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ABSTRACT

Transformers robustly exhibit the ability to perform in-context learning, whereby
their predictive accuracy on a task can increase not by parameter updates but
merely with the placement of training samples in their context windows. Re-
cent works have shown that transformers achieve this by implementing gradient
descent in their forward passes. Such results, however, are restricted to standard
transformer architectures, which handle finite-dimensional inputs. In the space
of PDE surrogate modeling, a generalization of transformers to handle infinite-
dimensional function inputs, known as “continuum transformers,” has been pro-
posed and similarly observed to exhibit in-context learning. Despite impres-
sive empirical performance, such in-context learning has yet to be theoretically
characterized. We herein demonstrate that continuum transformers perform in-
context operator learning by performing gradient descent in an operator RKHS.
We demonstrate this using novel proof strategies that leverage a generalized repre-
senter theorem for Hilbert spaces and gradient flows over the space of functionals
on a Hilbert space. We further show the operator learned in context is the Bayes
Optimal Predictor in the infinite depth limit of the transformer. We then pro-
vide empirical validations of this result and demonstrate that the parameters under
which such gradient descent is performed are recovered through pre-training.

1 INTRODUCTION

LLMs, and transformers more broadly, have demonstrated a remarkable ability to perform in-context
learning, in which predictive performance improves without the need for parameter updates, merely
by providing training samples in the LLM context window |[Minaee et al.| (2024); |Dong et al.[(2022).
With workflows increasingly relying on such fine-tuning in place of traditional weight updates due
to its computational efficiency, much interest has gone into providing a theoretical explanation of
this phenomenon |Akyiirek et al.| (2022); |Garg et al.| (2022); [Dai et al.| (2022). Such works have
demonstrated that, with particular choices of transformer parameters, an inference pass through
such models is equivalent to taking steps of gradient descent for the in-context learning task.

While LLMs were the first setting in which in-context learning abilities of transformers were ex-
ploited, interest is increasing in its broader application to other sequence prediction tasks. In par-
ticular, a seemingly orthogonal subfield of machine learning is that of accelerating the solution of
partial differential equations (PDEs) Li et al.|(2020a); Du et al.| (2023); |Liu et al.| (2023)); Jafarzadeh
et al.| (2024); |(Oommen et al.| (2024); [You et al.| (2022). In this setting, the sequence is no longer of
finite-dimensional vectors, but instead of infinite-dimensional functions. Nonetheless, transformers
have been adapted to this setting, with an architecture known as “continuum transformers” (Calvello
et al.{(2024). More surprising still is that such transformers continue to exhibit in-context learning,
whereby related PDEs can be efficiently solved with the similar placement of solution pairs in the
continuum transformer context window (Cao et al.[(2024);[Yang et al.|(2023); Meng et al.| (2025).

Unlike in the finite-dimensional setting, this generalized, functional in-context learning yet remains
to be theoretically characterized. We, therefore, herein extend this line of theoretical inquiry to
characterize the continuum transformers that have been leveraged for in-context operator learning
Calvello et al| (2024). Our contributions, therefore, are twofold: the insights afforded by such
theoretical analysis and the development of a mathematical framework for doing such analysis, as
we highlight in greater detail in the main text. In particular, our contributions are as follows:
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* Proving continuum transformers perform in-context operator learning by performing gra-
dient descent in a Reproducing Kernel Hilbert Space of operators and that the resulting
in-context predictor recovers the Bayes Optimal Predictor under well-specified parameter
choices of the transformer. Such proofs required the modeling of a generalized continuum
attention mechanism and subsequent novel usages of a generalized representer theorem for
Hilbert spaces and Gaussian measures over Hilbert spaces.

 Proving that such parameters under which continuum transformers implement operator gra-
dient descent are minimizers of the training process of such transformers, leveraging a
novel gradient flow analysis over the space of functionals on a Hilbert space.

* Empirically validating that continuum transformers perform in-context operator gradient
descent upon inference with the exhibited parameters and that such parameters are recov-
ered with transformer training across a diverse selection of operator RKHSs.

2 BACKGROUND

2.1 NEURAL OPERATORS

Neural operator methods, while more broadly applicable, most often seek to amortize the solution
of a spatiotemporal PDE. Such PDEs are formally described by spatial fields that evolve over time,
namely some u : Q x [0,00) — R, where z € 2 C R? are spatial coordinates and ¢ € [0,00) is a
time coordinate. While the more abstract operator learning framework can be formulated as seeking
to learn a map Q\ : A — U between two function spaces A and U, we are most often interested
in learning time-rollout maps, in which the input and output function spaces are identical. In such
() (T)

i)

cases, it is assumed a dataset of the form D := {(u } is available, where u(®) : Q — R is

the initial condition, for which there exists some true operator G such that, for all i, uET) =g (uz(.o)).
While many different learning-based approaches have been proposed to solve this operator learning
problem, they all can be abstractly framed as seeking

min |0~ 2 = / 116 (o) — Guo)| 2 duo. (1)
u

Within this broad family of operator learning, the most widely employed classes are the Deep Op-
erator Networks (DeepONets) [Lu et al| (2021} |2019); |Wang et al| (2021); Kopani¢akova & Kar-
niadakis| (2025) and Fourier Neural Operators (FNOs) |Li et al.| (2020bzcza); [Bonev et al.| (2023)).
FNOs are parameterized as a sequence of layers of linear operators, given as kernel integral trans-
forms, with standard intermediate ReL.U nonlinearities. Formally, a single layer is then given by
o(F~Y(Re ® F(u))), where F denotes the Fourier transform and R, the learnable kernel parame-
ter. This layer encodes a translationally invariant kernel integral transform.

2.2 IN-CONTEXT LEARNING AND CONTINUUM TRANSFORMERS

The standard attention mechanism is parameterized by 6 := {W, W,, W, }, where W}, € Rk xd
W, € R%>d and W, € R4 >4 for sequential data X € R%*" Vaswani|(2017). Formally,

Attn(X) = (WUX)MH ((WqX)7 (WkX))’ 2

where M € R™ " is a masking matrix and H : R%*" x R%*n _ R"*" ig a nonlinear
transform of key-query similarity measures. This resulting matrix H(Q, K) is referred to as the
“attention weights” matrix. Most often, d;, = d, and H := softmax, ie. [H(Q,K)];; =
exp(Q, K;)/ Y., exp(Q, K¢)Cheng et al.|(2023). Transformers are repeated compositions of such
attention blocks with residual connections and feedforward and normalization layers.

We now highlight the “continuum attention” mechanism proposed in [Calvello et al.| (2024) that
generalizes transformers to operator learning; “continuum’ here highlights that such an architecture
models data in its discretization-agnostic function form as with other neural operator methods. In
particular, in place of z; € R%, z; € X for some Hilbert space X'. The natural generalization
of the attention mechanism for function inputs then replaces the W, W,, and W, matrices with
linear operators. For a sequence x € X", the key, query, and value operators respectively map
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W + X" = K" W, + &A™ — Q" and W, : & — V", where K, Q, and V are Hilbert
spaces. Notably, the original framing of continuum transformers (Calvello et al.| (2024) generalizes
attention by considering an infinite index set, rather than considering infinite-dimensional tokens as
we do here; we discuss how these two seemingly distinct notions are equivalent in Appendix [A] In
practice, such operators are implemented as kernel integral transforms, as W,z; = F 1 (R,® Fx;),
where R, is the Fourier parameterization of the query kernel, with R, and R,, similarly defined for
the key and value kernels. The continuum attention mechanism assumes K = Q and defines

ContAttn(X) := (W, X)M softmax (W, X), Wi X)) (3)

where the interpretation of M remains the same as that in Equation . In particular, while the key,
query, and value operators are generalized, the resulting attention weights matrix still lies € R™*".
Transformer architectures, most notably in LLLMs, have been observed to exhibit an unexpected
behavior known as “in-context learning” (ICL), in which they perform few-shot learning without
any explicit parameter updates but merely by having training examples in their context windows.
We follow the conventions of (Cheng et al.[(2023) in formalizing the ICL phenomenon. We suppose
the dataset D := {(X;, y;)}"_; on which the transformer was trained has samples of the form

(CORNC) (n) (nt1)
€, x; R i T, (n+1)
Xi= "1 { my " Yvi=y - “4)
yl(l) yz@) - yl( ) 0 %

We then suppose yl(t) = fi(xgt)), where f; # f; for i # j. This is the critical difference in the
in-context learning setting: in the standard setting, f; = f is fixed across samples and matches the
/! at test time, meaning the goal for the learner is to learn such an f. In ICL, however, the learning
algorithm must be capable of “learning” an unseen f’ at inference time without parameter updates.

2.3 OPERATOR META-LEARNING

Significant interest has emerged in meta-operator learning for spatiotemporal PDEs, in which a
single network maps from initial conditions to final states across system specifications Wang et al.
(2022); |[Zhang| (2024); [Sun et al.| (2024); Liu et al. (2024); |Cao et al.| (2024); (Chakraborty et al.
(2022). Formally, unlike the traditional setting discussed in Section here the dataset consists

of sub-datasets D := U;D;, where D; := {(u% , ugf%)}n for which the true operator can vary

=1’
across sub-datasets, i.e. G; satisfies u(.j% = gl(uijo)) Vj € [n;] but G; # G, fori # i'. The goal is to

45

then, given only a limited number of training samples D := {(ﬂéj ), ﬂgf ))}?:1 withn < >, n; for
a fixed, potentially unseen operator G’, learn an approximation G ~ G. Most often, this is done by
pre-training a meta-learner Gy, on D and then fine-tuning Gyyr, on D to arrive at G.

Building off of the observed ICL of transformers, the fine-tuning of these meta-learners too can be
performed via explicit weight modification or via in-context learning. An entire offshoot of meta-
learning known as in-context operator networks (ICONs) has spawned from the latter |Cao et al.
(2024); |Yang et al.| (2023); Meng et al.|(2025); Yang & Osher|(2024). Recent works in this vein have
demonstrated notable empirical performance leveraging bespoke transformer architectures built atop
the continuum attention from Equation @]) Cao et al.| (2024); |Alkin et al.|(2024); |Cao et al.| (2025);
Cao (2021). Such behavior has been observed but has yet to be theoretically characterized.

3 THEORETICAL CHARACTERIZATION

3.1 IN-CONTEXT LEARNING MODEL

For quick reference, we provide a compilation of the notation used throughout this and the remaining
sections in Appendix [[] We now consider a generalization of the continuum attention, paralleling
that of Equation (2)), allowing for more general key-query similarity measures. In particular, instead
of restricting Q = K as required for Equation (3)) to be well-defined, we allow H : Q"1 x K+l —
(L(V))(+Dx (41 "where £(V) denotes the set of bounded linear operators from V to V; note that
the “n + 1” convention is adopted as data is of the form given by Equation (). This generalization
subsumes the softmax form assumed in Equation , where for ¢ € R, ¢ € L(V) is understood
to be defined as cf, for f, € V, from which we can similarly view softmax : Q"1 x K"+l —
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(L(V))(+Dx(+1) 1f ) = X, an m-layer continuum transformer 7 : X"+1 — X"+ consisting
of generalized continuum attention layers with residual connections is well-defined as 7 := 7, o
... 0 To, where

X1 = To(Xe) i= Xo + (HWy o Xo, Wit X)) MW, o X)) ©)

where we now view M : V"l — Pt a5 a mask operator acting on the value functions. Note
that we present this using a “double-transpose” notation as compared to Equation (Z)) to follow
the mathematical convention of writing an operator to the left of the function it is acting upon.
Notably, in the setting of in-context learning for PDEs, the pairs (fU),u()) are generally time
rollout pairs (), u®) = (u((=DAY 4, GAD) for some time increment At, elaborated upon more
in Appendix [Bl We, thus, assume (), u(®) € X, that is, that they lie in a single Hilbert space.
Following the formalization established in|Cole et al.|(2024])), we then seek to learn in-context a map
X — X, for which we construct a context window consisting of training pairs () € Z = X @ X:

B f(l) f(2) o f(n) f(n+1) X+l
ZO - <u(1) U(Q) . u(n) 0 € X’n—‘rl ’ (6)
where {(f® u())}7_, are n input-output pairs, () := (f@ u®), and T : 2"+ — 2"+ We
predict u(™ 1) as —[T(2)]2.n4+1. As in the typical ICL formalization, the key, query, and nonlinearity

operators only act upon the input functions. That is, denoting Xo = [f(1), f2), .. f() f(r+D] ¢
X"+ as the vector of input functions and X, € X"+ similarly as the first row of the matrix Zy,

~ T
Zess = Zo+ (HOWqXe, Wit X) Mot Z0)7) )

with the layer ¢ query and key block operators W, ¢ : X™+1 — Q"1 and Wy, : A" — KnHL
only acting on the restricted input space and W, ¢ : Z"T! — Z"T! on the full space. The mask

block operator matrix M is set as {I”OX" 8} , with I, «, denoting the n X n block identity operator.

We denote the negated in-context prediction for an input f(**t1) := f after ¢ layers by

To(f; W, Wy, Wi) |2, 2M) = [ Zh)a. (8)

The in-context loss is given as follows, where we critically note that the plus sign arises from the
convention that the final ICL prediction carries a negative:

LW, Was Wi) = By (|1 Zmsalansa + w13 ©)

Notably, the very modeling of the generalized continuum layer in Equation (5 by introducing H :
QM x Kt — (L(V)) (X (+1) was a non-obvious generalization of Equation (3) in introduc-
ing this operator-valued nonlinearity. The more natural thing would have been to simply consider
a scalar-valued function “similarity” measure, i.e. defining H : Q"1 x K"t — R+ x(n41),
However, critically, doing so does not lend itself to characterization in an RKHS, upon which our
analysis over the remaining section is based. Thus, the mathematical framing of this problem as
above is a worthwhile contribution that the broader community can use for further analysis.

3.2 IN-CONTEXT LEARNING OCCURS VIA GRADIENT DESCENT

We now show that continuum transformers can perform in-context learning by implementing op-
erator gradient descent. For in-context samples {(f(), u(?)) ™ 1, the in-context task is to find
O* := minpeo L(O) = minpeo Y i, [[ul? — OfD|/%. Naturally, such an operator learning
problem can be solved by iteratively updating an estimate Opy1 = Op — 7¢VL(Oy). Our result,
therefore, roughly states that the prediction of u("*1) by the /-th layer of a continuum transformer,
with particular choices of key, query, and value parameters, is exactly O, f for any test function
f. We defer the full proof of the theorem to Appendix [E|but here highlight novelties of the proof
strategy in demonstrating this result. The strategy involves deriving an explicit form of the oper-
ator gradient descent steps and then showing, under a specific choice of (W,,, W,, W;,), inference
through a layer of the continuum transformer recovers this explicitly computed operator gradient
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expression (see Appendix [D). While the general strategy parallels that of (Cheng et al. (2023), the
explicit construction of the gradient descent expression over operator spaces is not as directly evi-
dent as it is over finite-dimensional vector spaces. In particular, we had to invoke a generalized form
of the Representer Theorem to obtain this result, as compared to its classical form leveraged therein.
Theorem 3.1. Let k : X x X — L(X) be an arbitrary operator-valued kernel and O be the operator
RKHS induced by k. Let {(f©,uD)}? | and L(O) := 31" | |[u® — OfD|%. Let Oy = 0 and
let Oy denote the operator obtained from the (-th operator-valued gradient descent sequence of L
with respect 1o || - ||o as defined in Equation 23)). Then there exist scalar step sizes 14y, . .., T}, such

that if, for an m-layer continuum transformer T := T, o ... o To, [H(U, Wi = w(u®, w),

Wee = (8 _QZI) Wy =1, and Wy 4 = I for each £ = 0, ...,m, then for any f € X,

Te(fs Wo, Wy, We) |2, L 2M) = —O, f.

3.3 IN-CONTEXT LEARNING RECOVERS THE BEST LINEAR UNBIASED PREDICTOR

In the finite-dimensional setting, it was shown in (Cheng et al.| (2023) that if {y(j )} are outputs from
the marginal of a Gaussian process with kernel £(-,-) for inputs {z(/)}, a transformer of depth
m — oo with [H(U, W)]; ; = x(u®,w)) recovers the Bayes optimal predictor in-context for a
window of {(x(j ),y ))} Roughly speaking, this result demonstrates the optimality of recovering
the true f in-context if the distribution on the function space from which f was sampled is Gaussian.
We, therefore, seek to establish a similar result for the setting of operator-valued kernels, which
requires defining a Gaussian measure on the operator space from which the true O is sampled.

Notably, paralleling how the finite marginals of finite-dimensional Gaussian processes induce dis-
tributions over functions, characterizing the finite marginals of a Hilbert space-valued Gaussian
process induces a distribution over operators. Doing so, however, requires the formalization of
a Gaussian measure on Hilbert spaces. A Hilbert space-valued random variable I’ is said to be
Gaussian if (¢, F') v is Gaussian for any ¢ € X’ |Menafoglio & Petris| (2016). We now present the
generalization of Gaussian processes to Hilbert spaces from Jorgensen & Tian| (2024)).

Definition 3.2. x Gaussian Random Variable in Hilbert Space (Definition 4.1 of [Jorgensen &
Tian| (2024)) Given an operator-valued kernel  : X' x X — L(X), we say U|F ~ N(0,K(F)),
where U = [uV), ... a®*V) F = [fO .. f0FD] and [K(F)];; = &(fD, f9)) if, for all
v 3@ e X and (f(i)’u(i))’(f(j)#(j)) € X2,

E[@(l)’u(i))){@(?)’u(j)>X] - (v(l),/{(f(i),f(j))v(z));( (10)
(D, u)x ~ N (0, 0D, /(O FOW D)) (11)

Such Hilbert-space valued GPs have been leveraged in Hilbert-space kriging, notably studied in
Menafoglio & Petris| (2016)); [Luschgy|(1996). They proved that the Best Linear Unbiased Predictor
(BLUP) precisely coincides with the Bayes optimal predictor in the MSE sense, meaning the f :
X" — X amongst all measurable functions that minimizes E[|| X, 11 — f(X)||%], for zero-mean
jointly Gaussian random variables X = (Xi,...,X,,) € X" and X,,41 € X, is the BLUP. Their
formal statement is provided for reference in Appendix [F1}

We now show that the in-context learned operator is the Best Linear Unbiased Predictor as m — oo
and thus, by Theorem[F.1] Bayes optimal if the observed data are x Gaussian random variables and if
H matches . We again highlight here the approach and main innovations in establishing this result
and defer the full presentation to Appendix[F.2] Roughly, the approach relied on establishing that the
infinite composition T, := ...07T,,0...07, converges to a well-defined operator and that this matches
the BLUP known from Hilbert space kriging literature. The careful handling of this compositional
convergence and connection to Hilbert space kriging are novel technical contributions.

Proposition 3.3. Let ' = [f() ... f0+D] U = [, .. uHD] Letk : X x X — L(X) be
an operator-valued kernel. Assume that U|F is a k Gaussian random variable per Definition
Let the activation function H of the attention layer be defined as [H(U,W)]; ; := r(u® w)).
Consider the operator gradient descent in Theorem[3.1| Then as the number of layers m — oo, the
continuum transformer’s prediction at layer m approaches the Best Linear Unbiased Predictor that
minimizes the in-context loss in Equation ().
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3.4 PRE-TRAINING CAN CONVERGE TO GRADIENT DESCENT PARAMETERS

We now demonstrate that the aforementioned parameters that result in operator gradient descent
from Theorem [3.1] are in fact minimizers of the continuum transformer training objective. This, in
turn, suggests that under such training, the continuum transformer parameters will converge to those
exhibited in the previous section. Similar results have been proven for the standard Transformer
architecture, such as in |Cheng et al.| (2023). Demonstrating our results, however, involved highly
non-trivial changes to their proof strategy. In particular, defining gradient flows over the space of
functionals of a Hilbert space requires the notion of Frechet-differentiability, which is more gen-
eral than taking derivatives with respect to a matrix. Additionally, rewriting the training objective
with an equivalent expectation expression (see Equation (39)) required careful manipulation of the
covariance operators of the data distributions as described in the symmetry discussion that follows.

The formal statement of this result is given in Theorem [3.6] This result characterizes a station-
ary point of the optimization problem in Equation (I2) when the value operators W,, , have the form

8 7‘? I} and the W, , and W}, , operators have a form relating to the symmetry of the data distribu-

tion, as fully described below. If the symmetry is characterized by a self-adjoint invertible operator
¥}, we establish that there exists a fixed point of the form W, , = b,% /2 and Wy, = ¢,X /2 for
some constants {b,} and {c,}. This fixed point relates to Section3.2]and Section sinceif X = 1,
we recover the parameter configuration under which functional gradient descent is performed.

This proof relies on some technical assumptions on the F' and U|F distributions and transformer
nonlinearity; such assumptions are typical of such optimization analyses, as seen in related works
such as|Cheng et al.|(2023));/Ahn et al.|(2023)); Dutta & Sra|(2024)). As mentioned, the proof proceeds
by studying gradient flow dynamics of the W, , and W, , operators over the P(F, U) distribution.
Direct analysis of such gradient flows, however, becomes analytically unwieldy under unstructured

distributions P(F,U). We, therefore, perform the analysis in a frame of reference rotated by »-1/2,
By Assumption this rotated frame preserves the P(F, U) distribution and by Assumption
also the attention weights computed by the continuum transformer, allowing us to make conclusions
on the original setting after performing the analysis in this rotated coordinate frame. We demonstrate
in Section[5.3]that common kernels satisfy Assumption[G.4] We defer the full proof to Appendix |G|

Assumption 3.4. (Rotational symmetry) Let P be the distribution of F' = [f WL f ("+1)] and
K(F) = Ey r[U ® U]. We assume that there exists a self-adjoint, invertible operator ¥ : X — X
such that for any unitary operator M, SY/2ME~Y2F £ F and K(F) = K(SY2ME-1/2F).
Assumption 3.5. For any Fy, F, € X™*! and any operator S : X — X with an inverse S~1, the
function H satisfies H(Fy, F) = fI(S*Fl, STIR).

Theorem 3.6. Suppose Assumption and Assumption hold.  Let f(r,W,, W)

0 ’/‘g]

O™mFl x O™F1 denote the set of (W, Wi) operators with the property that (W, W,) € S if
and only if for all £ € {0,...,m}, there exist scalars by, c, € R such that Wy o = beX "2 and
Wie = 632_1/2. Then

I (Wv,é _ {[O 0 } } Weoe, Wk’g>, where L is as defined in Equation (9). Let S C
0=0,...,m

m

inf o f)? 2 Zs] = 0. 12
(r,(Wq,Wir)l)eRm'+1><S; [(8 ef) + ”VW(;,efHHS + ||ka1{f||HS} 0 ( )

Here Vyy, , and Vyy, , denote derivatives with respect to the Hilbert-Schmidt norm || - ||gs.

4 RELATED WORKS

We were interested herein in providing a theoretical characterization of the in-context learning exhib-
ited by continuum attention-based ICONSs, paralleling that done for finite-dimensional transformers
Akyltrek et al.| (2022); Garg et al.| (2022); Dai et al. (2022). While previous works have yet to for-
mally characterize ICL for continuum transformers, a recent work |Cole et al.|(2024) began a line of
inquiry in this direction. Their work, however, studied a fundamentally distinct aspect of functional
ICL, characterizing the sample complexity and resulting generalization for linear elliptic PDE:s.
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Most relevant in the line of works characterizing finite-dimensional ICL is |Cheng et al.| (2023).
Loosely speaking, they demonstrated that, if a kernel (-, ) is defined with H denoting its associated
RKHS and a transformer is then defined with a specific Wi, W,, W, and [H(Q, K)]; ; = «(Q;, K;)

from Equation , an inference pass through m layers of such a transformer predicts yz(nﬂ) from

Equation H equivalently to f(xl(-nﬂ)), where fis the model resulting from m steps of functional

gradient descent in H. They then demonstrated that the predictor learned by such ICL gradient
descent is Bayes optimal under particular circumstances. These results are provided in Appendix [C|

Notably, these results required non-trivial changes to be generalized to operator RKHSs as we did
herein; as discussed, such mathematical tooling is more general than its application to the setting
considered herein. In particular, our approach to performing the analysis in the infinite-dimensional
function space directly without requiring discretization required formalizing several notions to rig-
orously justify being able to lift the proofs from finite to infinite dimensions. We view this as a
significant contribution to the community. Now that we have gone through this formalism, the
broader community can directly use these analysis strategies to further study in-context learning or
unrelated inquiries. This is highly valuable, since it suggests that theoreticians can often follow their
finite-dimensional intuitions and defer to our infinite-dimensional results to rigorously justify their
results. In other words, our proof strategies suggest to other researchers working on similar prob-
lems that they need not be bogged down in the details of the error convergence minutiae that often
arise in approaches relying on finite projections and can instead work with these clean abstractions.

Similarly, this work opens up the space for who can contribute to further the theoretical study of op-
erator ICL. Much of the classical optimization community, for instance, may not be intimately famil-
iar with the mathematical formalisms required around operator spaces. However, with our formal-
ism, they can provide insights with little change from how they would approach finite-dimensional
analyses. We, therefore, believe this framework, consisting of the generalized transformer and char-
acterization of its optimization, is a worthwhile contribution to the theory community.

5 EXPERIMENTS

We now wish to empirically verify the theoretically demonstrated claims. We provide setup details
in Section [5.1] and then study the claims of Section [3.3]in Section [5.2] and those of Section [3.4]in
Section[5.3] Code for this verification will be made public upon acceptance.

5.1 EXPERIMENTAL SETUP

In the experiments that follow, we wish to draw x Gaussian Random Variables, as per Deﬁnition@
To begin, we first define an operator-valued covariance kernel «. In particular, we consider one com-
monly encountered in the Bayesian functional data analysis literature |Kadr1 et al.| (2016a), namely
the Hilbert-Schmidt Integral Operator. Suppose k, : X x X — Rand k, : 2 x © — R are both
positive definite kernels, where &, is Hermitian. Then, the following is a well-defined kernel:

(D), FP)u)(y) = k:w(f(”»f(z))/ky(y’,y)u(y’)dy’- (13)

Notably, similar to how functions in a scalar RKHS can be sampled as f =
Zle a®k(x®)) for al®) ~ N(0,0%) over a randomly sampled collection {z(9)}5 .
we can sample operators by sampling a collection {(¢(),4($))}5_ and defining O =
Zf:s al®) (ko (¢, fky(y’,y)w(s)(y’)dy’) with a(®) ~ N(0,0%). We focus on X = L2(T?),
for which the functions ¢(*), 1)(*) can be sampled from a Gaussian with mean function 0 and co-
variance operator a(—A + 81)~7, where a, 8,y € R are parameters that control the smoothness of
the sampled functions and A is the Laplacian operator. Such a distribution is typical of the neural
operators literature, as seen in |Subedi & Tewari (2025); [Kovachki et al.| (2021)); Bhattacharya et al.
(2021)), and is sampled as

pi= D (2Pt Pam v+ 8) ) et where 20 ~ N(0.1), (14)
[V|eo <N /2

where N/2 is the Nyquist frequency assuming a discretized spatial resolution of N x N. Such
sampling is similarly repeated for 1)(*). We consider standard scalar kernels k, and k, to define
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Figure 1: In-context learning loss curves over the number of layers in the continuum transformer.
The kernels of the data-generating processes are given in the titles of the sub-figures. Curves show
the mean +1/2 standard deviation from 50 i.i.d. draws of the operator.

Hilbert-Schmidt kernels. For k,, we consider the Linear, Laplacian, Gradient RBF, and Energy
kernels and for £, the Laplace and Gaussian kernels. The definitions of such kernels is deferred
to Appendix [H| To finally construct the in-context windows, we similarly sample functions ) per
Equation li and evaluate ©(9) = O f(9) using the sampled operator. To summarize, a single ICL
context W1nd0W z of the form Equation (6) is constructed by deﬁnmg an operator O with a random

sample {( ,LpZ ,w S)) >_,, sampling input functions { f } and evaluating u f(J)

5.2 BEST LINEAR UNBIASED PREDICTOR EXPERIMENTS

We now empirically demonstrate the claim of Proposition[3.3] specifically using the Hilbert-Schmidt
operator-valued kernels described in the previous section. In particular, we demonstrate the opti-
mality of the continuum transformer in-context update steps if the nonlinearity is made to match
the kernel of the data-generating process. We consider four pairs of the aforementioned (ks, k)
to define the operator-valued kernels and then fix the model parameters to be those given by The-
orem 3.1} Notably, as Wy ¢ and W, are implemented as FNO kernel integral layers, we do so by
fixing Rye = Rge = 1 (n/2)x(n/2) VL. The results are shown in Figure |l As expected, we find
the in-context loss curves to decrease over increasing layers when the kernel matches the nonlinear-
ity, as each additional layer then corresponds to an additional step of operator gradient descent per
Theorem@ For each setup, we also construct the BLUP to demonstrate the desired convergence,
whose explicit prediction is given by

OpLupf = Z £ FO) K ul). (15)
,j=1

We see the optimality of matching the kernel and nonlinearity across the different choices of kernels
in the limit of ¢ — oo, namely in converging to the same error as the BLUP. We see that this result is
robust over samplings of the operator, as the results in Figure[T]are reported over 50 independent tri-
als. We visualize the in-context learned predictions for each setup combination in Appendix|[I| which
reveals that, when &, matches the data-generating kernel, the resulting field predictions structurally
match the true O f.
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Figure 2: In-context learning loss curves over the number of layers in the continuum transformer for
the Poisson equation samples. Curves show the mean +1/2 standard deviation from 50 i.i.d. draws
of the operator.

5.2.1 POISSON EQUATION

In the previous experiment, we demonstrated the optimality of the estimator when its kernel matches
that of the data-generating RKHS. In practical settings, however, selecting « in this fashion may not
be possible, as estimating the kernel of the RKHS from which samples are drawn is often difficult.
We, therefore, now study the robustness of this exhibited behavior in a realistic PDE learning setting.

In particular, we study the 2D Poisson equation. The 2D Poisson equation is given by Au(z) =
f(x), where u : T? — R is the scalar field of interest and f : T2 — R is the source field. In
this setting, we wish to learn the solution operator G : f — w. The f source fields were again
drawn from a GREF, as described in the Section and corresponding solutions « computed using
an analytic FFT-based Poisson solver. Representative samples are visualized in Appendix [J|

The results are shown in Figure[2] We see that the exhibited parameters of the continuum transformer
continue to display the desired optimization characteristics over layers even in this case where the
explicit kernel is unknown. In particular, we find the linear kernel to exhibit optimal performance
here; future work exploring the systematic selection of the optimal ~ in practical settings would
be of great interest. Note that the BLUP achieves near-perfect estimation accuracy here, since the
solution operator of the Poisson Equation over periodic boundary conditions is linear in f.

5.3 OPTIMIZATION EXPERIMENTS

We now seek to empirically validate Theorem namely that Wy, = b5~ Y/2 and W,, =
c¢X~1/2 are fixed points of the optimization landscape. Direct verification of this statement, how-
ever, is not feasible, since do not have an explicit form of the ¥ ~1/2 operator. Nonetheless, we
can verify that, for any /1, and i,j € {q, k} (indicating whether we are comparing a key-key,
query-query, or key-query operator pair), (W;. ¢, , Wj.e,)us — 1, where W := W/||W||us denotes
the normalized operator. Since we are working over the space X = £2(T?) and considering Fourier
kernel parameterization for the operators, this Hilbert-Schmidt inner product can be computed over

the kernels, i.e. (R; ¢, , Rj¢,)r, where (-, -)r is the Frobenius inner product. The final metric is then

_ 1 (Rier, Rjen)w
cosf(t) := 2 Z Z ||R(t) i ||R(t) 1 , (16)
i,j€{k,q} £1,€2€{1,...,m} i E Y o, 1| F

representing the average pairwise cosine similarity at step ¢ of the optimization between the learned
operators. Since we again consider a 250-layer continuum transformer, naively computing Equa-
tion (16) is computationally expensive; we, therefore, report this metric over a random sampling of
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Figure 3: Pairwise convergence of the key-key, key-query, and query-query operators of the contin-
uum transformer in Hilbert-Schmidt cosine similarity across different kernels &, over training steps.
Curves show the mean +1 standard deviation from 5 i.i.d. trials of training procedure.

m’ = 10 layers of the network. We repeat this optimization procedure over 5 independent trials,
where randomization occurs in the sampling of the datasets across trials and network initializations.

As required by Theorem@ we constrain the optimization of W, , to be over operators of the form
[8 79@ . This procedure is repeated across each of the k, kernels considered in the previous section

with k&, fixed to be the Gaussian kernel; we demonstrate that the Linear &, kernel satisfies Assump-
tioanjl in Appendix [KI] Notably, the other choices of k, do not satisfy this assumption, yet we
find that the convergence result holds robustly to this violation. Specific hyperparameter choices of
the training are presented in Appendix [K] The results are presented in Figure 3] As mentioned, we
see that the operators all converge pairwise on average, validating the characterization of the fixed
points given by Theorem[3.6] As in the previous experiment, we find results to consistently replicate
across training runs, pointing to this finding being robust to initializations.

6 DISCUSSION

In this paper, we provided a theoretical characterization of the ICL phenomenon exhibited by con-
tinuum transformers and further validated such claims empirically. Unlike in the language learning
context, this insight suggests a practical direction for improving ICL for meta-learning in PDEs,
namely by estimating & for specific PDE meta-learning tasks and using this directly to parameterize
H in the continuum transformer architecture. Such RKHSs are often not explicitly defined but rather
induced by distributions on parameters of the PDE and its parametric form. Additionally, the results
of Section[5.3|suggest that a stronger version of Theorem [3.6]should hold, in which the convergence
result is independent of ¢; proving such a generalization would be of great interest.

10
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7 REPRODUCIBILITY STATEMENT

The code for the experiments conducted herein will be released upon acceptance. All code associ-
ated with the paper is self-contained and contains instructions on how to reproduce the results shown
herein, where the experiments are also deterministically seeded to result in the same results shown
above. The proofs of all the claims made herein are also comprehensively shown in the appendices
provided, with associated intuitive explanations provided both in the proofs and the main text.

8 LLM USAGE

LLMs were not used in the writing of the manuscript; they (specifically Gemini) were used as a tool
to help with the debugging of some pieces of the code for the experiments.
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A CONTINUUM TRANSFORMER TOKEN DETAILS

In/Calvello et al.|(2024), the setting of interest was in extending the standard vision transformers that
typically act on finite-dimensional images R *W to instead act on a continuum, i.e. over a function
mapping Q — R for Q C R2. In doing so, they had to generalize the typical notions of patching
that are introduced in vision transformers, by considering patches that decompose the domain, i.e.
Q; such that U;Q2; = Q and ©Q; N Q; = (. From here, each patch becomes a separate function
fi + ©; — R, which necessitated dealing with infinite-dimensional tokens in their architecture, as
we assumed directly for our setting.

B TiIME ROLLOUT META LEARNING

As discussed in the main text, the pairs (f),u(7)) are generally time rollout pairs (fU), u()) =

(u(U=DAY 4 GAY)  We elaborate on this common setting below. In the context of doing time-

rollouts, a pre-training dataset of the form D := {( (0:T=1) U(T)) Ui(O:T) =

[,(‘O);UZ('AT)a . E(T 1)AT)

} is available, where
|, with ugt) € L£%(Q). Notably, such a setup is equivalent to having
n = T/AT training pairs {(uz(-(t_l)AT)7 ufAT)}n_ . Tt is further assumed that, for each sample 1,

there is a true, deterministic solution operator G; € O, where O is a space of operators, that maps
from the spatial field at some time ¢ to its state at some later ¢ + AT. The in-context learmng goal

thus, is, given a new sequence of U U (©:T-1) generated by some unseen operator G, predict U, je.

a0 gy o p(n=1)At)  y(nAt)

ZO =
ﬂ(At) ﬂ(ZAt) L ﬂ(nAt) 0

C RKHS FUNCTIONAL GRADIENT DESCENT THEOREMS

We provide here the precise statements of the relevant results from Cheng et al.|(2023).
Proposition C.1. (Proposition 1 from |Cheng et al.| (2023)) Let K be an arbltrary kernel. Let ’H
denote the Reproducing Kernel Hilbert space induced by K. Let z() = (x( Dy ) fori=1,.

be an arbitrary set of in-context examples. Denote the empirical loss funcnonal by
n

LU%=§:(ﬂﬂ%—y@f. (17)

i=1
Let fo = 0 and let fy denote the gradient descent sequence of L with respect to || - |34, as defined in
(3.1). Then there exist scalars stepsizes 1, . . . , T, such that the following holds:
Let H be the function defined as
HUW), ;= KUD, W)y, (18)
where U and W9 denote the ith column of U and W respectively. Let
0 0
Ve = {0 _TJ » Be=1Iixq, Co¢=Igxq. (19)
Then for any x = z("*V), the Transformer’s prediction for vV at each layer ¢ matches the
prediction of the functional gradient sequence (3.1) at step ¢, i.e., forall { = 0,. .. k,
Te(x; (V, B,0) |z, ... 2 = — fy (). (20)
Proposition C.2. (Proposition 2 from|Cheng et al.|(2023)) Let
X = [0, .., 2ntD], Y= [y, ..., y@eD], 1)

Let K : R? x RY — R be a kernel. Assume that Y| X is drawn from the K Gaussian process. Let
the attention activation ~ ' ,

H(U,W);; == KU®, W), (22)
and consider the functional gradient descent construction in Proposition 1. Then, as the number
of layers L — oo, the Transformer’s prediction for y"tV) at layer £ (2.4) approaches the Bayes
(optimal) estimator that minimizes the in-context loss (2.5).

15



Under review as a conference paper at ICLR 2026

D GRADIENT DESCENT IN OPERATOR SPACE

We start by some defining notation that we will use in the next sections. We denote by X = {x :
Dx — R}and Y = {y : Dy — R} the separable Hilbert spaces in which our input and output
functions lie in respectively. We denote by C(X', )) the space of continuous operators from X to ).
Let £()) denote the set of bounded linear operators from ) to V.

We begin by defining gradient descent in operator space. Let O denote a space of bounded operators
from X to ) equipped with the operator norm || - [|». Let L : O — R denote a loss function. The
gradient descent of L is defined as the sequence

Op41 = Oy — ¢V L(Oy) (23)
where
VL(O) = argmin iL(O +tG)
Ge0,||Gllo=1 dt t=0
Suppose we have n input-output function pairs as f), ..., f(™ € X and v, ..., u(™ € Y and

we define L as the weighted empirical least-squares loss
L(0) =) [u® — Of V3.
i=1
Then V L(O) takes the form

d = .
VL(O)= argmin — Y |[u? — (O +tG)f@|?
Geo,jGlo=1 dt ; Y

(24)

t=0

For simplification, suppose that we denote by G* the steepest descent direction. Then the method
of Lagrange multipliers states that there exists some A for which the problem in Equation (24)) is
equivalent to

d & , ,
G* = argmin — uD — O+t D3|+ NG|? (25)
C%e(’) dt;“ ( )y o | ||B(X,y)
n
=argmin Y _2(u® — OfD, G D)y + N|G[Fx.y)- (26)

Geo 5

The second line can be calculated by thinking of the loss function as a composition of functions
L =LyoLq, L1 :R — Y which takes

Li(t) = u' — (O +tG) f@
and Lo : Y — R where
La(y) = (y.)-
Then L (t)(s) = Gu' and L, (y)(h) = 2(y, h). We have
(L2 o L1(t))'(s) = Ly(La(t)) o L (t)(s)
= Ly(ul) = (0 +tG) f)(G )
=2(uD — (0 +tQ) D, GfD)y,.

Evaluating the derivative at ¢ = 0 gives the desired expression

D.1 GRADIENT DESCENT IN OPERATOR RKHS

We now introduce the RKHS framework on our space of operators by using an operator-valued
kernel. The following definitions were posed in |Kadri et al.| (2016b) (Section 4, Definitions 3 and
5).

Definition D.1. Operator-valued Kernel An operator-valued kernel is a function x : X X X —
L(Y) such that
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(i) k is Hermitian, that is, for all f1, fo € X, k(f1, f2) = k(f2, f1)* where * denotes the
adjoint operator.

(ii) k is positive definite on X if it is Hermitian and for every n € N and all (f;,u;) € X x
YVi=12,...,n, the matrix with (7, j)-th entry (s(f;, f;)ui, u;) is a positive definite
matrix.

Definition D.2. Operator RKHS Let O be a Hilbert space of operators O : X — ), equipped
with an inner product (-, -)». We call O an operator RKHS if there exists an operator-valued kernel
kX x X — L(Y) such that

(1) The function g — x(f, g)u for X belongs to the space O forall f € X, u € ).

(ii) k satisfies the reproducing kernel property:

<07K(f7')u>0 = <Of7u>y
foralO € O, f € X,ue ).

We now state the Representer Theorem for operator RKHS’s, as stated in Theorem 11 of |Stepani-
ants| (2023). Assume that O can be decomposed orthogonally into O = Oy & O where Oy is a
finite-dimensional Hilbert space spanned by the operators { E} }}._, and O, is its orthogonal com-
plement under the inner product (-, -)o. We denote the inner product (-, -) restricted to Oy, O; as
{(,Yoq, (*, )0, Tespectively.

Theorem D.3. Let 1) : R — R be a strictly increasing real-valued function and let L(X XY X)) —
R be an arbitrary loss function. Then

0 = argmin £ ({/,u®, 0D}, ) + u(|Iprojo, Ollo,)
oeo

has the form

T n

0= deEk + Z K(FY, )y

k=1 i=1
forsomed e R", Ey, € Og forallk € {1,...,r}and a; € Y foralli € {1,...,n}.

We use this theorem to simplify the expression for gradient descent in operator space.

Lemma D.4. Given any O € O, let G* denote the steepest descent direction of the weighted least-
squares loss with respect to || - |0 as given in equation Suppose O is an RKHS with kernel k.
Then

G*()=cy r(fP ) —0f) 27)
i=1
for some scalar c € RT.

Proof. We apply theorem to equation Equation (25)) with Oy the trivial subspace and v (s) =
252, Then our solution has the form

G*() = > k(fY, ). (28)
=1
We also know that
1G5 = >~ (6(fD, Yai (S, Yazyo = D (6(FD, fD)au, az)y
i,j=1 i,j=1

where the last equality follows from the RKHS property. We observe that

> (B Y, 5(FD, Vag)o = D {ai, k(FD, f9)ay)y
i,j=1 t,5=1

17
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by the same RKHS property. Note that x(f(*), f0)) € £()), that is, is a linear operator from ) to
Y.LetU € X, F € Y" be such that U; = (") and F; = Of"). Then

o’ = arg I;Hn > 2w = 0f D k(£ f)ay)y + Maw, 6(£9, F9)ay)y
agV™ =1

—argmin 3 (2w — OFD + 2y, w(fD, FD)ay)y
aey" i,jzl

Taking the gradient of « as zero, that is, V, = 0 gives us a oc U — OF (here we are looking at «

as an element of J"*). We also note that since ||G*||o = 1,

n

Z (o, K (fD, FN) )y = 1.

i,j=1
It follows that
1
= A - : : ; : U —-OF).
O ST = OF 0, w0, FN ) = 0F)y OF)
Therefore
1 - , . )
G* () = == : : : i ‘ i ,if(t)7. u(’)—Of(’) ]
O = S = 07T Fon e ooy 2 U :
This gives us an exact form of ¢ as stated in equation Equation (27). O

E IN-CONTEXT LEARNING VIA GRADIENT DESCENT PROOF

We first recall some notation from section We are given n demonstrations (f(), u(?) € X x X
forall i € [n]. We set Y = X for our purpose. The goal is to predict the output function for f (n+1),
We stack these in a matrix Z that serves as the input to our transformer:

W) p@ ) D)
Zy = [2(1)7.”72(n)72(n+1)} = <£(1) 1{(2) 1]:(11) f 0 > .

Z, denotes the output of layer ¢ of the transformer as given in equation

Theorem E.1. Let k : X X X — L(X) be an arbitrary operator-valued kernel and O be the
operator RKHS induced by . Let {(f®,u)} | and L(O) := "1, |u®) — O fD|%. Let Oy =
0 and let Oy denote the operator obtained from the (-th operator-valued gradient descent sequence
of L with respect to || - || o as defined in Equation 23)). Then there exist scalar step sizes 1y, ..., T,

sim

such that if, for an m-layer continuum transformer T := Ty, 0...0To, [H(U, W)]; j = s(u®,w)),

Wee = (8 S’I)’ Wy =1, and Wy ¢ = I for each £ = 0, ..., m, then for any f € X,
Ty
%(fv (WU7Wq7 Wk)|z(1)7 ey Z(n)) = _Oéf

Proof. From calculations in subsection Appendix[D.1] we know that the ¢-th step of gradient descent
has the form

Opy1 = Op+ 1) Zﬂ(f(i), VW — 0pf@).
i=1

From the dynamics of the transformer, it can be easily shown by induction that X, = X for all £.

We now prove that

uf) = uD £ T (FO; Wy, W, W)z, ..., 2) (29)

18
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forall j = 0,...,n. In other words, “ul/) — uﬁj ) is equal to the predicted label for f, if f0) = 7.

We prove this by induction. Let’s explicitly write the dynamics for layer 1.

~ T
71 = Zo+ (H (W0 Xo, Weo Xo) M(Wa0Z0)" )

r7 I 0 0 0 €Y (n) ™ 7T
Zo+<H(Xo,Xo) [0 o] ({0 —7'6]} Hb(l) ,ﬁ(n) u(nfﬂ)D >

T
:%+<ﬁawmﬂﬂ&m B ﬂ)
RFDL D) R(FDFO) k(DL FO) /(D] To =]\
k(F2), ) oo KA k(FP ] - :
=Zop+ . : :
: : 0 —T{Ju(")
w(f, FD) A AR P oI B I

0 o 0 0
= Zy — ¢ n i i n n i i n i i
0~ %o {Zi—1 H(f(l),f())u() Zi:1 “(f( ),f())u() Zi:1 “(faf())u( )]
_ Fo - Fo f
T @ S S k(W YD ) ST g (f0) ] D)@y S (f, fO)u® |

By definition, 77 (f; Wy, Wy, Wi)|z(D, ... 200) = —rf S5 k(f, fO)u®. if we plug in = =
x9) for any column j, we recover the j-th column value in the bottom right. In other words, for the
1-layer case, we have

u(lj) - U(j) + lrl(f(j)a (WQ; W?)ywk”'z(l)v RN Z(n))

For the rest of the proof, we use T¢(f) to denote To(f); (Wy, Wy, Wi) |z, ..., 2(™) to simplify
notation. We now prove the induction case. Suppose that uy) = ul® + T;(f©). Then, by exactly
the same calculation above, for the ¢ + 1 layer:

_ T

Zog1 = 2o+ (H(Wq,zXz, Wk,ZXZ)M(Wv,ZZZ)T)
_ T

= Zo+ (H(Xo, Xo) MWy Z0)")

0 0 0

S RO, F S k(M FDYa S (£l
(30)

=Zg—7“2|:

where the second equation follows from the fact that W, , and W, , are identity operators and
X¢ = Xo. We now apply the induction hypothesis to the right hand side and get

F) T A0 f
u® + To(fO) =1, o 6 (D, fO) (@ + To(fO) ... Te(f) =y iy w(f, ) WD + TF,(fO)]

Now Teq1(f) = Te(f) — rp oy 6(f, FO) (@ + To(f@). Substituting f©) in place of f gives
us

uf)y = u? + Topa (F9),

19
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‘We now proceed to the proof of the theorem using induction. At step 0, Zy := 0 = Oy. Now assume
Te(f; Way Wy, Wi) |z, ... 2(M) = —O, f holds up to some layer ¢. For the next layer £ + 1,

n

T (fs Was Wos We)) = Ta(fs Was W WiV, .. 2) — 2 ST (Xo, Xo)n it

i=1

= Te(f; Wos Wo, W) |21, 20) — Z (X0, X0)]nt1,:(u” = Ocf)
= —Ouf =74 Y k(£ fD) (WD = O f)
i=1
- —Onglf.
Here, the first hne follows from plugging in W,, W,,, Wj, in Equation (30). The second line follows
from Equation (29) and the induction hypothesis. O

F BEST LINEAR UNBIASED PREDICTOR

F.1 BLUP COINCIDES WITH BAYES OPTIMAL

We now provide the formal statement that the Best Linear Unbiased Predictor (BLUP) and Bayes
Optimal predictors coincide in this Hilbert space kriging setting of interest.

Theorem F.1. (Theorem 4 ofMenafoglio & Petris|(2016)) Let X,,+1 € X and X = (X1,...,X,) €
X" be zero-mean jointly Gaussian random variables. Assume that the covariance operator Cx is
invertible. Then

E(Xn+1‘x) =L Xa

where the L is the linear operator given by L = CXHHXC;(I. Hence, the conditional expectation
is an unbiased predictor and minimizes the mean squared prediction error

E[| Xnt1 — F(X)I3]

among all the measurable functions f : X™ — X. The best predictor, in the mean squared norm
sense, coincides with the Best Linear Unbiased Predictor.

F.2 IN-CONTEXT LEARNING BLUP PROOF

Proposition F.2. Let F = [f(), ... f0+D] U = [uM, ... D] Letk : X x X — L(X) b

an operator-valued kernel. Assume that UlF isak Gausszan random variable per Definition 3.
Let the activation function H of the attention layer be defined as [H(U,W));; := r(u®®, w(]))
Consider the operator gradient descent in Theorem 3.1 Then as the number of layers m — oo, the
continuum transformer’s prediction at layer m approaches the Best Linear Unbiased Predictor that
minimizes the in-context loss in Equation ().

Proof. The notion of Best Linear Unbiased Predictor (BLUP) for a Gaussian random variable when
all but one of the variables is observed, has been studied extensively in the literature on ‘kriging’.
This problem was solved for random variables in a Banach space in|Luschgy|(1996)). Hilbert-space
valued random variables would be a special case of this. This was dealt with in Menafoglio &
Petris (2016). We use these results to find the BLUP for u("*1) conditional on u(?), ... u(™. First

we partition the covariance operator K(F') into K, which represents the top-left n x n block. Let
v € L(X)™ denote the vector given by v; = K, ,,11-

K v
K= .
|:VT Kn+1,n+1:|

We note that KK is the covariance operator of the random variable U = [u®, ... u™] € X" The
vector v is the cross-covariance operator between the random variable u(* 1) € X and U. Following
Theorem 2 in [Luschgy| (1996), we assume that K is injective. Then Theorem 3 in [Menafoglio &
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Petris| (2016) (which is a Hilbert-space version of Theorem 2 in|Luschgy|(1996)) states that the Best
Linear Unbiased Predictor with respect to the mean squared norm error

E(|[u™ = f(0)]3)
among all measurable functions f : X — X, is given by

VTR = Z r(FOHD ] FOYNRTYul).

ij=1

From the premise of we know that Wy o = I, Wy oy = I, W, o = {8 —1(“)’[]' Set ry = 41 for
¢

all £, where § is a positive constant satisfying ||[I — 0K|| < 1, where the norm is the operator norm.
From previous calculations done in Equation (30), we have:

“£+1 — uz 52 (J)

We define the vector U := [uél), ce ug")} Then in vector notation,
Upr = (I - 0K)U,.

Using induction on £ gives us:
Upr = (I — 0K)‘U.

Again, using Equation (30), we have:

n+1 n+1 n i J
§+41‘ ) _ § +1) 521{(]0( +1)7f(j))UéJ)-

In vector notation, this gives us

¢ ¢
uérf{l) = uEnH) —5TU, = -7 Z U, = -7 Z(I — 6K)kU
k=0 k=0

Since § was chosen such that ||[I — 0K|| < 1, K=! = §35° (I — 0K)*. Hence, as L — oo,
u{" T — TR0, which is the BLUP of u("+1). O

G OPTIMIZATION CONVERGENCE PROOF

We begin by reviewing some basic notions of differentiation in Hilbert spaces, for which we follow
Clément| (2009).

Definition G.1. Let L : X — R be a functional from a Hilbert space X" to real numbers. We say
that L is Fréchet-differentiable at f, € X if there exists a bounded linear operator A : X — R and

a function ¢ : R — R with limg_,q ( ) = 0 such that

L(fo+h) = L(fo) = Ah + ¢([|h] x).-
In this case we define DL(fy) = A

Definition G.2. If L is Fréchet-differentiable at fy € X with DL(f,) € X', then the X-gradient
VxL(fo) € X is defined by

(VaL(fo), f) = DL(fo)(f)
forall f € X.

We now state the assumptions required to prove the results of the optimization landscape.
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Assumption G.3. (Rotational symmetry of distributions) Let Pr denote the distribution of F' =
[f, ..., f* D] and K(F) = Ey p[U ® U)]. We assume that there exists a self-adjoint, invertible

operator ¥ : X — X such that for any unitary operator M, X/2M-1/2F £ [ and K(F) =
K(SV2ME~12F).

Assumption G.4. For any Fy, F, € X"t and any operator S : X — X with an inverse S~!, the
function H satisfies H (Fy, Fy) = H(S*Fy, S~ F).

Theorem G.5. Suppose Assumption and Assumption hold.  Let f(r,Wg, W) :=

L (W'u,é = { [8 SJ } ,Wq7g,Wk7g>, where L is as defined in Equation (9). Let S C
¢=0,...,m

O™t x O™F denote the set of (W,, Wy) operators with the property that (W, W,) € S if
and only if for all £ € {0,...,m}, there exist scalars by, c, € R such that Wy = beX~12 and
Wi = 64271/2. Then

m

> [0n )+ 11Vw, Flifis + IV Fllfis] = 0. 31
0

inf
(r,(Wq, W) €RMH1 xS 4=
Here Vyy, , and Vyy, , denote derivatives with respect to the Hilbert-Schmidt norm || - ||gs.

The key insight to generalizing the proof in the functional gradient descent case in |[Cheng et al.
(2023) is that the Hilbert space there is the space of all matrices, R?*?, equipped with the Frobenius
norm. We are now working with an arbitrary Hilbert space. We refer the reader to |Clément| (2009)
for discussion on the existence and uniqueness of gradient flows in Hilbert spaces.

Proof. We define S-gradient flows as

%w( t) = Oy, L(r(t), Wy(t), Wi(t))

EWialt) = Balt)
%Wk,e(t) = Cu(t)
where
be(t) := (Vo , L(r(t), Wa(t), We(1)), 5/%) By(t) := be(t)5 ™1/
ce(t) = (Ve L (1), Wy (), Wi (1)), £2) Co(t) := ex()E12.
We observe that the definition of the functions B and C' ensures that W, ¢(t), Wi ¢(t) € S for all £.

L), Wy (1), W(1)
k
= 0, L(r(1), Wy(t), Wi(t)) - (=0r, L(r(t), Wy(t), Wi(1)) (32)
=0
k
+ D (Vw,  L(r(8), Wy(t), Wi(t)), Be(t)) us (33)
=0
k
) (Vo  Lr(8), Wa(1), Wi(t)), Co(t)) s (34)
£=0

Clearly, Equation == Z?:o(ar L L(r(t), Wy(t), Wi(t)))?. From Proposition we note that
k

<D AV L (1), Wy ), Wi(1)), =V, L(r (), We (1), Wi(#)))
£=0

k
= =D IV, L (1), Wy (), Wie() [ 7rs-
£=0
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Similarly,

k
< =3 9w L (), Wi (8, Wi(0) -
=0

We have shown that at any time ¢,

k

L Wa(B), Wi(®) < =3 (0r, L(r(t), Wa(). Wil1)))?

£=0

k
- Z VW, L (), Wa£), W) Il Frs = D 1V wie, L (), Wa(E), Wi()) 1 7rs
=0 ¢=0
Suppose Equation (T2) does not hold. Then there exists a positive constant ¢ > 0 such that for all ¢,

k
D@, L (), Wy (1), Wi(1)))? + Z IV, L (), Wa (), Wi (E) I s

=0
+ZHVWN Wa(t), We(0) s > c.

This implies that < L(r(t), W,(t), Wk(t)) < —c for all ¢, which is a contradiction since L(-) is
bounded below by Zero Hence we have proved that Equation (T2) holds.

O
Proposition G.6. Suppose F, U satisfy Assumption and H satisfies Assumption Suppose
Wy, Wy, € S. Fixalayer j € {0,...,m}. Forany R € L(X), let W,(R, j) denote the collection of

operators where Wy (R, j)|; := Wy,; + R and Wy(R, j)]l¢ = Wy for all £ # j. Take an arbitrary
R e L(X). Let

.1
R= gTr(REl/z)Z’l/z,

where RXY/? denotes composition of operators and T is the trace of an operator as defined in
Definition[G.10} Then for any j € {0,...,m},

d _d .
LW (R G| < ZE W (R )W) (35)
and p p
J— . <7 = . .
SLO W W(ERG)| < LWy Wi(tR. )| (36)

Since the proofs of Equation (33) and Equation (36) are similar, we only present the proof of Equa-
tion (33).

Suppose W, (R) be the collection of operators where [W, (R)], = W, ¢+ Rforall¢ € {0,...,m}.
Since Proposition [G.6 holds for any j, and

d m
aL( ), W) = Z

7=0

Q.‘&

T W, tR j) Wk),

an immediate consequence of Proposition [G.6|is that

d ~
L(r, Wq(tR),Wk)LZO < S L(r,W,(tR), W)

a
dt dt t=0

The rest of this section is dedicated to proving this proposition. As a first step, we re-write the
in-context loss using an inner product.
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Lemma G.7. (Re-writing the In-Context Loss) Let Zy be the input of the transformer where the
last entry of Y has not been masked (or zeroed out):

7 fO o fm) et
07 1@ g D)

Let Z; be the output of the ({ — 1) layer of the transformer initialized at Z. Let Fy and U, denote
the first and second row of Z,. Then the in-context loss defined in Equation (@) has the equivalent
form

LOWo, Wy, Wi) = Ez,[((I1 = M)Up, 1, (I = M)Up ).

The Hilbert space corresponds to the direct sum of Hilbert spaces EB X where the inner product
is given by

n+1

<(1}1, ey Un+1)T, (wl, e ,wn+1)T> = Z<U¢,’wi>x.

=1

Proof. We deviate from the mathematical convention where an operator that acts on a function is
always written to the left of the function. We adopt the convention that fO, where O is an operator
and f is a function, also means that the operator acts on the function. This is how the equations
henceforth should be interpreted.

A, O

When W, , = {O rol

], the output at each layer, given in Equation can be simplified as

follows:

Fop]| _ [F . A 0] [F f(”+1)
[Ue+1] = + (H(Wq,eFe,Wk,eFe)M <{0 7‘@1} [Uz 0

F, ~ I 0 <”+1>
= Ui +<H(Wq,er,Wk,szz) {0 0] ({AZFE Aff )

[~¢] TeUp

W(f S R0 ug;,fﬁ";) w(fy ) 1o
_Fg_ H(fl 7f£ ) K(Z ) K( »fe) [(AgFe)T
~¢] : :

(1) (n)
"{(ffvfe ) Ii(fé’ 0 ) ﬁ(f@afl)
_[Fe] | [AcEeMH Wy Fy, W e Fp) 37

_UZ_ _T‘gUgMH(qugF[,Wthg)

Suppose Zj is equal to Z, everywhere, except the (2,n + 1)*" entry, where it is ¢ instead of 0.
We compare the dynamics of 7, and Z,. Since Fy = F,, we see that F; = F,. We claim that
Uy — Uy =10,...,0,c]. We prove this by induction. This is trivially true for £ = 0. Suppose this
holds for step £, then at step £ + 1:

U1 = Up + 10U MHW, 0 Fo, Wy o Fy)
= Up + reUMH Wy o Fo, W o Fy)
=U; + [0, ..., 0, C] —+ T‘gUzM.H(WqJFg, kang)
= U£+1 + [0,...70,6],
where the second equality follows from the fact that U/, M has its (n + 1)*" entry zeroed out, so by

the inductive hypothesis, U,M = U, M. The third equality follows from the inductive hypothesis
again.
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Replacing ¢ by u(™ V) tells us that [Z,,41]oms1 = [Zmii)2mer + w1, Hence, the loss in
Equation (9) can be re-written as

LW, Wy W) = Bz, [[||Zunslzna ]

=Eg, [[[Tnr (1= M)|["]

=Bz, [((T = M)Upir, (T = M)Up 1)) (38)
where the inner product in the last line is the inner product on column vectors in @?:11 X. O

Since A, = 0, an immediate corollary of Equation is as follows.
Corollary G.8. When A; =0 forall ¢ € {0,...,m},
Fpy1 = Fo.
Moreover,
U1 = Up + iU MH(W,  Fo, W o Fo)
¢

= Uo H(I + ’I"iM]‘if(Wq)iF(), kaiFO)).
=0

We now define the trace operator and the tensor product, which allows us to use the covariance
operator.

Definition G.9. Let x1, x> be elements of the Hilbert spaces A7 and X5. The tensor product operator
(1 ® x9) : X1 — Xy is defined by:

(1 @ xa)x = (21, x) 22
for any x € A}.

Definition G.10. Let X’ be a separable Hilbert space and let {e;}$°; be a complete orthonormal
system (CONS) in X. If T € L (X, X) be a nuclear operator. Then we define

TrT = Z(Tei, €i)-
i=1

Henceforth, we assume that our Hilbert space is separable.
Lemma G.11. Suppose x1,x2 € X, be used to construct the tensor product x1 ® xo. Then

Trx; @ xe = (x1,T2).

Proof. Let {e;}52, be a CONS for the Hilbert space X'. The inner product can be written as

(w1, 1) = <Z<x1,ei>ei,z<xz,ei>ei,>

=1 =1
o0

= (r1,€:) (12, €3).
i=1

Similarly, the trace of the tensor product is given by

oo

Trax @ xg = Z«Z‘l & 332)61’)61'>

i=1

(w1, €5)w2, €;)

o

o
Il
N

<l'17 €i><$2, €i>'

o

©
I
—

This completes the proof of the lemma. O
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We also state some properties of these operators without proof:

1. Let A be a linear operator from X — X and ;1 € X. Then
(Axl ® A.’El) = A(xl ® (El)A*,
where A* is the adjoint of A. This can be verified by writing out how each of the above
operators acts on an arbitrary element x € X.
2. The cyclic property of trace, that is, Tr(AB) = T'r(BA) also holds in infinite-dimensional
spaces if A, B are both Hilbert-Schmidt operators. This can be verified using a CONS.
The rest of the proof for Proposition [G.6]has the following outline:

1. We reformulate the in-context loss as the expectation of a trace operator.

2. We introduce a function ¢ : X1 x O — O+ x(+1) which is used to simplify the loss
equation.

3. We understand the dynamics of ¢ over time.

4. We use all the identities we have proved to complete the proof.

In-Context Loss as the Expectation of a Trace-
Using Lemma[G.T1] we can write the in-context loss in Equation (38) as

L(Wo, W, Wi) = Eg, [Tr[((I = M)Up, 1) @ (I = M)Up,14)]]

Since (I — M) is a self-adjoint operator,
(I = M)Up 1) @ (I = M)Upiy) = (I = M) Uy @ Uy 1) (I = M).

Then
LWy, Wos Wi) = Bz, [Tr[(I = M)(Upjyy @ Upp )T = M)]] .

Simplifying the Loss using the Function ¢-
We drop the bar to simplify notation and denote Fy by F'. We also fixa j € {0,...,m}. We define
the functional ¢/ : X"*1 x O — O +Dx(n+1) 54
¢ (F,S) = [ [(I + reMHWq.0(S, 5)F, Wi, e(S)F)).
£=0

Again, for the purpose of simplifying notation, we suppress the index j since the proof follows
through for any index. We use ¢ to denote ¢/ and W, ;(.S) to denote W, (.S, j).

The loss can be reformulated as
LWa, Wy, Wi) = Bz, [Tr[(I = M)((Uo(F,S))" @ (Uog(F, )" )(I = M)]]
=Bz, [Tr((I - M)¢™(F, $)(U5 @ UF)é(F, S)(I - M)]]
=Ep, [Tr[(I = M)¢"(F, S)K(Fo)o(F, S)(I — M)]].
where the last equality follows from Assumption[G.3]and the linearity and cyclic property of trace.

Let U be a uniformly randomly sampled unitary operator. Let Uy, = %'/24/%~1/2, Using Assump-
tion SV2ME-Y2F £ F, we see that

L LV WR), WG| = S [Trl(T — M)* (Fo, tRK(Fo)(Fo, tR)(T — M)
t=0 t=0
= 28, (T = M)0" (FontRIK(F) o Fo0)| (1= 00
t=0
= 2Ep, y [Tr[([ — M)o* (Us Fy, O)K(FO)%QB(UEFO, tR)|  (I- M)]]
t=0
(39)
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where the last equality uses the assumption K(Us Fy) = K(Fp) from Assumption|G.3]

Dynamics of ¢ over Time-
We now prove the following identities-

¢(UZFOa 0) = ¢(F0a 0) (40)
and
d d T
—p(Us Fy, tR) = —¢(Fo, tUs, RUx,) . 41)
dt t—o At t=0
We also recall that
Wylds = b2~ V25V 2y =12 = yw, ,. (42)
Similarly,
W lds = Us Wi s. (43)

We now verify Equation (@0).

oUsFy, 0) = [T + re MAEOW, ihs(S)Fo, Wh.ihs (S) Fp))

amE

~
I
o

(I +reMHUsW, (S)Fo,Us Wi 4(S) Fp))

I
s s

(I 4+ 7eMHW,.0(S)Fo, Wi.0(S)Fo)) = ¢(Fo,0),

~
I
o)

where the last equality follows from the rotational invariance of H from Assumption
We verify the following identity that will be used later on-

d - d -
fH((Wq,e + tS)Us Fy, kaguEFo) = ﬁH(UWqﬁzFo + tSUEFo,UWk’gFO)

dt

t=0 t=0

;44
t=0

d -
= %H(Wq,gFo + tUT SUs, Fy, Wi o Fp)

where the first equality follows from Equation (#2)) and Equation (@3] and the second equality fol-
lows from Assumption|G.4]

Using the chain rule, we get

d
— Fy,t
dt¢(u2 0, R)

t=0

m

7—1
. d -~
= H (H I+ MH(Wq,guzFo,Wk,euzFo))> M —H (W, + tR)Us Fy, Wy ilhs Fy)
£=0

dt =0

m

I 7+ MEW, ddsFo, Wi hs Fy))
(=j+1

— t=0

m j—1
. d
=11 (H(I + MH(Wq,gFO,Wk,gFO))> M — H(W, 1 Fo + tUT Rs Fo, Wi, o )

i=0

]EI
(H (I + MHWyeFo, Wi (Fy))
t=j+

d
= agzs(zjszo,ltuTRqu)

)

t=0

where the second equality follows from Equation (#2), Assumption[G.4]and Equation (#4).
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Putting it Together-
Continuing from Equation (39), we get

%L(Wv, W,(tR), Wi)| = 2Eg, u [Tr[([ — M)¢* (Us, Fy, O)K(FO)%gb(uEFO, tUTRUs)| (T — M)]]
t=0 t=0
= 2Ep, u {Tr[([ — M)¢*(Fy, O)K(FO)%gb(FO, tUTRUs)| (I — M)]}
t=0
=2Ep, [Tr[([ — M)¢* (Fp, O)K(FO)%qb(Fo, tEy [UTRUs])| (1 - M)]}
t=0
= 92Ep, [TT[(I — M)¢* (Fp, O)K(FO)%qs(FO, tR)| (I — M)]}
t=0

d .
= %L(Wv,wq(tR),Wk)

t=0

Here, the first equality follows from Equation (@I)) and the second equality follows from Equa-
tion . The third equality uses the linearity of %QS(FO, tS) in S and the fact that it is jointly
continuously differentiable. This concludes the proof.

H EXPERIMENT KERNEL DEFINITIONS

We provide below the explicit definitions of the kernels studied in the experiments of Section

Kernels for k.. (f, ) Kernels for k,(z,y)
Name Definition Name Definition
s !
Linear (f, f >X/ Laplace  exp _7”1;3”2
Laplacian exp (—M . l—yll2
e Gaussian  exp | — 532
_IVE=VIi %y

Gradient RBF  exp ( v
2 e m2 2
Energy exp (7W)
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I BLUP ADDITIONAL EXPERIMENTAL RESULTS

We present below the in-context learning predictions for each pair of the true data-generating kernel
and choice of k, kernel, in the below visualizations. Paralleling the results seen in Figure[I] we find
that, when k, matches the data-generating kernel, the resulting field prediction structurally matches
the true O f. Across these visualizations, we fix k,, to be the Gaussian for simplicity of presentation.

Linear + Gaussian (Truth) Linear + Gaussian Laplacian + Gaussian

. Gradient RBF + Laplacian

Figure 4: In-context predictions for (k, k,) being (Linear, Gaussian), (Laplacian, Gaussian), (Gra-
dient RBF, Laplace), and (Energy, Laplace) with the data-generating kernel being (Linear, Gaus-
sian).

Energy + Laplacian

Laplacian + Gaussian (Truth) Linear + Gaussian Laplacian + Gaussian

. Gradient RBF + Laplacian Energy + Laplacian

Figure 5: In-context predictions for (&, k ) being (Linear, Gaussian), (Laplacian, Gaussian), (Gra-
dient RBF, Laplace), and (Energy, Laplace) with the data-generating kernel being (Laplacian, Gaus-
sian).

Gradient RBF + Laplacian (Truth) Linear + Gaussian Laplacian + Gaussian

. M

Figure 6: In-context predictions for (k,, k, ) being (Linear, Gaussian), (Laplacian, Gaussian), (Gra-
dient RBF, Laplace), and (Energy, Laplace) with the data-generating kernel being (Gradient RBF,
Laplace).

Energy + Laplacian




Under review as a conference paper at ICLR 2026

Energy + Laplacian (Truth) Linear + Gaussian Laplacian + Gaussian

Figure 7: In-context predictions for (k,, k ) being (Linear, Gaussian), (Laplacian, Gaussian), (Gra-
dient RBF, Laplace), and (Energy, Laplace) with the data-generating kernel being (Energy, Laplace).

Gradient RBF + Laplacian Energy + Laplacian

J POISSON EQUATION SAMPLES

We provide visualizations of samples obtained by solving the Poisson equation below, as used in the
experiments of Section[5.2.1]

Poisson Equation Samples (f, u)

Figure 8: Sample solution pairs generated for the Poisson equation in-context learning task. Samples
of f were drawn from a GRF and u solved with an analytic FFT-based Poisson solver.

K OPTIMIZATION EXPERIMENT DETAILS

K.1 OPTIMIZATION KERNEL ASSUMPTIONS

We now provide the proof that Assumption [3.5] holds for the chosen kernel under the particular
choice of k, being Linear and k, being Gaussian, which follows trivially from properties of the
inner product. In particular, for the assumed operator S : X — X with an inverse S~! referenced
in Assumption [3.3] notice

HFD, FOVu) = kpinear (FV, F@) (kcauss * 1)
= (fD, F®) (kgauss * u)
(S f<1 S7UFP) (kGauss * u)
= (M, (5)" S ) (kGauss * 1)
= (fM, SS7 ) (kgauss * )
= (fD, @) (kGauss * u),

E=4 []ZI(S*Fl, S_lFQ) ]

completing the proof as desired.
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K.2 OPTIMIZATION EXPERIMENT HYPERPARAMETERS

The hyperparameters of the optimization experiment (results presented in Section[5.3) are given in
Table[I} The continuum transformer was implemented in PyTorch [Paszke et al.| (2019). Training a
model required roughly 30 minutes to an hour using an Nvidia RTX 2080 Ti GPUs.

Table 1: Hyperparameters used in the continuum transformer training experiment.

Category

Hyperparameter (Value)

Model

Number of Layers: 250
Image Size: 64 x 64
kyo: 1.0

rp Initialization: —0.01

Dataset

k, Kernel: Gaussian
# In-Context Prompts: 25
# Operator Bases: 30

Training

Optimizer: Adam
Learning Rate: 0.001
Epochs: 10

# Samples: 128
Momentum: 0.0
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L NOTATION REFERENCE

We provide below a comprehensive presentation of the notation from the paper.

Table 2: Notation for the data

Notation Description

X Hilbert space in which the input and output functions lie.

f@ 4 j-th pair of input and output functions.

Zy A matrix in X2% (1) whose first row consists of input functions f(V:i =1,..., n+
1, and whose second row consists of output functions uw, ... u™ 0. The zero is

a placeholder for the predicted output of f("1) which will change as Z, passes
through the transformer.

Xy The first row of Z,.
O Space of operators in which the true operator lies. This is assumed to be an RKHS.
K(F) Covariance operator of the output functions U conditioned on the input functions F'.

Table 3: Notation for the transformer architecture

Notation Description

Te The ¢-th layer of the transformer.

Wi 0, Wq.e, We,e  Key, query and value operators at the /-th layer respectively.
M Mask operator.

H(,") Non-linear operator.

Ty Scalars parametrizing the value operator at layer /.

Table 4: Notation for ICL, gradient descent, and the RKHS framework

Notation Description

L(") In-context loss.

Oy Operator at the /-th gradient descent step.

K Operator-valued kernel which takes an element in X x X’ to a bounded linear operator
on X.
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