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Abstract

Implicit models such as Deep Equilibrium Models (DEQs) have emerged as promis-
ing alternative approaches for building deep neural networks. Their certified robust-
ness has gained increasing research attention due to security concerns. Existing
certified defenses for DEQs employing deterministic certification methods such
as interval bound propagation and Lipschitz-bounds can not certify on large-scale
datasets. Besides, they are also restricted to specific forms of DEQs. In this paper,
we provide the first randomized smoothing certified defense for DEQs to solve
these limitations. Our study reveals that simply applying randomized smoothing
to certify DEQs provides certified robustness generalized to large-scale datasets
but incurs extremely expensive computation costs. To reduce computational re-
dundancy, we propose a novel Serialized Randomized Smoothing (SRS) approach
that leverages historical information. Additionally, we derive a new certified ra-
dius estimation for SRS to theoretically ensure the correctness of our algorithm.
Extensive experiments and ablation studies on image recognition demonstrate
that our algorithm can significantly accelerate the certification of DEQs by up
to 7x almost without sacrificing the certified accuracy. Our code is available at
https://github.com/WeizhiGao/Serialized-Randomized-Smoothing.

1 Introduction

The recent development of implicit layers provides an alternative and promising perspective for neural
network design (Amos & Kolter, 2017; Chen et al., 2018; Agrawal et al., 2019; Bai et al., 2019, 2020;
El Ghaoui et al., 2021). Different from traditional deep neural networks (DNNs) that build standard
explicit deep learning layers, implicit layers define the output as the solution to certain closed-form
functions of the input. These implicit layers can represent infinitely deep neural networks using only
one single layer that is defined implicitly. The unique definition endows implicit models with the
capability to model continuous physical systems, a task that traditional DNNs cannot accomplish
(Chen et al., 2018). Additionally, the implicit function theorem enhances memory efficiency by
eliminating the need to store intermediate states during forward propagation (Chen et al., 2018; Bai
et al., 2019). Furthermore, implicit models offer a valuable accuracy-efficiency trade-off, making
them adaptable to varying application requirements (Chen et al., 2018). These advantages underscore
the significant research value of implicit models.

Deep equilibrium models (DEQs) are one promising class of implicit models that construct the
output as the solution to input-dependent fixed-point problems (Bai et al., 2019). With a fixed-point
solver, DEQs can be seen as infinite-depth and weight-tied neural networks. The modern DEQ-based
architectures have shown comparable or even surpassing performance compared with traditional
explicit models (Bai et al., 2019, 2020; Gu et al., 2020; Chen et al., 2022). Due to the superior
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performance of DEQs, their adversarial robustness has gained increasing research interest. Recent
research has revealed that DEQs also suffer from similar vulnerabilities as traditional DNNs, which
raises security concerns (Gurumurthy et al., 2021; Yang et al., 2022). Multiple works propose
empirical defenses to improve the adversarial robustness of DEQs using regularization methods (Chu
et al., 2023; El Ghaoui et al., 2021) and adversarial training (Yang et al., 2023; Gurumurthy et al.,
2021; Yang et al., 2022). These empirical defenses measure models’ adversarial robustness by the
robust performance against adversarial attacks. However, they do not provide rigorous security
guarantees and often suffer from the risk of a false sense of security (Athalye et al., 2018), leading to
tremendous challenges for reliable robustness evaluation.

As alternatives to empirical defenses, certified defenses aim to provide theoretical robustness guaran-
tees. It is worth noting that certified defenses certify that no adversarial example can ever exist within
a neighborhood of the test sample regardless of the attacks, providing reliable robustness measure-
ments and avoiding the false sense of security caused by weak attacking algorithms. Recent works
have explored interval bound propagation (IBP) (Wei & Kolter, 2021; Li et al., 2022) and Lipschitz
bounding (LBEN) (Havens et al., 2023; Jafarpour et al., 2021) for certifiable DEQs. However, IBP
usually estimates a loose certified radius due to the error accumulation in deep networks (Zhang
et al., 2021) and the global Lipschitz constant tends to provide a conservative certified radius (Huang
et al., 2021). Due to the conservative certification, IBP and LBEN generate trivial certified radii
(namely, close to 0) in some cases such as deep networks, especially in large-scale datasets (e.g.,
ImageNet) (Zhang et al., 2021; Li et al., 2023). Moreover, the design of IBP and LBEN relies on
specific forms of DEQs and can not be customized to various model architectures, restricting the
application of these methods.

Given the inherent limitations of existing works, the objective of this paper is to explore the certified
robustness of DEQs via randomized smoothing for the first time. Randomized smoothing approaches
construct smoothed classifiers from arbitrary base classifiers and provide certified robustness via
statistical arguments (Cohen et al., 2019) based on the Monte Carlo probability estimation. Therefore,
compared with IBP and LBEN methods, randomized smoothing has better flexibility in certifying the
robustness of various DEQs of different architectures. More importantly, the probabilistic certification
radius provided by randomized smoothing can be larger and generalized to large-scale datasets.

Our study reveals that applying randomized smoothing to certify DEQs can indeed provide better
certified accuracy but it incurs significant computation costs due to the expensive fixed point solvers in
DEQs and Monte Carlo estimation in randomized smoothing. For instance, certifying the robustness
of one 256 × 256 image in ImageNet dataset with a typical DEQ takes up to 88.33 seconds. This
raises significant efficiency challenges for the application of certifiable DEQs in real-world appli-
cations. In this paper, we further delve into the computational efficiency of randomized smoothing
certification of DEQs. Our analysis reveals the computation redundancy therein, and we propose an
effective approach, named Serialized Random Smoothing (SRS). Importantly, the certified radius
and theoretical guarantees of vanilla randomized smoothing can not be applied in SRS. Therefore,
we develop a new certified radius with theoretical guarantees for the proposed SRS. Our method
tremendously accelerates the certification of DEQs by leveraging their unique property and reducing
the computation redundancy of randomized smoothing. The considerable acceleration of SRS-DEQ
allows us to certify DEQs on large-scale datasets such as ImageNet, which is not possible in previous
works. In a nutshell, our contributions are as follows:

• We provide the first exploration of randomized smoothing for certifiable DEQs. Our study
reveals significant computation challenges in such certification, and we provide insightful
computation redundancy analyses.

• We propose a novel Serialized Randomized Smoothing approach to significantly acceler-
ate the randomized smoothing certification for DEQs and corresponding certified radius
estimation with new theoretical guarantees.

• We conduct extensive experiments on CIFAR-10 and ImageNet to show the effectiveness of
our SRS-DEQ. Our experiments indicate that SRS-DEQ can speed up the certification of
DEQs up to 7× almost without sacrificing the certified accuracy.

2 Background

In this section, we provide necessary technical background for DEQs and Randomized Smoothing.
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2.1 Deep Equilibrium Models

Implicit formulation. Traditional feedforward neural networks usually construct forward feature
transformations using fixed-size computation graphs and explicit functions zl+1 = fθl(z

l), where zl

and zl+1 are the input and output of layer fθl(·) with parameter θl. DEQs, as an emerging class of
implicit neural networks, define their output as the fixed point solutions of nonlinear equations:

z∗ = fθ(z
∗,x), (1)

where z∗ is the output representation of implicit neural networks and x is the input data. Therefore,
the computation of DEQs for each input data point x requires solving a fixed-point problem to obtain
the representation z∗.

Fixed-point solvers. Multiple fixed-point solvers have been adopted for DEQs, including the naive
solver, Anderson solver, and Broyden solver (Geng & Kolter, 2023). The naive solver directly repeats
the fixed-point iteration until it converges:

zl+1 = f(zl,x). (2)

More details about these solvers can be referred to in the work (Cohen et al., 2019). In this paper, we
denote all solvers as follows:

z = Solver(f,x, z0), (3)

where z0 is the initial feature state that is taken as 0 in DEQs. All the solvers end the iteration if the
estimation error f(z)− z of the fixed point reaches a given tolerance error or a maximum iteration
threshold L.

2.2 Randomized Smoothing

Randomized smoothing (Cohen et al., 2019) is a certified defense technique that guarantees ℓ2-norm
certified robustness. Given an arbitrary base classifier f(·), we construct a smoothed classifier g(·):

g(x) = argmax
c∈Y

P(f(x+ ϵ) = c), (4)

ϵ ∼ N (0, σ2I), (5)

where Y is the label space, and σ2 is the variance of Gaussian distribution. Intuitively, the smoothed
classifier outputs the most probable class over a Gaussian distribution. If we denote pA and pB as the
probabilities of the most probable class cA(x) and second probable class cB(x), Neyman-Pearson
theorem (Neyman & Pearson, 1933) provides a ℓ2-norm certified radius R for the smoothed classifier
g:

g(x+ δ) = cA(x) for all ∥δ∥2 < R, (6)

where R =
σ

2
(Φ−1(pA)− Φ−1(pB)). (7)

Here Φ(x) is the inverse of the standard Gaussian cumulative distribution function, and pA, pB ∈
[0, 1] satisfy:

P(f(x+ ϵ) = cA(x)) ≥ pA ≥ pB ≥ max
c̸=cA(x)

P(f(x+ ϵ) = c).

In practice, pA and pB are estimated using the Monte Carlo method. It is crucial to maintain the
independence of each prediction in the simulation to ensure the correctness of randomized smoothing.

3 Serialized Randomized Smoothing

In this section, we begin by revealing the computation challenges associated with certifying DEQs
using Randomized Smoothing. Subsequently, we propose Serialized Random Smoothing (SRS),
a novel approach to remarkedly enhance the efficiency of DEQ certification. However, directly
applying the estimated radius of the standard randomized smoothing to SRS breaks the theoretical
guarantee of certified robustness. To address this challenge, we develop the correlation-eliminated
certification technique to estimate the radius in SRS.
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(a) Standard Randomized Smoothing (b) Serialized Randomized Smoothing

Figure 1: Illustrations of the standard DEQ and our SRS-DEQ. The representation for each sample
goes through D layers in standard DEQ. Our SRS-DEQ uses the previous representation as the
initialization and converges to the fixed point with a few layers (S ≪ D). After get all the predictions,
SRS-DEQ makes use of correlation-eliminated certification to estimate the certified radius.

3.1 Computation Challenges

According to Eq. (7), we need to estimate the lower bound probability pA and upper bound probability
pB . The appliance of Monte Carlo sampling rescues as follows:

P(f(x+ ϵ) = c) ≈ 1

N

N∑
i

1{f(x+ ϵi) = c}, (8)

where 1{·} is the indicator function, and ϵi ∼ N (0, σ2I) is the i-th random perturbation sampled
from Gaussian distribution. However, it introduces computation challenges due to the large sampling
number N . Our empirical study (Section 4.2) indicates that applying randomized smoothing to certify
MDEQ (Bai et al., 2020) on one 32× 32 image in CIFAR-10 takes 12.89 seconds, and 88.33 seconds
for one 256× 256 image in ImageNet. The computation challenges raise tremendous limitations in
real-world applications.

We provide an analysis for the slow randomized smoothing certification of DEQs. First, each forward
iteration of DEQs can be very expensive. This is because DEQs are typically weight-tied neural
networks so one layer f(z,x) of DEQs needs to be complex to maintain the expressiveness. Second,
the fixed-point solver needs many iterations for convergence. To maintain the best performance, the
solvers usually set a small value for the error tolerance (e.g., 0.001). Although second-order solvers
like Broyden’s method have faster convergence, their computation cost per iteration is higher. Third,
the Monte Carlo estimation in randomized smoothing further exacerbates the expensive inference of
DEQs, leading to significant computation challenges, as shown in Figure 1a.

3.2 Serialized Randomized Smoothing

As introduced in Section 3.1, the Monte Carlo method is employed in randomized smoothing to
estimate the prediction probability, typically necessitating over 10, 000 times inference computation
for certifying one data point. Despite the independent sampling of Gaussian noises, these noises {ϵi}
are added to the same certified data point x to form noisy data samples {x + ϵi}. Notably, these
samples are numerically and visually similar to each other as can be seen in Figure 1. Moreover,
in randomized smoothing, the base classifier is trained on Gaussian-augmented data to be resistant
to noises added to data points, yielding robust features and base classifiers. Therefore, the feature
representation of these noisy samples computed in the forward computation of DEQs shares significant
similarities, resulting in a substantial computation redundancy in the fixed-point solvers. The
computation redundancy contributes to the inefficient DEQ certification with randomized smoothing
as a primary factor. Consider a DEQ with 50 layers as an illustrative example. In the Monte Carlo
estimation with N = 10, 000, it requires the forward computation of 50× 10, 000 = 500, 000 layers.
However, if we can estimate the intermediate representation at the 45th layer, the required forward
iterations reduce to 5× 10, 000 = 50, 000 layers, bringing a 10× acceleration.
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Motivated by the above challenges and analyses, we propose a novel solution, Serialized Randomized
Smoothing (SRS), to effectively reduce the computation redundancy in the certification of DEQs. The
key idea of Serialized Randomized Smoothing is to accelerate the convergence of fixed-point solvers
of DEQs by harnessing historical feature representation information z computed from different noisy
samples, thereby mitigating redundant calculations. While the hidden representation z0 is initialized
as 0 in standard DEQs (Bai et al., 2021a), we propose to choose a better initialization of z0 to
accelerate the convergence of DEQs (Bai et al., 2021a), which can potentially reduce the number of
fixed-point iteration S and computation cost. Specifically, our Serialized Randomized Smoothing
approach leverages the representation zSi computed from the previous noisy sample x + ϵi as the
initial state of the fixed-point solver of the next noisy sample:

zSi = Solver(f,x+ ϵi, z
S
i−1), (9)

where i = 1, 2, . . . , N . As shown in Figure 1b, due to the similarity between z∗i−1(≈ zSi−1) and
z∗i (≈ zSi ) as analyzed in the motivation, it only takes a few fixed-point iterations to adjust the feature
representation from zSi−1 to z∗i (≈ zSi ), which significantly accelerates the prediction of DEQs.

Though a better initialization accelerates the inference of DEQs, it introduces an unnecessary
correlation within the framework of randomized smoothing. In standard randomized smoothing, each
prediction is made independently. However, the predictions are linked through previous fixed points
as defined by Solver(f,x+ ϵi, z

S
i−1). To exemplify this, consider an extreme case where the solver

functions as an identity mapping. In such a case, all subsequent predictions merely replicate the first
prediction. This pronounced correlation effectively reduces the process to an amplification of the
first prediction, breaking the confidence estimation for Monte Carlo. Therefore, we develop a new
estimation of the certified radius with theoretical guarantees in the next subsection.

3.3 Correlation-Eliminated Certification

The primary challenge is to confirm how much the initialization of the fixed-point solver influences
the final predictions. For different data samples x + ϵi and initialization zSi , the cases can be
different depending on the complex loss landscape of the fixed-point problem and the strength of the
solver. Nonetheless, comparing all predictions from SRS with standard predictions, which necessitate
numerous inference steps, is impractical. Such a comparison contradicts the fundamental requirement
for efficiency in this process.

To maintain the theoretical guarantee of randomized smoothing, we propose correlation-elimination
certification to obtain a conservative estimate of the certified radius. The core idea involves discarding
those samples that are misclassified as the most probable class, cA(x), during the Monte Carlo
process. Let pm represent the probability that a sample is predicted as class cA(x) using SRS but
falls into other classes with the standard DEQ. We can drop the misclassified samples as follows:

NE
A = NA − pmNA, (10)

where NA represents the count of samples predicted as class cA(x) and NE
A refers to the subset of

these effective samples that are predicted as class cA(x). Utilizing NE
A and N , we are ultimately

able to estimate the certified radius. For the reason that pm is intractable, we employ an additional
hypothesis test using a limited number of samples to approximate its upper bound. During the Monte
Carlo sampling of SRS, we randomly select K of samples (a small number compared to N ) along
with their corresponding predictions, which are then stored as Xm and Ym, respectively. After the
Monte Carlo sampling, these samples, Xm, are subjected to predictions using the standard DEQ to
yield the labels Yg , which serve as the ground truth. Mathematically, we estimate pm as follows:

N1 =
∑K

i=1
1{Ym = Yg and Yg = cA(x)}, (11)

N2 =
∑K

i=1
1{Ym = cA(x)}, (12)

pm = 1− LowerConfBound(N1, N2, 1− α̃), (13)

where α̃ = α/2 is for keeping the confidence level of the two-stage hypothesis test. Besides,
LowerConfBound(k, n, 1−α) returns a one-sided (1−α) lower confidence interval for the Binomial
parameter p given that k ∼ Binomial(n, p). In other words, it returns some number p for which
p ≤ p with probability at least 1− α over the sampling of k ∼ Binomial(n, p). Intuitively, a smaller
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pm indicates a higher consistency between the predictions of SRS and those of the standard DEQ,
yielding a greater number of effective samples. To enhance comprehension, we include an example
in Appendix I to demonstrate the workflow of correlation-eliminated certification. In the end, we
estimate the certified radius with the following equation:

pA = LowerConfBound(NE
A , N, 1− α̃) (14)

R = σΦ−1(pA) (15)

To implement SRS-DEQ efficiently, we stack the noisy samples into mini-batches for faster parallel
computing as shown in Algorithm 1. Given a certified point, we sample batch-wise noisy data. After
solving the fixed-point problem for the first batch, the subsequent fixed-point problem is initialized
with the solution of the previous one. By counting the effective predictions using Eq. (10), the
algorithm finally returns the certified radius as in standard randomized smoothing (Cohen et al., 2019).
The following Theorem 3.1 theoretically guarantees the correctness of our algorithm (proof available
in Appendix A):
Theorem 3.1 (Correlation-Eliminated Certification). If Algorithm 1 returns a class ĉA(x) with a
radius R calculated by equation 14 and 15, then the smoothed classifier g predicts ĉA(x) within
radius R around x: g(x+ δ) = g(x) for all ∥δ∥ < R, with probability at least 1− α.

4 Experiments

In this section, we conduct comprehensive experiments in the image classification tasks to demonstrate
the effectiveness of the proposed SRS-MDEQ. First, we introduce the experimental settings in detail.
Then we present certification on CIFAR-10 and ImageNet datasets to demonstrate the certified
accuracy and efficiency. Finally, we provide comprehensive ablation studies to understand its
effectiveness.

4.1 Experiment Settings

Datasets. We use two classical datasets in image recognition, CIFAR-10 (Krizhevsky et al., 2009) and
ImageNet (Russakovsky et al., 2015), to evaluate the certified robustness. It is crucial to emphasize
that this is the first attempt to certify the robustness of DEQs on such a large-scale dataset.

DEQ Architectures and Solvers. We select MDEQ with Jacobian regularization (Bai et al., 2020), a
type of DEQs specially designed for image recognition, to serve as the base classifier in randomized
smoothing. Specifically, we choose MDEQ-SMALL and MDEQ-LARGE for CIFAR-10, and MDEQ-
SMALL for ImageNet. To obtain a satisfactory level of certified accuracy, all the base classifiers are
trained on the Gaussian augmented noise data with mean 0 and variance σ2. Detailed information
regarding the model configuration and training strategy is available in Appendix B.

We closely follow the solver setting in MDEQ (Bai et al., 2020). For the standard MDEQ on CIFAR-
10, we use the Anderson solver with the step of {1, 5, 30}. For the standard MDEQ on ImageNet,
we use the Broyden solver with the step of {1, 5, 14}. We apply Anderson and Naive solvers on
CIFAR-10 and Broyden solver on ImageNet for the proposed SRS-MDEQ with the step of {1, 3}.
We adopt a warm-up technique, where we use multi-steps to solve the fixed-point problem for the
first batch in Algorithm 1. The warm-up steps for our SRS-MDEQ are set as 30 and 14 steps for
CIFAR-10 and ImageNet, respectively. The details of warm-up strategy are shown in Appendix K.
For notation simplicity, we use a number after the algorithm name to represent the number of layers
of the model, and we use “N”, “A”, and “B” to denote the Naive, Anderson, and Broyden solvers.
For instance, SRS-MDEQ-3A denotes SRS-MDEQ method with 3 steps of Anderson iterations.

Randomized smoothing. Following the setting in randomized smoothing (Cohen et al., 2019),
we use four noise levels to construct smoothed classifiers: {0.12, 0.25, 0.50, 1.00}. We report the
approximate certified accuracy as in (Cohen et al., 2019), which is defined as the fraction of the
test data that is both correctly classified and certified with a ℓ2-norm certified radius exceeding a
radius threshold r. In our experiments, we set the failure rate as α = 0.001 and the sampling number
as N = 10, 000 in the Monte Carlo method, unless specified otherwise. All the experiments are
conducted on one A100 GPU.

Baselines. We majorly use standard Randomized Smoothing for MDEQs as our baseline for compar-
ison. It is also important to compare our method with state-of-the-art certified defenses. Note that the
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results of randomized smoothing are not entirely comparable to deterministic methods. Although
randomized smoothing can provide better certified radii, its certification is probabilistic, even if the
certified probability is close to 100%. Therefore, we only show the comparison in Appendix D for
reference. However, our results indicate that the certified radii can be more promising in certain cases
when using deterministic methods as references.

4.2 Certification on CIFAR-10 and ImageNet

Table 1: Certified accuracy and running time of one image for the MDEQ-LARGE on CIFAR-10.
The best certified accuracy for each radius is in bold and the time is compared with MDEQ-30A.

Model \ Radius 0.0 0.25 0.5 0.75 1.0 1.25 1.5 ACR Time (s)

MDEQ-1A 28% 19% 13% 8% 5% 3% 1% 0.27 1.06
MDEQ-5A 50% 41% 32% 21% 15% 10% 6% 0.47 2.59
MDEQ-30A 67% 55% 45% 33% 23% 16% 12% 0.62 12.89

SRS-MDEQ-1N 61% 52% 44% 31% 22% 15% 11% 0.57 1.02 (13×)
SRS-MDEQ-1A 63% 53% 45% 32% 22% 16% 12% 0.59 1.79 (7×)
SRS-MDEQ-3A 66% 54% 45% 33% 23% 16% 11% 0.62 2.55 (5×)

Table 2: Certified accuracy and running time of one image for the MDEQ-SMALL on CIFAR-10.
The best certified accuracy for each radius is in bold and the time is compared with MDEQ-30A.

Model \ Radius 0.0 0.25 0.5 0.75 1.0 1.25 1.5 ACR Time (s)

MDEQ-1A 21% 17% 13% 10% 6% 4% 1% 0.23 0.28
MDEQ-5A 52% 42% 29% 21% 11% 7% 3% 0.45 0.64
MDEQ-30A 62% 50% 38% 30% 22% 13% 9% 0.59 3.08

SRS-MDEQ-1N 47% 38% 28% 19% 11% 6% 2% 0.41 0.27 (11×)
SRS-MDEQ-1A 60% 47% 36% 27% 17% 12% 8% 0.56 0.46 (7×)
SRS-MDEQ-3A 60% 50% 38% 29% 21% 12% 8% 0.59 1.14 (3×)

Table 3: Certified accuracy and running time of one image for the MDEQ-SMALL on ImageNet.
The best certified accuracy for each radius is in bold and the time is compared with MDEQ-14B.

Model \ Radius 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Time (s)

MDEQ-1B 2% 2% 1% 1% 1% 1% 0% 7.30
MDEQ-5B 39% 33% 28% 23% 19% 15% 11% 31.77
MDEQ-14B 45% 39% 33% 28% 22% 17% 11% 88.33

SRS-MDEQ-1B 40% 34% 32% 27% 21% 16% 10% 15.21 (6×)
SRS-MDEQ-3B 44% 39% 33% 28% 22% 17% 11% 27.48 (3×)

We compare the certified accuracy and the running time of standard MDEQ and our SRS-MDEQ
across various layers to further validate the efficiency and robustness of the models. The experimental
results of the large and small architectures on the CIFAR-10 with σ = 0.5 are presented in Tables 1
and 2, and the results on Imagenet with σ = 1.0 are shown in Table 3. The results for models using
different values of σ are provided in the Appendix E . Based on these results, we make the following
observations from several aspects.

Number of layers. We delve into a detailed study of the impact of layers in MDEQ. The results
in Table 1, Table 2, and Table 3 indicate that the certified accuracy of both MDEQ and SRS-
MDEQ increases with the increase of layers. Moreover, with a few layers, our SRS-MDEQ-1 and
SRS-MDEQ-3 can significantly outperform the MDEQ-1 and MDEQ-5 and achieve comparable
performance to MDEQ-30. For instance, for CIFAR-10, SRS-MDEQ-3A can outperform MDEQ-
1/MDEQ-5 by an average of 28.5%/12.1% (large) and 24.3%/8.8% (small), respectively. The results
with other noise levels are shown in Appendix E.
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Figure 2: RRD histogram with MDEQ-LARGE with 20 bins.

0.0 0.2 0.4 0.6 0.8 1.0
pm

0

5

10

15

20

no
rm

al
ize

d 
fre

qu
en

cy SRS-MDEQ-A1

(a)

0.0 0.2 0.4 0.6 0.8 1.0
pm

0

5

10

15

20

no
rm

al
ize

d 
fre

qu
en

cy SRS-MDEQ-A3

(b)

0.1 0.0 0.1 0.2 0.3 0.4 0.5
gap

0

5

10

15

20

no
rm

al
ize

d 
fre

qu
en

cy SRS-LARGE-A1

(c)

0.1 0.0 0.1 0.2 0.3 0.4 0.5
gap

0

5

10

15

20

no
rm

al
ize

d 
fre

qu
en

cy SRS-LARGE-A3

(d)

Figure 3: Gap histogram of MDEQ-LARGE and pm histogram of MDEQ-LARGE with 10 bins.

Running Time. The running time summarized in Table 1, Table 2, and Table 3 shows significant
efficiency improvements of our SRS-DEQ method compared with standard randomized smoothing.
In general, the time cost almost linearly increases with the number of layers. The standard MDEQ
requires 30 layers to certify each image to a satisfactory extent, which costs 12.89 seconds per image
for the large model and 3.08 seconds per image for the small model on CIFAR-10. This process
leads to a heavy computational burden in the certification process. Fortunately, this process can be
significantly accelerated by our SRS-MDEQ. To be specific, for CIFAR-10, large SRS-MDEQ-1N
is near 11× faster than large MDEQ-30A with a 2.5% certified accuracy drop. Besides, small
SRS-MDEQ-3A outperforms small MDEQ-30A in efficiency by 7× with only a 1% accuracy drop.
On Imagenet, our SRS-MDEQ-1B can speed up the certification by 6× while enhancing certified
robustness compared to MDEQ-14B.

4.3 Ablation Study

In this section, we conduct comprehensive ablation studies to investigate the instance-level consistency
and the effectiveness of our correlation-eliminated certification. We also provide more ablation
studies on the hyperparameter of MDEQ solvers in Appdenix F and G. Finally, we show the empirical
robustness performance of our method in Appendix L.

Instance-level consistency. Besides providing global measurements for the SRS-MDEQ with the
certified accuracy in Section 4.2, we study how closely SRS-MDEQ matches accurate MDEQ at the
instance level based on our proposed Relative Radius Difference (RRD). RRD compares the relative
difference between the certified radius of SRS-MDEQ and the accurate MDEQ for each instance xi:

RRD(xi) =
|rib − ris|

rib
, (16)

where rib and ris represent the certified radius of xi with MDEQ-30A and SRS-MDEQ, respectively.
We compute RRD over the instances with a positive certified radius to avoid the singular value.

We present the histograms of RRD in Figure 2. As shown in Section 4.3, only with one layer, the
certified radius achieved by SRS-MDEQ-1A is quite close to the accurate MDEQ since these relative
differences are mostly small and close to 0, and it significantly outperforms the standard MDEQ-1A
with one layer. Moreover, with 3 layers as shown in Section 4.3, the RRD values become even more
concentrated around 0, which shows a very consistent certified radius with the accurate MDEQ. The
instance level measurement for other settings of MDEQs are shown in Appendix H.

Power of correlation-eliminated certification. The correctness of our method is based on estimating
the upperbound of pm. In this ablation study, we investigate the effectiveness in the following two
aspects. We provide additional analysis for this technique in Appendix I.
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(1) The magnitude of the upperbound. A large pm indicates that we need to drop many predictions in
ĉA, showcasing strong correlation in SRS-DEQ. We plot the histogram of pm to show the magnitude.
Figure 3a and 3b illustrates that the majority of pm values fall within lower intervals, even with just
a single step. This trend is more pronounced with three layers, as depicted in Figure 3b. These
observations suggest that an increase in the number of steps reduces the correlation in predictions,
resulting in a certified radius calculated by our method closer to the one obtained through standard
randomized smoothing for DEQs. The inner reason is that our approach does not necessitate the
exclusion of a large number of samples for most certified points.

(2) The empirical correctness of the upperbound, i.e., if the estimated value is larger than the number
of samples we should drop. For each certified point, we calculate the gap between those two values:

pm − 1

NA

N∑
n=1

1{ynb ̸= yns and yns = cA}, (17)

where NA is the number of samples classified as cA with SRS. As shown in Figure 3c and 3d, the
histogram of the gap, the value is always larger than 0, meaning that the estimation effectively covers
the samples that we should drop. Moreover, the gap distribution is notably skewed towards 0. For
example, more than 95% of the gaps are less than 0.2, signifying that our estimation is not only
effective but also tight. More results can be found in Appendix I.

Model\Radius 0.0 0.25 0.5 0.75 1.0 1.25 1.5

ResNet-110 65% 54% 41% 32% 23% 15% 9%

MDEQ-30A 67% 55% 45% 33% 23% 16% 12%
SRS-MDEQ-3A 66% 54% 45% 33% 23% 16% 11%

Table 4: Comparison of certified accuracy for ResNet-110 and the MDEQ-LARGE architecture with
σ = 0.5 on CIFAR-10. The best certified accuracy for each radius is in bold.

Compared to explicit neural networks. To demonstrate the superior performance of certification
with DEQs, we also compare our results against those of explicit neural networks. Despite surpassing
the performance of explicit neural networks is not our target, we claim the performance of DEQs can
catch up with them, as shown in Table 4. We provide a comparison between DEQs and ResNet-110
under the same training and evaluation setting, and the results are consistent with those reported
in (Cohen et al., 2019).

Results on Other Randomized Smoothing methods. In addition to the standard version of random-
ized smoothing (Cohen et al., 2019), there are more advanced methods available. To demonstrate
the general adaptability of our approach to randomized smoothing, we conduct experiments using
SmoothAdv (Salman et al., 2019). For these experiments, we utilize PGD (Kurakin et al., 2016) as
the adversarial attack method, setting the number of adversarial examples during training to 4. The
results, presented in Table 5, show that SmoothAdv improves certified accuracy for both standard
randomized smoothing and our SRS approach.

Model \ Radius 0.0 0.25 0.5 0.75 1.0 1.25 1.5

MDEQ-1A (adv) 23% 17% 12% 9% 6% 4% 2%
MDEQ-5A (adv) 52% 44% 32% 21% 17% 14% 10%
MDEQ-30A (adv) 62% 54% 43% 37% 30% 23% 14%
MDEQ-30A (standard) 62% 50% 38% 30% 22% 13% 9%

SRS-MDEQ-1A (adv) 60% 43% 35% 27% 18% 14% 9%
SRS-MDEQ-3A (adv) 60% 52% 43% 36% 29% 22% 14%

Table 5: Certified accuracy for the MDEQ-SMALL architecture with σ = 0.5 on CIFAR-10 using
SmoothAdv. The maximum norm ϵ of PGD is set as 0.5 and the number of steps T is set as 2.
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5 Related Work

5.1 Deep Equilibrium Models

Recently, there have been many works on deep implicit models that define the output by implicit
functions (Amos & Kolter, 2017; Chen et al., 2018; Bai et al., 2019; Agrawal et al., 2019; El Ghaoui
et al., 2021; Bai et al., 2020; Winston & Kolter, 2020). Among these, deep equilibrium model
defines the implicit layer by solving a fixed-point problem (Bai et al., 2019, 2020). There are many
fundamental works investigating the existence and the convergence of the fixed point (Winston
& Kolter, 2020; Revay et al., 2020; Bai et al., 2021b; Ling et al., 2023). With many advantages,
DEQs achieve superior performance in many tasks, such as image recognition (Bai et al., 2020),
image generation (Pokle et al., 2022), graph modeling (Gu et al., 2020; Chen et al., 2022), language
modeling (Bai et al., 2019), and solving complex equations (Marwah et al., 2023). Though DEQs
catch up with the performance of DNNs, the computation inefficiency borders the deployment of
deep implicit models in practice (Chen et al., 2018; Dupont et al., 2019; Bai et al., 2019). Related
works focus on reusing information from diffusion models and optical flows, demonstrating the
effectiveness of reducing computational redundancy of DEQs (Bai & Melas-Kyriazi, 2024; Bai et al.,
2022). However, this paper focuses on the certified robustness of DEQs and provides a theoretical
analysis of our proposed method.

5.2 Certified Robustness

Empirical defenses like adversarial training are well-known in deep learning (Goodfellow et al., 2014).
Some existing works improve the robustness of DEQs by applying adversarial training (Gurumurthy
et al., 2021; Yang et al., 2023, 2022). Different from the empirical defense like adversarial training,
certified defenses theoretically guarantee the predictions in a small ball maintain as a constant (Wong
& Kolter, 2018; Raghunathan et al., 2018; Gowal et al., 2018; Cohen et al., 2019). The most common
way to certify robustness is to define a convex program, which lower bounds the worst-case perturbed
output of the network (Raghunathan et al., 2018; Wong & Kolter, 2018). The increasing computation
complexity in high-dimension optimization hinders the generalization of these methods. Interval
bound propagation (IBP) is another certification method for neural networks, which computes an upper
bound of the class margin through forward propagation (Gowal et al., 2018). However, the layer-by-
layer computation mode brings a potentially loose certified radius. Recently, randomized smoothing
has drawn much attention due to its flexibility (Cohen et al., 2019). Randomized smoothing certifies
ℓ2-norm robustness for arbitrary classifiers by constructing a smoothed version of the classifier. There
are some existing works certifying robustness for DEQs. Most of them adapt IBP to DEQs by
constructing a joint fixed-point problem (Wei & Kolter, 2021; Li et al., 2022). Others design specific
forms of DEQs to control the Lipschitz constant of the models (Havens et al., 2023; Jafarpour et al.,
2021). Yet, no existing work explores randomized smoothing for certifiable DEQs.

6 Conclusion

In this work, we provide the first exploration of randomized smoothing certification for DEQs.
Our study shows that randomized smoothing for DEQs can certify more generalized architectures
and be applied to large-scale datasets but it incurs significant computation costs. We delve into
the computation bottleneck of this certified defense and point out the new insight of computation
redundancy. We further propose a novel Serialized Random Smoothing approach to significantly
reduce the computation cost by leveraging the computation redundancy. Finally, we propose a
new estimation for the certified radius for our SRS. Our extensive experiments demonstrate that
our algorithm significantly accelerates the randomized smoothing certification by up to 7× almost
without sacrificing the certified accuracy. Our discoveries and algorithm provide valuable insight and
a solid step toward efficient robustness certification of DEQs. Our work significantly improves the
security of artificial intelligence, especially applicable in sensitive domains, enhancing the appliance
of the models and maintaining the integrity of AI-driven decisions. Though our paper speeds up the
certification of DEQs with randomized smoothing, it cannot be directly applied to other architecture.
We regard the speedup for the general method as our future research.
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A Proofs of Theorem 3.1

Theorem. With probability at least 1− α over Algorithm 1. If Algorithm 1 returns a class ĉA with a
radius R, then the smoothed classifier g predicts ĉA within radius R around x: g(x+ δ) = g(x) for
all ∥δ∥ < R.

Proof. From the contract of the hypothesis test, we know that with the probability of at least 1− α̃
over all the samplings ϵ1, ϵ2, · · · , ϵN , we have pm > P(yis = ĉA and yib ̸= ĉA) = pm, where yis and
yib represent the predictions of x+ ϵi given by SRS and the standard DEQ, respectively. Denote the
number of samplings as follows:

NE
A = NA − pmNA, (18)

N̂E
A = NA − pmNA, (19)

where NE
A is the fact number that the predictions of the standard DEQs are class ĉA, while N̂E

A is
the number we estimate. In this way, LowerConfBound(N̂E

A , N, α̃) < LowerConfBound(NE
A , N, α̃).

Suppose the standard randomized smoothing returns R with NE
A and N , we conclude that R < R

with the probability of at least 1−α̃. With Proposition 2 in the standard randomized smoothing (Cohen
et al., 2019), g(x + δ) = g(x) for all ∥δ∥ < R for all ∥δ∥ < R. Denote the event that the radius
of SRS is smaller than the radius of RS as A and the event that the radius of RS can certify the
data points B. We can conclude that P(Ā) = P(B̄) = α̃ following the hypothesis tests. The final
probability of successfully certifying the data point is:

P(A ∪B) = P(B)− P(Ā ∪B) = 1− P(B̄)− P(Ā ∪B) ≥ 1− P(B̄)− P(Ā) = 1− 2α̃ (20)

where P(Ā) is the probability that A does not happen. By setting α̃ = α/2, we complete the proof. □

B Experiment Details

B.1 Model Architecture

Multi-resolution deep equilibrium models (MDEQ) are a new class of implicit networks that are
suited to large-scale and highly hierarchical pattern recognition domains. They are inspired by the
modern computer vision deep neural networks, which leverage multi-resolution techniques to learn
features. These simultaneously learned multi-resolution features allow us to train a single model
on a diverse set of tasks and loss functions, such as using a single MDEQ to perform both image
classification and semantic segmentation. MDEQs are able to match or exceed the performance of
recent competitive computer vision models, achieving high accuracy in sequence modeling.

We report the model hyperparameters in Table 6. For CIFAR-10, we utilize both MDEQ-SMALL
and MDEQ-LARGE architectures, while for ImageNet, we only employ MDEQ-SMALL. Most of
the hyperparameters remain consistent with the ones specified in work (Bai et al., 2021b). MDEQs
define several resolutions in the implicit layer to align with ResNet in computer vision. Consequently,
the primary distinction between the models lies in the channel size and resolution level. Additionally,
all the models are equipped with GroupNorm, as presented in the standard MDEQ (Bai et al., 2020).

CIFAR-10 ImageNet
SMALL LARGE SMALL

Input Size 32× 32 32× 32 224× 224
Block BASIC BASIC BOTTLENECK
Number of Branches 3 4 4
Number of Channels [8, 16, 32] [32, 64, 128, 256] [32, 64, 128, 256]
Number of Head Channels [7, 14, 28] [14, 28, 56, 112] [28, 56, 112, 224]
Final Channel Size 200 1680 2048

Table 6: Model hyperparameters in our experiments.
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B.2 Training Setting

We report the training hyperparameters in Table 8. Following work (Bai et al., 2021b), we use Jacobian
regularization to ensure stability during the training process. Moreover, to prevent overfitting, we
employ data augmentation techniques such as random cropping and horizontal flipping, which are
commonly utilized in various computer vision tasks.

Gaussian Augmentation: As mentioned in Section 3.2, randomized smoothing requires the base
classifier to be robust against Gaussian noise. Therefore, we train the MDEQs with Gaussian
augmentation. Following the standard randomized smoothing (Cohen et al., 2019), we augment the
original data with noise sampled from N (0, σ2I), where σ denotes the noise level in the smoothed
classifier. Intuitively, the training scheme forces the base classifier to be robust to the Gaussian noise,
which is used in randomized smoothing. Formally, under the cross-entropy loss, the objective is to
maximize the following:

n∑
i=1

Eϵ log
exp fci(xi + ϵ)∑
c∈Y exp fc(xi + ϵ)

, (21)

where (xi, ci) is one clean data point with its ground-truth label. According to Jensen’s inequality,
Equation (21) is the lower bound of the following one:

n∑
i=1

logEϵ
exp fci(xi + ϵ)∑
c∈Y exp fc(xi + ϵ)

. (22)

The equation within the expectation represents the softmax output of the logits produced by the base
classifier f . This can be seen as a soft version of the argmax function. Consequently, the expectation
approximates the probability of class ci when Gaussian augmentation is applied. By doing so, we
aim to maximize the likelihood of the smoothed classifier g(x):

n∑
i=1

logP(f(xi + ϵ) = ci). (23)

To demonstrate our method is general to DEQs with any training scheme, we conduct ablation studies
of Jacobian regularization. Jacobian regularization stabilizes the training of the backbones but it is
not crucial for the certification (Bai et al., 2021b). The results in Table 7 show that using Jacobian
regularization can help stabilize the fixed-point solvers but will almost not affect the final performance
with enough fixed-point iterations. Our conclusion is consistent with Bai et al. (2021b) where the
regularization does not increase the accuracy but decreases the number of fixed-point iterations.
Though the experiments show that using Jacobian regularization is not crucial in the certification, we
recommend to use the regularization in the training for more stable performance.

Model \ Radius 0.0 0.25 0.5 0.75 1.0 1.25 1.5

MDEQ-30A (w/o Jacobian) 63% 51% 38% 29% 19% 13% 7%
SRS-MDEQ-3A (w/o Jacobian) 60% 49% 38% 28% 18% 12% 6%

MDEQ-30A (w Jacobian) 62% 50% 38% 30% 22% 13% 9%
SRS-MDEQ-3A (w Jacobian) 60% 50% 38% 29% 21% 12% 8%

Table 7: Ablation study of Jacobian regularization for the MDEQ-SMALL architecture with σ = 0.5
on CIFAR-10.

C Algorithm

In this subsection, we present the pseudo code of our algorithm in Algorithm 1. The implementation
is based on mini-batch mode, which is efficient in practice.
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CIFAR-10 ImageNet
SMALL LARGE SMALL

Batch Size 96 96 128
Epochs 120 220 100
Optimizer Adam Adam SGD
Learning Rate 0.001 0.001 0.04
Learning Rate Schedule Cosine Cosine Cosine
Momentum 0.98 0.98 0.9
Weight Decay 0.0 0.0 2× 10−5

Jacobian Reg. Strength 0.5 0.4 2.5
Jacobian Reg. Frequency 0.05 0.02 0.08

Table 8: Training hyperparameters in our experiments.

Algorithm 1 Certified Radius with SRS-DEQ

Require: DEQ f(·), certified data x, sampling numbers N , batch size B, failure rate α
1: Initialize Counts with 0 for each class
2: Calculate hypothesis test confidence: α̂ = 1−

√
1− α

3: Fixed-point initialization: Z0 = 0 ∈ RB×d

4: for 1 ≤ i ≤ N/B do
5: X = [x,x, . . . ,x]⊤ ∈ RB×d

6: Sample ϵj ∼ N (0, σ2I), ∀j = 1, 2, · · · , B
7: X̃ = [x+ ϵ1,x+ ϵ2, . . . ,x+ ϵB ]

⊤ ∈ RB×d

8: Zi = Solver(f, X̃,Zi−1)
9: Classify Zi to get Predictions

10: Store samples and labels in Xm and Ym

11: Update Counts according to Predictions
12: end for
13: Predict Xm with the standard DEQ to get Yg

14: Compute the estimated pm using Eq. (13)
15: Compute NE

A using Eq. (10)
16: Compute R with Counts using Eq. (7)
Return: R

D Comparsion with Baselines

In certified defenses, ℓ2-norm and ℓ∞-norm are widely used. Since randomized smoothing provides
ℓ2-norm certified radii, we choose baselines with the same certified norm. We compare the per-
formance with the state-of-the-art DEQ certification methods on CIFAR-10 (Havens et al., 2023)
including SLL (Araujo et al., 2023) and LBEN (Revay et al., 2020), which certify robustness with
Lipschitz bound. To align with the numbers reported in Havens et al. (2023), we adopt the same
certified radius in the table. We present the certified accuracy for the large SRS-MDEQ under different
certified radii. Since the code of SLL and LBEN is not publicly available, our comparison is based
on reported results in their papers for CIFAR-10.

Model Certification Method r = 0.0 r = 36
255

r = 72
255

r = 108
255

r = 1.0

SLL Lipschitz Bound 65% 56% 46% 36% 11%
LBEN Lipschitz Bound 45% 36% 28% 21% 4%

SRS-MDEQ-1A Randomized Smoothing 63% 59% 53% 48% 22%
SRS-MDEQ-3A Randomized Smoothing 66% 62% 56% 52% 25%

Table 9: Comparison with existing certification methods and SRS-MDEQ-LARGE. The best certified
accuracy is in bold.
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As shown in Table 9, our SRS-MDEQ-1 already significantly outperforms existing certification
methods across all the certified radii. It also verifies that randomized smoothing defense provides
tighter certification bounds. We want to emphasize again that the results of randomized smoothing
are not entirely comparable to deterministic methods. Although randomized smoothing can provide
better-certified radii, its certification is probabilistic, even if the certified probability is close to 100%.

E Other Noise Levels

In the main paper, we present results using a noise level of σ = 0.5 for CIFAR-10 and σ = 1.0 for
ImageNet. In this appendix, we present the results on other noise levels in Tables 10 to 17. For
ImageNet, we adopt a larger noise level as suggested in paper (Cohen et al., 2019). The reason behind
this choice is that images can tolerate higher levels of isotropic Gaussian noise while still preserving
their high-resolution content. Since the noise level does not affect the running time, we do not show
the running time in these tables.

Tendency: The observed performance trend aligns with standard randomized smoothing techniques.
When using a smaller noise level σ, the models exhibit higher certified accuracy within a smaller
radius. However, the models are unable to provide reliable certification for larger radii due to the
base classifier’s lack of robustness against high-level noise. For example, the smoothed classifier with
σ = 0.12 on CIFAR-10 can certify up to 70% accuracy within a radius of 0.25, but its certification
capability is truncated when the radius exceeds 0.5. Conversely, when employing a larger noise level
σ, the model can certify a larger radius, but this results in a drop in accuracy on clean data.

Model \ Radius 0.0 0.25 0.5 0.75 1.0 1.25 1.5

MDEQ-1A 23% 14% 0% 0% 0% 0% 0%
MDEQ-5A 73% 48% 0% 0% 0% 0% 0%
MDEQ-30A 86% 68% 0% 0% 0% 0% 0%

SRS-MDEQ-1N 85% 67% 0% 0% 0% 0% 0%
SRS-MDEQ-1A 85% 68% 0% 0% 0% 0% 0%
SRS-MDEQ-3N 85% 65% 0% 0% 0% 0% 0%
SRS-MDEQ-3A 86% 69% 0% 0% 0% 0% 0%

Table 10: Certified accuracy for MDEQ-LARGE with σ = 0.12 on CIFAR-10.

Model \ Radius 0.0 0.25 0.5 0.75 1.0 1.25 1.5

MDEQ-1A 20% 13% 8% 4% 0% 0% 0%
MDEQ-5A 33% 21% 15% 10% 0% 0% 0%
MDEQ-30A 79% 63% 47% 32% 0% 0% 0%

SRS-MDEQ-1N 74% 61% 46% 30% 0% 0% 0%
SRS-MDEQ-1A 74% 61% 46% 29% 0% 0% 0%
SRS-MDEQ-3N 77% 60% 48% 31% 0% 0% 0%
SRS-MDEQ-3A 80% 63% 47% 31% 0% 0% 0%

Table 11: Certified accuracy for MDEQ-LARGE with σ = 0.25 on CIFAR-10.

The strength of the solvers influences the certified accuracy. With a stronger Anderson solver, the
SRS-MDEQ performs better than the naive one. For ImageNet, the high-resolution difficulty even
requires us to use a quasi-Newton method to keep the convergence of the model. The number of
steps is another crucial factor for the performance. The model has better performance no matter what
solver you use.

F MDEQs with More Steps

In the main paper, we showcase the results of our SRS limited to a maximum of 3 steps for efficiency.
These results nearly match the performance of the standard randomized smoothing approach, albeit
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Model \ Radius 0.0 0.25 0.5 0.75 1.0 1.25 1.5

MDEQ-1A 16% 14% 13% 11% 9% 7% 6%
MDEQ-5A 38% 30% 24% 18% 14% 11% 8%
MDEQ-30A 48% 41% 35% 28% 23% 19% 15%

SRS-MDEQ-1N 40% 35% 28% 24% 19% 16% 11%
SRS-MDEQ-1A 42% 38% 29% 24% 19% 17% 14%
SRS-MDEQ-3N 44% 40% 32% 24% 20% 17% 13%
SRS-MDEQ-3A 46% 41% 34% 28% 23% 18% 15%

Table 12: Certified accuracy for MDEQ-LARGE with σ = 1.0 on CIFAR-10.

Model \ Radius 0.0 0.25 0.5 0.75 1.0 1.25 1.5

MDEQ-1A 28% 15% 0% 0% 0% 0% 0%
MDEQ-5A 62% 35% 0% 0% 0% 0% 0%
MDEQ-30A 80% 52% 0% 0% 0% 0% 0%

SRS-MDEQ-1N 72% 37% 0% 0% 0% 0% 0%
SRS-MDEQ-1A 75% 44% 0% 0% 0% 0% 0%
SRS-MDEQ-3N 75% 44% 0% 0% 0% 0% 0%
SRS-MDEQ-3A 79% 52% 0% 0% 0% 0% 0%

Table 13: Certified accuracy for MDEQ-SMALL with σ = 0.12 on CIFAR-10.

Model \ Radius 0.0 0.25 0.5 0.75 1.0 1.25 1.5

MDEQ-1A 21% 12% 7% 4% 0% 0% 0%
MDEQ-5A 56% 37% 20% 12% 0% 0% 0%
MDEQ-30A 72% 54% 38% 24% 0% 0% 0%

SRS-MDEQ-1N 62% 48% 30% 14% 0% 0% 0%
SRS-MDEQ-1A 69% 52% 35% 19% 0% 0% 0%
SRS-MDEQ-3N 69% 51% 34% 16% 0% 0% 0%
SRS-MDEQ-3A 72% 53% 36% 24% 0% 0% 0%

Table 14: Certified accuracy for MDEQ-SMALL with σ = 0.25 on CIFAR-10.

Model \ Radius 0.0 0.25 0.5 0.75 1.0 1.25 1.5

MDEQ-1A 21% 18% 15% 13% 11% 9% 6%
MDEQ-5A 37% 31% 23% 17% 14% 11% 9%
MDEQ-30A 46% 39% 32% 24% 19% 16% 14%
SRS-MDEQ-1N 38% 32% 25% 20% 17% 14% 11%
SRS-MDEQ-1A 42% 35% 26% 22% 18% 15% 13%
SRS-MDEQ-3N 44% 35% 27% 21% 17% 15% 12%
SRS-MDEQ-3A 46% 38% 32% 24% 19% 16% 13%

Table 15: Certified accuracy for the MDEQ-SMALL with σ = 1.0 on CIFAR-10.

with slight discrepancies. This ablation study extends the process to 5 steps to evaluate potential
performance improvements. We replicate the experimental settings from the main paper but with
the increased step count. The outcomes, detailed in Tables 18 to 20, reveal that while there is some
enhancement in performance, the gains are marginal. Given that our method prioritizes efficiency, we
find that three steps are sufficient for all the experiments conducted in our paper.
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Model \ Radius 0.0 0.5 1.0 1.5 2.0 2.5 3.0

MDEQ-1B 0% 0% 0% 0% 0% 0% 0%
MDEQ-5B 54% 40% 0% 0% 0% 0% 0%
MDEQ-14B 67% 52% 0% 0% 0% 0% 0%

SRS-MDEQ-1B 62% 52% 0% 0% 0% 0% 0%
SRS-MDEQ-3B 66% 52% 0% 0% 0% 0% 0%

Table 16: Certified accuracy for the MDEQ-SMALL with σ = 0.25 on ImageNet.

Model \ Radius 0.0 0.5 1.0 1.5 2.0 2.5 3.0

MDEQ-1B 0% 0% 0% 0% 0% 0% 0%
MDEQ-5B 47% 38% 29% 22% 0% 0% 0%
MDEQ-14B 57% 46% 37% 27% 0% 0% 0%

SRS-MDEQ-1B 53% 46% 37% 27% 0% 0% 0%
SRS-MDEQ-3B 55% 46% 37% 27% 0% 0% 0%

Table 17: Certified accuracy for the MDEQ-SMALL with σ = 0.5 on ImageNet.

Model \ Radius 0.0 0.25 0.5 0.75 1.0 1.25 1.5

MDEQ-30A 67% 55% 45% 33% 23% 16% 12%

SRS-MDEQ-1A 63% 53% 45% 32% 22% 16% 12%
SRS-MDEQ-3A 66% 54% 45% 33% 23% 16% 11%
SRS-MDEQ-5A 66% 54% 45% 33% 23% 16% 12%

Table 18: Certified accuracy for MDEQ-SMALL with more steps on CIFAR-10 (σ = 0.5).

Model \ Radius 0.0 0.25 0.5 0.75 1.0 1.25 1.5

MDEQ-30A 62% 50% 38% 30% 22% 13% 9%

SRS-MDEQ-1A 60% 47% 36% 27% 17% 12% 8%
SRS-MDEQ-3A 60% 50% 38% 29% 21% 12% 8%
SRS-MDEQ-5A 61% 50% 38% 30% 22% 12% 8%

Table 19: Certified accuracy for MDEQ-SMALL with more steps on CIFAR-10 (σ = 0.5).

Model \ Radius 0.0 0.25 0.5 0.75 1.0 1.25 1.5

MDEQ-14B 45% 39% 33% 28% 22% 17% 11%

SRS-MDEQ-1B 40% 34% 32% 27% 21% 16% 10%
SRS-MDEQ-3B 44% 39% 33% 28% 22% 17% 11%
SRS-MDEQ-5B 44% 39% 33% 28% 21% 17% 11%

Table 20: Certified accuracy for MDEQ-SMALL with more steps on ImageNet (σ = 1.0).

G MDEQs with Different Solvers

In the main paper, our presentation of MDEQ results exclusively features the Anderson solver
applied to CIFAR-10. Complementary to this, in the appendix, we provide results obtained with
the naive solver on CIFAR-10 to show whether the choice of the solver significantly affects the
performance. For the experiments conducted on MDEQs applied to ImageNet, our primary focus lies
on the Broyden solver, as detailed in the main paper. It is worth noting that the fixed-point problem
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Model \ Radius 0.0 0.25 0.5 0.75 1.0 1.25 1.5

MDEQ-LARGE-30N 64% 53% 42% 31% 21% 13% 11%
MDEQ-LARGE-30A 67% 55% 45% 33% 23% 16% 12%

MDEQ-SMALL-30N 60% 47% 36% 29% 19% 11% 8%
MDEQ-SMALL-30A 62% 50% 38% 30% 22% 13% 9%

Table 21: Certified accuracy of MDEQ-SMALL with different solvers on CIFAR-10.

Large Small
MDEQ SRS-MDEQ MDEQ SRS-MDEQ

Anderson 1 0.6140 0.0266 0.5180 0.0786
Anderson 3 0.3240 0.0210 0.2561 0.0324

Naive 1 0.5219 0.0396 0.4761 0.2322
Naive 3 0.1268 0.0425 0.2138 0.0825

Table 22: The mean RRD measurements over all images.

encountered in high-dimensional data introduces heightened complexities, necessitating a solver with
superior convergence properties, as elaborated upon in (Bai et al., 2020).

The outcomes obtained with various solvers are detailed in Table 21. Notably, while MDEQs
employing the naive solver exhibit slightly faster certification compared to those with the Anderson
solver, both the large and small architectures encounter some accuracy drops, with deviations of
up to 3%. Given that our objective is to establish MDEQs as a baseline with superior performance,
we exclusively present results obtained with the Anderson solver in the main paper for meaningful
comparison.

H Instance-Level Consistency

In the main paper, we utilize RRD as the measurement to validate the effectiveness of our method.
In this appendix, we extend our evaluation to observe the performance of RRD specifically on
MDEQ-SMALL architectures.

As illustrated in Figure 4, our method demonstrates strong performance for MDEQ-SMALL at
the instance level. Regarding RRD, SRS-MDEQ exhibits a notable concentration of small values,
indicating the efficacy of our serialized randomized smoothing in aligning radii. Further insight is
gained from Figure 4b, where the RRDs of all samples for SRS-MDEQ-A3 are consistently smaller
than 0.2, contrasting with MDEQ-A3, which features numerous samples with large LADs. Notably,
with an increasing number of steps, both MDEQ and SRS-MDEQ exhibit a trend toward increased
concentration, with SRS-MDEQ consistently outperforming MDEQ. Besides, we also exhibit the
mean RRD values over the whole dataset in Table 22, consistently showing the better performance of
our SRS-MDEQ.

I Correlation-Eliminated Certification

I.1 Detailed Illustration

In this appendix, we delve deeper into the nuances of our approach to correlation-eliminated certifica-
tion. As shown in Figure 5, the correlation-eliminated certification is based on dropping unreliable
predictions. To be specific, our method compares the predictions of SRS-DEQ with the ones with
standard DEQ and then drops the inconsistent predictions in the most probable class ĉA. This
process intuitively reassigns all incorrectly classified predictions from class ĉA to class ĉB , effectively
aligning them with the predictions made by the standard DEQ. Finally, we estimate pm to get a
conservative estimation of these converted samples.
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Figure 4: RRD histogram with MDEQ-SMALL models. There are 10 bins in each histogram.
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Figure 5: The illustration of our correlation-eliminated certification. If we input the noisy panda
images into the standard DEQ and our SRS-DEQ, there will be some misalignment due to the
correlation introduced by SRS. Our method conservatively converts these predictions back to the
correct ones. For instance, the predictions of x + ϵ2 are different with RS and SRS. Therefore,
the prediction of x + ϵ2 will not be counted as the most probable class ĉA. Finally, we use these
converted predictions to calculate the certified radius to recover the standard DEQ’s predictions. In
the implementation, we try to estimate the number of these converted predictions instead of using the
standard DEQ to get the inferences.

I.2 Cut-off Radius

Given the noise variance σ, a sampling number N , and failure tolerance α, the cut-off radius means
the maximum radius that can be certified, i.e., the radius when all samples are classified correctly.
With SRS, since we have an upper bound on pm, the maximum empirical confidence pA could be
lower. Here we provide analysis for the cut-off radius comparison. To be specific, we present the
comparison of the radius with different correct ratios (the percentage of class A) when there are no
wrong predictions from our method (pm ≈ 0). More formally,

Rsrs
ratio = LowerConfBound((1− pm)N × ratio, N, α̃) (24)

pm = LowerConfBound(B,B, α̃) (25)

We provide the numerical cut-off radius with the hyperparameters used in our paper: N = 10, 000,
B = 1, 000, α = 0.001. The results are shown in Table 23. As a special case (when the ratio is 1),
the cut-off radius of our method is 1.594, and the cut-off radius of the original method is 1.860. For
the samples with smaller ratios, the gap between the standard method and our method will further
decrease because of the marginal effect (Cohen et al., 2019).
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ratio 0.75 0.80 0.85 0.90 0.95 0.99 1.00
Rbase

ratio 0.332 0.415 0.512 0.634 0.814 1.148 1.860
Rsrs

ratio 0.331 0.414 0.511 0.633 0.812 1.139 1.594
Table 23: Comparison of Rbase

ratio and Rsrs
ratio for different ratio values.
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Figure 6: Gap histogram with MDEQ-SMALL models. There are 10 bins in each histogram.
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Figure 7: pm histogram with MDEQ-SMALL models. There are 10 bins in each histogram.

I.3 More Results

In this appendix, we extend our analysis to include additional results for the correlation-eliminated
certification, focusing particularly on the distribution of the gap and pm for MDEQ-SMALL models.
These results are illustrated in Figure 3 and Figure 7. Regarding the gap, we observe a trend consistent
with that for MDEQ-LARGE models: a predominant skew towards 0 while maintaining positive
values, which underscores the efficacy of our estimation approach. As for pm, its distribution appears
more uniform in MDEQ-SMALL with one step, compared to MDEQ-LARGE. This aligns with the
observed phenomenon where the certified accuracy is somewhat lower than that achieved through
standard randomized smoothing for DEQs with a single step.

J The Number of Samplings

We investigate the effect of the number of samplings in our randomized smoothing approach by
conducting experiments with σ = 0.5 depicted in Figures 8 and 9. Notably, these results align well
with those reported in (Cohen et al., 2019). Across all results, a consistent trend emerges, revealing
that there are no substantial differences observed between N = 10, 000 and N = 100, 000 across
most radii. This insight underscores the robustness and stability of the results, emphasizing that the
choice of the number of samplings within this range does not significantly impact the outcomes.
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Figure 8: Different number of samplings for MDEQ-SMALL with the 3-step solvers.
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Figure 9: Different number of samplings for MDEQ-LARGE with the 3-step solvers.

K Warm-up Strategy

In our implementation, we employ a warm-up strategy to enhance the initial performance of serialized
randomized smoothing during certification. In this appendix, we delve into the effectiveness of this
technique.

The Number of Steps: We investigate the influence of the number of warm-up steps on the per-
formance of our method. As shown in Figures 10a and 10b, there is a marginal improvement in
the performance of MDEQ-LARGE when the number of warm-up steps is increased to 30. The
performance of MDEQ-SMALL remains stable. For the sake of time efficiency, we adopt 10 as the
default parameter in our main experiments.

The Warm-Up Solver: We explore whether utilizing different solvers during the warm-up phase
impacts the performance of our method, denoting the model with the "solver-solver" format. For
example, "Anderson-Naive" signifies the warm-up solver as Anderson and the solver for MDEQ
as the naive one. Conducting experiments with 10 warm-up steps and 3-step solvers, the results
in Figures 11a and 11b indicate that the choice of warm-up solvers does not significantly affect
performance when the solvers for MDEQ are the same (as evidenced by the nearly overlapping lines)
for both large and small models. In our main experiments, we consistently use pairwise solvers,
where the solver for warming up aligns with that used for MDEQ.

Restart: Considering the potential accumulation of fixed-point errors due to the distance of samplings,
we investigate the necessity of a restart strategy for our method. Specifically, we implement this
strategy by warming up every K batches. Employing pairwise solvers with 10 warm-up steps, the
results in Figures 12a and 12b exhibit the findings from the warm-up steps. Implementing a restart
strategy with varying intervals yields a slight performance increase. For the sake of time efficiency,
we default to 10 as the parameter in our main experiments.
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Figure 10: Different warm-up steps for SRS-MDEQ-3A.
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Figure 11: Different warm-up solvers for SRS-MDEQ-3A.
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Figure 12: Different warm-up restart intervals for SRS-MDEQ-3A.

Start Points: There are two choices for the start points of the warm-up strategy: (1) start from the
clean data point x for all the noisy data x+ ϵ; (2) start from previous noisy data in each batch. We
choose to start from the previous noisy data because it performs better than using the fixed-point
solution of the clean data. This is because the previous noisy data provides smaller pm in the
correlation-eliminated certification. The certified accuracy is shown in Table 24. The differences
between the two start initialization come from the correlated-elimination certification. The final radius
will depend on the estimated pm (smaller pm is better). With the previous fixed point, our certification
process accumulates randomness to avoid the bad guess at the beginning. The distribution of pm will
be more concentrated to 0 with our method that starts from the previous solutions. It means we need
to drop more predictions if we start from the clean data. As a result, the certified accuracy of starting
from the previous fixed points is better.
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Model \ Radius 0.0 0.25 0.5 0.75 1.0 1.25 1.5
SRS-MDEQ-1A-clean 56% 48% 40% 29% 20% 16% 12%
SRS-MDEQ-3A-clean 64% 52% 45% 33% 23% 15% 11%

SRS-MDEQ-1A 63% 53% 45% 32% 22% 16% 12%
SRS-MDEQ-3A 66% 54% 45% 33% 23% 16% 11%

Table 24: Certified accuracy for the MDEQ-LARGE architecture with σ = 0.5 on CIFAR-10. The
first two rows represent the results starting from clean data, while the latter two rows represent the
results starting from the previous fixed-point solutions.

L Empirical Robustness

In this appendix, we present the performance of SRS-MDEQ under adversarial attacks to show our
model is robust empirically. To demonstrate the efficacy of our approach, we assess predictions
using the strongest adversarial attack PGD-ℓ2 and its variant for randomized smoothing, Smooth-
PGD (Salman et al., 2019).

Attack r = 0.0 r = 0.25 r = 0.5 r = 0.75 r = 1.0 r = 1.25 r = 1.5

PGD 72% 70% 65% 63% 60% 60% 58%
m=1 72% 67% 63% 62% 61% 61% 61%
m=4 72% 66% 62% 60% 57% 57% 58%
m=8 72% 66% 61% 58% 56% 55% 54%
m=16 72% 65% 60% 55% 53% 51% 49%

Certified 66% 54% 45% 33% 23% 16% 11%

Table 25: The empirical performance of the randomized smoothing on LARGE-SRS-MDEQ-3A.

Attack r = 0.0 r = 0.25 r = 0.5 r = 0.75 r = 1.0 r = 1.25 r = 1.5

PGD 66% 63% 61% 57% 53% 49% 45%
m=1 66% 61% 53% 46% 40% 36% 30%
m=4 66% 61% 53% 46% 40% 36% 32%
m=8 66% 61% 53% 46% 39% 36% 30%
m=16 66% 61% 53% 44% 39% 35% 29%

Certified 60% 50% 38% 29% 21% 12% 8%

Table 26: The empirical performance of the randomized smoothing on SMALL-SRS-MDEQ-3A.

Projected Gradient Descent (PGD) leverages the principles of gradient descent to iteratively update
input data. It begins with an initial input, calculates the gradient of the model’s loss concerning the
input, and adjusts the input in the direction that maximizes the increase in the loss. This adjustment is
constrained by a small perturbation limit to ensure that the changes remain within acceptable bounds.
In the context of randomized smoothing, PGD is employed to directly target the base classifier. We
utilize a fixed step size of 0.1 for each iteration, and the total number of iterations is set at 20.

Given that PGD does not directly target the smoothed classifier, we also employ Smooth-PGD to
attack our model, following the methodology outlined in (Salman et al., 2019). The indirect attack
proves ineffective due to the obfuscated gradient phenomenon (Athalye et al., 2018). Smooth-PGD
initially utilizes a soft version to approximate the gradient of the smoothed classifier, mitigating the
non-differentiable nature of the classifier. It then employs the Monte Carlo method to estimate the
value of the gradient. Finally, standard PGD is employed to generate adversarial examples using
the estimated gradient. Smooth-PGD demonstrates increased effectiveness compared to PGD when
given sufficient samplings in Monte Carlo. Throughout our experiments, we maintain consistency in
hyperparameter use between Smooth-PGD and standard PGD.

Following work (Salman et al., 2019), we select the number of samplings m in Smooth-PGD from {1,
4, 8, 16}. We compare the empirical results with the certified accuracy reported in our main paper to
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Attack r = 0.25 r = 0.5 r = 0.75 r = 1.0 r = 1.25 r = 1.5

PGD 5% / 0% 14% / 0% 15% / 0% 17% / 0% 15% / 0% 17% / 0%
m=1 10% / 0% 16% / 0% 16% / 0% 15% / 0% 14% / 0% 13% / 0%
m=4 12% / 0% 20% / 0% 20% / 0% 20% / 0% 18% / 0% 16% / 0%
m=8 14% / 0% 21% / 0% 23% / 0% 23% / 0% 21% / 0% 21% / 0%
m=16 16% / 0% 23% / 0% 27% / 0% 26% / 0% 27% / 0% 26% / 0%

Table 27: The point-wise successful attack rate of on LARGE-SRS-MDEQ-3A. The first number is
the rate of successfully attacking the uncertified points. The second number is the rate of successfully
attacking the certified points.

Attack r = 0.25 r = 0.5 r = 0.75 r = 1.0 r = 1.25 r = 1.5

PGD 6% / 0% 8% / 0% 13% / 0% 16% / 0% 20% / 0% 23% / 0%
m=1 10% / 0% 22% / 0% 28% / 0% 32% / 0% 35% / 0% 39% / 0%
m=4 10% / 0% 22% / 0% 28% / 0% 32% / 0% 34% / 0% 37% / 0%
m=8 9% / 0% 21% / 0% 28% / 0% 33% / 0% 35% / 0% 39% / 0%
m=16 10% / 0% 22% / 0% 30% / 0% 33% / 0% 36% / 0% 40% / 0%

Table 28: The point-wise successful attack rate of on SMALL-SRS-MDEQ-3A.The first number is
the rate of successfully attacking the uncertified points. The second number is the rate of successfully
attacking the certified points.

show the correctness of the randomized smoothing. The results are shown in Tables 25 and 26, where
r represents the attack budget. r = 0 means the predicted accuracy on clean data. It is observed that
Smooth-PGD exhibits superior strength compared to the standard PGD. The most important finding
is that the certified accuracy is lower than the accuracy under all the adversarial attacks, meaning all
the attacks can not break the certified robustness in randomized smoothing. In essence, these results
underscore the robustness of our method, showcasing reliable certified accuracy empirically.

Based on the preceding analysis, certified accuracy serves as a global metric for evaluating model
robustness. However, to substantiate the efficacy of certification, the model must ensure that each
certified point remains invulnerable within its corresponding certified radius. This appendix conducts
an instance-level analysis to demonstrate this aspect. Specifically, we quantify the percentage of
points successfully attacked within the certified and uncertified subsets, respectively. The outcomes
are detailed in Tables 27 and 28. The first number is the rate of successfully attacking the uncertified
points, while the second number is the rate of successfully attacking the certified points. As m
increases, the first number gets larger, meaning the attack is getting stronger. In this case, the second
number consistently keeps as 0, meaning the certified points can not be attacked at all. Despite
the minimal failure probability in randomized smoothing certification, our point-wise empirical
investigation underscores the robustness and reliability of our method.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Section 1

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 6

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Appendix A
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 4.1 and Appdendix B
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Section 4
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4.1 and Appdendix B
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Section 4.1 and Appdendix B
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 4.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Section 6
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Section 6
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: 6
Guidelines: We do not pose such risks.

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Section 4.1 and Appdendix B
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: We do not introduce new assets in our paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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