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Abstract

Generating multiple text sequences and refin-
ing them through feedback is essential for im-
proving the quality of outputs in many NLP
tasks. While Large Language Models can lever-
age iterative feedback during inference, smaller
models often lack this capability due to limited
capacity and the absence of suitable training
paradigms. In this paper, we propose a novel
Feedback-Aware inference approach that en-
ables iterative sequence generation with inte-
gration of feedback signals. Our method allows
models to generate multiple sequences, incor-
porate feedback from previous iterations, and
refine outputs accordingly. This approach dy-
namically adjusts to different quality metrics,
making it adaptable to various contexts and
objectives. We evaluate our approach on two
distinct tasks: Answer Selection for Question
Generation and Keyword Generation, arguing
for its generalizability and effectiveness. Re-
sults show that our method outperforms strong
baselines, maintaining high performance across
iterations and achieving superior results even
with smaller, open-source models.

1 Introduction

Many NLP tasks extend beyond generating a single
response from a model. Such tasks often bene-
fit from producing a diverse pool of possible se-
quences rather than a single deterministic output.
Generating multiple sequences allows for a more
comprehensive exploration of possible solutions,
improving the chances of obtaining a result that
better aligns with the desired outcomes.

However, the value of generating multiple se-
quences is limited if the model cannot iteratively
refine its outputs based on feedback. The ability to
self-correct during inference by learning from pre-
vious iterations is essential for enhancing sequence
quality. Large language chat models have demon-
strated the capability to adjust their responses based
on a conversational flow. Yet, this behavior remains

largely absent in smaller models due to their lim-
ited generalization capacity and because they are
not specifically trained for this. Despite their limi-
tations, smaller models are needed for real-world
applications due to their lower computational re-
quirements and cost-effectiveness. Our work ad-
dresses this gap by proposing a method that enables
models to generate sequences iteratively, integrate
feedback signals from previous outputs, and refine
their responses accordingly.

In this paper, we propose a novel approach called
Feedback-Aware inference. This method iteratively
generates sequences based on information from a
text and allows for user or model feedback regard-
ing the quality of the proposed sequence and result-
ing content. By incorporating this feedback from
the previous sequences and providing information
on the content resulting from this sequence, the
model refines its process, leading to identifying
spans that are more aligned with the desired ones.
This approach offers several advantages. First, it en-
ables the generation of multiple sequences, leading
to a richer set of potential content. Second, it en-
ables the integration of different quality measures,
making the method adaptable to various generation
goals. Finally, the iterative feedback process al-
lows the model to use in-context learning during
inference.

To argue for the effectiveness of our method, we
evaluated it on two distinct tasks: Answer Selec-
tion for Question Generation and Keyword Genera-
tion. In the Answer Selection for Question Genera-
tion task, the objective is to identify multiple spans
within a given context that can serve as answers for
question generation. The goal of the second task is
to generate relevant keywords for a paper based on
its abstract. Notably, our method is generalizable
to any task that involves generating multiple text
sequences from a given context.

Our main contribution is the novel Feedback-
Aware training and inference approach that enables



the dynamic refinement of generated sequences. As
such, our model has the opportunity to correct itself
and learn from feedback and previously generated
options. Our approach achieves superior results on
two different generative tasks even with smaller,
open-source models, highlighting the potential for
cost-effective solutions without relying on massive,
proprietary LLMs. We release our code and best
models as open-source. !

2 Related Work
2.1 Feedback for Model Refinement

Few-shot prompting, a technique that involves pro-
viding a small number of examples as part of the
prompt to guide the LLM’s generation, is a fre-
quently employed approach for controlling and re-
fining LLM outputs at inference time. Early works
by Gao et al. (2021) and Tam et al. (2021) proved
the effectiveness of few-shot learning in improv-
ing LLM performance, even with limited training
data. Subsequent works by Schick and Schiitze
(2022) and Perez et al. (2021) have further refined
few-shot prompting techniques, making them more
practical for real-world applications.

Alignment with human preferences is usually
done through Reinforcement Learning from Hu-
man Feedback (Ouyang et al., 2022) or Direct Pref-
erence Optimization (Rafailov et al., 2024). While
these solutions increase the quality of generated
answers, they do not directly tackle the problem of
generating multiple samples and do not take into
account feedback signals at inference time.

Only recently, works have studied advanced tech-
niques for feedback-based refinement. These ap-
proaches generally involve a cyclical process: an
LLM is prompted to perform a task, its output is
evaluated by another LLM (or itself), and the feed-
back is provided to the original LLM for refine-
ment. For example, Fu et al. (2023) created a set-
ting where chat models are prompted to negotiate
a selling price for goods, acting as the buyer or the
seller and improving their offer based on the con-
versation. Self-refinement, a technique in which
LLMs rate, highlight errors, and give feedback to
their own generated content, is studied in multi-
ple contexts. Text summarization, code generation,
machine translation, and Math reasoning are tasks
improved by this approach (Xu et al., 2024; Chen
et al., 2024; Madaan et al., 2024). Although the
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previous works highlighted very promising results
in terms of feedback-based refinement, the experi-
ments use proprietary LLMs with a huge number
of parameters, such as GPT-4, Claude, or PaLM-2.

2.2 Multi-sequence Generation Tasks

Question generation models usually take a context
and a desired answer as input to generate a ques-
tion based on them. Yao et al. (2022) specifically
focused on deriving multiple answer-question pairs
from a text by employing heuristic-based rules
for answer selection. The authors extracted noun
chunks, named entities, and event descriptions to
serve as selected spans for directing the genera-
tion of questions. Zhao et al. (2022) learned to
predict the possible distribution of different types
of questions based on the context and extracted
the relevant information from the text that would
adhere to that distribution. Yoon and Bak (2023)
approached the task by iteratively generating ques-
tions and appending the previously generated ques-
tions in the prompt to ensure a diverse set and direct
the model’s output. The fine-tuning considered the
questions provided in the prompt and generated a
query that diverged from the previous ones. Al-
though this was a step forward regarding question
diversity, the generation is not controllable and can-
not consider other requirements. Across these pa-
pers, the common theme is supervised fine-tuning
on specific QA datasets. This approach ensures that
the generated questions and answers conform to
the patterns found in these datasets, but the models
cannot adapt based on user feedback.

Keyword generation is the task of identifying
or generating terms or phrases that encapsulate
the key topics of a given text, such as a paper ab-
stract. Extensive research has been conducted on
keyword extraction, where spans directly from the
abstract are selected as keywords. A recent sur-
vey (Song et al., 2023) presents the latest advance-
ments in keyphrase extraction. Advancements
have been made with pre-trained language models,
specifically encoder models. Specifically, for unsu-
pervised keyphrase extraction, semantic similarity
with the abstract of spans is ranked using cross-
attention (Ding and Luo, 2021) or graph structures
(Liang et al., 2021). In another approach, Song
et al. (2021) proposed a system consisting in three
modules (chunking, ranking, and matching) jointly
trained. However, the extractive task has notable
limitations. Specifically, paper authors frequently
assign keywords that are not explicitly mentioned


https://anonymous.4open.science/r/ACL-Feedback-Aware/
https://anonymous.4open.science/r/ACL-Feedback-Aware/

within the abstract but are instead derived from the
broader context or inferred concepts.

3 Method

This section provides a structured overview of
our proposed method. While we evaluate on two
distinct tasks, each with specific characteristics,
the following framework serves as a generalizable
methodology applicable to all similar tasks that
require generating multiple text sequences. Task-
specific details are elaborated in Section 4.3. It is
important to note that the objective of the paper
is to propose a general method, not to focus on
specific state-of-the-art solutions for each task.

3.1 Prerequisites: Labeling System

The proposed method incorporates a feedback-
driven mechanism to iteratively enhance perfor-
mance. This feedback signal may be derived from
either human evaluation or an automated assess-
ment procedure. The specific feedback mechanism
utilized is not the primary focus of this study and
can be adapted to different application domains and
requirements.

The Labeling System, denoted as LS, takes a
generated text sequence ¢ as input and produces
a label that signifies the quality of the generated
content. In our experiments, the possible labels are
GOOD or BAD, indicating the suitability of the
generated output (LS(g) € GOOD, BAD). The
labeling criteria depend on task-specific require-
ments (e.g., grammatical correctness, coherence,
relevance, overall quality).

Optional Component. For complex tasks, such
as Answer Selection in Question Generation, eval-
uating only the generated text sequence may be
insufficient. In such cases, additional contextual
information may be required for assessment. To
accommodate this, our framework supports an op-
tional component, referred to as the Resulting
Content Generator (RC'G), which automatically
generates auxiliary content based on the gener-
ated sequence. Consequently, the Labeling Sys-
tem receives both the generated sequence (g) and
the resulting content (RCG(g)) as input to de-
termine the final label - i.e., LS(g, RCG(g)) €
{GOOD,BAD}.

3.2 Dataset Construction

The original datasets are augmented using the La-
beling System (LS) to ensure that generated se-

quences are annotated as either GOOD or BAD.
To enable effective model fine-tuning, it is essential
to include multiple examples of both GOOD and
BAD sequences for the same context.

Formally, let the initial dataset be defined
as Dinitiat = [C1,Ca,...,Cy], where each C;
represents a context. For each C;, we con-
struct a set of possible generated sequences
[9i,1, 9i.2, .-, Gi,m] along with their corresponding
labels [Ls(gi,l)a LS(gi72), ceny LS(g%m)]

The assigned labels function as quality indica-
tors, aiding in both model evaluation and compara-
tive analysis against baseline approaches.

3.3 Feedback-Aware Inference

We want our model to have the opportunity to cor-
rect itself and learn from previously generated con-
tent as well as the feedback given for it. For that,
the following algorithm was designed for inference.

Require: A Labeling System L.S (Section 3.1)
Require: [optional] A Resulting Content Genera-
tor RC'G (Section 3.1)
Require: The Feedback-Aware Model F'AM
Initialize the prompt
P = [Task description, Context]
while Still want to select do
g« FAM(P+"GOOD”)
rc < RCG(g)
I« LS(g,rc)
if | = GOOD then
Found a good generated sequence
end if
P« [P,g,7]
end while

Model training is done following its purpose -
i.e., selecting the information from the context and
being capable of distinguishing between GOO D
and BAD sequences. The Feedback-Aware Model
should be trained in a similar scenario to the one
used during inference. Because of this, the prompt
needs to include a diverse list of sequences with
their corresponding quality label and generated
questions. The prompt structure is shown in Fig-
ure 1, whereas Figures 2a and 2b introduce prompt
examples for the evaluated tasks.

For training, we format the prompt according
to the template from Figure 1, but we only com-
pute the loss and propagate gradients for the last
sequence (depicted in blue). In this manner, the
model is trained to recognize the template and gen-



Prompt content
[Generated content |

Task Description
Context

GOOD  Previous good gen. sequence 1
BAD  Previous good gen. sequence 2

[optional] Generated content 1
[optional] Generated content 2

BAD  Previous good gen. sequence 3
GOOD

[optional] Generated content 3

Previous good gen. sequence 4 [optional] Generated content 4

GOOD Good gen. sequence ‘

Figure 1: Prompt template for Feedback Aware Genera-
tion

erate the sequence (depicted in blue) by attending
to the context, previous labels, previous generated
sequences, and, optionally, previous resulting con-
tent. The model is trained to generate only GOO D
sequences since the gradients and loss are com-
puted only for the tokens of the last generated se-
quence. Moreover, we can edit the prompt using
a decoder-only model - i.e., change a previously
thought GOOD label in the actual prediction given
by LS (the prerequisite Labeling System) and ap-
pend the resulting content obtained from the RCG
(the optional Resulting Content Generator).

4 Performance Evaluation

4.1 Baselines

Four strong baselines were selected to compare the
performance of our method. Details on the full
prompts (for both our model and the baselines) are
provided in Appendix C.

Single Sequence Generation (SSG). This ap-
proach involves iteratively generating a possible
sequence given the task and the context. This base-
line is trained by supervised fine-tuning to generate
the GOOD sequence. More formally, the general
prompt format on which we fine-tune is the follow-
ing: "<task>. Text: <text>. Generated sequence:
<sequence>". The loss and gradients are computed
just for the tokens of <sequence>. At inference
time, we over-sample 100 sequences, eliminate du-
plicates, and choose the top sequence in terms of
log-likelihood.

All Sequences Generation (ASG). This ap-
proach simultaneously generates all GOOD se-
quences for a given text. This baseline is trained by
supervised fine-tuning to generate all the GOOD
sequences for a context. More formally, the fine-
tuning prompt is the following: "<task>. Text:
<text>. Generated sequence: <seq_Il>, <seq_2>...
<seq_n>". The loss and gradients are computed

just for the tokens of <seq_i>.

All Sequences Generation with Resulting Con-
tent (ASG-RC). In the optional case of using the
Resulting Content Generator, this approach serves
as a strong baseline to prove the efficacy of the
feedback labels. It is trained similarly to the All
Sequences Generation (ASG) approach, with the
addition of the resulting content (RC) in order to
inform the current iteration about the previously
generated sequences and their corresponding result-
ing content. More formally, the fine-tuning prompt
is the following: "<task>. Text: <text>. Generated
sequence: <seq_l>- <rc_l>, <seq_2>- <rc_2>,

<seq_n>- <rc_n>". The loss and gradients
are computed just for the tokens of <seq_i>. It is
important to acknowledge that this baseline also
functions as a control group, evaluating the impact
of our design decision to train the Feedback-Aware
model using GOOD / BAD labels.

GPT-40. We use GPT-4o0 similarly to the pre-
vious baseline - namely, to generate sequences
and (optionally) their resulting content. We use
it in a 1-shot setting that includes the task and pro-
vides one text example from the training dataset
with a set of GOOD sequences and their result-
ing content. The considered prompt is the follow-
ing: "<task>. Write your generated sequences to-
gether with the resulting content on separate lines
in the following format: <generated_sequence>-
<resulting_content>. Don’t add any additional
characters or numbering. Take into consideration
the following example: <train_example>. Text:
<context>. Response:".

4.2 Experimental Setup

All previous models above (our approach and the
baselines) were fine-tuned from the foundational
Llama-3 (8B) model (Dubey et al., 2024). All
our experiments for fine-tuning and inference were
done on a single A100 80GB GPU to ensure acces-
sibility and cost-effectiveness. More details on the
actual models, their training, and hyperparameters
can be found in Appendix B.

We were interested in the most likely sequences
for models with iterative generation (i.e., FA,
ASG, ASG-RCQ). This is typically done using beam
search, but this method is not well suited for the
current task. Due to the high number of possible
positive answers, beam search is too restrictive with
the options for the first token. Because of this, we



Prompt content
[Generated conten |

Iteratively select a span from the following text that would serve as
good answer for generating a question.

Natural gas, like oil, is not evenly distributed in the earth. Because of costs and safety
problems, transporting natural gas is very difficult. Pipelines between suppliers and users
are possible and several have been built. For example, the trans-canada pipeline carries
natural gas 3700 Km from the Alberta-Saskatchewan border to Montreal. ...

BAD several How many pipelines have been built?
.| GOOD Because of costs and safety problems Why is difficult to transport natural gas?
BAD For example, the trans-canada What pipeline carries natural gas?

.| GOOD the trans-canadian pipeline

(a) Answer Selection for Question Generation

Prompt content

Generated content

Iteratively select keywords for the following text

This paper provides an overview of the new tendencies in the
subjective assessment of the quality of video for Multimedia

ications. New subjecti 1ent methods are here
described together with the description of the new general
approaches. ...

BAD user experience
GOOD video quality
BAD hypermedia systems

subjective assessment

GOOD|

(b) Keyword Generation

Figure 2: Prompt examples for different tasks.

opted for over-sampling by generating in each it-
eration 10 samples and choosing the one with the
highest log-likelihood each time.

In the case of the SSG model, we opted for a
similar over-sampling approach, sampling 100 se-
quences from which duplicates are removed, and
the top 25 sequences are kept.

4.3 Evaluated Tasks

4.3.1 Answer Selection for Question
Generation

For this task, the goal is to select several spans from
a context to serve as the answer for generating a
question. The aim is to generate a richer set of
potential questions by identifying multiple answer
spans from a given text. Our method improves
the generated sequences through iterative feedback,
making the model more adaptable.

Prerequisites: Labeling System. For these ex-
periments, we employ an automated method to
evaluate the quality of the selected answers. We
measured the quality of a selected answer by gener-
ating a question starting from it and assessing how
likely a model would answer the question given
the selected span. To achieve this, we required
two models: one to generate questions based on
a given context and a piece of information identi-
fied as the answer ()G en), and another capable of
providing accurate answers to questions based on a
given context (Q Ans). By utilizing these models,
we can label responses and proceed with the task
of generating and evaluating questions based on
proposed answers. Any instruction-tuned model
capable of generating and answering questions can
be used for these tasks. As the details of these mod-
els fall outside the scope of this experiment, further
information is provided in Appendix A. To estab-
lish an automatic criterion for a GOOD selected

answer, we define it as a text span that can be used
to generate a valid question. This question should
be answerable by the () Ans model when provided
with the given context. Furthermore, the context
should be necessary for answering the question,
avoiding excessively general inquiries. Addition-
ally, the selected answers must exhibit diversity,
avoiding redundancy in represented concepts.

Formally, the following procedure is employed
to determine the suitability of a selected span:

1. A question is generated using the context and
the selected answer: ¢ = QGen(ctz, a).

2. The probability of the () Ans model of return-
ing the selected span for the given question
must exceed an empirically chosen threshold
of 3%: P(QAns(ctx,q) = a) > 0.03; this
threshold was selected given the distribution
of correct answers in our training dataset;

3. The context must be important for answering
the question, so we impose that it should be
easier for Q) Ans to answer the question when

given the context compared to answering with-

P(QAns(” )=a) _

Uit 515 Ans(etz.q)=a)

Here, we denote P(QAns(ctz,q) = a) as the
probability of QAns to generate the answer a,
given the context ctx and question q. We use the
sum of log-likelihood estimates for each token in
the answer, which is then converted into a probabil-
ity between 0 and 1 by exponentiation:

P(QAns(ctx,q) = a) = e logP(ailetz,q,a0:i-1)

This formalization ensures that the selected an-
swers are not only relevant to the context but also
exhibit a strong dependency on the context for ac-
curate question answering. Furthermore, by apply-
ing this evaluation, we can categorize the selected



spans as either GOOD or BAD based on their
adherence to the established procedure. It is impor-
tant to note that this metric can be altered for other
purposes (e.g., question difficulty), and its form is
not essential in our method.

Optional Component: Resulting Content.
Evaluating a selected answer without knowledge
of the resulting question might add an unnecessary
abstraction layer to the task. Because of this, we
include the question as additional information in
the prompt. In this case, the Resulting Content
Generator (RC'G) will be the QGen model that
generates a question based on the selected answer.
The question will be used in the pipeline as result-
ing content.

Dataset Construction. We consider two datasets
for the specific task of Answer Selection for Ques-
tion Generation. The 7TASA corpus (Ivens and
Koslin, 1991) is a collection of text excerpts de-
signed to represent the reading a college student
might encounter throughout their academic career.
It contains over 60k passages from textbooks, lit-
erature, and various nonfiction and fiction works.
For our experiments, we sampled 10,000 texts for
training, 1000 for validation, and 1000 for the test
partition from the following domains: language
and arts, health, science, industrial arts, economics,
business, and social studies. FairytaleQA (Xu et al.,
2022) is a specialized dataset focused on narrative
comprehension for kindergarten to eighth-grade
students. It addresses the scarcity of high-quality
question-answering datasets devised for diverse
reading skills. The dataset is constructed by educa-
tional experts from children-friendly stories. For
our experiments, we used the already-established
partitions of the dataset (8548 for train, 1025 for
validation, 1007 for test).

For the task of Answer Selection for Question
Generation, we identify possible text spans that
could serve as an answer. These text spans for
training are the nodes from the constituency tree
of each sentence from the context. By leverag-
ing these nodes, we systematically cover a wide
range of possible answers. For each possible an-
swer a;, we generate a question given the context
and a;, as ¢; = QGen(ctz, a;). With the method
described above, we label a sample of possible
spans as GOOD and BAD.

4.3.2 Keyword Generation

Keyword generation involves automatically gener-
ating relevant terms that summarize the core topics
of a paper.

Prerequisites: Labeling System. For these ex-
periments, we rely on the human-chosen keywords
from the dataset to serve as GOOD labels. Any
other option not included in the set for the given
context would be considered BAD. In this man-
ner, we cover a different possibility for Feedback-
Aware: the feedback signal is provided by humans
rather than an automatic system.

Dataset Construction. We use the KP20K
dataset introduced by Meng et al. (2017). This is
an extensive dataset containing scientific article
abstracts and their corresponding keywords, as
chosen by the authors. It contains 500k entries,
from which we randomly selected 2000 from
their testing partition to evaluate the models,
2000 for validation, and 50k for training. As
this dataset only has positive examples annotated
(the keywords selected by the authors, labeled as
GOOD), we created negative examples (BAD)
by selecting keywords from other entries with
high similarity to the abstract that are not in
the subset of GOOD keywords of that specific
entry. More formally, having the dataset D =
[(abs1, K L), (abse, K L), ..., (absy, KLy)]
where KL; = [ki1,...,kim)] is the list of the
GOOD keywords for the abstract abs;, we select
the negative (BAD) keywords for abs; as being
from (UJ; K L;) \ KL;. From this set, we select
m negative keywords that are most similar to the
abstract, based on embeddings computed with
an encoder model®. This will be the set of BAD
keyword examples for the abstract abs;.

5 Results

We evaluate the models and baselines using slightly
different metrics based on the task. For An-
swer Selection for Question Generation, we eval-
uated in terms of Precision@K for the GOOD
sequences. More formally, for each text, PQK =
no. GOOD in the first K Fijoyre 3a showcases the P@K
aggregated results for the test partitions of both
TASA (Ivens and Koslin, 1991) and FairytaleQA

(Xu et al., 2022). We evaluated using precision

2https://huggingface.co/sentence—transformers/
all-mpnet-base-v2
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Figure 3: Results for different tasks.

since the number of GOOD answers for a context
can be large and recall would be less meaningful.

For Keyword Generation, we followed the ap-
proach stated in the literature and evaluated in
terms of F1 @K for the GOOD keywords. As there
is a varied number of GOOD keywords per text
but still within a limited range, we computed the
F1@K until K=10, based on the observation that
the 95th percentile of the number of GOOD key-
words per text is 10 on KP20K (Meng et al., 2017).
Figure 3b showcases the F1 @K results.

6 Discussion

The results presented in Figures 3 argue that our
proposed method consistently achieves high scores
across multiple generated sequences. It outper-
forms all other models by a significant margin. The
observed decline in metrics as K increases is pri-
marily due to the diminishing pool of accessible
answers for further generation.

For the task of Answer Selection for Question
Generation, the Single Sequence Generation (SSG)
baseline initially exhibits high precision but rapidly
declines as the number of generated sequences
increases. This decline stems from the model’s
lack of awareness of previously selected samples,
impairing its ability to generate additional high-
quality answers, a limitation our approach effec-
tively overcomes. The All Sequences Generation
(ASG) baseline shows a more gradual decline in
performance over multiple generated sequences,
as its prompts incorporate previously selected an-
swers, which aids in generating better outputs.
However, despite this benefit, it starts from a lower
precision point and experiences a slight decrease
as the number of available high-quality options re-
duces. The strongest baseline is the All Sequences
Generation with Resulting Content (ASG-RC). In-
corporating the generated questions derived from

previously selected answers helps the model bet-
ter understand the task, resulting in higher preci-
sion. However, it still underperforms compared to
our method and experiences a steeper decline in
precision over time. This highlights the value of
Feedback-Aware inference, as our model’s supe-
rior performance can be attributed to leveraging
feedback labels more effectively. Moreover, the
results indicate that the GPT-40 model yields the
poorest performance. Despite being a highly capa-
ble assistant, it underperforms relative to smaller,
open-source, fine-tuned models for specific tasks,
underscoring the importance of task-specific fine-
tuning and open research.

For the Keyword Generation task, the perfor-
mance of our proposed model remains the highest.
In this case, the All Sequences Generation (ASG)
has a good starting point, but its sequences decline
in quality after a few iterations. Here, GPT-40 also
performs poorly since choosing certain keywords
requires finetuning on extensive datasets to learn to
mimic human behavior and reasoning.

Recent studies that use the KP20K dataset focus
on the extractive task and rely on encoder mod-
els. The best results in this case are around 34.5%
F1@10 (Song et al., 2023), but are not directly
comparable with our scores, since they discard key-
words that do not appear in the abstract, which
makes the task much simpler.

6.1 ORPO Alignment Experiments

Categorizing generated sequences as GOOD and
BAD also leads us to consider an approach in-
volving preference fine-tuning. Multiple alignment
techniques (e.g., Ouyang et al., 2022, Rafailov
et al., 2024, Hong et al., 2024) leverage positive
and negative examples to train models to generate
content close to the positive choice and diverge
from the negative one. We experimented with the
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Figure 4: Results for different tasks (ORPO vs. SFT).

ORPO method (Hong et al., 2024) to fine-tune our
Feedback-Aware model and the Single Sequence
Generation baseline on positive (GOO D answers)
and negative (BAD answers) sequences. ORPO
incorporates an odds ratio-based penalty for differ-
entiating between chosen and rejected responses
in the conventional loss computation. We chose
ORPO since it outperformed the SFT+DPO setup
(Hong et al., 2024), fine-tunes only on positive/neg-
ative examples, and does not require previous train-
ing. More formally, for a prompt in the form of
[Prompt, GOOD sequence], we diverge from the
negative [Prompt, BAD sequence].

The ORPO alignment is done with the same
setup as supervised fine-tuning (SFT), with an ad-
ditional specific hyperparameter, 8 = 0.3 that
defines the weight given to the odds ratio-based
penalty in regards to the classical negative log-
likelihood loss.

Figure 4 highlights the results of this experiment.
While ORPO yields similar results with supervised
fine-tuning in our case, a different case is made
for the Single Sequence Generation baseline. In
the case of Answer Selection for Question Gener-
ation, ORPO helps at first while starting from a
high point in precision; however, the decrease is
abrupt as more sequences are generated, mainly
because ORPO tends to polarize the pool of sam-
ples, given its positive/negative alignment. This
hinders the capability of the model to generate di-
verse answers. Our method is not affected by this
polarization since it uses feedback signals that help
the generation to be grounded on previous facts.
For the Keyword Generation task, this behavior be-
gins from the first sequence, ORPO having a poor
performance from the start. One explanation is that
ORPO specifically penalizes keywords that are not
included in the initial list, but not all of them are
necessarily unsuitable.

7 Conclusions and Future Work

In this work, we introduced a Feedback-Aware
generation model that consistently outperforms ex-
isting baselines and proprietary models in itera-
tively generating high-quality sequences for differ-
ent tasks. The results argue that our approach main-
tains high scores across multiple iterations, sig-
nificantly surpassing baselines that lack feedback
awareness. Our approach’s superior performance
highlights the effectiveness of leveraging feedback
signals during training and inference. Moreover,
our framing of the training and inference steps has
the potential to be adapted to other tasks and feed-
back signals that can either come from proxy mod-
els or even human preference.

The framework introduced in this work can be
adapted beyond sequence generation to tasks that
require structured reasoning. A future work ex-
tension can be on tasks like mathematical reason-
ing, where generating coherent reasoning chains
is essential. Instead of producing multiple inde-
pendent sequences, the proposed approach can be
modified to generate structured reasoning steps,
ensuring logical consistency throughout the infer-
ence process. A key adaptation involves incorpo-
rating incorrect reasoning chains into the prompt
to improve the generation of correct ones. By ex-
plicitly conditioning the model on incorrect solu-
tions, it may better learn to differentiate between
valid and invalid reasoning paths, improving perfor-
mance in tasks requiring step-by-step logical deduc-
tions. Future work should investigate the impact of
feedback-aware generation in reasoning tasks, in-
cluding how different types of feedback—whether
model-generated or human-annotated—affect per-
formance.



Limitations

While our study presents significant findings, it is
important to acknowledge certain limitations. One
such limitation lies in the extent of our hyperparam-
eter tuning. Due to the computational expense as-
sociated with exhaustive hyperparameter searches,
we opted for a less intensive approach. This de-
cision was made to align with this paper’s scope
and ensure a manageable workload. It is worth
noting that we maintained consistent hyperparame-
ters across baseline models and our approach. This
standardization helps to ensure a fair comparison.

Another limitation of our proposed method is
that it requires negative samples for training. In
cases where datasets do not provide such samples,
they must be generated. Generating informative
negative samples is non-trivial, as they should align
with the task objectives and carry meaningful con-
trastive information. Basic or poorly constructed
negative samples may fail to contribute to effective
model learning.

Ethics Statement

In this research, we prioritize transparency, repro-
ducibility, and sustainability. Our approach lever-
ages publicly available, open-source datasets and
models, ensuring our work is grounded in widely
accessible resources. We aim to promote collabora-
tion and innovation within the research community
by using these open-source tools. We release all
project elements, including the code, fine-tuned
models, and labeled datasets. Moreover, we have
carefully managed our computational resources by
maintaining a low GPU budget, which not only
makes our experiments more accessible and repro-
ducible but also minimizes the environmental im-
pact associated with high-energy computation.
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A Appendix: QAns and QGen models

As stated before, prerequisite models for the label-
ing system and content generation are required to
evaluate and train both our approach and baselines.
In our case, QGen is a language model fine-tuned
for question generation and (Q Ans is fine-tuned for
question answering.

We fine-tune these models on three established
datasets: a) SQuAD (Rajpurkar et al., 2016) -
one of the most widely used resources for ques-
tion answering and generation, SQuAD consists of
over 100K question-answer pairs derived from a
pool of 5K Wikipedia articles; b) HotpotQA (Yang
et al., 2018) - designed to test a model’s ability
to answer questions that require reasoning across
multiple paragraphs, HotpotQA contains questions
that should be answered by bridging information
from two different Wikipedia articles; and c) Narra-
tiveQA (Kocisky et al., 2018) - designed to assess
reading comprehension, particularly for lengthy
texts, NarrativeQA consists of stories, along with
corresponding questions and answers.

The models were independently fine-tuned in
a supervised manner using the prompt "Generate
a question based on the context and the answer.
Context: <context>. Answer: <answer>. Ques-
tion: <generated_question>" for question genera-
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QGen | QAns
SQuAD 0.58 0.75
HotpotQA 0.50 0.50
NarrativeQA | 0.54 0.60
FairytaleQA | 0.51 0.45

Table 1: BLEURT score (Sellam et al., 2020) for the
prerequisites models on their tasks

tion (QGen) and "Answer the following question
based on the context. Context: <context>. Ques-
tion: <question>. Answer: <answer>" for ques-
tion answering () Ans). The loss is computed only
on the <generated_question> and <answer> to-
kens, respectively.

These models are not proposed as state-of-the-art
for these tasks but rather as plug-and-play modules
independent of our proposed method or baselines.
This means that any model can be a prerequisite
as the proposed method is not dependent on the
choice.

In order to assess the performance of these
models and validate their usage, we computed
the BLEURT score (Sellam et al., 2020) with the
ground-truth for the test partition of the SQuAD,
HotpotQA, and NarrativeQA, and for the test par-
tition of FairytaleQA (Xu et al., 2022) (a dataset
used for our method and baselines, but on which
we did not train QGen and QQ Ans).

Table 1 showcases the BLEURT scores for the
prerequisites models. Performance is acceptable as
the models are capable of answering and generating
questions with accuracy, considering the context.
Moreover, the models generalize well on an unseen
dataset (FairytaleQA), highlighting their capability
to serve as suitable prerequisites for our tasks with
a diverse range of texts from different domains.

B Appendix: Hyperparameter Details

For training, all models (the prerequisites QGen
and QQ Ans, our model and the baselines, including
the ORPO variants) are fine-tuned from the foun-
dational Llama-3 (8B) model (Dubey et al., 2024).
The setup for training considered: LoRA (Hu et al.,
2022) with projection matrices for the attention
layers; final batch size of 64 (resulted from gradi-
ent accumulation); half-precision (FP16) training;
learning rate of 1e-5, AdamW-8bit optimizer.

The configuration for inference was: nucleus de-
coding with over-sampling and selecting the top
generations (top_k=20, top_p=0.8, seed=42) for

our approach and the baseline models; default set-
tings and seed=42 for GPT-40; mixed-precision
(bf16, seed=42) computations for prerequisites
models (QQGen and QQ Ans).

C Appendix: Prompts

This section contains the prompts used for different
models and tasks. In bold we denoted the expected
generated text by the model.

C.1 Answer Selection for Question
Generation

Feedback-Aware Model

Iteratively select a span from the following
text that would serve as a good answer for
generating a question.

#i## Text: {{Text}}

### Response:

GOOD: {{Previous selected answer}} -
{{Previous resulting question} }

BAD: {{Previous selected answer} } - { { Pre-
vious resulting question} }

GOOD: {{Previous selected answer}} -
{{Previous resulting question} }
GOOD: {{Selected answer}}

Single Sequence Generation

Select a span from the following text that
would serve as a good answer for generating
a question.

### Text: {{Text}}

### Response:

{{Selected answer}}

All Sequences Generation

Iteratively select a span from the following
text that would serve as a good answer for
generating a question.

### Text: {{Text}}

### Response:

{{Selected answer}}

{{Selected answer}}

{{Selected answer}}




All Sequences Generation with Resulting
Content

Iteratively select a span from the following
text that would serve as a good answer for
generating a question.

### Text: {{Text}}

### Response:

{{Previous selected answer}} - { {Previous
resulting question } }

{{Previous selected answer}} - { {Previous
resulting question } }

{{Previous selected answer}} - { {Previous
resulting question } }
{{Selected answer}}

Single Sequence Generation

Select keywords for the following text.
### Text: {{Text}}

### Response:

{{Selected keyword}}

All Sequences Generation

Select keywords for the following text.
### Text: {{Text}}

### Response:

{{Selected keyword}}

{{Selected keyword}}

{{Selected keyword}}

GPT-4o0

Select 25 spans from the following text that
would serve as good answers for generating
questions. Write your selected answers to-
gether with the corresponding question on
separate lines, in the following format: <an-
swer> -> <question>

Don’t add any additional characters or num-
bering. Take into consideration the follow-
ing example:

{{Example text and response}}

### Text: {{Text}}

{{Selected answer}} - {{Generated ques-
tion}}

{{Selected answer}} - {{Generated ques-
tion}}

{{Selected answer}} - {{Generated ques-
tion}}

C.2 Keyword Generation

Feedback-Aware Model

Iteratively select keywords for the following
text.

### Text: {{Text}}

### Response:

GOOD: {{Previous selected keyword} }
BAD: {{Previous selected keyword} }

GOOD: {{Previous selected keyword} }
GOOD: {{Selected keyword}}

12

GPT-40

Generate 15 keywords for the following ab-
stract. Write your selected answers on sepa-
rate lines. Don’t add any additional charac-
ters or numbering. Take into consideration
the following example:

{{Example text and response} }

### Text: {{Text}}

{{Selected keyword}}

{{Selected keyword}}

{{Selected keyword}}
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