℓ(t) := bℓ(t)Σ

−1/2

cℓ(t) := ⟨∇Wk,ℓ
L(r(t),Wq(t),Wk(t)),Σ

1/2⟩ C̃ℓ(t) := cℓ(t)Σ
−1/2.

We observe that the definition of the functions B and C ensures that Wq,ℓ(t),Wk,ℓ(t) ∈ S for all t.

d

dt
L(r(t),Wq(t),Wk(t))

=

k∑
ℓ=0

∂rℓL(r(t),Wq(t),Wk(t)) · (−∂rℓL(r(t),Wq(t),Wk(t)) (32)

+

k∑
ℓ=0

⟨∇Wq,ℓ
L(r(t),Wq(t),Wk(t)), B̃ℓ(t)⟩HS (33)

+

k∑
ℓ=0

⟨∇Wk,ℓ
L(r(t),Wq(t),Wk(t)), C̃ℓ(t)⟩HS . (34)

Clearly, Equation (32) = −
∑k

ℓ=0(∂rℓL(r(t),Wq(t),Wk(t)))
2. From Proposition G.6, we note that

(33) ≤
k∑

ℓ=0

⟨∇Wq,ℓ
L(r(t),Wq(t),Wk(t)),−∇Wq,ℓ

L(r(t),Wq(t),Wk(t))⟩

= −
k∑

ℓ=0

∥∇Wq,ℓ
L(r(t),Wq(t),Wk(t))∥2HS .
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Similarly,

(34) ≤ −
k∑

ℓ=0

∥∇Wk,ℓ
L(r(t),Wq(t),Wk(t))∥2HS .

We have shown that at any time t,

d

dt
L(r(t),Wq(t),Wk(t)) ≤ −

k∑
ℓ=0

(∂rℓL(r(t),Wq(t),Wk(t)))
2

−
k∑

ℓ=0

∥∇Wq,ℓ
L(r(t),Wq(t),Wk(t))∥2HS −

k∑
ℓ=0

∥∇Wk,ℓ
L(r(t),Wq(t),Wk(t))∥2HS

Suppose Equation (12) does not hold. Then there exists a positive constant c > 0 such that for all t,

k∑
ℓ=0

(∂rℓL(r(t),Wq(t),Wk(t)))
2 +

k∑
ℓ=0

∥∇Wq,ℓ
L(r(t),Wq(t),Wk(t))∥2HS

+

k∑
ℓ=0

∥∇Wk,ℓ
L(r(t),Wq(t),Wk(t))∥2HS ≥ c.

This implies that d
dtL(r(t),Wq(t),Wk(t)) ≤ −c for all t, which is a contradiction since L(·) is

bounded below by zero. Hence, we have proved that Equation (12) holds.

Proposition G.6. Suppose F,U satisfy Assumption G.3 and H̃ satisfies Assumption G.4. Suppose
Wq,Wk ∈ S. Fix a layer j ∈ {0, . . . ,m}. For anyR ∈ L(X ), let Wq(R, j) denote the collection of
operators where [Wq(R, j)]j := Wq,j +R and [Wq(R, j)]ℓ = Wq,ℓ for all ℓ ̸= j. Take an arbitrary
R ∈ L(X ). Let

R̃ =
1

d
Tr(RΣ1/2)Σ−1/2,

where RΣ1/2 denotes composition of operators and Tr is the trace of an operator as defined in
Definition G.10. Then for any j ∈ {0, . . . ,m},

d

dt
L(r,Wq(tR, j),Wk)

∣∣∣
t=0

≤ d

dt
L(r,Wq(tR̃, j),Wk)

∣∣∣
t=0

(35)

and
d

dt
L(r,Wq,Wk(tR, j))

∣∣∣
t=0

≤ d

dt
L(r,Wq,Wk(tR̃, j))

∣∣∣
t=0

. (36)

Since the proofs of Equation (35) and Equation (36) are similar, we only present the proof of Equa-
tion (35).

Suppose Wq(R) be the collection of operators where [Wq(R)]ℓ = Wq,ℓ+R for all ℓ ∈ {0, . . . ,m}.
Since Proposition G.6 holds for any j, and

d

dt
L(r,Wq(tR),Wk) =

m∑
j=0

d

dt
L(r,Wq(tR, j),Wk),

an immediate consequence of Proposition G.6 is that

d

dt
L(r,Wq(tR),Wk)

∣∣∣
t=0

≤ d

dt
L(r,Wq(tR̃),Wk)

∣∣∣
t=0

.

The rest of this section is dedicated to proving this proposition. As a first step, we re-write the
in-context loss using an inner product.
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Lemma G.7. (Re-writing the In-Context Loss) Let Z̄0 be the input of the transformer where the
last entry of Y has not been masked (or zeroed out):

Z̄0 =

[
f (1) . . . f (n) f (n+1)

u(1) . . . u(n) u(n+1)

]
.

Let Z̄ℓ be the output of the (ℓ− 1)th layer of the transformer initialized at Z̄0. Let F̄ℓ and Ūℓ denote
the first and second row of Z̄ℓ. Then the in-context loss defined in Equation (9) has the equivalent
form

L(Wv,Wq,Wk) = EZ̄0
[⟨(I −M)ŪT

m+1, (I −M)ŪT
m+1⟩].

The Hilbert space corresponds to the direct sum of Hilbert spaces
⊕n+1

i=1 X , where the inner product
is given by

⟨(v1, . . . , vn+1)
T , (w1, . . . , wn+1)

T ⟩ =
n+1∑
i=1

⟨vi, wi⟩X .

Proof. We deviate from the mathematical convention where an operator that acts on a function is
always written to the left of the function. We adopt the convention that fO, where O is an operator
and f is a function, also means that the operator acts on the function. This is how the equations
henceforth should be interpreted.

When Wv,ℓ =

[
Aℓ 0
0 rℓI

]
, the output at each layer, given in Equation (7) can be simplified as

follows:

[
Fℓ+1

Uℓ+1

]
=

[
Fℓ

Uℓ

]
+

(
H̃(Wq,ℓFℓ,Wk,ℓFℓ)M

([
Aℓ 0
0 rℓI

] [
Fℓ f

(n+1)
ℓ

Uℓ 0

])T
)T

=

[
Fℓ

Uℓ

]
+

(
H̃(Wq,ℓFℓ,Wk,ℓFℓ)

[
I 0
0 0

]([
AℓFℓ Aℓf

(n+1)
ℓ

rℓUℓ 0

])T
)T

=

[
Fℓ

Uℓ

]
+



κ(f

(1)
ℓ , f

(1)
ℓ ) κ(f

(1)
ℓ , f

(2)
ℓ ) . . . κ(f

(1)
ℓ , f

(n)
ℓ ) κ(f

(1)
ℓ , fℓ)

κ(f
(2)
ℓ , f

(1)
ℓ ) . . . κ(f

(2)
ℓ , f

(n)
ℓ ) κ(f

(2)
ℓ , fℓ)

...
...

κ(fℓ, f
(1)
ℓ ) . . . κ(fℓ, f

(n)
ℓ ) κ(fℓ, fℓ)


[
(AℓFℓ)

T (rℓUℓ)
T

0 0

]
T

=

[
Fℓ

Uℓ

]
+

[
AℓFℓMH̃(Wq,ℓFℓ,Wk,ℓFℓ)

rℓUℓMH̃(Wq,ℓFℓ,Wk,ℓFℓ)

]
. (37)

Suppose Z̄0 is equal to Z0 everywhere, except the (2, n + 1)th entry, where it is c instead of 0.
We compare the dynamics of Zℓ and Z̄ℓ. Since F0 = F̄0, we see that Fℓ = F̄ℓ. We claim that
Ūℓ − Uℓ = [0, . . . , 0, c]. We prove this by induction. This is trivially true for ℓ = 0. Suppose this
holds for step ℓ, then at step ℓ+ 1:

Ūℓ+1 = Ūℓ + rℓŪℓMH̃(Wq,ℓF̄ℓ,Wk,ℓF̄ℓ)

= Ūℓ + rℓUℓMH̃(Wq,ℓFℓ,Wk,ℓFℓ)

= Uℓ + [0, . . . , 0, c] + rℓUℓMH̃(Wq,ℓFℓ,Wk,ℓFℓ)

= Uℓ+1 + [0, . . . , 0, c],

where the second equality follows from the fact that ŪℓM has its (n+ 1)th entry zeroed out, so by
the inductive hypothesis, ŪℓM = UℓM . The third equality follows from the inductive hypothesis
again.
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Replacing c by u(n+1) tells us that [Z̄m+1]2,n+1 = [Zm+1]2,n+1 + u(n+1). Hence, the loss in
Equation (9) can be re-written as

L(Wv,Wq,Wk) = EZ̄0

[∥∥[Z̄m+1]2,n+1

∥∥2]
= EZ̄0

[∥∥Ūm+1(I −M)
∥∥2]

= EZ̄0

[
⟨(I −M)ŪT

m+1, (I −M)ŪT
m+1⟩

]
, (38)

where the inner product in the last line is the inner product on column vectors in
⊕n+1

i=1 X .

Since Aℓ = 0, an immediate corollary of Equation (37) is as follows.
Corollary G.8. When Aℓ = 0 for all ℓ ∈ {0, . . . ,m},

Fℓ+1 ≡ F0.

Moreover,

Uℓ+1 = Uℓ + rℓUℓMH̃(Wq,ℓF0,Wk,ℓF0)

= U0

ℓ∏
i=0

(I + riMH̃(Wq,iF0,Wk,iF0)).

We now define the trace operator and the tensor product, which allows us to use the covariance
operator.
Definition G.9. Let x1, x2 be elements of the Hilbert spaces X1 and X2. The tensor product operator
(x1 ⊗ x2) : X1 → X2 is defined by:

(x1 ⊗ x2)x = ⟨x1, x⟩x2
for any x ∈ X1.
Definition G.10. Let X be a separable Hilbert space and let {ei}∞i=1 be a complete orthonormal
system (CONS) in X . If T ∈ L1(X ,X ) be a nuclear operator. Then we define

Tr T =

∞∑
i=1

⟨Tei, ei⟩.

Henceforth, we assume that our Hilbert space is separable.
Lemma G.11. Suppose x1, x2 ∈ X , be used to construct the tensor product x1 ⊗ x2. Then

Tr x1 ⊗ x2 = ⟨x1, x2⟩.

Proof. Let {ei}∞i=1 be a CONS for the Hilbert space X . The inner product can be written as

⟨x1, x2⟩ =

〈 ∞∑
i=1

⟨x1, ei⟩ei,
∞∑
i=1

⟨x2, ei⟩ei,

〉

=

∞∑
i=1

⟨x1, ei⟩⟨x2, ei⟩.

Similarly, the trace of the tensor product is given by

Tr x1 ⊗ x2 =

∞∑
i=1

⟨(x1 ⊗ x2)ei, ei⟩

=

∞∑
i=1

⟨⟨x1, ei⟩x2, ei⟩

=

∞∑
i=1

⟨x1, ei⟩⟨x2, ei⟩.

This completes the proof of the lemma.
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We also state some properties of these operators without proof:

1. Let A be a linear operator from X → X and x1 ∈ X . Then

(Ax1 ⊗Ax1) = A(x1 ⊗ x1)A
∗,

where A∗ is the adjoint of A. This can be verified by writing out how each of the above
operators acts on an arbitrary element x ∈ X .

2. The cyclic property of trace, that is, Tr(AB) = Tr(BA) also holds in infinite-dimensional
spaces if A,B are both Hilbert-Schmidt operators. This can be verified using a CONS.

The rest of the proof for Proposition G.6 has the following outline:

1. We reformulate the in-context loss as the expectation of a trace operator.

2. We introduce a function ϕ : Xn+1×O → O(n+1)×(n+1) which is used to simplify the loss
equation.

3. We understand the dynamics of ϕ over time.
4. We use all the identities we have proved to complete the proof.

In-Context Loss as the Expectation of a Trace-
Using Lemma G.11, we can write the in-context loss in Equation (38) as

L(Wv,Wq,Wk) = EZ̄0

[
Tr[((I −M)ŪT

m+1)⊗ ((I −M)ŪT
m+1)]

]
Since (I −M) is a self-adjoint operator,

((I −M)ŪT
m+1)⊗ ((I −M)ŪT

m+1) = (I −M)(ŪT
m+1 ⊗ ŪT

m+1)(I −M).

Then
L(Wv,Wq,Wk) = EZ̄0

[
Tr[(I −M)(ŪT

m+1 ⊗ ŪT
m+1)(I −M)]

]
.

Simplifying the Loss using the Function ϕ-
We drop the bar to simplify notation and denote F0 by F . We also fix a j ∈ {0, . . . ,m}. We define
the functional ϕj : Xn+1 ×O → O(n+1)×(n+1) as

ϕj(F, S) =

m∏
ℓ=0

(I + rℓMH̃(Wq,ℓ(S, j)F,Wk,ℓ(S)F )).

Again, for the purpose of simplifying notation, we suppress the index j since the proof follows
through for any index. We use ϕ to denote ϕj and Wq,ℓ(S) to denote Wq,ℓ(S, j).

The loss can be reformulated as

L(Wv,Wq,Wk) = EZ0

[
Tr[(I −M)((U0ϕ(F, S))

T ⊗ (U0ϕ(F, S))
T )(I −M)]

]
= EZ0

[
Tr[(I −M)ϕ∗(F, S)(UT

0 ⊗ UT
0 )ϕ(F, S)(I −M)]

]
= EF0

[Tr[(I −M)ϕ∗(F, S)K(F0)ϕ(F, S)(I −M)]] .

where the last equality follows from Assumption G.3 and the linearity and cyclic property of trace.

Let U be a uniformly randomly sampled unitary operator. Let UΣ = Σ1/2UΣ−1/2. Using Assump-
tion G.3, Σ1/2MΣ−1/2F

d
= F , we see that

d

dt
L(Wv,Wq(tR),Wk)

∣∣∣∣
t=0

=
d

dt
EF0

[Tr[(I −M)ϕ∗(F0, tR)K(F0)ϕ(F0, tR)(I −M)]]

∣∣∣∣
t=0

= 2EF0

[
Tr[(I −M)ϕ∗(F0, tR)K(F0)

d

dt
ϕ(F0, 0)

∣∣∣∣
t=0

(I −M)]

]
= 2EF0,U

[
Tr[(I −M)ϕ∗(UΣF0, 0)K(F0)

d

dt
ϕ(UΣF0, tR)

∣∣∣∣
t=0

(I −M)]

]
(39)
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where the last equality uses the assumption K(UΣF0) = K(F0) from Assumption G.3.

Dynamics of ϕ over Time-
We now prove the following identities-

ϕ(UΣF0, 0) = ϕ(F0, 0) (40)

and
d

dt
ϕ(UΣF0, tR)

∣∣∣∣
t=0

=
d

dt
ϕ(F0, tUT

ΣRUΣ)

∣∣∣∣
t=0

. (41)

We also recall that
Wq,ℓUΣ = bℓΣ

−1/2Σ1/2UΣ−1/2 = UWq,ℓ. (42)

Similarly,
Wk,ℓUΣ = UΣWk,ℓ. (43)

We now verify Equation (40).

ϕ(UΣF0, 0) =

m∏
ℓ=0

(I + rℓMH̃(Wq,ℓUΣ(S)F0,Wk,ℓUΣ(S)F0))

=

m∏
ℓ=0

(I + rℓMH̃(UΣWq,ℓ(S)F0,UΣWk,ℓ(S)F0))

=

m∏
ℓ=0

(I + rℓMH̃(Wq,ℓ(S)F0,Wk,ℓ(S)F0)) = ϕ(F0, 0),

where the last equality follows from the rotational invariance of H̃ from Assumption G.4.

We verify the following identity that will be used later on-

d

dt
H̃((Wq,ℓ + tS)UΣF0,Wk,ℓUΣF0)

∣∣∣∣
t=0

=
d

dt
H̃(UWq,ℓF0 + tSUΣF0,UWk,ℓF0)

∣∣∣∣
t=0

=
d

dt
H̃(Wq,ℓF0 + tUTSUΣF0,Wk,ℓF0)

∣∣∣∣
t=0

, (44)

where the first equality follows from Equation (42) and Equation (43) and the second equality fol-
lows from Assumption G.4.

Using the chain rule, we get

d

dt
ϕ(UΣF0, tR)

∣∣∣∣
t=0

=

m∏
j=0

(
j−1∏
ℓ=0

(I +MH̃(Wq,ℓUΣF0,Wk,ℓUΣF0))

)
M

d

dt
H̃((Wq,ℓ + tR)UΣF0,Wk,ℓUΣF0)

∣∣∣∣
t=0 m∏

ℓ=j+1

(I +MH̃(Wq,ℓUΣF0,Wk,ℓUΣF0))


=

m∏
j=0

(
j−1∏
ℓ=0

(I +MH̃(Wq,ℓF0,Wk,ℓF0))

)
M

d

dt
H̃(Wq,ℓF0 + tUTRUΣF0,Wk,ℓF0)

∣∣∣∣
t=0 m∏

ℓ=j+1

(I +MH̃(Wq,ℓF0,Wk,ℓF0))


=

d

dt
ϕ(UΣF0, tUTRUΣR)

∣∣∣∣
t=0

,

where the second equality follows from Equation (42), Assumption G.4 and Equation (44).
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Putting it Together-
Continuing from Equation (39), we get

d

dt
L(Wv,Wq(tR),Wk)

∣∣∣∣
t=0

= 2EF0,U

[
Tr[(I −M)ϕ∗(UΣF0, 0)K(F0)

d

dt
ϕ(UΣF0, tUTRUΣ)

∣∣∣∣
t=0

(I −M)]

]
= 2EF0,U

[
Tr[(I −M)ϕ∗(F0, 0)K(F0)

d

dt
ϕ(F0, tUTRUΣ)

∣∣∣∣
t=0

(I −M)]

]
= 2EF0

[
Tr[(I −M)ϕ∗(F0, 0)K(F0)

d

dt
ϕ(F0, tEU

[
UTRUΣ

]
)

∣∣∣∣
t=0

(I −M)]

]
= 2EF0

[
Tr[(I −M)ϕ∗(F0, 0)K(F0)

d

dt
ϕ(F0, tR̃)

∣∣∣∣
t=0

(I −M)]

]
=

d

dt
L(Wv,Wq(tR̃),Wk)

∣∣∣∣
t=0

.

Here, the first equality follows from Equation (41) and the second equality follows from Equa-
tion (40). The third equality uses the linearity of d

dtϕ(F0, tS) in S and the fact that it is jointly
continuously differentiable. This concludes the proof.

H EXPERIMENT KERNEL DEFINITIONS

We provide below the explicit definitions of the kernels studied in the experiments of Section 5.1:

Kernels for kx(f, f ′)

Name Definition
Linear ⟨f, f ′⟩X

Laplacian exp
(
−∥f−f ′∥X

σx

)
Gradient RBF exp

(
−∥∇f−∇f ′∥2

X
2σ2

x

)
Energy exp

(
− (∥f∥2

X−∥f ′∥2
X )2

2σ2
x

)

Kernels for ky(x, y)

Name Definition

Laplace exp
(
−∥x−y∥2

σy

)
Gaussian exp

(
−∥x−y∥2

2

2σ2
y

)
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I BLUP ADDITIONAL EXPERIMENTAL RESULTS

We present below the in-context learning predictions for each pair of the true data-generating kernel
and choice of kx kernel, in the below visualizations. Paralleling the results seen in Figure 1, we find
that, when kx matches the data-generating kernel, the resulting field prediction structurally matches
the true Of . Across these visualizations, we fix ky to be the Gaussian for simplicity of presentation.

Figure 4: In-context predictions for (kx, ky) being (Linear, Gaussian), (Laplacian, Gaussian), (Gra-
dient RBF, Laplace), and (Energy, Laplace) with the data-generating kernel being (Linear, Gaus-
sian).

Figure 5: In-context predictions for (kx, ky) being (Linear, Gaussian), (Laplacian, Gaussian), (Gra-
dient RBF, Laplace), and (Energy, Laplace) with the data-generating kernel being (Laplacian, Gaus-
sian).

Figure 6: In-context predictions for (kx, ky) being (Linear, Gaussian), (Laplacian, Gaussian), (Gra-
dient RBF, Laplace), and (Energy, Laplace) with the data-generating kernel being (Gradient RBF,
Laplace).
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Figure 7: In-context predictions for (kx, ky) being (Linear, Gaussian), (Laplacian, Gaussian), (Gra-
dient RBF, Laplace), and (Energy, Laplace) with the data-generating kernel being (Energy, Laplace).

J POISSON EQUATION SAMPLES

We provide visualizations of samples obtained by solving the Poisson equation below, as used in the
experiments of Section 5.2.1.

Figure 8: Sample solution pairs generated for the Poisson equation in-context learning task. Samples
of f were drawn from a GRF and u solved with an analytic FFT-based Poisson solver.

K OPTIMIZATION EXPERIMENT DETAILS

K.1 OPTIMIZATION KERNEL ASSUMPTIONS

We now provide the proof that Assumption 3.5 holds for the chosen kernel under the particular
choice of kx being Linear and ky being Gaussian, which follows trivially from properties of the
inner product. In particular, for the assumed operator S : X → X with an inverse S−1 referenced
in Assumption 3.5, notice

[H̃(f (1), f (2))u] := kLinear(f
(1), f (2))(kGauss ∗ u)

:= ⟨f (1), f (2)⟩(kGauss ∗ u)
=⇒ [H̃(S∗F1, S

−1F2)u] = ⟨S∗f (1), S−1f (2)⟩(kGauss ∗ u)
= ⟨f (1), (S∗)∗S−1f (2)⟩(kGauss ∗ u)
= ⟨f (1), SS−1f (2)⟩(kGauss ∗ u)
= ⟨f (1), f (2)⟩(kGauss ∗ u),

completing the proof as desired.
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K.2 OPTIMIZATION EXPERIMENT HYPERPARAMETERS

The hyperparameters of the optimization experiment (results presented in Section 5.3) are given in
Table 1. The continuum transformer was implemented in PyTorch Paszke et al. (2019). Training a
model required roughly 30 minutes to an hour using an Nvidia RTX 2080 Ti GPUs.

Table 1: Hyperparameters used in the continuum transformer training experiment.

Category Hyperparameter (Value)

Model

Number of Layers: 250
Image Size: 64× 64
kx σ: 1.0
rℓ Initialization: −0.01

Dataset
ky Kernel: Gaussian
# In-Context Prompts: 25
# Operator Bases: 30

Training

Optimizer: Adam
Learning Rate: 0.001
Epochs: 10
# Samples: 128
Momentum: 0.0
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L NOTATION REFERENCE

We provide below a comprehensive presentation of the notation from the paper.

Table 2: Notation for the data

Notation Description
X Hilbert space in which the input and output functions lie.
f (i), u(i) i-th pair of input and output functions.
Zℓ A matrix in X 2×(n+1) whose first row consists of input functions f (i); i = 1, . . . , n+

1, and whose second row consists of output functions u(1), . . . , u(n), 0. The zero is
a placeholder for the predicted output of f (n+1) which will change as Zℓ passes
through the transformer.

Xℓ The first row of Zℓ.
O Space of operators in which the true operator lies. This is assumed to be an RKHS.
K(F ) Covariance operator of the output functions U conditioned on the input functions F .

Table 3: Notation for the transformer architecture

Notation Description
Tℓ The ℓ-th layer of the transformer.
Wk,ℓ,Wq,ℓ,Wv,ℓ Key, query and value operators at the ℓ-th layer respectively.
M Mask operator.
H̃(·, ·) Non-linear operator.
rℓ Scalars parametrizing the value operator at layer ℓ.

Table 4: Notation for ICL, gradient descent, and the RKHS framework

Notation Description
L(·) In-context loss.
Oℓ Operator at the ℓ-th gradient descent step.
κ Operator-valued kernel which takes an element in X×X to a bounded linear operator

on X .
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