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Abstract

Generating multiple text sequences and refin-001
ing them through feedback is essential for im-002
proving the quality of outputs in many NLP003
tasks. While Large Language Models can lever-004
age iterative feedback during inference, smaller005
models often lack this capability due to limited006
capacity and the absence of suitable training007
paradigms. In this paper, we propose a novel008
Feedback-Aware inference approach that en-009
ables iterative sequence generation with inte-010
gration of feedback signals. Our method allows011
models to generate multiple sequences, incor-012
porate feedback from previous iterations, and013
refine outputs accordingly. This approach dy-014
namically adjusts to different quality metrics,015
making it adaptable to various contexts and016
objectives. We evaluate our approach on two017
distinct tasks: Answer Selection for Question018
Generation and Keyword Generation, arguing019
for its generalizability and effectiveness. Re-020
sults show that our method outperforms strong021
baselines, maintaining high performance across022
iterations and achieving superior results even023
with smaller, open-source models.024

1 Introduction025

Many NLP tasks extend beyond generating a single026

response from a model. Such tasks often bene-027

fit from producing a diverse pool of possible se-028

quences rather than a single deterministic output.029

Generating multiple sequences allows for a more030

comprehensive exploration of possible solutions,031

improving the chances of obtaining a result that032

better aligns with the desired outcomes.033

However, the value of generating multiple se-034

quences is limited if the model cannot iteratively035

refine its outputs based on feedback. The ability to036

self-correct during inference by learning from pre-037

vious iterations is essential for enhancing sequence038

quality. Large language chat models have demon-039

strated the capability to adjust their responses based040

on a conversational flow. Yet, this behavior remains041

largely absent in smaller models due to their lim- 042

ited generalization capacity and because they are 043

not specifically trained for this. Despite their limi- 044

tations, smaller models are needed for real-world 045

applications due to their lower computational re- 046

quirements and cost-effectiveness. Our work ad- 047

dresses this gap by proposing a method that enables 048

models to generate sequences iteratively, integrate 049

feedback signals from previous outputs, and refine 050

their responses accordingly. 051

In this paper, we propose a novel approach called 052

Feedback-Aware inference. This method iteratively 053

generates sequences based on information from a 054

text and allows for user or model feedback regard- 055

ing the quality of the proposed sequence and result- 056

ing content. By incorporating this feedback from 057

the previous sequences and providing information 058

on the content resulting from this sequence, the 059

model refines its process, leading to identifying 060

spans that are more aligned with the desired ones. 061

This approach offers several advantages. First, it en- 062

ables the generation of multiple sequences, leading 063

to a richer set of potential content. Second, it en- 064

ables the integration of different quality measures, 065

making the method adaptable to various generation 066

goals. Finally, the iterative feedback process al- 067

lows the model to use in-context learning during 068

inference. 069

To argue for the effectiveness of our method, we 070

evaluated it on two distinct tasks: Answer Selec- 071

tion for Question Generation and Keyword Genera- 072

tion. In the Answer Selection for Question Genera- 073

tion task, the objective is to identify multiple spans 074

within a given context that can serve as answers for 075

question generation. The goal of the second task is 076

to generate relevant keywords for a paper based on 077

its abstract. Notably, our method is generalizable 078

to any task that involves generating multiple text 079

sequences from a given context. 080

Our main contribution is the novel Feedback- 081

Aware training and inference approach that enables 082
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the dynamic refinement of generated sequences. As083

such, our model has the opportunity to correct itself084

and learn from feedback and previously generated085

options. Our approach achieves superior results on086

two different generative tasks even with smaller,087

open-source models, highlighting the potential for088

cost-effective solutions without relying on massive,089

proprietary LLMs. We release our code and best090

models as open-source. 1091

2 Related Work092

2.1 Feedback for Model Refinement093

Few-shot prompting, a technique that involves pro-094

viding a small number of examples as part of the095

prompt to guide the LLM’s generation, is a fre-096

quently employed approach for controlling and re-097

fining LLM outputs at inference time. Early works098

by Gao et al. (2021) and Tam et al. (2021) proved099

the effectiveness of few-shot learning in improv-100

ing LLM performance, even with limited training101

data. Subsequent works by Schick and Schütze102

(2022) and Perez et al. (2021) have further refined103

few-shot prompting techniques, making them more104

practical for real-world applications.105

Alignment with human preferences is usually106

done through Reinforcement Learning from Hu-107

man Feedback (Ouyang et al., 2022) or Direct Pref-108

erence Optimization (Rafailov et al., 2024). While109

these solutions increase the quality of generated110

answers, they do not directly tackle the problem of111

generating multiple samples and do not take into112

account feedback signals at inference time.113

Only recently, works have studied advanced tech-114

niques for feedback-based refinement. These ap-115

proaches generally involve a cyclical process: an116

LLM is prompted to perform a task, its output is117

evaluated by another LLM (or itself), and the feed-118

back is provided to the original LLM for refine-119

ment. For example, Fu et al. (2023) created a set-120

ting where chat models are prompted to negotiate121

a selling price for goods, acting as the buyer or the122

seller and improving their offer based on the con-123

versation. Self-refinement, a technique in which124

LLMs rate, highlight errors, and give feedback to125

their own generated content, is studied in multi-126

ple contexts. Text summarization, code generation,127

machine translation, and Math reasoning are tasks128

improved by this approach (Xu et al., 2024; Chen129

et al., 2024; Madaan et al., 2024). Although the130

1https://anonymous.4open.science/r/
ACL-Feedback-Aware/

previous works highlighted very promising results 131

in terms of feedback-based refinement, the experi- 132

ments use proprietary LLMs with a huge number 133

of parameters, such as GPT-4, Claude, or PaLM-2. 134

2.2 Multi-sequence Generation Tasks 135

Question generation models usually take a context 136

and a desired answer as input to generate a ques- 137

tion based on them. Yao et al. (2022) specifically 138

focused on deriving multiple answer-question pairs 139

from a text by employing heuristic-based rules 140

for answer selection. The authors extracted noun 141

chunks, named entities, and event descriptions to 142

serve as selected spans for directing the genera- 143

tion of questions. Zhao et al. (2022) learned to 144

predict the possible distribution of different types 145

of questions based on the context and extracted 146

the relevant information from the text that would 147

adhere to that distribution. Yoon and Bak (2023) 148

approached the task by iteratively generating ques- 149

tions and appending the previously generated ques- 150

tions in the prompt to ensure a diverse set and direct 151

the model’s output. The fine-tuning considered the 152

questions provided in the prompt and generated a 153

query that diverged from the previous ones. Al- 154

though this was a step forward regarding question 155

diversity, the generation is not controllable and can- 156

not consider other requirements. Across these pa- 157

pers, the common theme is supervised fine-tuning 158

on specific QA datasets. This approach ensures that 159

the generated questions and answers conform to 160

the patterns found in these datasets, but the models 161

cannot adapt based on user feedback. 162

Keyword generation is the task of identifying 163

or generating terms or phrases that encapsulate 164

the key topics of a given text, such as a paper ab- 165

stract. Extensive research has been conducted on 166

keyword extraction, where spans directly from the 167

abstract are selected as keywords. A recent sur- 168

vey (Song et al., 2023) presents the latest advance- 169

ments in keyphrase extraction. Advancements 170

have been made with pre-trained language models, 171

specifically encoder models. Specifically, for unsu- 172

pervised keyphrase extraction, semantic similarity 173

with the abstract of spans is ranked using cross- 174

attention (Ding and Luo, 2021) or graph structures 175

(Liang et al., 2021). In another approach, Song 176

et al. (2021) proposed a system consisting in three 177

modules (chunking, ranking, and matching) jointly 178

trained. However, the extractive task has notable 179

limitations. Specifically, paper authors frequently 180

assign keywords that are not explicitly mentioned 181
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within the abstract but are instead derived from the182

broader context or inferred concepts.183

3 Method184

This section provides a structured overview of185

our proposed method. While we evaluate on two186

distinct tasks, each with specific characteristics,187

the following framework serves as a generalizable188

methodology applicable to all similar tasks that189

require generating multiple text sequences. Task-190

specific details are elaborated in Section 4.3. It is191

important to note that the objective of the paper192

is to propose a general method, not to focus on193

specific state-of-the-art solutions for each task.194

3.1 Prerequisites: Labeling System195

The proposed method incorporates a feedback-196

driven mechanism to iteratively enhance perfor-197

mance. This feedback signal may be derived from198

either human evaluation or an automated assess-199

ment procedure. The specific feedback mechanism200

utilized is not the primary focus of this study and201

can be adapted to different application domains and202

requirements.203

The Labeling System, denoted as LS, takes a204

generated text sequence g as input and produces205

a label that signifies the quality of the generated206

content. In our experiments, the possible labels are207

GOOD or BAD, indicating the suitability of the208

generated output (LS(g) ∈ GOOD,BAD). The209

labeling criteria depend on task-specific require-210

ments (e.g., grammatical correctness, coherence,211

relevance, overall quality).212

Optional Component. For complex tasks, such213

as Answer Selection in Question Generation, eval-214

uating only the generated text sequence may be215

insufficient. In such cases, additional contextual216

information may be required for assessment. To217

accommodate this, our framework supports an op-218

tional component, referred to as the Resulting219

Content Generator (RCG), which automatically220

generates auxiliary content based on the gener-221

ated sequence. Consequently, the Labeling Sys-222

tem receives both the generated sequence (g) and223

the resulting content (RCG(g)) as input to de-224

termine the final label - i.e., LS(g,RCG(g)) ∈225

{GOOD,BAD}.226

3.2 Dataset Construction227

The original datasets are augmented using the La-228

beling System (LS) to ensure that generated se-229

quences are annotated as either GOOD or BAD. 230

To enable effective model fine-tuning, it is essential 231

to include multiple examples of both GOOD and 232

BAD sequences for the same context. 233

Formally, let the initial dataset be defined 234

as Dinitial = [C1, C2, ..., Cn], where each Ci 235

represents a context. For each Ci, we con- 236

struct a set of possible generated sequences 237

[gi,1, gi,2, ..., gi,m] along with their corresponding 238

labels [LS(gi,1), LS(gi,2), ..., LS(gi,m)]. 239

The assigned labels function as quality indica- 240

tors, aiding in both model evaluation and compara- 241

tive analysis against baseline approaches. 242

3.3 Feedback-Aware Inference 243

We want our model to have the opportunity to cor- 244

rect itself and learn from previously generated con- 245

tent as well as the feedback given for it. For that, 246

the following algorithm was designed for inference. 247

Require: A Labeling System LS (Section 3.1)
Require: [optional] A Resulting Content Genera-

tor RCG (Section 3.1)
Require: The Feedback-Aware Model FAM

Initialize the prompt
P = [Task description, Context]
while Still want to select do

g ← FAM(P + ”GOOD”)
rc← RCG(g)
l← LS(g, rc)
if l = GOOD then

Found a good generated sequence
end if
P ← [P, l, g, rc]

end while

Model training is done following its purpose - 248

i.e., selecting the information from the context and 249

being capable of distinguishing between GOOD 250

and BAD sequences. The Feedback-Aware Model 251

should be trained in a similar scenario to the one 252

used during inference. Because of this, the prompt 253

needs to include a diverse list of sequences with 254

their corresponding quality label and generated 255

questions. The prompt structure is shown in Fig- 256

ure 1, whereas Figures 2a and 2b introduce prompt 257

examples for the evaluated tasks. 258

For training, we format the prompt according 259

to the template from Figure 1, but we only com- 260

pute the loss and propagate gradients for the last 261

sequence (depicted in blue). In this manner, the 262

model is trained to recognize the template and gen- 263
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Figure 1: Prompt template for Feedback Aware Genera-
tion

erate the sequence (depicted in blue) by attending264

to the context, previous labels, previous generated265

sequences, and, optionally, previous resulting con-266

tent. The model is trained to generate only GOOD267

sequences since the gradients and loss are com-268

puted only for the tokens of the last generated se-269

quence. Moreover, we can edit the prompt using270

a decoder-only model - i.e., change a previously271

thought GOOD label in the actual prediction given272

by LS (the prerequisite Labeling System) and ap-273

pend the resulting content obtained from the RCG274

(the optional Resulting Content Generator).275

4 Performance Evaluation276

4.1 Baselines277

Four strong baselines were selected to compare the278

performance of our method. Details on the full279

prompts (for both our model and the baselines) are280

provided in Appendix C.281

Single Sequence Generation (SSG). This ap-282

proach involves iteratively generating a possible283

sequence given the task and the context. This base-284

line is trained by supervised fine-tuning to generate285

the GOOD sequence. More formally, the general286

prompt format on which we fine-tune is the follow-287

ing: "<task>. Text: <text>. Generated sequence:288

<sequence>". The loss and gradients are computed289

just for the tokens of <sequence>. At inference290

time, we over-sample 100 sequences, eliminate du-291

plicates, and choose the top sequence in terms of292

log-likelihood.293

All Sequences Generation (ASG). This ap-294

proach simultaneously generates all GOOD se-295

quences for a given text. This baseline is trained by296

supervised fine-tuning to generate all the GOOD297

sequences for a context. More formally, the fine-298

tuning prompt is the following: "<task>. Text:299

<text>. Generated sequence: <seq_1>, <seq_2>...300

<seq_n>". The loss and gradients are computed301

just for the tokens of <seq_i>. 302

All Sequences Generation with Resulting Con- 303

tent (ASG-RC). In the optional case of using the 304

Resulting Content Generator, this approach serves 305

as a strong baseline to prove the efficacy of the 306

feedback labels. It is trained similarly to the All 307

Sequences Generation (ASG) approach, with the 308

addition of the resulting content (RC) in order to 309

inform the current iteration about the previously 310

generated sequences and their corresponding result- 311

ing content. More formally, the fine-tuning prompt 312

is the following: "<task>. Text: <text>. Generated 313

sequence: <seq_1>- <rc_1>, <seq_2>- <rc_2>, 314

... <seq_n>- <rc_n>". The loss and gradients 315

are computed just for the tokens of <seq_i>. It is 316

important to acknowledge that this baseline also 317

functions as a control group, evaluating the impact 318

of our design decision to train the Feedback-Aware 319

model using GOOD / BAD labels. 320

GPT-4o. We use GPT-4o similarly to the pre- 321

vious baseline - namely, to generate sequences 322

and (optionally) their resulting content. We use 323

it in a 1-shot setting that includes the task and pro- 324

vides one text example from the training dataset 325

with a set of GOOD sequences and their result- 326

ing content. The considered prompt is the follow- 327

ing: "<task>. Write your generated sequences to- 328

gether with the resulting content on separate lines 329

in the following format: <generated_sequence>- 330

<resulting_content>. Don’t add any additional 331

characters or numbering. Take into consideration 332

the following example: <train_example>. Text: 333

<context>. Response:". 334

4.2 Experimental Setup 335

All previous models above (our approach and the 336

baselines) were fine-tuned from the foundational 337

Llama-3 (8B) model (Dubey et al., 2024). All 338

our experiments for fine-tuning and inference were 339

done on a single A100 80GB GPU to ensure acces- 340

sibility and cost-effectiveness. More details on the 341

actual models, their training, and hyperparameters 342

can be found in Appendix B. 343

We were interested in the most likely sequences 344

for models with iterative generation (i.e., FA, 345

ASG, ASG-RC). This is typically done using beam 346

search, but this method is not well suited for the 347

current task. Due to the high number of possible 348

positive answers, beam search is too restrictive with 349

the options for the first token. Because of this, we 350
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(a) Answer Selection for Question Generation (b) Keyword Generation

Figure 2: Prompt examples for different tasks.

opted for over-sampling by generating in each it-351

eration 10 samples and choosing the one with the352

highest log-likelihood each time.353

In the case of the SSG model, we opted for a354

similar over-sampling approach, sampling 100 se-355

quences from which duplicates are removed, and356

the top 25 sequences are kept.357

4.3 Evaluated Tasks358

4.3.1 Answer Selection for Question359

Generation360

For this task, the goal is to select several spans from361

a context to serve as the answer for generating a362

question. The aim is to generate a richer set of363

potential questions by identifying multiple answer364

spans from a given text. Our method improves365

the generated sequences through iterative feedback,366

making the model more adaptable.367

Prerequisites: Labeling System. For these ex-368

periments, we employ an automated method to369

evaluate the quality of the selected answers. We370

measured the quality of a selected answer by gener-371

ating a question starting from it and assessing how372

likely a model would answer the question given373

the selected span. To achieve this, we required374

two models: one to generate questions based on375

a given context and a piece of information identi-376

fied as the answer (QGen), and another capable of377

providing accurate answers to questions based on a378

given context (QAns). By utilizing these models,379

we can label responses and proceed with the task380

of generating and evaluating questions based on381

proposed answers. Any instruction-tuned model382

capable of generating and answering questions can383

be used for these tasks. As the details of these mod-384

els fall outside the scope of this experiment, further385

information is provided in Appendix A. To estab-386

lish an automatic criterion for a GOOD selected387

answer, we define it as a text span that can be used 388

to generate a valid question. This question should 389

be answerable by the QAns model when provided 390

with the given context. Furthermore, the context 391

should be necessary for answering the question, 392

avoiding excessively general inquiries. Addition- 393

ally, the selected answers must exhibit diversity, 394

avoiding redundancy in represented concepts. 395

Formally, the following procedure is employed 396

to determine the suitability of a selected span: 397

1. A question is generated using the context and 398

the selected answer: q = QGen(ctx, a). 399

2. The probability of the QAns model of return- 400

ing the selected span for the given question 401

must exceed an empirically chosen threshold 402

of 3%: P (QAns(ctx, q) = a) ≥ 0.03; this 403

threshold was selected given the distribution 404

of correct answers in our training dataset; 405

3. The context must be important for answering 406

the question, so we impose that it should be 407

easier for QAns to answer the question when 408

given the context compared to answering with- 409

out it: P (QAns(””,q)=a)
P (QAns(ctx,q)=a) ≤ 1 410

Here, we denote P (QAns(ctx, q) = a) as the 411

probability of QAns to generate the answer a, 412

given the context ctx and question q. We use the 413

sum of log-likelihood estimates for each token in 414

the answer, which is then converted into a probabil- 415

ity between 0 and 1 by exponentiation: 416

P (QAns(ctx, q) = a) = e
∑

logP (ai|ctx,q,a0:i−1) 417

This formalization ensures that the selected an- 418

swers are not only relevant to the context but also 419

exhibit a strong dependency on the context for ac- 420

curate question answering. Furthermore, by apply- 421

ing this evaluation, we can categorize the selected 422
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spans as either GOOD or BAD based on their423

adherence to the established procedure. It is impor-424

tant to note that this metric can be altered for other425

purposes (e.g., question difficulty), and its form is426

not essential in our method.427

Optional Component: Resulting Content.428

Evaluating a selected answer without knowledge429

of the resulting question might add an unnecessary430

abstraction layer to the task. Because of this, we431

include the question as additional information in432

the prompt. In this case, the Resulting Content433

Generator (RCG) will be the QGen model that434

generates a question based on the selected answer.435

The question will be used in the pipeline as result-436

ing content.437

Dataset Construction. We consider two datasets438

for the specific task of Answer Selection for Ques-439

tion Generation. The TASA corpus (Ivens and440

Koslin, 1991) is a collection of text excerpts de-441

signed to represent the reading a college student442

might encounter throughout their academic career.443

It contains over 60k passages from textbooks, lit-444

erature, and various nonfiction and fiction works.445

For our experiments, we sampled 10,000 texts for446

training, 1000 for validation, and 1000 for the test447

partition from the following domains: language448

and arts, health, science, industrial arts, economics,449

business, and social studies. FairytaleQA (Xu et al.,450

2022) is a specialized dataset focused on narrative451

comprehension for kindergarten to eighth-grade452

students. It addresses the scarcity of high-quality453

question-answering datasets devised for diverse454

reading skills. The dataset is constructed by educa-455

tional experts from children-friendly stories. For456

our experiments, we used the already-established457

partitions of the dataset (8548 for train, 1025 for458

validation, 1007 for test).459

For the task of Answer Selection for Question460

Generation, we identify possible text spans that461

could serve as an answer. These text spans for462

training are the nodes from the constituency tree463

of each sentence from the context. By leverag-464

ing these nodes, we systematically cover a wide465

range of possible answers. For each possible an-466

swer ai, we generate a question given the context467

and ai, as qi = QGen(ctx, ai). With the method468

described above, we label a sample of possible469

spans as GOOD and BAD.470

4.3.2 Keyword Generation 471

Keyword generation involves automatically gener- 472

ating relevant terms that summarize the core topics 473

of a paper. 474

Prerequisites: Labeling System. For these ex- 475

periments, we rely on the human-chosen keywords 476

from the dataset to serve as GOOD labels. Any 477

other option not included in the set for the given 478

context would be considered BAD. In this man- 479

ner, we cover a different possibility for Feedback- 480

Aware: the feedback signal is provided by humans 481

rather than an automatic system. 482

Dataset Construction. We use the KP20K 483

dataset introduced by Meng et al. (2017). This is 484

an extensive dataset containing scientific article 485

abstracts and their corresponding keywords, as 486

chosen by the authors. It contains 500k entries, 487

from which we randomly selected 2000 from 488

their testing partition to evaluate the models, 489

2000 for validation, and 50k for training. As 490

this dataset only has positive examples annotated 491

(the keywords selected by the authors, labeled as 492

GOOD), we created negative examples (BAD) 493

by selecting keywords from other entries with 494

high similarity to the abstract that are not in 495

the subset of GOOD keywords of that specific 496

entry. More formally, having the dataset D = 497

[(abs1,KL1), (abs2,KL2), ..., (absn,KLn)] 498

where KLi = [ki,1, ..., ki,m)] is the list of the 499

GOOD keywords for the abstract absi, we select 500

the negative (BAD) keywords for absi as being 501

from (
⋃

j KLj) \ KLi. From this set, we select 502

m negative keywords that are most similar to the 503

abstract, based on embeddings computed with 504

an encoder model2. This will be the set of BAD 505

keyword examples for the abstract absi. 506

5 Results 507

We evaluate the models and baselines using slightly 508

different metrics based on the task. For An- 509

swer Selection for Question Generation, we eval- 510

uated in terms of Precision@K for the GOOD 511

sequences. More formally, for each text, P@K = 512
no. GOOD in the first K

K . Figure 3a showcases the P@K 513

aggregated results for the test partitions of both 514

TASA (Ivens and Koslin, 1991) and FairytaleQA 515

(Xu et al., 2022). We evaluated using precision 516

2https://huggingface.co/sentence-transformers/
all-mpnet-base-v2
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(a) Answer Selection for Question Generation (b) Keyword Generation

Figure 3: Results for different tasks.

since the number of GOOD answers for a context517

can be large and recall would be less meaningful.518

For Keyword Generation, we followed the ap-519

proach stated in the literature and evaluated in520

terms of F1@K for the GOOD keywords. As there521

is a varied number of GOOD keywords per text522

but still within a limited range, we computed the523

F1@K until K=10, based on the observation that524

the 95th percentile of the number of GOOD key-525

words per text is 10 on KP20K (Meng et al., 2017).526

Figure 3b showcases the F1@K results.527

6 Discussion528

The results presented in Figures 3 argue that our529

proposed method consistently achieves high scores530

across multiple generated sequences. It outper-531

forms all other models by a significant margin. The532

observed decline in metrics as K increases is pri-533

marily due to the diminishing pool of accessible534

answers for further generation.535

For the task of Answer Selection for Question536

Generation, the Single Sequence Generation (SSG)537

baseline initially exhibits high precision but rapidly538

declines as the number of generated sequences539

increases. This decline stems from the model’s540

lack of awareness of previously selected samples,541

impairing its ability to generate additional high-542

quality answers, a limitation our approach effec-543

tively overcomes. The All Sequences Generation544

(ASG) baseline shows a more gradual decline in545

performance over multiple generated sequences,546

as its prompts incorporate previously selected an-547

swers, which aids in generating better outputs.548

However, despite this benefit, it starts from a lower549

precision point and experiences a slight decrease550

as the number of available high-quality options re-551

duces. The strongest baseline is the All Sequences552

Generation with Resulting Content (ASG-RC). In-553

corporating the generated questions derived from554

previously selected answers helps the model bet- 555

ter understand the task, resulting in higher preci- 556

sion. However, it still underperforms compared to 557

our method and experiences a steeper decline in 558

precision over time. This highlights the value of 559

Feedback-Aware inference, as our model’s supe- 560

rior performance can be attributed to leveraging 561

feedback labels more effectively. Moreover, the 562

results indicate that the GPT-4o model yields the 563

poorest performance. Despite being a highly capa- 564

ble assistant, it underperforms relative to smaller, 565

open-source, fine-tuned models for specific tasks, 566

underscoring the importance of task-specific fine- 567

tuning and open research. 568

For the Keyword Generation task, the perfor- 569

mance of our proposed model remains the highest. 570

In this case, the All Sequences Generation (ASG) 571

has a good starting point, but its sequences decline 572

in quality after a few iterations. Here, GPT-4o also 573

performs poorly since choosing certain keywords 574

requires finetuning on extensive datasets to learn to 575

mimic human behavior and reasoning. 576

Recent studies that use the KP20K dataset focus 577

on the extractive task and rely on encoder mod- 578

els. The best results in this case are around 34.5% 579

F1@10 (Song et al., 2023), but are not directly 580

comparable with our scores, since they discard key- 581

words that do not appear in the abstract, which 582

makes the task much simpler. 583

6.1 ORPO Alignment Experiments 584

Categorizing generated sequences as GOOD and 585

BAD also leads us to consider an approach in- 586

volving preference fine-tuning. Multiple alignment 587

techniques (e.g., Ouyang et al., 2022, Rafailov 588

et al., 2024, Hong et al., 2024) leverage positive 589

and negative examples to train models to generate 590

content close to the positive choice and diverge 591

from the negative one. We experimented with the 592

7



(a) Answer Selection for Question Generation (b) Keyword Generation

Figure 4: Results for different tasks (ORPO vs. SFT).

ORPO method (Hong et al., 2024) to fine-tune our593

Feedback-Aware model and the Single Sequence594

Generation baseline on positive (GOOD answers)595

and negative (BAD answers) sequences. ORPO596

incorporates an odds ratio-based penalty for differ-597

entiating between chosen and rejected responses598

in the conventional loss computation. We chose599

ORPO since it outperformed the SFT+DPO setup600

(Hong et al., 2024), fine-tunes only on positive/neg-601

ative examples, and does not require previous train-602

ing. More formally, for a prompt in the form of603

[Prompt, GOOD sequence], we diverge from the604

negative [Prompt, BAD sequence].605

The ORPO alignment is done with the same606

setup as supervised fine-tuning (SFT), with an ad-607

ditional specific hyperparameter, β = 0.3 that608

defines the weight given to the odds ratio-based609

penalty in regards to the classical negative log-610

likelihood loss.611

Figure 4 highlights the results of this experiment.612

While ORPO yields similar results with supervised613

fine-tuning in our case, a different case is made614

for the Single Sequence Generation baseline. In615

the case of Answer Selection for Question Gener-616

ation, ORPO helps at first while starting from a617

high point in precision; however, the decrease is618

abrupt as more sequences are generated, mainly619

because ORPO tends to polarize the pool of sam-620

ples, given its positive/negative alignment. This621

hinders the capability of the model to generate di-622

verse answers. Our method is not affected by this623

polarization since it uses feedback signals that help624

the generation to be grounded on previous facts.625

For the Keyword Generation task, this behavior be-626

gins from the first sequence, ORPO having a poor627

performance from the start. One explanation is that628

ORPO specifically penalizes keywords that are not629

included in the initial list, but not all of them are630

necessarily unsuitable.631

7 Conclusions and Future Work 632

In this work, we introduced a Feedback-Aware 633

generation model that consistently outperforms ex- 634

isting baselines and proprietary models in itera- 635

tively generating high-quality sequences for differ- 636

ent tasks. The results argue that our approach main- 637

tains high scores across multiple iterations, sig- 638

nificantly surpassing baselines that lack feedback 639

awareness. Our approach’s superior performance 640

highlights the effectiveness of leveraging feedback 641

signals during training and inference. Moreover, 642

our framing of the training and inference steps has 643

the potential to be adapted to other tasks and feed- 644

back signals that can either come from proxy mod- 645

els or even human preference. 646

The framework introduced in this work can be 647

adapted beyond sequence generation to tasks that 648

require structured reasoning. A future work ex- 649

tension can be on tasks like mathematical reason- 650

ing, where generating coherent reasoning chains 651

is essential. Instead of producing multiple inde- 652

pendent sequences, the proposed approach can be 653

modified to generate structured reasoning steps, 654

ensuring logical consistency throughout the infer- 655

ence process. A key adaptation involves incorpo- 656

rating incorrect reasoning chains into the prompt 657

to improve the generation of correct ones. By ex- 658

plicitly conditioning the model on incorrect solu- 659

tions, it may better learn to differentiate between 660

valid and invalid reasoning paths, improving perfor- 661

mance in tasks requiring step-by-step logical deduc- 662

tions. Future work should investigate the impact of 663

feedback-aware generation in reasoning tasks, in- 664

cluding how different types of feedback—whether 665

model-generated or human-annotated—affect per- 666

formance. 667
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Limitations668

While our study presents significant findings, it is669

important to acknowledge certain limitations. One670

such limitation lies in the extent of our hyperparam-671

eter tuning. Due to the computational expense as-672

sociated with exhaustive hyperparameter searches,673

we opted for a less intensive approach. This de-674

cision was made to align with this paper’s scope675

and ensure a manageable workload. It is worth676

noting that we maintained consistent hyperparame-677

ters across baseline models and our approach. This678

standardization helps to ensure a fair comparison.679

Another limitation of our proposed method is680

that it requires negative samples for training. In681

cases where datasets do not provide such samples,682

they must be generated. Generating informative683

negative samples is non-trivial, as they should align684

with the task objectives and carry meaningful con-685

trastive information. Basic or poorly constructed686

negative samples may fail to contribute to effective687

model learning.688

Ethics Statement689

In this research, we prioritize transparency, repro-690

ducibility, and sustainability. Our approach lever-691

ages publicly available, open-source datasets and692

models, ensuring our work is grounded in widely693

accessible resources. We aim to promote collabora-694

tion and innovation within the research community695

by using these open-source tools. We release all696

project elements, including the code, fine-tuned697

models, and labeled datasets. Moreover, we have698

carefully managed our computational resources by699

maintaining a low GPU budget, which not only700

makes our experiments more accessible and repro-701

ducible but also minimizes the environmental im-702

pact associated with high-energy computation.703
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A Appendix: QAns and QGen models 857

As stated before, prerequisite models for the label- 858

ing system and content generation are required to 859

evaluate and train both our approach and baselines. 860

In our case, QGen is a language model fine-tuned 861

for question generation and QAns is fine-tuned for 862

question answering. 863

We fine-tune these models on three established 864

datasets: a) SQuAD (Rajpurkar et al., 2016) - 865

one of the most widely used resources for ques- 866

tion answering and generation, SQuAD consists of 867

over 100K question-answer pairs derived from a 868

pool of 5K Wikipedia articles; b) HotpotQA (Yang 869

et al., 2018) - designed to test a model’s ability 870

to answer questions that require reasoning across 871

multiple paragraphs, HotpotQA contains questions 872

that should be answered by bridging information 873

from two different Wikipedia articles; and c) Narra- 874

tiveQA (Kočiský et al., 2018) - designed to assess 875

reading comprehension, particularly for lengthy 876

texts, NarrativeQA consists of stories, along with 877

corresponding questions and answers. 878

The models were independently fine-tuned in 879

a supervised manner using the prompt "Generate 880

a question based on the context and the answer. 881

Context: <context>. Answer: <answer>. Ques- 882

tion: <generated_question>" for question genera- 883
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QGen QAns
SQuAD 0.58 0.75
HotpotQA 0.50 0.50
NarrativeQA 0.54 0.60
FairytaleQA 0.51 0.45

Table 1: BLEURT score (Sellam et al., 2020) for the
prerequisites models on their tasks

tion (QGen) and "Answer the following question884

based on the context. Context: <context>. Ques-885

tion: <question>. Answer: <answer>" for ques-886

tion answering (QAns). The loss is computed only887

on the <generated_question> and <answer> to-888

kens, respectively.889

These models are not proposed as state-of-the-art890

for these tasks but rather as plug-and-play modules891

independent of our proposed method or baselines.892

This means that any model can be a prerequisite893

as the proposed method is not dependent on the894

choice.895

In order to assess the performance of these896

models and validate their usage, we computed897

the BLEURT score (Sellam et al., 2020) with the898

ground-truth for the test partition of the SQuAD,899

HotpotQA, and NarrativeQA, and for the test par-900

tition of FairytaleQA (Xu et al., 2022) (a dataset901

used for our method and baselines, but on which902

we did not train QGen and QAns).903

Table 1 showcases the BLEURT scores for the904

prerequisites models. Performance is acceptable as905

the models are capable of answering and generating906

questions with accuracy, considering the context.907

Moreover, the models generalize well on an unseen908

dataset (FairytaleQA), highlighting their capability909

to serve as suitable prerequisites for our tasks with910

a diverse range of texts from different domains.911

B Appendix: Hyperparameter Details912

For training, all models (the prerequisites QGen913

and QAns, our model and the baselines, including914

the ORPO variants) are fine-tuned from the foun-915

dational Llama-3 (8B) model (Dubey et al., 2024).916

The setup for training considered: LoRA (Hu et al.,917

2022) with projection matrices for the attention918

layers; final batch size of 64 (resulted from gradi-919

ent accumulation); half-precision (FP16) training;920

learning rate of 1e-5, AdamW-8bit optimizer.921

The configuration for inference was: nucleus de-922

coding with over-sampling and selecting the top923

generations (top_k=20, top_p=0.8, seed=42) for924

our approach and the baseline models; default set- 925

tings and seed=42 for GPT-4o; mixed-precision 926

(bf16, seed=42) computations for prerequisites 927

models (QGen and QAns). 928

C Appendix: Prompts 929

This section contains the prompts used for different 930

models and tasks. In bold we denoted the expected 931

generated text by the model. 932

C.1 Answer Selection for Question 933

Generation 934

Feedback-Aware Model

Iteratively select a span from the following
text that would serve as a good answer for
generating a question.
### Text: {{Text}}
### Response:
GOOD: {{Previous selected answer}} -
{{Previous resulting question}}
BAD: {{Previous selected answer}} - {{Pre-
vious resulting question}}
...
GOOD: {{Previous selected answer}} -
{{Previous resulting question}}
GOOD: {{Selected answer}}

935

Single Sequence Generation

Select a span from the following text that
would serve as a good answer for generating
a question.
### Text: {{Text}}
### Response:
{{Selected answer}}

936

All Sequences Generation

Iteratively select a span from the following
text that would serve as a good answer for
generating a question.
### Text: {{Text}}
### Response:
{{Selected answer}}
{{Selected answer}}
...
{{Selected answer}}

937
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All Sequences Generation with Resulting
Content

Iteratively select a span from the following
text that would serve as a good answer for
generating a question.
### Text: {{Text}}
### Response:
{{Previous selected answer}} - {{Previous
resulting question}}
{{Previous selected answer}} - {{Previous
resulting question}}
...
{{Previous selected answer}} - {{Previous
resulting question}}
{{Selected answer}}

938

GPT-4o

Select 25 spans from the following text that
would serve as good answers for generating
questions. Write your selected answers to-
gether with the corresponding question on
separate lines, in the following format: <an-
swer> -> <question>
Don’t add any additional characters or num-
bering. Take into consideration the follow-
ing example:
{{Example text and response}}
### Text: {{Text}}
{{Selected answer}} - {{Generated ques-
tion}}
{{Selected answer}} - {{Generated ques-
tion}}
...
{{Selected answer}} - {{Generated ques-
tion}}

939

C.2 Keyword Generation940

Feedback-Aware Model

Iteratively select keywords for the following
text.
### Text: {{Text}}
### Response:
GOOD: {{Previous selected keyword}}
BAD: {{Previous selected keyword}}
...
GOOD: {{Previous selected keyword}}
GOOD: {{Selected keyword}}

941

Single Sequence Generation

Select keywords for the following text.
### Text: {{Text}}
### Response:
{{Selected keyword}}

942

All Sequences Generation

Select keywords for the following text.
### Text: {{Text}}
### Response:
{{Selected keyword}}
{{Selected keyword}}
...
{{Selected keyword}}

943

GPT-4o

Generate 15 keywords for the following ab-
stract. Write your selected answers on sepa-
rate lines. Don’t add any additional charac-
ters or numbering. Take into consideration
the following example:
{{Example text and response}}
### Text: {{Text}}
{{Selected keyword}}
{{Selected keyword}}
...
{{Selected keyword}}

944
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