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Abstract
We consider decentralized learning for zero-sum
games, where players only see their payoff infor-
mation and are agnostic to the opponent’s actions
and payoffs. Previous works demonstrated conver-
gence to a Nash equilibrium in this setting using
double timescale algorithms under strong reacha-
bility assumptions. We address the open problem
of achieving an approximate Nash equilibrium ef-
ficiently with an uncoupled and single-timescale
algorithm under weaker conditions. Our contri-
bution is a rational and convergent algorithm, uti-
lizing Tsallis-entropy regularization in a value-
iteration-based approach. The algorithm learns
an approximate Nash equilibrium in polynomial
time, requiring only the existence of a policy pair
that induces an irreducible and aperiodic Markov
chain, thus considerably weakening past assump-
tions. Our analysis leverages negative drift in-
equalities and introduces novel properties of Tsal-
lis entropy that are of independent interest.

1. Introduction
Markov games, also known as stochastic games, are a class
of multi-agent decision-making problems with a rich history
dating back to the foundational work of Shapley (1953).
Shapley introduced two-player zero-sum stochastic games
and proved the existence of a Nash equilibrium, a central
solution concept where no player can improve her payoff
by unilaterally deviating from her strategy. For general
Markov games, Daskalakis et al. (2023) proved that finding
a Nash equilibrium is PPAD-complete. Zero-sum games, a
subset of Markov games, describe competitive interactions
between two players with directly opposed interests. In
these games, it has been shown that a Nash equilibrium can
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be computed efficiently, with many algorithms proposed
for this purpose under known dynamics and rewards, such
as variations of policy iteration or value iteration (Shapley,
1953; Hoffman and Karp, 1966; Pollatschek and Avi-Itzhak,
1969; Van Der Wal, 1978; Filar and Tolwinski, 1991).

Multi-agent reinforcement learning (MARL) refers to learn-
ing in Markov games with uncertain dynamics or rewards.
Previous works in this setting focused on two key objec-
tives: rationality and convergence (see Bowling and Veloso
(2001)). Rationality requires players to converge to a best re-
sponse of their opponents when those opponents’ strategies
tend to be stationary, while convergence requires reaching
a Nash equilibrium under self-play, i.e. when players use
the same algorithm. Recently, there has been increasing
interest in developing sample-efficient MARL algorithms
(Bai and Jin, 2020; Liu et al., 2021; Daskalakis et al., 2023;
Cui et al., 2023). However, these works focused primarily
on no-regret guarantees since computing Nash equilibria is
known to be intractable in general-sum games Daskalakis
et al. (2009).

For zero-sum games, extensive progress has been made on
learning Nash equilibria. Past works include Q-learning
variants (Littman, 1994; Zhang et al., 2021); model-based
Monte Carlo estimation of value-functions (Zhang et al.,
2020); optimistic gradient descent ascent (Wei et al., 2021);
and policy gradient/extra-gradient algorithms (Daskalakis
et al., 2020; Zhao et al., 2022; Cen et al., 2021). However,
while they established finite time guarantee for convergence
to a Nash equilibrium (Zhang et al., 2020; Wei et al., 2021;
Zhao et al., 2022), they required stringent assumptions on
the MDPs and interactions, such as irreducibility and double
timescales. Irreducibility refers to the ability to attain any
state from any other state under any policy of the players
in finite time, and double timescales entail fixing the poli-
cies for epochs of time while continuously updating the
value functions. These assumptions restrict the practical
applicability of past works.

Reachability challenge. Previous analyses of zero-sum
Markov games relied on a strong reachability assumption
(Wei et al., 2017; 2021; Chen et al., 2021; Cai et al., 2024).
Namely, there exists a positive integer L such that for any
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pair of policies used by the players, any state can be visited
from any state in time bounded by L. Given prior knowl-
edge of L, Wei et al. (2021) provided an algorithm that
guarantees an average-iterate convergence to an ϵ approxi-
mate Nash equilibrium in 1/ϵ8 time. Without knowing L,
Cai et al. (2024) proposed an algorithm with a last-iterate
convergence in L1/ξ/ϵ9+ξ time for any ξ > 0. To the best
of our knowledge, Chen et al. (2023) is the only work relax-
ing this strong reachability assumption; however, they did
not provide polynomial time convergence to a Nash equilib-
rium of the game, and rather to a biased version of the game
arising from a regularization.

Timescale challenge. Most existing algorithms for learn-
ing in zero-sum games adopted double timescales (Chen
et al., 2021; Wei et al., 2021). However, this entails an
implicit coordination between the players to stop updating
their policies simultaneously for periods of time. This limi-
tation is also relevant for single-agent actor-critic algorithms
(Xu et al., 2020a;b; Kumar et al., 2023), where Olshevsky
and Gharesifard (2023) recently proposed a single-timescale
algorithm; however, their analysis requires a stringent as-
sumption of the existence of a uniform upper-bound on the
mixing times over all policies. For zero-sum games, Chen
et al. (2023) introduced a single-timescale algorithm that
relaxes the above assumption, though their convergence
suffers a persistent bias as explained earlier.

The objectives we aim to address in this paper can be sum-
marized in the following question:

In zero-sum-games, can we learn an approximate Nash
equilibrium in polynomial time with a single-timescale
algorithm without a uniform mixing time bound or strong
reachability?

Contributions. In this paper, we address payoff-based
zero-sum Markov games, focusing on the fundamental prob-
lem of learning an approximate Nash equilibrium under
weaker assumptions. Our contributions include:

• For a decentralized, convergent, rational, and single-
timescale algorithm, we establish a polynomial sam-
ple complexity for learning a Nash equilibrium. This
convergence result requires only the existence of an
irreducible and aperiodic policy pair. This assump-
tion is significantly weaker than the mixing time and
reachability assumptions mentioned above.

• Our key technical contribution is introducing the
Tsallis-entropy regularization for zero-sum stochastic
games. This regularization allows us to:

– Derive lower bounds on the policies, ensuring
sufficient exploration (see Lemma 4.1);

– Obtain upper bounds on mixing times, allowing
us to determine when the Markov chains are close
to their stationary distributions (see Lemma B.5);

– Show a smoothness property entailing the conver-
gence of our policies (see Lemma B.3).

2. Preliminaries
In this section, we introduce the setting of stochastic zero-
sum games, define the relevant performance measure, and
discuss the limitations associated with certain common as-
sumptions in previous works.

Notations. We denote the sets of real and natural numbers
by R and N, respectively. The opponent of player i ∈ {1, 2}
is denoted by −i. The probability simplex over a finite
space X is ∆X .

2.1. Setting

Setting. We consider infinite-horizon, payoff-based, two-
player zero-sum games. This is defined as a tuple M =
(S,A1,A2, p,R1,R2, γ), where S is a finite state space,
A1 and A2 are finite action spaces for players 1 and 2, re-
spectively. The transition kernel P : S ×A1 ×A2 7→ ∆S
specifies the probability P (s′|s, a1, a2) of transition from
s to s′ given actions a1 and a2. The reward functions for
players 1 and 2 are denoted as R1 : S × A1 × A2 7→
R and R2 : S × A2 × A1 7→ R, respectively, such
that maxs,a1,a2 |R1(s, a1, a2)| ≤ 1, and R1(s, a1, a2) +
R2(s, a2, a1) = 0 for all s, a1, a2. The discount factor is
denoted by γ, and satisfies 0 < γ < 1. We consider a
fixed initial state s0, which Fiechter (1994) proved to be
equivalent to having an initial distribution over states.

Our goal is to design an algorithm that is payoff-based
and decentralized, i.e. players make decisions based solely
on their rewards without coordinating with their opponent.
Specifically, at time step k, players observe state sk, choose
actions (aik)i=1,2, observe (Ri(sk, a

i, a−i))i=1,2, and then
the MDP moves to state sk+1. Subsequently, the players up-
date their strategies independently. Additionally, we assume
self-play, meaning both players follow the same algorithm.

A stationary policy for player i ∈ {1, 2} is a mapping πi

from S to ∆Ai

. We denote the policy pair (π1, π2) as π. We
now define the q-function and the value function of player i:

qiπ
(
s, ai

)
:= Eπ

[∞∑
t=0

γtRi
(
st, a

i
t, a

−i
t

)
|s0=s, ai0 = ai

]
,

viπ(s) := Eai∼πi(·|s)
[
qiπ
(
s, ai

)]
,

where the expectation is over the randomness of the policy
π and that of the transitions.
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A policy pair (π1
NE, π

2
NE) is a Nash equilibrium (NE) if for

all i ∈ {1, 2}, and πi ∈ (∆Ai)S :

vi
πi

NE,π
−i
NE
(s) ≥ vi

πi,π−i
NE
(s).

The above definition means that no agent can improve their
value by unilaterally changing their policy. Lastly, we define
the Nash Gap for a policy (πi, π−i):

NG(πi, π−i) :=
∑
i=1,2

(
max
π̃i

vi(π̃i,π−i)(s0)−vi(πi,π−i)(s0)

)
.

From the above, it follows that the Nash Gap is zero if the
policy pair constitutes a Nash equilibrium. Our objective in
this paper is to develop an algorithm that learns an approxi-
mate Nash equilibrium in polynomial time without relying
on strong reachability or resorting to double timescales.

2.2. Limiting assumptions in state-of-the-art

In this section, we examine two common assumptions in the
literature related to the timescale and reachability objectives,
discuss their limitations, and highlight the challenges of
moving beyond them.

Strong reachability We begin with the common strong
reachability assumption (Auer and Ortner, 2006; Chen et al.,
2021), also known as the irreducible game assumption.
Assumption 2.1. (Strong Reachability) There exists a con-
stant L > 0 such that:

max
s,s′∈S

max
π∈(∆Ai )S×(∆A−i )S

Tπ
s 7→s′ ≤ L,

where Tπ
s7→s′ is the expected time to reach state s′ from state

s when players follow policy π.

In particular, this implies that all the induced Markov chains
are irreducible. In addition, Durrett (2019, Theorem 5.5.11)
showed that the Markov chain induced by an irreducible
policy π with stationary distribution µπ satisfies

Tπ
s7→s = 1/µπ(s). (1)

The above means that Assumption 2.1 implies µπ(s) ≥ 1/L
for all states and policies. This is a prevalent assumption
in reinforcement learning (Agarwal et al., 2021; Mei et al.,
2020; Zhang et al., 2022), which is stringent since requiring
a full support for the stationary distribution of any pair of
policies is very restrictive. To illustrate, consider the MDP
provided in Figure 1, and consider the policy π parameter-
ized by ξ ∈ [0, 1] defined as:

π(1, a) = ξ and π(1, b) = 1− ξ. (2)

Then, the corresponding stationary distribution µπ is given
by:

µπ =

(
1

2 + ξ
,
1

2
,

ξ

4 + 2ξ

)
, (3)

0 1 2b : 1/2
b : 1/2
a : 1/2

a : 1/2

1/2

1/2

1/2

1/2

Figure 1. MDP with three states: state 0 has actions a and b, while
states 2 and 3 don’t have any action. The arrows indicate the
possible transitions, which all have a probability of 1/2.

which implies limξ→0 µπ(2) = 0, invalidating Assumption
2.1 due to Equation (1) as there couldn’t exist a positive L
such that infs infπ µπ(s) ≤ 1/L.

For single-agent RL, Auer et al. (2008) relaxed strong
reachability by requiring an upper bound on the short-
est expected time to visit any state from any other state
maxs,s′ minπ T

π
s7→s′ . This assumption is sufficient for re-

gret guarantees (Auer et al., 2008; Agrawal and Jia, 2017);
however, it is not clear if it suffices for learning Nash equi-
libria in games because each player may have the ability of
blocking her opponent from visiting certain states.

Single timescale A significant challenge in single
timescale algorithms is that the observed payoffs consti-
tute a time-inhomogeneous Markov chain, which cannot be
studied using reachability assumptions alone. The concept
of mixing times is commonly introduced to handle this chal-
lenge, as it characterizes the convergence of Markov chains
to their stationary distributions.

Definition 2.2. For a policy pair π = (π1, π2), ϵ > 0, and
a transition matrix P , assuming that the induced Markov
chain has a unique stationary distribution µπ

1, we define the
ϵ-mixing time as:

tπ,ϵ = min

{
k ≥ 0 : max

s∈S

∥∥P k
π (s, ·)− µπ(·)

∥∥
TV

≤ ϵ

}
,

where TV is the total variation distance and Pπ is the transi-
tion induced by following policy π. For a transition kernel P
and an integer k ∈ N, we denote by P k

π the k-step transition
kernel.

Past works with single timescale algorithms commonly as-
sume uniformly bounded mixing-times over the space of
policies (Olshevsky and Gharesifard, 2023; Chen and Zhao,
2024; Bhandari et al., 2018; Wu et al., 2020).

Assumption 2.3. (Bounded mixing-time) Given ϵ > 0,
there exists a mixing-time tmix(ϵ) such that

∀π ∈ (∆Ai)S × (∆A−i)S , tπ,ϵ ≤ tmix(ϵ).

1For finite state spaces, µπ exists and is unique if the Markov
chain induced by π is irreducible.
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Using Assumptions 2.3 and 2.1 is proven to be enough to
control the estimation error of the value function in single-
timescale algorithms (Chen et al., 2021; Chen and Zhao,
2024).

In practice, while it is rational to assume that the considered
policies have a mixing time, it can be excessive to assume
a finite bound on their supremum over the entire space of
policies as in Assumption 2.3. To illustrate, consider the
MDP in Figure 1, we show in Appendix E that for the
policies defined of Equation 2 it holds that limξ→1 tπ,ϵ =
+∞, which invalidates Assumption 2.3. This assumption
is more stringent in game settings as fast mixing is related
to the joint policy and each agent may act to induce a joint
policy with arbitrarily slow mixing.

Overcoming these assumptions is particularly difficult in
MARL due to the additional complexity of cooperation re-
quired for effective state space exploration. We next present
an algorithm based on self-play that overcomes these chal-
lenges.

3. Algorithm and sample complexity
In this section, we describe our algorithm, motivate its de-
sign, and present our main theoretical result.

3.1. Algorithm

We now present our algorithm, Tsallis-smoothed Best-
Response Dynamics with Value Iteration (TBRVI ). Es-
sentially, building upon the work of Chen et al. (2023), we
combine principles of value iteration and best-response dy-
namics. Our key algorithmic contribution is the introduction
of Tsallis entropy regularization for policy updates, instead
of the standard softmax smoothing (Shannon entropy) used
in past works.

It is known that continuous-time best-response dynamics
converges asymptotically to a Nash equilibrium in zero-sum
games with access to the opponent’s actions and the best
response function (Leslie et al., 2020; Hofbauer and Sorin,
2006). However, we assume here discrete-time dynamics
and that agents lack knowledge of their opponent’s actions
and the best response. Consequently, we need to estimate
the q-function for each agent. To achieve this, TBRVI uses
minimax value iteration with TD-learning of Sutton and
Barto (2018) to bypass the coordination of policy updates.

Algorithm statement. The pseudo-code of TBRVI is pre-
sented in Algorithm 1. It takes as input the number of
episodes T , the length of an episode K, and a regularization
parameter η.

In Algorithm 1, the value functions are initialized to zero.
At the beginning of every episode, we reset the q-functions

Algorithm 1 Tsallis-smoothed Best-Response Dynamics
with Value Iteration

1: Input: Integers K and T , real number η > 0, matrices
vi0 = 0 ∈ R|S|, qit,0 = 0 ∈ R|S||Ai| for all t, policies
πi
t,0(a

i|s) = 1/|Ai| for all (s, ai) and t.
2: for t = 0, 1, · · · , T do
3: for k = 0, 1, · · · ,K − 1 do
4: Update policies: ∀s ∈ S, i ∈ {1, 2} :

πi
t,k+1(s) = πi

t,k(s)+βk(Ts(q
i
t,k(s, .))−πi

t,k(s))

5: Sample actions: aik ∼ πi
t,k+1(·|sk)

6: Observe: sk+1 ∼ p(· | sk, aik, a
−i
k )

7: Update values, for all (s, ai):

qit,k+1(s, a
i) = qit,k(s, a

i)

+αk

(
Ri(sk, a

i
k, a

−i
k ) + γvit(sk+1)

− qit,k(sk, a
i
k)
)
1{s=sk,ai=ai

k}

8: end for
9: vit+1(s) = πi

t,K(s)⊤qit,K(s, .) for all s ∈ S and set
s0 = sK

10: end for
11: Output: πi

T,K

to zero and the policies to the uniform distribution. In
line 1, the policies are updated according to a smoothed
best response2. This smoothing is achieved through the
parameter βk and the use of Tsallis entropy:

Ts(qit,k(s)) = argmax
w∈∆|Ai|

〈
w, qit,k(s, .)

〉
+

4

η

∑
i

√
wi, (4)

where η > 0 is a learning rate which we omit from the
notation for readability. Next, in line 1, the action of player
i is sampled from policy πi

t,k+1(.|sk). Subsequently, in
line 1, the MDP transitions to state sk+1 according to the
transition dynamics. Line 1 depicts the q-functions’ updates,
utilizing a simple TD-learning scheme. Finally, in line 1,
the value functions are updated similarly to value-iteration.

The inner loop of TBRVI faces two challenges. Firstly, both
policies and q-functions are time-varying (lines 1 and 1).
Traditionally, a double timescale is introduced to address
this issue. In our case, we update the policies at a rate that is
a multiplicative constant smaller than that of the q-functions.

Secondly, the convergence of TD-learning (line 1) requires
the policies to explore all actions (Sutton and Barto, 2018).
This is typically addressed using Assumption 2.1 with soft-
max smoothing. Our main algorithmic contribution lies

2The original best response dynamics prescribes choosing
πi
k+1(a|s) ∈ argmaxπi qi

(πi,π−i
k

)
(s, a).
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in introducing Tsallis entropy in line 1. This alteration is
crucial for proving finite-time convergence to approximate
Nash equilibria, in contrast to the results of Chen et al.
(2023). Tsallis entropy entails more exploration of subop-
timal actions compared to softmax smoothed policies, and
leads to considerably faster mixing, as demonstrated in later
proofs.

In Algorithm 1, lines 1 and 1 represent a payoff-based ver-
sion of minimax value iteration. The conventional minimax
value iteration involves running the following (Bellman)
step until convergence:

vit+1(s) = max
πi∈∆|Ai|

min
π−i∈∆|A−i|

{
(πi)⊤

(
Ri(s, ai, a−i)

+ γE[vit(s1)|s0 = s, ai, a−i]
)
π−i
}
.

Once a value vi⋆ is reached, the agents solve the game cor-
responding to the above equation, with vi⋆ instead of vt.
Leveraging our q-function estimation, we decentralize min-
imax value iteration and combine it with TD-learning to
mitigate the challenges of payoff-based feedback.

3.2. Theoretical statement

Here, we show that TBRVI converges in polynomial time
to an approximate Nash equilibrium. This result extends the
literature by establishing convergence under a considerably
weaker assumption.

Assumption 3.1. There exists a joint policy πb = (πi
b, π

−i
b )

that induces a Markov chain which is irreducible and aperi-
odic.

The irreducibility here is strictly weaker than Assumption
2.1 as it only concerns a single policy. The aperiodicity
ensures the existence of a mixing time for πb (Lemma 5.7 in
Khodadadian et al. (2022)), and is strictly weaker than As-
sumption 2.3. It is needed for the single-timescale objective,
as discussed in Section 2.2. Remarkably, for algorithms
that are payoff-based, convergent, and single-timescale, As-
sumption 3.1 is the weakest in the literature.

In Algorithm 1, we choose αk = α/(k + h), βk = cα,βαk

where cα,β is a constant parameter, and α, h > 0 satisfy
α/h < 1. We now present our main result, which demon-
strates the polynomial time convergence to an approximate
Nash equilibrium. The theorem may appear ambiguous;
however, we provide Corollary 3.3 afterwards and some
explanations to clearly illustrate our contributions.

Theorem 3.2 (Nash Gap bound). Assume self-play and that
the agents follow Algorithm 1. Under Assumption 3.1, and

if cα,β ≤ cηℓ
3
η(1−γ)2

6272η3|S|A4
max

, then for all K ≥ k0:

E[NG(πi
T,K , π−i

T,K)] ≤ ĉ′1|S|ATη

(1− γ)3

(
γ + 1

2

)T−1

+
ĉ′2|S|2A2

maxL̂ηz
2
Kα1/2

αk0cα,β(1− γ)5
1√
K

+
ĉ′3
√
Amax

η(1− γ)2
,

where k0 := min {k ≥ 0 | k ≥ zk}, zK = O(log(K)η4rb),
L̂η = O(η4rb), ℓη = O(η−2), cη = Ω(ℓ2η), rb :=

min
{
k ≥ 0 : P k

πb
(s, s′) > 0,∀ (s, s′)

}
, and {ĉ′j}0≤j≤3

are numerical constants.

Let us discuss the three terms on the right-hand side. The
first term is a bias that arises from playing according to
minimax value iteration, and its inherent approximation
error. The second term reflects the combined convergence
error and variance of the inner loop and scales as 1/

√
K.

Lastly, the third term is a regularization bias from using
Tsallis entropy to smooth the best response.

Corollary 3.3 (Sample Complexity). Fix ϵ > 0. If
Assumption 3.1 holds, then the TBRVI algorithm with
η = K1/(24rb+28) achieves E[NG(πi

T,K , π−i
T,K)] ≤ ϵ

in Õ
(
1/ϵ24rb+28

)
time. That is, TBRVI learns an ϵ-

approximate Nash equilibrium in finite time.

This sample complexity requires only Assumption 3.1. This
marks the first polynomial convergence to Nash equilibria
in literature that relaxes strong reachability, and it can be
applied in the settings of Wei et al. (2017; 2021); Chen et al.
(2021; 2023); Cai et al. (2024).

Moreover, we show that players using TBRVI converge in
polynomial time to the best response of opponents who play
a stationary policy. This means that TBRVI is rational.

Corollary 3.4 (Rationality). If player −i follows a pol-
icy π−i, then for player i following TBRVI , for any
ϵ > 0, maxπ̂i vi(π̂i,π−i)(s0) − vi

(πi
T,K ,π−i)

(s0) ≤ ϵ after

Õ(1/ϵ24rb+28) time.

Comparison with state-of-the-art. Several relevant
works have addressed learning in similar settings. For in-
stance, Wei et al. (2021) focused on average iterate conver-
gence and proved a Õ

(
1/ϵ8

)
sample complexity. However,

this requires Assumption 2.1 and double-timescale, and an
average-iterate convergence is strictly weaker than a Nash
gap. For last-iterate convergence, Chen et al. (2021) showed
a Õ(1/ϵ5.5) sample complexity using a double timescale
algorithm, Assumptions 2.1 and 2.3, as well as communicat-
ing the entropy of the policy to the opponent. In recent work,
Cai et al. (2024) proved a last-iterate guarantee with a rate of
Õ
(
L1/ξ/ϵ9+ξ

)
for any ξ > 0 under strong reachability. For
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general Markov games, Cai et al. (2024) showed a sample
path convergence implying that “for all states that players
visit often enough, players learn an approximate Nash pol-
icy”, this is significantly weaker than even an average-iterate
convergence.

4. Proof sketch
As discussed earlier, the main limitation of prior work is
their inability to learn Nash equilibria without Assump-
tions 2.1 and 2.3. We attribute this to the common use of
Shannon entropy smoothing in the literature. Specifically,
Shannon entropy results in policies that converge too rapidly.
Intuitively, the weight of non-optimal actions decays expo-
nentially fast, hindering the reachability bounds necessary
for the analysis. Moreover, this rapid decay directly impacts
the mixing times. For instance, the best bounds in available
for mixing times, provided in Chen et al. (2023, Lemma 4),
show that mixing times grow inversely proportional to the
exploration level of the policies.

In our proof, we first decompose the Nash gap into a sum of
functions of the value functions, q-functions, and policies,
as shown in Equation (5) below.

NG(πi
T,K , π−i

T,K) ≤ C0

(
Vπ(T,K) + 2 ∥viT + v−i

T ∥∞︸ ︷︷ ︸
V1

+
∑
i=1,2

∥viT − vi∗∥∞︸ ︷︷ ︸
V2,i

+
8
√
Amax

η︸ ︷︷ ︸
bias

)
(5)

where C0 is a constant, and Vπ(·) is a function that we
present later.

This decomposition reveals several key components influ-
encing the Nash gap. Our main argument is to establish drift
inequalities3 for each term on the right hand side, including
V1,V2,1,V2,2, and Vπ(·). We leverage the proof techniques
of Chen et al. (2023), replacing the softmax with Tsallis
entropy and adjusting the affected arguments accordingly.
This adaptation requires developing new properties for Tsal-
lis entropy. For instance, our proof demonstrates that Tsallis
entropy enables bounding several quantities, such as the
mixing time, the convergence rate of q-functions, and the
convergence rate of policies. Our bounds are polynomial
in η, standing in stark contrast to the exponential depen-
dence on η observed when using Shannon entropy under
Assumption 3.1.

3We define drift inequalities as inequalities that show a negative
drift in the iterate (similar to Lyapunov drift inequalities) plus
additional terms coming from the coupling with other iterates.

4.1. Tsallis entropy

First, let’s provide some background on Tsallis entropy
before presenting our new properties.

Tsallis entropy, introduced in Tsallis (1988), is defined as
Hα(π) =

1
1−α (1 −

∑
i π

α
i ), where α ∈ [0, 1]. It includes

Shannon entropy and log-barrier potential as special cases
for α → 1 and α → 0, respectively (Agarwal et al., 2017;
Abernethy et al., 2015). In this paper, we adopt Tsallis
entropy with α = 1/2, a common choice in the online
learning literature (Zimmert and Seldin, 2021).

The policies induced by Tsallis entropy (see Equation (4))
have an explicit expression (Zimmert and Seldin, 2021):

Ts(qit,k(s))(a) = 4/
(
η
(
qit,k(s, a)− xt

))2
,

where xt ∈ R is defined through the normalization con-
straint

∑
a Ts(.)(a) = 1. This closed-form expression al-

lows us to study the margins of the policies of Algorithm
1. Now, let’s present our two contributions characterizing
Tsallis entropy, which ensure crucial properties of the in-
duced Markov chain. Our first result concerns the policies
in Algorithm 1.
Lemma 4.1 (Margins). It holds for all t, k ≥ 0, i ∈ {1, 2}
and (s, ai, a−i) that

πi
t,k(a

i|s) ≥ ℓη, where ℓη = 1/

(√
A+

η

2(1− γ)

)2

.

Proof. This follows directly from Lemma B.1 in the ap-
pendix.

This property ensures that policies are lower bounded by a
function of the η coefficient. This is advantageous for two
reasons: first, according to Chen et al. (2023, Lemma 4.1
(2)), we can bound the mixing time of the resulting policies;
second, we can utilize Zhang et al. (2023, Lemma 4) to
lower bound the components of the stationary distribution
of the policies. Consequently, the policies of Algorithm 1
enjoy crucial exploration properties using only Assumption
3.1.

Our second result is the Lipschitzness of Tsallis entropy
with respect to the ∥.∥2 norm.
Lemma 4.2 (Lipschitzness). For all R and R′ ∈ Rn, we
have:

∥Ts(R)− Ts(R′)∥2 ≤ 2
√
2η n∥R−R′∥2.

We utilize this result in the next section to prove a crucial
smoothness result, essential for ensuring the convergence
of the policies. Lemma 4.2 is also relevant in game theory,
reinforcement learning, and online learning. Similar prop-
erties for the softmax function, as seen in Gao and Pavel
(2017), have been highly valuable in proving convergence
to Nash equilibria in the mentioned fields.
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4.2. Drift inequalities

The objective here is to establish drift inequalities for the
terms V1, (V2,i)i=1,2, and Vπ . These inequalities are crucial
for proving the convergence of TBRVI .

Value functions. This part pertains to the value function
iterates in the Nash gap decomposition, namely V1 and
(V2,i)i=1,2. We refer to them as value function iterates be-
cause they help analyze the convergence of different terms
related to the value functions ((vit)i=1,2)t≥0. We prove drift
inequalities for each of these iterates, demonstrating a nega-
tive drift plus coupling terms. The negative drift primarily
stems from the contractiveness of the Bellman operator,
while the coupling terms follow from the dependence with
other value function iterates as well as with the policy iterate.
The challenge therefore lies in handling the coupling terms.

Policy drift. Here we address the term Vπ in the Nash gap
decomposition. Initially, given a fixed value function pair
v = (v1, v2) and a state s ∈ S, we define:

Vv,s

(
πi, π−i

)
:=
∑
i=1,2

max
π̂i∈∆|Ai|

{(
π̂i−πi

)⊤T i(vi)(s)π−i

+
1

η

(
H
(
π̂i
)
−H

(
πi
))}

,

where T i(v)(s, ai, a−i) := Ri(a, ai, a−i) +
γE
[
v(S1) | S0 = s,Ai

0 = ai, A−i
0 = a−i

]
. We then

define:
Vπ :=

∑
s

:= Vv,s

(
πi, π−i

)
, (6)

The function Vv,s serves as a regularized Nash gap for the
matrix game with payoffs T i(v)(s, ·, ·). It is an adaptation
of the Lyapunov function provided in Hofbauer and Hopkins
(2005) for best response dynamics, adjusted to accommo-
date the Markov games setting by the payoff matrices with
T i(v), and Tsallis entropy replacing Shannon entropy to
align with our algorithmic choices.

Also a part of our decomposition, we prove a negative drift
for Vπ in Lemma C.5. The analysis of the policy updates fol-
lows the steps of (Hofbauer and Hopkins, 2005) by demon-
strating that Vπ is strongly convex and smooth due to the
newly established properties of Tsallis entropy.

Q-functions. Our analysis for V1, Vπ , and (V2,i)i=1,2 nat-
urally involves a q-function estimation term. To prove the
convergence of q-functions, we examine the following func-
tion

Vq(t, k) =
∑
i=1,2

∥qit,k − q̄it,k∥22, (7)

where q̄ik(s) = T i(vi)(s)π−i
k (s). Analyzing Vq relies heav-

ily on our novel use of Tsallis entropy.

In particular, as mentioned earlier, the policies must appear
stationary for TD-learning to converge. We use the margin
property for Tsallis entropy from Lemma 4.1 to lower bound
the components of the policies of TBRVI , and Chen et al.
(2023, Lemma 4.2) to derive a bound on the mixing time
of the induced Markov chains. Then, a careful choice of
the episode length implies that the Markov chain is close
to its stationary distribution. Finally, using a conditioning
argument, we can establish a drift inequality for the term
Vq(t, k) related to q-functions.

Decoupling. The drift inequalities for (V2,i)i=1,2, V1, Vπ ,
and Vq are coupled (see Lemmas C.2, C.3,C.5, and C.9, re-
spectively), meaning they are interdependent. Consequently,
this step differs from typical Lyapunov analyses, where a
central Lyapunov inequality is established and can be used
to prove the final bound (see McMahan and Orabona (2014,
Theorem 2.7.1)). Instead, we employ a special argument to
decouple the inequalities and deduce the final bound. Sim-
ilar to the analysis of Chen et al. (2023), we start from a
crude bound on each drift function, and then iteratively and
smartly apply the drift inequalities until tighter bounds are
obtained.

Bias term. This term, denoted as
(
8
√
Amax/η

)
, is the

final term in our Nash gap decomposition. The goal is to
choose a large η to remove this regularization-induced bias.
Fortunately, the convergence we achieve for the q-functions
is polynomial in η (see Theorem 3.2 and Lemma 4.1). Con-
sequently, we can optimize the final bound to remove the
bias and prove a polynomial convergence to Nash equilib-
ria. Conversely, the softmax smoothing entails margins and
mixing times that are exponential in η (see (Auletta et al.,
2013)), making it impossible to remove the bias term for
Shannon entropy-smoothed algorithms due to exponentially
slow convergence. This highlights the importance of Tsal-
lis entropy, which results in a bias term that can be tuned
successfully.

5. Conclusion
In conclusion, our work addressed learning an approximate
Nash equilibrium in zero-sum Markov games using payoff-
based, decentralized, and single timescale algorithms under
weak state reachability assumptions. We formally defined a
relaxed reachability requirement in Assumption 3.1, and we
proposed the TBRVI algorithm. This algorithm builds upon
the work of Chen et al. (2023), combining essential princi-
ples such as best response dynamics of Hofbauer and Sorin
(2006); Leslie et al. (2020) and value iteration of Shapley
(1953). Our key algorithm contribution is smoothing the
policy updates using Tsallis entropy, a new addition to the
MARL literature.
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Our analysis builds upon Markov chain results of Zhang
et al. (2023) and incorporates insights on mixing times from
Chen et al. (2023). We demonstrate how the policy update
scheme induced by Tsallis entropy enables improved explo-
ration of the state space and ensures an accurate estimation
of the q-functions with TD-learning. Finally, we proved that
the TBRVI algorithm learns an approximate Nash equilib-
rium in polynomial time, while eliminating the prohibitive
strong reachability condition as well as the need for double
timescales.

For future work, we believe that our sample complexity
bounds are not tight and that they can be improved using
concentration inequality type analyses, similar to Wei et al.
(2021); Chen et al. (2021).
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A. Notations
We dedicate this section to index all the notations used in this paper. Note that every notation is defined when it is introduced
as well.

Table 1: Notations

T := K ×H , total number of steps

A := max{|A1|, |A2|}.

vi := value function of agent i ∈ {1, 2}, ∈ R|S|

Ri(a, ai, a−i) := Reward matrix for player i(i ∈ {1, 2})

T i(v)(s, ai, a−i) := Ri(a, ai, a−i) + γE
[
v(s1) | s0 = s, ai0 = ai, a−i

0 = a−i
]

vali(X) := maxπi∈∆|Ai| minπ−i∈∆|A−i|{(πi)⊤Xπ−i}

= minπ−i∈∆|A−i| maxπi∈∆|Ai|{(πi)⊤Xπ−i}

Bi(v)(s) := vali(T i(v)(s)), the minimax Bellman operator

vi∗ := The unique fixed-point of Bi(vi)(s). Note that vi∗ + v−i
∗ = 0.

H(w) := 4
∑

i∈[n]

√
wi for all w ∈ Rn, Tsallis-entropy

VX

(
πi, π−i

)
:=

∑
i=1,2 max

π̂i∈∆|Ai|

{(
π̂i − πi

)⊤
Xiπ

−i + 1
ηH
(
π̂i
)
− 1

ηH
(
πi
)}

Vq(t, k) :=
∑

i=1,2 ∥qit,k − q̄it,k∥22

vi∗,π−i(s) := maxπ̂i viπ̂i,π−i(s)

viπi,∗ := minπ̂−i viπi,π̂−i(s)

v−i
π−i,∗(s) := minπ̂i v−i

π−i,π̂i(s)

v−i
∗,πi(s) := maxπ̂−i v−i

π̂−i,π̂i(s)

Πδ := {(πi, π−i) | ∀i,mins,ai πi(ai|s) > δi}, where δi ∈ (0, 1).

B. Supporting lemmas
In this section, we present technical results that are crucial for our proof. Particularly, we provide new results for the Tsallis
entropy smoothing.

B.1. Tsallis entropy

Recall Tsallis-entropy in an n-dimensional space: Hα(π) =
1

1−α (1−
∑

i π
α
i ). In this paper, we consider Tsallis entropy

with α = 1/2, which can be equivalently written (Zimmert and Seldin, 2021): H(w) := 4
∑

i∈[n]

√
wi. In algorithm 1, we

use this entropy as a regularization to the policy update to define the Tsallis smoothing:

Ts(R) = argmax
w∈∆n

⟨w,R⟩+ 1

η
H(w), for all R ∈ Rn

where η is a positive scalar. (Zimmert and Seldin, 2021) provides a closed-form expression for the Tsallis smoothing:

Ts(R)i = 4/ (η (Ri − x))
2
,
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where x ∈ R is defined implicitly through the normalization constraint
∑

i 4 (η (Ri − x))
−2

= 1.

Lemma B.1 (Normalization factor). Let R ∈ Rn, and let x ∈ R be the normalization factor of Ts(R), then we can show
that

2/η ≤ x−max
i

Ri ≤ 2
√
n/η

Proof. Let i⋆ = argmaxRi, then we have wi⋆ ∈ [1/n, 1] (see remark below) and

x = Ri⋆ − 2η−1 Ts(R)
− 1

2
i⋆

Since the function y :→ 4(η(Ri − y))−2 is monotonous in the domain I = [Ri⋆ + 2/η,Ri⋆ + 2
√
n/η], there exists a

unique value in I , such that
∑

i 4 (ηt (Ri − x))
−2

= 1.

Remark B.2. Note that there are n+ 1 candidates for the normalization factor, such that the smallest one is smaller than
mini Ri and the second smallest one is smaller than the second smallest (R)j , and so on until the nth one, the (n+ 1)th

candidate is larger than maxi Ri. The (n+ 1)th candidate is the normalization factor because it maximizes the objective in
equation (4).

Lemma B.3 (Lipschitzness). For all R and R′ ∈ Rn, we have:

∥Ts(R)− Ts(R′)∥2 ≤ 2
√
2η n∥R−R′∥2

This means that Tsallis-smoothing is Lη-Lipschitz with respect to ∥.∥2.

Proof. Let R and R′ be two vectors in Rn, and consider R0, . . . ,Rn ∈ Rn such that R0 = R, and for j ∈ {1, . . . , n}, we
define Rj := (R′

1, . . . ,R
′
j ,Rj+1, . . . ,Rn), we also denote x0, . . . , xn their respective Tsallis-normalization factor.

Let j ∈ {1, . . . , n} we have:

1) If R′
j ≥ Rj: then xj > xj−1, this is because the function y :→

∑
i 4(η(Ri − y))−2 is decreasing in the domain

[xj−1,maxi R
j
i + 2

√
K/η] and it is larger than 1 in xj−1.

The latter entails that for all l ̸= j,Ts(Rj)l ≤ Ts(Rj−1)l, which implies that Ts(Rj−1)j ≥ Ts(Rj−1)j to keep the
normalization condition. Then

Ts(Rj−1)j ≥ Ts(Rj−1)j =⇒ 1(
xj −R′

j

)2 ≥ 1

(xj−1 −Rj)
2 ,

=⇒ xj − xj−1 ≤ R′
j −Rj ,

the last line follows because xj ≥ R′
j and xj−1 ≥ Rj thanks to Lemma. B.1.

2) If R′
j ≤ Rj: Similarly, we can prove that this entails that xj − xj−1 ≥ R′

j −Rj .

In 1) and 2) we have shown that for all j ∈ {1, . . . , n} we have: xj − xj−1 ≤ R′
j −Rj . Therefore, we can show

n∑
l=1

(R′
l −Rl)1R′

l≤Rl
≤ xn − x0 ≤

n∑
l=1

(R′
l −Rl)1R′

l≥Rl

Now that we have studied the variation of the normalization factor we are able to analyze the variation of the Tsallis-induced

12



Learning Nash Equilibria in Zero-Sum Markov Games: A Single-Timescale Algorithm Under Weak Reachability

weights from a variation of the R vector. Let j ∈ {1, . . . , n}, we have:

Ts(R)j − Ts(R′)j =
4

(η(Rj − x0))2
− 4

(η(R′
j − xn))2

=
4

η2

(
(R′

j − xn)
2 − (Rj − x0)

2

(R′
j − xn)2(Rj − x0)2

)

=
4

η2

(
(R′

j −Rj + x0 − xn)(Rj − x0 +R′
j − xn)

(R′
j − xn)2(Rj − x0)2

)

=
4

η2
R′

j −Rj + x0 − xn

(R′
j − xn)(Rj − x0)

(
1

R′
j − xn

+
1

Rj − x0

)
≤ 8η|R′

j −Rj + x0 − xn|
≤ 8η∥R′ −R∥1

where the penultimate inequality follows since for all j, 1
η(R′

j−xn)
≤ 1 and 1

η(Rj−x0)
≤ 1 because they are square-roots of

probabilities.

Finally:
∥Ts(R)− Ts(R′)∥2 ≤ 2η

√
2n∥R′ −R∥1 ≤ 2

√
2η n∥R′ −R∥2

which concludes the proof.

B.2. Markov chain tools

The following lemmas establish exploration properties under assumption 3.1. To present the results, we need addi-
tional notations. Under Assumption 3.1, there exists a joint policy πb such that its induced Markov chain has a unique
stationary distribution µb ∈ ∆|S|. The minimum component µb is denoted as µb,min, µb is positive thanks to Equa-
tion 1 and the irreducibility of the Markov chain induced by πb. In addition, there exists ρb ∈ (0, 1) such that
maxs∈S

∥∥P k
πb
(s, ·)− µb(·)

∥∥
TV ≤ 2ρkb for all k ≥ 0 (Levin and Peres, 2017), where Pπb

is the transition probability
matrix of the Markov chain {Sk} under πb. In addition, thanks to lemma 4.1, it is enough to restrict our attention to policy
classes of the form Πδ := {π = (πi, π−i) | mins,ai πi(ai|s) > δi,mins,a−i π−i(a−i|s) > δ−i}, where δi, δ−i ∈ (0, 1).

Lemma B.4 ((Zhang et al., 2023), Lemma 4). Suppose that Assumption 3.1 is satisfied. Then we have the following results.

1. For any π = (πi, π−i) ∈ Πδ , the Markov chain {Sk} induced by the joint policy π is irreducible and aperiodic, hence
admits a unique stationary distribution µπ ∈ ∆|S|.

2. Let G : R|S|A 7→ R|S| be the mapping from a policy π ∈ Πδ to the unique stationary distribution µπ of the
Markov chain {Sk} induced by π. Then G(·) is Lipschitz continuous with respect to ∥ · ∥∞, with Lipschitz constant
L̂δ := 2 log(8|S|/ρδ)

log(1/ρδ)
, where ρδ = ρ

(δiδ−i)
rbµb,min

b and rb := min{k ≥ 0 : P k
πb
(s, s′) > 0, ∀ (s, s′)}.

3. µδ := infπ∈Πδ
mins∈S µπ(s) > 0.

Lemma B.5 ((Chen et al., 2023), Lemma 4.2). Suppose that Assumption 3.1 is satisfied. Then, it holds that
supπ∈Πδ

maxs∈S ∥P k
π (s, ·) − ππ(·)∥TV ≤ 2ρkδ for any k ≥ 0, where ρδ = ρ

(δiδ−i)
rbµb,min

b and rb := min{k ≥ 0 :
P k
πb
(s, s′) > 0, ∀ (s, s′)}. As a result, we have

t(π, λ) := sup
π∈Πδ

tπ,λ ≤ tπb,λ

(δiδ−i)rbµb,min
, (8)

where we recall that tπ,λ is the λ – mixing time of the Markov chain {Sk} induced by π.

This enables us to see the explicit dependence of the mixing time on the margins δi, δ−i and the mixing time of the
benchmark exploration policy πb. Note that, as the margins δi, δ−i approach zero, the uniform mixing time in Lemma B.5
goes to infinity. This bound is generally non-vacuous, as demonstrated by a simple MDP example constructed in (Chen
et al., 2023).
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Given Lemma B.5, we have fast mixing for all policies in Πδ if the margins δi, δ−i are large, the mixing time of πb is small,
and the stationary distribution is balanced (large πb,min).

Notation For simplicity, when Πδ = Πℓη , we denote ρη := ρδ , µη := µδ , and L̂η := L̂δ . We also define cη := µηℓη .

B.3. Miscellaneous

Here we present two results on the value function estimates and the policies of algorithm 1.

Lemma B.6 (Bounded value function). It holds for all t, k ≥ 0 and i ∈ {1, 2} that

1. ∥vit∥∞ ≤ 1
1−γ ,

2. ∥qit,k∥∞ ≤ 1
1−γ .

Proof. We proceed by two induction arguments, first, let’s show the second part of the lemma by induction over t. By our
initialization it holds that qi0,k = 0 for all k. Assume that ∥qit,k∥∞ ≤ 1

1−γ and ∥vit∥∞ ≤ 1
1−γ . Then we have for all (s, ai)

that

|qit,k+1(s, a
i)| = |qit,k(s, ai) + αk1{(s,ai)=(sk,sik)}(R

i(sk, a
i
k, a

−i
k ) + γvit(Sk+1)− qit,k(sk, a

i
k))|

≤ αk1{(s,ai)=(sk,ai
k)}|R

i(sk, a
i
k, a

−i
k ) + γvit(Sk+1)|

+ (1− αk1{(s,ai)=(sk,ai
k)})|q

i
t,k(s, a

i)|

≤ αk1{(s,ai)=(sk,ai
k)}

(
1 +

γ

1− γ

)
+ (1− αk1{(s,ai)=(sk,ai

k)})
1

1− γ

=
1

1− γ
,

this finishes the first induction. We showed that if ∥vit∥∞ ≤ 1
1−γ then ∥qit,k∥∞ ≤ 1

1−γ for all k ≥ 0.

Second, we proceed by induction over k, assume that ∥vit∥∞ ≤ 1
1−γ then for all s ∈ S

|vit+1(s)| =

∣∣∣∣∣ ∑
ai∈Ai

πi
t,K(ai|s)qit,K(s, ai)

∣∣∣∣∣ ≤ ∑
ai∈Ai

πi
t,K(ai|s)∥qit,K∥∞ ≤ 1

1− γ
,

the last line follows because the induction hypothesis entails that ∥qit,K∥∞ ≤ 1
1−γ (by the first induction). This concludes

the second induction, we now proved that ∥vit∥∞ ≤ 1
1−γ for all t ≥ 0.

Combining the two arguments allows us to prove that ∥qit,k∥∞ ≤ 1
1−γ for all t ≥ 0. This concludes the proof for the two

statements.

Lemma B.7 (Margins (Lemma 4.1)). It holds for all players i ∈ {1, 2}, times t, k ≥ 0 and state-action pairs (s, ai, a−i)
that

πi
t,k(a

i|s) ≥ ℓη := 1/

(√
A+

η

2(1− γ)

)2

,

we call this the margin property of the deployed policies.

Proof. We recall the policy-update equation:

πi
t+1 = πi

t + βk

(
Ts
(
qik
)
− πi

t

)
.

By lemma B.1 we have that 2/η ≤ x−maxi Ri ≤ 2
√
n/η, and by LemmaB.6 we know that ∥qit,k∥∞ ≤ 1

1−γ therefore:

∀s ∈ S, a ∈ A : Ts
(
qik
)
(a) ≥ 1

(
√
A+ η

2(1−γ) )
2
.
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Next, it is easy to show by induction that πi
t,k(a|s) ≥ ℓη for all s ∈ S, a ∈ A. Indeed, πi

t,0(a|s) = 1/A ≥ ℓη, and for a
given k ≥ 0 if πi

t,k(a|s) ≥ ℓη then:

πi
t,k+1(a|s) = πi

t(a|s)ℓη + βk

(
Ts
(
qik
)
a
− πi

t(a|s)
)

= (1− βk)π
i
t(a|s)︸ ︷︷ ︸
≥ℓη

+βk Ts
(
qik
)
a︸ ︷︷ ︸

≥ℓη

≥ (1− βk)ℓη + βkℓη = ℓη

which concludes the proof.

C. Sample complexity analysis
This section is dedicated to the proof of theorem 3.2. We begin the analysis by restating the Nash gap decomposition (cf.
Equation 5):

NG(πi
T,K , π−i

T,K)≤C0

(
2∥viT + v−i

T ∥∞+
∑
i=1,2

∥viT − vi∗∥∞+Vπ(T,K)+
8

η

√
A
)
,

where C0 is a constant, and Vπ(·) is function of the policies at times T and K (cf. Equation 6).

We start by stating a requirement for choosing the parameters αk and βk. For simplicity of notation, given k1 ≤ k2, we
denote βk1,k2

=
∑k2

k=k1
βk and αk1,k2

=
∑k2

k=k1
αk. For any k ≥ 0, define zk = t(ℓη, βk) where ℓη is defined in lemma

4.1. Observe that when βk = O(1/k), then zk = O(log(k)) due to the geometric mixing property in Lemma B.5.

Condition 1. It holds that αk−zk,k−1 ≤ 1/4 for all k ≥ zk and cα,β ≤ cηℓ
3
η(1−γ)2

6272η3|S|A4 . When using diminishing stepsizes

αk = α
k+h and βk = β

k+h , we additionally require β > 2.

The above condition is necessary for our proof of convergence in Theorem 3.2. Condition 1 can be explicitly satisfied as
zk = O(log(1/k)) with the chosen parameters. Finally, the parameter k0 that appears in Theorem 3.2 is defined to be
min{k ≥ 0 | k ≥ zk}.

C.1. Outer-loop

Lemma C.1 (Nash Gap in terms of value iterates). It holds for all t ≥ 0 and i = 1, 2 that

∥∥∥vi∗,π−i
t,K

− vi
πi
t,K ,π−i

t,K

∥∥∥
∞

≤ 2

1− γ

(
2∥vit + v−i

t ∥∞ + 2∥vit − vi∗∥∞ +max
s

Vvt,s(π
i
t,K(s), π−i

t,K(s))

+
8

η

√
A
)
.

Proof. For any t ≥ 0, s ∈ S, and i ∈ {1, 2}, we have

∣∣∣vi∗,π−i
t,K

(s)− vi
πi
t,K ,π−i

t,K

(s)
∣∣∣ = vi∗,π−i

t,K

(s)− vi
πi
t,K ,π−i

t,K

(s)

≤ vi∗,π−i
t,K

(s)− viπi
t,K ,∗(s)

= −v−i

π−i
t,K ,∗(s)− viπi

t,K ,∗(s)

= vi∗(s)− v−i

π−i
t,K ,∗(s) + v−i

∗ (s)− viπi
t,K ,∗(s)

≤ ∥v−i
∗ − v−i

π−i
t,K ,∗∥∞ + ∥vi∗ − viπi

t,K ,∗∥∞. (9)
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We now bound the two terms on the r.h.s above. For the first term, note that for any s ∈ S and t ≥ 0, we have

0 ≤ v−i
∗ (s)− v−i

π−i
t,K ,∗(s) =vi∗,π−i

t,K

(s)− vi∗(s)

=max
πi

(πi)⊤T i(vi∗,π−i
t,K

)(s)π−i
t,K(s)−max

πi
min
π−i

(πi)⊤T i(vi∗)(s)π
−i

=|max
πi

(πi)⊤T i(vi∗,π−i
t,K

)(s)π−i
t,K(s)−max

πi
(πi)⊤T i(vi∗)(s)π

−i
t,K(s)|

+ |max
πi

(πi)⊤T i(vi∗)(s)π
−i
t,K(s)−max

πi
min
π−i

(πi)⊤T i(vi∗)(s)π
−i|

≤max
πi

|(πi)⊤(T i(vi∗,π−i
t,K

)(s)− T i(vi∗)(s))π
−i
t,K(s)|

+ |max
πi

(πi)⊤T i(vi∗)(s)π
−i
t,K(s)−max

πi
min
π−i

(πi)⊤T i(vit)(s)π
−i|

+ |max
πi

min
π−i

(πi)⊤T i(vit)(s)π
−i −max

πi
min
π−i

(πi)⊤T i(vi∗)(s)π
−i|

≤max
πi

|(πi)⊤(T i(vi∗,π−i
t,K

)(s)− T i(vi∗)(s))π
−i
t,K(s)|︸ ︷︷ ︸

Ê1

+ |max
πi

(πi)⊤T i(vi∗)(s)π
−i
t,K(s)−max

πi
(πi)⊤T i(vit)(s)π

−i
t,K(s)|︸ ︷︷ ︸

Ê2

+max
πi

(πi)⊤T i(vit)(s)π
−i
t,K(s)−max

πi
min
π−i

(πi)⊤T i(vit)(s)π
−i︸ ︷︷ ︸

Ê3

+ |max
πi

min
π−i

(πi)⊤T i(vit)(s)π
−i −max

πi
min
π−i

(πi)⊤T i(vi∗)(s)π
−i|︸ ︷︷ ︸

Ê4

. (10)

We next bound the terms {Êj}1≤j≤4. For any vi1, v
i
2 ∈ R|S|, we have for any (s, ai, a−i) that

|T i(vi1)(s, a
i, a−i)− T i(vi2)(s, a

i, a−i)| = γ|E[vi1(s1)− vi2(s1) | s0 = s, ai0 = ai, a−i
0 = a−i]|

≤ γ∥vi1 − vi2∥∞,

which implies that ∥T i(vi1)− T i(vi2)∥∞ ≤ γ∥vi1 − vi2∥∞. As a result, we have

Ê1 ≤ ∥T i(vi∗,π−i
t,K

)− T i(vi∗)∥∞ ≤ γ∥vi∗,π−i
t,K

− vi∗∥∞,

Ê2 ≤ ∥T i(vit)− T i(vi∗)∥∞ ≤ γ∥vit − vi∗∥∞,

Ê4 ≤ ∥T i(vit)− T i(vi∗)∥∞ ≤ γ∥vit − vi∗∥∞.
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Finally, to bound Ê3, observe that

Ê3 ≤
∣∣∣∣max

πi
(πi)⊤T i(vit)(s)π

−i
t,K(s)−min

π−i
πi
t,K(s)T i(vit)(s)π

−i

∣∣∣∣
≤
∣∣∣∣max
π−i

(π−i)⊤T −i(v−i
t )(s)πi

t,K(s) + min
π−i

(π−i)⊤T i(vit)(s)
⊤πi

t,K(s)

∣∣∣∣
+

∣∣∣∣∣∣
∑
i=1,2

max
πi

(πi)⊤T i(vit)(s)π
−i
t,K(s)

∣∣∣∣∣∣
≤
∣∣∣∣max
π−i

(π−i)⊤T −i(v−i
t )(s)πi

t,K(s)−max
π−i

(π−i)⊤[−T i(vit)(s)]
⊤πi

t,K(s)

∣∣∣∣
+

∣∣∣∣∣∣
∑
i=1,2

max
πi

(πi)⊤T i(vit)(s)π
−i
t,K(s)

∣∣∣∣∣∣
≤max

π−i

∣∣(π−i)⊤(T −i(v−i
t )(s) + [T i(vit)(s)]

⊤)πi
t,K(s)

∣∣+
∣∣∣∣∣∣
∑
i=1,2

max
πi

(πi)⊤T i(vit)(s)π
−i
t,K(s)

∣∣∣∣∣∣
≤ max

ai,a−i

∣∣T i(vit)(s, a
i, a−i) + T −i(v−i

t )(s, ai, a−i)
∣∣+
∣∣∣∣∣∣
∑
i=1,2

max
πi

(πi)⊤T i(vit)(s)π
−i
t,K(s)

∣∣∣∣∣∣
≤ γ∥vit + v−i

t ∥∞ +

∣∣∣∣∣∣
∑
i=1,2

max
πi

(πi)⊤T i(vit)(s)π
−i
t,K(s)

∣∣∣∣∣∣ ,

where the last line follows because:

|T i(vit)(s, a
i, a−i) + T −i(v−i

t )(s, ai, a−i)| = γ

∣∣∣∣E[vit(S1) + vit(S1) | s0 = s, ai0 = ai, a−i
0 = a−i]

∣∣∣∣
≤ γ∥vit + v−i

t ∥∞.

In addition, we have

∣∣∣∣∣∣
∑
i=1,2

max
πi

(πi)⊤T i(vit)(s)π
−i
t,K(s)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
i=1,2

max
πi

{
(πi − πi

t,K(s))⊤T i(vit)(s)π
−i
t,K(s)

}∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
i=1,2

(πi
t,K(s))⊤T i(vit)(s)π

−i
t,K(s)

∣∣∣∣∣∣
≤
∑
i=1,2

max
πi

{
(πi − πi

t,K(s))⊤T i(vit)(s)π
−i
t,K(s)

+
1

η
H(πi)− 1

η
H(πi

t,K(s))

}

+

∣∣∣∣∣∣
∑
i=1,2

(πi
t,K(s))⊤T i(vit)(s)π

−i
t,K(s)

∣∣∣∣∣∣+ 8

η

√
A,
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then ∣∣∣∣∣∣
∑
i=1,2

max
πi

(πi)⊤T i(vit)(s)π
−i
t,K(s)

∣∣∣∣∣∣ ≤ Vvt,s(π
i
t,K(s), π−i

t,K(s)) +
8

η

√
A

+

∣∣∣∣∣∣
∑
i=1,2

(πi
t,K(s))⊤T i(vit)(s)π

−i
t,K(s)

∣∣∣∣∣∣
≤ Vvt,s(π

i
t,K(s), π−i

t,K(s)) +
8

η

√
A

+ max
ai,a−i

∣∣T i(vit)(s, a
i, a−i) + T −i(v−i

t )(s, ai, a−i)
∣∣

≤ Vvt,s(π
i
t,K(s), π−i

t,K(s)) +
8

η

√
A+ γ∥vit + v−i

t ∥∞.

It follows that

Ê3 ≤ 2γ∥vit + v−i
t ∥∞ +max

s
Vvt,s(π

i
t,K(s), π−i

t,K(s)) +
8

η

√
A. (11)

Substituting the upper bounds we obtained for the terms {Ej}1≤j≤4 into Equation 10

∥v−i
∗ − v−i

π−i
t,K ,∗∥∞ ≤ γ∥vi∗,π−i

t,K

− vi∗∥∞ + 2γ∥vit + v−i
t ∥∞ + 2γ∥vit − vi∗∥∞

+max
s

Vvt,s(π
i
t,K(s), π−i

t,K(s)) +
8

η

√
A

= γ∥v−i
∗ − v−i

π−i
t,K ,∗∥∞ + 2γ∥vit + v−i

t ∥∞ + 2γ∥vit − vi∗∥∞

+max
s

Vvt,s(π
i
t,K(s), π−i

t,K(s)) +
8

η

√
A,

which implies

∥v−i
∗ − v−i

π−i
t,K ,∗∥∞ ≤ 1

1− γ

(
2∥vit + v−i

t ∥∞ + 2∥vit − vi∗∥∞

+max
s

Vvt,s(π
i
t,K(s), π−i

t,K(s)) +
8

η

√
A
)
.

Similarly, we also have

∥vi∗ − viπi
t,K ,∗∥∞ ≤ 1

1− γ

(
2∥vit + v−i

t ∥∞ + 2∥vit − vi∗∥∞

+max
s

Vvt,s(π
i
t,K(s), π−i

t,K(s)) +
8

η

√
A)

)
.

Substituting the previous two inequalities into Equation 9 we get

∥vi∗,π−i
t,K

− vi
πi
t,K ,π−i

t,K

∥∞ ≤ 2

1− γ

(
2∥vit + v−i

t ∥∞ + 2∥vit − vi∗∥∞

+max
s

Vvt,s(π
i
t,K(s), π−i

t,K(s)) +
8

η

√
A
)
.

At this point, it remains to bound the first two terms on the r.h.s in lemma C.1. The next two lemmas achieve this purpose by
presenting one-step drift inequalities for the relevant terms.
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Lemma C.2. It holds for all t ≥ 0 and i = 1, 2 that

∥vit+1 − vi∗∥∞ ≤ γ∥vit − vi∗∥∞ + 2max
s∈S

Vvt,s(π
i
t,K(s), π−i

t,K(s)) +
16

η

√
A

+max
s∈S

∥T i(vit)(s)π
−i
t,K(s)− qit,K(s)∥∞ + 2γ∥vit + v−i

t ∥∞.

Proof. For any i ∈ {1, 2}, we have by the outer-loop update equation (cf. Line 1) of Algorithm 1 that

vit+1(s) = πi
t,K(s)⊤qit,K(s) = vali(T i(vit)(s)) + πi

t,K(s)⊤qit,K(s)− vali(T i(vit)(s))

Since vali(T i(vi∗)(s)) = Bi(vi∗)(s) = vi∗(s), we have

|vit+1(s)− vi∗(s)| = |vali(T i(vit)(s))− vali(T i(vi∗)(s))|+ |πi
t,K(s)⊤qit,K(s)− vali(T i(vit)(s))|. (12)

For the first term on the r.h.s of Equation 12, we have by the contraction property of the minimax Bellman operator that∣∣vali(T i(vit)(s))− vali(T i(vi∗)(s))
∣∣ = ∣∣Bi(vit)(s)− Bi(vi∗)(s)

∣∣
≤ γ∥vit − vi∗∥∞.

For the second term on the r.h.s of Equation 12, we have

∣∣πi
t,K(s)⊤qit,K(s)− vali(T i(vit)(s))

∣∣ ≤ ∣∣∣∣max
πi

(πi)⊤T i(vit)(s)π
−i
t,K(s)− πi

t,K(s)⊤qit,K(s)

∣∣∣∣︸ ︷︷ ︸
T1

+

∣∣∣∣max
πi

(πi)⊤T i(vit)(s)π
−i
t,K(s)− vali(T i(vit)(s))

∣∣∣∣︸ ︷︷ ︸
T2

For the term T1, we have

T1 ≤
∣∣∣∣max

πi
(πi)⊤T i(vit)(s)π

−i
t,K(s)− (πi

t,K(s))⊤T i(vit)(s)π
−i
t,K(s)

∣∣∣∣
+
∣∣∣(πi

t,K(s))⊤T i(vit)(s)π
−i
t,K(s)− πi

t,K(s)⊤qit,K(s)
∣∣∣

≤ max
πi

(πi)⊤T i(vit)(s)π
−i
t,K(s)− (πi

t,K(s))⊤T i(vit)(s)π
−i
t,K(s)

+ ∥T i(vit)(s)π
−i
t,K(s)− qit,K(s)∥∞

≤
∑
i=1,2

{
max
πi

(πi − πi
t,K(s))⊤T i(vit)(s)π

−i
t,K(s)

}
+ ∥T i(vit)(s)π

−i
t,K(s)− qit,K(s)∥∞

≤
∑
i=1,2

{
max
πi

(πi − πi
t,K(s))⊤T i(vit)(s)π

−i
t,K(s) +

1

η
ν(πi)− 1

η
ν(πi

t,K(s))

}
+

8

η

√
A+ ∥T i(vit)(s)π

−i
t,K(s)− qit,K(s)∥∞

≤ Vvt,s(π
i
t,K(s), π−i

t,K(s)) +
8

η

√
A+ ∥T i(vit)(s)π

−i
t,K(s)− qit,K(s)∥∞.

Note that T2 is exactly the term Ê3 we analyzed in proving Lemma C.1. Therefore, we have from Equation 11 that

T2 ≤ 2γ∥vit + v−i
t ∥∞ +max

s
Vvt,s(π

i
t,K(s), π−i

t,K(s)) +
8

η

√
A.
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It follows that ∣∣πi
t,K(s)⊤qit,K(s)− vali(T i(vit)(s))

∣∣ ≤T1 + T2

≤2max
s

V (πi
t,K(s), π−i

t,K(s)) + 2γ∥vit + v−i
t ∥∞

+max
s

∥T i(vit)(s)π
−i
t,K(s)− qit,K(s)∥∞ +

16

η

√
A.

Using the upper bounds we obtained for the two terms on the r.h.s of equation (12)

|vit+1(s)− vi∗(s)| ≤ γ∥vit − vi∗∥∞ + 2max
s∈S

V (πi
t,K(s), π−i

t,K(s)) +
16

η

√
A

+max
s∈S

∥T i(vit)(s)π
−i
t,K(s)− qit,K(s)∥∞ + 2γ∥vit + v−i

t ∥∞.

Since the r.h.s of the previous inequality does not depend on s, we have for any i ∈ {1, 2} that

∥vit+1 − vi∗∥∞ ≤ γ∥vit − vi∗∥∞ + 2max
s∈S

V (πi
t,K(s), π−i

t,K(s)) +
16

η

√
A

+max
s∈S

∥T i(vit)(s)π
−i
t,K(s)− qit,K(s)∥∞ + 2γ∥vit + v−i

t ∥∞.

Lemma C.3. It holds for all t ≥ 0 that

∥vit+1 + v−i
t+1∥∞ ≤ γ∥vit + v−i

t ∥∞ +
∑
i=1,2

max
s∈S

∥qit,K(s)− T i(vit)(s)π
−i
t,K(s)∥∞.

Proof. Using the outer-loop update equation (line 1 of algorithm 1 )∣∣∣∣∣∣
∑
i=1,2

vit+1(s)

∣∣∣∣∣∣ =
∑
i=1,2

πi
t,K(s)⊤qit,K(s)

=

∣∣∣∣∣∣
∑
i=1,2

πi
t,K(s)⊤(qit,K(s)− T i(vit)(s)π

−i
t,K(s))

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
i=1,2

πi
t,K(s)T i(vit)(s)π

−i
t,K(s)

∣∣∣∣∣∣
≤
∑
i=1,2

max
s∈S

∥qit,K(s)− T i(vit)(s)π
−i
t,K(s)∥∞

+ max
(s,ai,a−i)

∣∣T i(vit)(s, a
i, a−i) + T −i(v−i

t )(s, ai, a−i)
∣∣

≤
∑
i=1,2

max
s∈S

∥qit,K(s)− T i(vit)(s)π
−i
t,K(s)∥∞ + γ∥vit + v−i

t ∥∞.

Since the r.h.s of the previous inequality does not depend on s, we have

∥vit+1 + v−i
t+1∥∞ ≤ γ∥vit + v−i

t ∥∞ +
∑
i=1,2

max
s∈S

∥qit,K(s)− T i(vit)(s)π
−i
t,K(s)∥∞.
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C.2. Inner-loop

C.2.1. ANALYZING THE POLICY UPDATE

For readability purposes, and in this section only, we denote Xi = T i(v)(s, ., .) ∈ R|Ai|×|A−i| and we define

VX

(
πi, π−i

)
=
∑
i=1,2

max
π̂i∈∆|Ai|

{(
π̂i − πi

)⊤
Xiπ

−i +
1

η
H
(
π̂i
)
− 1

η
H
(
πi
)}

this is introduced to simplify the notation of Vv,s(π
i, π−i) defined in Equation 25. Indeed, it is easy to see that Vv,s(·, ·) :=

V(
T i(vi)(s),T −i(v−i)(s)

)(·, ·).
We use ∇1VX(·, ·) (respectively, ∇2VX(·, ·)) to denote the gradient concerning the first (respectively, second) argument.
The following lemma establishes the strong convexity and the smoothness of VX(πi, π−i).

Lemma C.4. The function VX(·, ·) has the following properties.

1. For all π−i ∈ ∆|A−i|, VX(πi, π−i) as a function of πi is 1/η – strongly convex with respect to ∥ · ∥2.

2. For any δi > 0 and π−i ∈ ∆|A−i|, the function VX(·, π−i) is Lη,i – smooth on {πi ∈ ∆|Ai| | minai πi(ai) ≥ δi} with

respect to ∥ · ∥2, where Lη,i =

(
2
√
2 η σ2

max(X−i) |A−i|+ 1

ηδ
3/2
i

)
.

3. It holds for any (πi, π−i) that

⟨∇1VX(πi, π−i),Ts(Xiπ
−i)− πi⟩+⟨∇2VX(πi, π−i),Ts(X−iπ

i)− π−i⟩

≤ − 7

8
VX(πi, π−i) + 16η∥Xi +X⊤

−i∥22.

4. For any ui ∈ R|Ai|, u−i ∈ R|A−i| , we have for all (πi, π−i) ∈ {πi ∈ ∆|Ai|, π−i ∈ ∆|A−i| | minai πi(ai) ≥
δi,mina−i π−i(a−i) ≥ δ−i} (where δi, δ−i > 0) that

⟨∇1VX(πi, π−i),Ts(ui)− Ts(Xiπ
−i)⟩+ ⟨∇2VX(πi, π−i),Ts(u−i)− Ts(X−iπ

i)⟩

≤

(
1

ηδ
3/2
i

+
1

ηδ
3/2
−i

+ ∥Xi∥2 + ∥X−i∥2

)[
2c̄ηVX(πi, π−i)

+
8η2|Ai|2

c̄
∥ui −Xiπ

−i∥22 +
8η2|A−i|2

c̄
∥u−i −Xiπ

i∥22
]

where c̄ is any positive real number.

Proof. First, observe that

arg max
π̂i∈∆|Ai|

{(
π̂i
)⊤

Xiπ
−i +

1

η
H
(
π̂i
)}

= Tsη
(
Xiπ

−i
)
.

Therefore, the function VX(·, ·) can be equivalently written as

VX

(
πi, π−i

)
=
∑
i=1,2

[ (
Tsη

(
Xiπ

−i
))⊤

Xiπ
−i +

1

η
H
(
Tsη

(
Xiπ

−i
))

−
(
πi
)⊤

Xiπ
−i − 1

η
H
(
πi
) ]

1) Convexity: first, it is easy to show that the negative Tsallis–entropy −H(·) is 1–strongly convex with respect to ∥∥2.
Indeed, ∇2(−H(π)) = diag((1/π

3/2
a )a∈A) then ∇2(−H(π)) ≥ IA, i.e. it is 1–strongly convex.
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Second, we have that(
Tsη

(
X−iπ

i
))⊤

X−iπ
i +

1

η
H
(
Ts
(
X−iπ

i
))

= max
π̂−i∈∆|A−i|

{(
π̂−i
)⊤

X−iπ
i +

1

η
H
(
π̂−i
)}

,

which is convex as a maximum of convex functions.

Therefore, the function VX

(
·, π−i

)
is 1/η - strongly convex with respect to ∥ · ∥2 uniformly for all π−i.

2) Smoothness: first, from the Hessian ∇2(H(π)) = diag((1/π
3/2
a )a∈A), it is clear that the negative Tsallis entropy is

1/δ
3/2
i – smooth on {πi ∈ ∆|Ai| | minai πi(ai) ≥ δi} with respect to ∥ · ∥2.

Second, we have

∇πi

(
Tsη

(
X−iπ

i
)⊤

X−iπ
i+

1

η
H
(
Tsη

(
X−iπ

i
)) )

= ∇πi max
π̂−i∈∆|A−i|

{(
π̂−i
)⊤

X−iπ
i +

1

η
H
(
π̂−i
)}

= X⊤
−i Tsη

(
X−iπ

i
)
.

where the first line follows using Danskin’s theorem. Since there aren’t readily usable formulas for the gradient of the Tsallis
weights, we will use the standard characterization of smoothness. Let π1, π2 ∈ ∆|Ai|, we have by lemma B.3 we have:

X⊤
−i Tsη (X−iπ1)−X⊤

−i Tsη (X−iπ2) = X⊤
−i (Tsη (X−iπ1)− Tsη (X−iπ2))

≤ σmax(X−i)∥Tsη (X−iπ1)− Tsη (X−iπ2) ∥2
≤ σmax(X−i)2

√
2η|A−i|∥X−i(π1 − π2)∥2

≤ 2
√
2 η σ2

max(X−i) |A−i| ∥π1 − π2∥2.

Since we showed before that

∇πi

(
Tsη

(
X−iπ

i
)⊤

X−iπ
i +

1

η
H
(
Tsη

(
X−iπ

i
)))

= X⊤
−i Tsη

(
X−iπ

i
)
,

we deduce that the function Tsη
(
X−iπ

i
)⊤

X−iπ
i + 1

ηH
(
Tsη

(
X−iπ

i
))

is 2
√
2 η σmax(X−i)

2 |A−i| smooth with respect
to ∥ · ∥2.

Combining with the smoothness of Tsallis entropy, we conclude that VX

(
·, π−i

)
is Lη,i–smooth with respect to ∥ · ∥2

uniformly for all π−i, where we defined Lη,i = 2
√
2ησ2

maxX−i)|A−i|+ 1

ηδ
3/2
i

.

3) We first compute the gradient ∇1VX(πi, π−i) using Danskin’s theorem:

∇1VX(πi, π−i) = −(Xi +X⊤
−i)π

−i − 1

η
∇H(πi) +X⊤

−i Ts(X−iπ
i). (13)

It follows that

⟨∇1VX(πi, π−i),Ts(Xiπ
−i)− πi⟩

= ⟨−(Xi +X⊤
−i)π

−i − 1

η
∇H(πi) +X⊤

−i Ts(X−iπ
i),Ts(Xiπ

−i)− πi⟩

= ⟨−(Xi +X⊤
−i)π

−i − 1

η
∇H(πi) +X⊤

−i Ts(X−iπ
i),Ts(Xiπ

−i)− πi⟩

+ ⟨Xiπ
−i +

1

η
∇H(Ts(Xiπ

−i)),Ts(Xiπ
−i)− πi⟩ (14)

=
1

η
⟨∇H(Ts(Xiπ

−i))−∇H(πi),Ts(Xiπ
−i)− πi⟩

+ (Ts(X−iπ
i)− π−i)⊤X−i(Ts(Xiπ

−i)− πi).

22



Learning Nash Equilibria in Zero-Sum Markov Games: A Single-Timescale Algorithm Under Weak Reachability

where Equation 14 from from the optimality condition Xiπ
−i + 1

η∇H(Ts(Xiπ
−i)) = 0.

To proceed, observe that the concavity of H(·) and the optimality condition imply

⟨∇H(Ts(Xiπ
−i))−∇H(πi),Ts(Xiπ

−i)− πi⟩
= ⟨∇H(πi)−∇H(Ts(Xiπ

−i)), πi − Ts(Xiπ
−i)⟩

= ⟨∇H(πi), πi − Ts(Xiπ
−i)⟩ − ⟨∇H(Ts(Xiπ

−i)), πi − Ts(Xiπ
−i)⟩

≤ H(πi)−H(Ts(Xiπ
−i))− ⟨∇H(Ts(Xiπ

−i)), πi − Ts(Xiπ
−i)⟩

= H(πi)−H(Ts(Xiπ
−i)) + η⟨Xiπ

−i, πi − Ts(Xiπ
−i)⟩

= η

[
(πi)⊤Xiπ

−i +
1

η
H(πi)− max

π̂i∈∆|Ai|

{
(π̂i)⊤Xiπ

−i +
1

η
H(π̂i)

}]
.

Therefore, we have

⟨∇1VX(πi, π−i),Ts(Xiπ
−i)− πi⟩ ≤

[
(πi)⊤Xiπ

−i +
1

η
H(πi)

− max
π̂i∈∆|Ai|

{
(π̂i)⊤Xiπ

−i +
1

η
H(π̂i)

}]
+ (Ts(X−iπ

i)− π−i)⊤X−i(Ts(Xiπ
−i)− πi)

Similarly, we also have

⟨∇2VX(πi, π−i),Ts(X−iπ
i)− π−i⟩

≤
[
(π−i)⊤X−iπ

i +
1

η
H(π−i)− max

π̂−i∈∆|A−i|

{
(π̂−i)⊤X−iπ

i +
1

η
H(π̂−i)

}]
+ (Ts(Xiπ

−i)− πi)⊤Xi(Ts(X−iπ
i)− π−i)

Adding up the previous two inequalities we obtain

⟨∇1VX(πi, π−i),Ts(Xiπ
−i)− πi⟩+ ⟨∇2VX(πi, π−i),Ts(X−iπ

i)− π−i⟩
≤ − VX(πi, π−i) + (Ts(Xiπ

−i)− πi)⊤(Xi +X⊤
−i)(Ts(X−iπ

i)− π−i). (15)

To control the second term on the r.h.s of Equation 15, observe that

(Ts(Xiπ
−i)− πi)⊤(Xi +X⊤

−i)(Ts(X−iπ
i)− π−i)

≤ ∥Ts(Xiπ
−i)− πi∥2∥Xi +X⊤

−i∥2∥Ts(X−iπ
i)− π−i∥2

≤ (∥Ts(Xiπ
−i)∥2 + ∥πi∥2)∥Xi +X⊤

−i∥2∥Ts(X−iπ
i)− π−i∥2

≤ 2∥Xi +X⊤
−i∥2∥Ts(X−iπ

i)− π−i∥2

≤ c1∥Xi +X⊤
−i∥22 +

1

c1
∥Ts(X−iπ

i)− π−i∥22 (This is true for all c1 > 0)

≤ c1∥Xi +X⊤
−i∥22 +

1

c1
(∥Ts(X−iπ

i)− π−i∥22 + ∥Ts(Xiπ
−i)− πi∥22). (16)

Next, note that the function

FXi
(πi, π−i) := max

π̂i

{
(π̂i − πi)⊤Xiπ

−i +
1

η
H(π̂i)− 1

η
H(πi)

}
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is 1
η -strongly convex as a function of πi uniformly for all π−i. Therefore, we have

FXi(π
i, π−i) = FXi(π

i, π−i)− FXi(Ts(Xiπ
−i), π−i)

= FXi(π
i, π−i)−min

πi
FXi(π

i, π−i)

≥ 1

2η
∥Ts(Xiπ

−i)− πi∥22,

which is called the quadratic growth property in optimization literature. It follows that

∥Ts(Xiπ
−i)− πi∥22 ≤ 2ηmax

π̂i

{
(π̂i − πi)⊤Xiπ

−i +
1

η
H(π̂i)− 1

η
H(πi)

}
.

Similarly, we also have

∥Ts(X−iπ
i)− π−i∥22 ≤ 2ηmax

π̂−i

{
(π̂−i − π−i)⊤X−iπ

i +
1

η
H(π̂−i)− 1

η
H(π−i)

}
.

Adding up the previous two inequalities

∥Ts(X−iπ
i)− π−i∥22 + ∥Ts(Xiπ

−i)− πi∥22 ≤ 2ηVX(πi, π−i).

Plugging the previous inequality in Equation 16

(Ts(Xiπ
−i)− πi)⊤(Xi +X⊤

−i)(Ts(X−iπ
i)− π−i)

≤ c1∥Xi +X⊤
−i∥22 +

1

c1
(∥Ts(X−iπ

i)− π−i∥22 + ∥Ts(Xiπ
−i)− πi∥22)

≤ c1∥Xi +X⊤
−i∥22 +

2η

c1
VX(πi, π−i)

= 16η∥Xi +X⊤
−i∥22 +

1

8
VX(πi, π−i),

where the last line follows from choosing c1 = 16η. Using the previous inequality in Equation 15

⟨∇1VX(πi, π−i),Ts(Xiπ
−i)− πi⟩+⟨∇2VX(πi, π−i),Ts(X−iπ

i)− π−i⟩

≤ − 7

8
VX(πi, π−i) + 16η∥Xi +X⊤

−i∥22.

4) For any ui ∈ R|Ai|, using the explicit expression of the gradient of VX(·, ·) from Equation 13

⟨∇1VX(πi, π−i),Ts(ui)− Ts(Xiπ
−i)⟩

= ⟨−(Xi +X⊤
−i)π

−i − 1

η
∇H(πi) +X⊤

−i Ts(X−iπ
i),Ts(ui)− Ts(Xiπ

−i)⟩

= ⟨−(Xi +X⊤
−i)π

−i − 1

η
∇H(πi) +X⊤

−i Ts(X−iπ
i),Ts(ui)− Ts(Xiπ

−i)⟩

+ ⟨Xiπ
−i +

1

η
∇H(Ts(Xiπ

−i)),Ts(ui)− Ts(Xiπ
−i)⟩

=
1

η
⟨∇H(Ts(Xiπ

−i))−∇H(πi),Ts(ui)− Ts(Xiπ
−i)⟩

+ (Ts(X−iπ
i)− π−i)⊤X−i(Ts(u

i)− Ts(Xiπ
−i))

≤ 1

η
∥∇H(Ts(Xiπ

−i))−∇H(πi)∥2∥Ts(ui)− Ts(Xiπ
−i)∥2

+ ∥Ts(X−iπ
i)− π−i∥2∥X−i∥2∥Ts(ui)− Ts(Xiπ

−i)∥2

≤ 1

ηδ
3/2
i

∥Ts(Xiπ
−i)− πi∥2∥Ts(ui)− Ts(Xiπ

−i)∥2

+ ∥X−i∥2∥Ts(X−iπ
i)− π−i∥2∥Ts(ui)− Ts(Xiπ

−i)∥2,
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where the last inequality follows from the smoothness of H(·) in Lemma. C.4 (2). Similarly, we also have for any
u−i ∈ R|A−i| that

⟨∇2VX(πi, π−i),Ts(u−i)− Ts(X−iπ
i)⟩

≤ 1

ηδ
3/2
−i

∥Ts(X−iπ
i)− π−i∥2∥Ts(u−i)− Ts(X−iπ

i)∥2

+ ∥Xi∥2∥Ts(Xiπ
−i)− πi∥2∥Ts(u−i)− Ts(Xiπ

i)∥2.

Adding up the previous two inequalities

⟨∇1VX(πi, π−i),Ts(ui)− Ts(Xiπ
−i)⟩+ ⟨∇2VX(πi, π−i),Ts(u−i)− Ts(X−iπ

i)⟩

≤

(
1

ηδ
3/2
i

+
1

ηδ
3/2
−i

+ ∥Xi∥2 + ∥X−i∥2

)(∑
i

∥Ts(Xiπ
−i)− πi∥2

)
×
(
∥Ts(ui)− Ts(Xiπ

−i)∥2 + ∥Ts(u−i)− Ts(Xiπ
i)∥2

)
≤ 1

2

(
1

ηδ
3/2
i

+
1

ηδ
3/2
−i

+ ∥Xi∥2 + ∥X−i∥2

)

×
[
c̄
(
∥Ts(Xiπ

−i)− πi∥2 + ∥Ts(X−iπ
i)− π−i∥2

)2
+

1

c̄

(
∥Ts(ui)− Ts(Xiπ

−i)∥2 + ∥Ts(u−i)− Ts(Xiπ
i)∥2

)2 ]
the last line is true for all c̄ > 0, then,

⟨∇1VX(πi, π−i),Ts(ui)− Ts(Xiπ
−i)⟩+ ⟨∇2VX(πi, π−i),Ts(u−i)− Ts(X−iπ

i)⟩

≤

(
1

ηδ
3/2
i

+
1

ηδ
3/2
−i

+ ∥Xi∥2 + ∥X−i∥2

)
c̄

(∑
i

∥Ts(Xiπ
−i)− πi∥22

)
+

1

c̄
∥Ts(ui)− Ts(Xiπ

−i)∥22 +
1

c̄
∥Ts(u−i)− Ts(Xiπ

i)∥22
]

≤

(
1

ηδ
3/2
i

+
1

ηδ
3/2
−i

+ ∥Xi∥2 + ∥X−i∥2

)[
2c̄ηVX(πi, π−i)

+
8η2|Ai|2

c̄
∥ui −Xiπ

−i∥22 +
8η2|A−i|2

c̄
∥u−i −Xiπ

i∥22
]
,

where the penultimate line holds because (a+ b)2 ≤ 2(a2 + b2) for all a, b ∈ R, and last line follows from the quadratic
growth property of strongly convex functions and the Lipschitz continuity of the Tsallis function (cf. lemma B.3).

With the properties of VX(·, ·) established above, we can now use it to study the policy update πi
k and π−i

k . Specifically,
recall that VX is just a temporary notation in this section for Vv,s. Therefore, the newly proved smoothness of Vv,s, the
update equation, and lemma C.4 provide us with the drift inequality for Vπ in the lemma below.

Lemma C.5 (Policy drift). The following inequality holds for all k ≥ 0:∑
s

E[Vv,s(π
i
k+1(s), π

−i
k+1(s))] ≤

(
1− 3βk

4

)∑
s

E[Vv,s(π
i
k(s), π

−i
k (s))] +

4|S|A2

ℓη(1− γ)2
β2
k

+
2048A4βkη

3

ℓ3η(1− γ)2

∑
i=1,2

∑
s

E[∥qik(s)− T i(vi)(s)π−i
k (s)∥22]

+ 16|S|Aβkη∥vi + v−i∥2∞.
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Proof. Since mini=1,2 mins,ai πi
k(a

i|s) ≥ ℓη (by lemma 4.1), then lemma C.4 (2) implies that the function Vv,s(π
i, π−i)

as a function of πi is Lη,i – smooth on {πi ∈ ∆|Ai| | minai πi(ai) ≥ ℓη} uniformly for all π−i, where

Lη,i :=

(
2
√
2 η σ2

max(T −i(v−i)(s)) |A−i|+ 1

ηℓeta3/2

)
.

We next bound Lη,i from above. Since ∥vi∥∞ ≤ 1/(1− γ) and ∥v−i∥∞ ≤ 1/(1− γ), we have for any (s, ai, a−i) that

|T −i(v−i)(s, a−i, ai)| ≤ |R−i(s, a−i, ai)|+ γE[|v−i(S1)| | S0 = s,Ai
0 = ai, A−i

0 = a−i]

≤ 1 +
γ

1− γ

=
1

1− γ
,

which implies

σmax(T −i(v−i)(s)) = ∥T −i(v−i)(s))∥2 ≤
√

|Ai||A−i|
1− γ

≤ A
1− γ

. (17)

As a result, we have by 1
η ≤ 1 and ℓη ≤ 1 that

Lη,i = ησ2
max(T −i(v−i)(s)) +

1

ηℓη
≤ ηA2

(1− γ)2
+

1

ηℓη
≤ 2A2

ℓη(1− γ)2
:= Lη.

Similarly, Vv,s(π
i, π−i) is also Lη – smooth on the set {π−i ∈ ∆|A−i| | mina−i πi(a−i) ≥ ℓη} uniformly for all πi.

Using the smoothness of Vv,s(·, ·) established above, for any s ∈ S, we have by the policy update equation that

Vv,s(π
i
k+1(s),π

−i
k+1(s))

≤ Vv,s(π
i
k(s), π

−i
k (s)) + βk⟨∇2Vv,s(π

i
k(s), π

−i
k (s)),Ts(q−i

k (s))− π−i
k (s)⟩

+ βk⟨∇1Vv,s(π
i
k(s), π

−i
k+1(s)),Ts(q

i
k(s))− πi

k(s)⟩

+
Lηβ

2
k

2
∥Ts(qik(s))− πi

k(s)∥22 +
Lηβ

2
k

2
∥Ts(q−i

k (s))− π−i
k (s)∥22

≤ Vv,s(π
i
k(s), π

−i
k (s))

+ βk⟨∇2Vv,s(π
i
k(s), π

−i
k (s)),Ts(T −i(v−i)(s)πi

k(s))− π−i
k (s)⟩︸ ︷︷ ︸

N̂1

+ βk⟨∇1Vv,s(π
i
k(s), π

−i
k+1(s)),Ts(T

i(vi)(s)π−i
k (s))− πi

k(s)⟩︸ ︷︷ ︸
N̂2

+ βk⟨∇2Vv,s(π
i
k(s), π

−i
k (s)),Ts(q−i

k (s))− Ts(T −i(v−i)(s)πi
k(s))⟩︸ ︷︷ ︸

N̂3

+ βk⟨∇1Vv,s(π
i
k(s), π

−i
k+1(s)),Ts(q

i
k(s))− Ts(T i(vi)(s)π−i

k (s))⟩︸ ︷︷ ︸
N̂4

+ 2Lηβ
2
k. (18)

We next bound the terms {N̂j}1≤j≤4 on the r.h.s of Equation 18 using Lemma. C.4 (3) and (4).

First consider N̂1 + N̂2. We have by Lemma. C.4 (3) that

N̂1 + N̂2 ≤ − 7βk

8
Vv,s(π

i
k(s), π

−i
k (s)) + 16βkη∥T i(vi)(s) + T −i(v−i(s)⊤∥22.
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To proceed, note that for any π−i ∈ R|A−i| satisfying ∥π−i∥2 = 1, we have

∥(T i(vi)(s)+T −i(v−i(s)⊤)πi∥22

=γ2
∑
ai

[∑
a−i

E[vi(s1) + v−i(s1) | s0 = s, ai0 = ai, a−i
0 = a−i]π−i(a−i)

]2

≤ γ2∥vi + v−i∥2∞
∑
ai

[∑
a−i

π−i(a−i)

]2
≤ γ2A∥vi + v−i∥2∞,

which implies

∥T i(vi)(s) + T −i(v−i(s)⊤∥22 ≤ γ2A∥vi + v−i∥2∞.

It follows that

N̂1 + N̂2 ≤ − 7βk

8
Vv,s(π

i
k(s), π

−i
k (s)) + 16Aβkη∥vi + v−i∥2∞.

We next consider N̂3 + N̂4. Since

max(∥T i(vi)(s)∥2, ∥T −i(v−i)(s)∥2) ≤
A

1− γ
, (See Equation 17)

we have by Lemma. C.4 (4) that

N̂3 + N̂4 ≤ 2βk

(
1

ηℓ
3/2
η

+
A

1− γ

)[
2c̄ηVv,s(π

i
k(s), π

−i
k (s))

+
8η2A2

c̄
∥qik(s)− T i(vi)(s)π−i

k (s)∥22 +
8η2A2

c̄
∥q−i

k (s)− T −i(v−i)(s)πi
k(s)∥22

]
for any c̄ > 0. By choosing c̄ = 1

32η (
1

ηℓ
3/2
η

+ A
1−γ )

−1, we have that

N̂3 + N̂4 ≤ βk

8
Vv,s(π

i
k(s), π

−i
k (s))

+ 512βk

(
1

ηℓ
3/2
η

+
A

1− γ

)2

η3A2∥qik(s)− T i(vi)(s)π−i
k (s)∥22

+ 512βk

(
1

ηℓ
3/2
η

+
A

1− γ

)2

η3A2∥q−i
k (s)− T −i(v−i)(s)πi

k(s)∥22

≤ βk

8
Vv,s(π

i
k(s), π

−i
k (s)) +

2048A4βkη
3

ℓ3η(1− γ)2
∥qik(s)− T i(vi)(s)π−i

k (s)∥22

+
2048A4βkη

3

ℓ3η(1− γ)2
∥q−i

k (s)− T −i(v−i)(s)πi
k(s)∥22.

Finally, using the upper bounds we obtained for the terms N̂1 + N̂2 and N̂3 + N̂4 in Equation 18

Vv,s(π
i
k+1(s), π

−i
k+1(s)) ≤

(
1− 3βk

4

)
Vv,s(π

i
k(s), π

−i
k (s)) + 16Aβkη∥vi + v−i∥2∞.

+
2048A4βkη

3

ℓ3η(1− γ)2
∥qik(s)− T i(vi)(s)π−i

k (s)∥22

+
2048A4βkη

3

ℓ3η(1− γ)2
∥q−i

k (s)− T −i(v−i)(s)πi
k(s)∥22

+
4A2

ℓη(1− γ)2
β2
k.
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Summing up both sides of the previous inequality for all s and then taking expectation, we deduce the desired result.

C.2.2. ANALYZING THE Q-FUNCTION UPDATE

Consider qik generated by the algorithm. We begin by reformulating the update of the q-function as a stochastic approximation
algorithm for estimating a time-varying target. Let F i : R|S||Ai| ×S ×Ai ×A−i ×S 7→ R|S||Ai| be an operator defined as

[F i(qi, s0, a
i
0, a

−i
0 , s1)](s, a

i) = 1{(s,ai)=(s0,ai
0)}
(
Ri(s0, a

i
0, a

−i
0 ) + γvi(s1)− qi(s0, a

i
0)
)

for all (qi, s0, ai0, a
−i
0 , s1) and (s, ai). Then the q–function update can be compactly written as

qik+1 = qik + αkF
i(qik, Sk, A

i
k, A

−i
k , Sk+1). (19)

Denote the stationary distribution of the Markov chain {Sk} induced by the joint policy πk = (πi
k, π

−i
k ) by πk ∈ ∆|S|, the

existence and uniqueness of which is guaranteed by Lemma 4.1 and Lemma 4 (1) of (Chen et al., 2023) (same as Lemma 4
in (Zhang et al., 2023)). Let F̄ i

k : R|S||Ai| 7→ R|S||Ai| be defined as

F̄ i
k(q

i) = Es0∼πk(·),ai
0∼πi

k(·|s0),a
−i
k ∼π−i

k (·|s0),S1∼p(·|s0,ai
0,a

−i
0 )

[
F i(qi, s0, a

i
0, a

−i
0 , s1)

]
for all qi ∈ R|S||Ai|. Then Equation 19 can be viewed as a stochastic approximation algorithm for solving the (time-
varying) equation F̄ i

k(q
i) = 0 with time-inhomogeneous Markovian noise {(Sk, A

i
k, A

−i
k , Sk+1)}k≥0. We next establish

the properties of the operators F i(·) and F̄ i
k(·) in the following lemma.

Lemma C.6. The following inequalities hold:

1. for all (qi1, q
i
2) and (s0, a

i
0, a

−i
0 , s1):

∥F i(qi1, s0, a
i
0, a

−i
0 , s1)− F i(qi2, s0, a

i
0, a

−i
0 , s1)∥2 ≤ ∥qi1 − qi2∥2.

2. for all (s0, ai0, a
−i
0 , s1): ∥F i(0, s0, a

i
0, a

−i
0 , s1)∥2 ≤ 1

1−γ .

3. F̄ i
k(q

i) = 0 has a unique solution q̄ik, which is explicitly given as q̄ik(s) = T i(vi)(s)π−i
k (s) for all s.

4. ⟨F̄ i
k(q

i
1)− F̄ i

k(q
i
2), q

i
1 − qi2⟩ ≤ −cη∥qi1 − qi2∥22 for all (qi1, q

i
2).

Using ∥ · ∥22 as a Lyapunov function and the equivalent update equation (19), we obtain

E[∥qik+1 − q̄ik+1∥22] = E[∥qik+1 − qik + qik − q̄ik + q̄ik − q̄ik+1∥22]
= E[∥qik − q̄ik∥22] + E[∥qik+1 − qik∥22] + E[∥q̄ik − q̄ik+1∥22]

+ αkE[⟨F i(qik, Sk, A
i
k, A

−i
k , Sk+1), q

i
k − q̄ik⟩] + E[⟨qik+1 − qik, q̄

i
k − q̄ik+1⟩]

+ E[⟨qik − q̄ik, q̄
i
k − q̄ik+1⟩]

= E[∥qik − q̄ik∥22] + αk E[⟨F̄ i
k(q

i
k), q

i
k − q̄ik⟩]︸ ︷︷ ︸

N1

+ αk E[⟨F i(qik, Sk, A
i
k, A

−i
k , Sk+1)− F̄ i

k(q
i
k), q

i
k − q̄ik⟩]︸ ︷︷ ︸

N2

+ E[∥qik+1 − qik∥22] + E[∥q̄ik − q̄ik+1∥22]
+ E[⟨qik+1 − qik, q̄

i
k − q̄ik+1⟩] + E[⟨qik − q̄ik, q̄

i
k − q̄ik+1⟩]. (20)

What remains to do is to bound the terms on the r.h.s of the previous inequality. Among them, we want to highlight the two
terms N1 and N2. For the term N1, using Lemma C.6 (4), we have

N1 = E[⟨F̄ i
k(q

i
k), q

i
k − q̄ik⟩] = E[⟨F̄ i

k(q
i
k)− F̄ i

k(q̄
i
k), q

i
k − q̄ik⟩] ≤ −cηE[∥qik − q̄ik∥22], (21)

which provides us with the desired drift inequality.
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The term N2 is the difference between F i(qik, Sk, A
i
k, A

−i
k , Sk+1) and its expected value F̄ i

k(q
i
k). To analyze the latter,

under the time-inhomogeneous Markov chain {(Sk, A
i
k, A

−i
k , Sk+1)}, we note that the policy is updated slower than the

q-functions; and the stationary distribution is Lipschitz in the underlying policy (Lemma B.4). This reasoning is at the core
of the proof of this result.
Lemma C.7 (Noise term (Lemma A.12 (Chen et al., 2023))). When αk−zk,k−1 ≤ 1/4 for all k ≥ zk, we have for all
k ≥ zk that

N2 ≤ 340|S|3/2A3/2L̂η

(1− γ)2
zkαk−zk,k−1.

For our choice of αk and βk, we find limk→∞ zkαk−zk,k−1 = 0. Therefore, Lemma C.7 implies that the term N2 vanishes
as a function of the episode length.

We next bound the rest of the terms on the r.h.s of Equation 20 in the following lemma.
Lemma C.8 (Other terms). The following inequalities hold for all k ≥ 0.

1. E[∥qik+1 − qik∥22] ≤
4|S|Aα2

k

(1−γ)2 .

2. E[∥q̄ik − q̄ik+1∥22] ≤
4|S|Aβ2

k

(1−γ)2 .

3. E[⟨qik+1 − qik, q̄
i
k − q̄ik+1⟩] ≤

4|S|Aαkβk

(1−γ)2 .

4. E[⟨qik − q̄ik, q̄
i
k − q̄ik+1⟩] ≤

17ηA2βk

(1−γ)2 E[∥qik − q̄ik∥22] +
βk

16

∑
s E[Vv,s(π

i
k(s), π

−i
k (s))].

Proof. This lemma was proved in (Chen et al., 2023), we only provide the proof of the fourth part as it is slightly different.

4) For any k ≥ 0, we have

⟨qik − q̄ik, q̄
i
k − q̄ik+1⟩ = βk

∑
s

⟨qik(s)− q̄ik(s), T i(vi)(s)(Ts(q−i
k (s))− π−i

k (s))⟩

≤ βk

(
ĉ∥qik − q̄ik∥22

2
+

∑
s ∥T i(vi)(s)(Ts(q−i

k (s))− π−i
k (s))∥22

2ĉ

)
, (22)

where ĉ is an arbitrary positive real number. We next analyze the second term on the r.h.s of the previous inequality. For any
s ∈ S, we have

∥T i(vi)(s)(Ts(q−i
k (s))− π−i

k (s))∥2
=∥T i(vi)(s)(Ts(q−i

k (s))− Ts(q̄−i
k (s)) + Ts(T −i(v−i)(s)πi

k(s))− π−i
k (s))∥2

≤ ∥T i(vi)(s)(Ts(q−i
k (s))− Ts(q̄−i

k (s)))∥2︸ ︷︷ ︸
B1

+ ∥T i(vi)(s)(Ts(T −i(v−i)(s)πi
k(s))− π−i

k (s))∥2︸ ︷︷ ︸
B2

.

Since Tsallis–smoothing Ts(·) is 2
√
2ηA – Lipschitz continuous with respect to ∥ · ∥2, we have

B1 ≤ ∥T i(vi)(s)∥2∥Ts(q−i
k (s))− Ts(q̄−i

k (s))∥2

≤ 2
√
2ηA2

1− γ
∥q−i

k (s)− q̄−i
k (s)∥2.

We next analyze the term B2. Using the quadratic growth property of strongly convex functions, we obtain

B2 = ∥T i(vi)(s)(Ts(T −i(v−i)(s)πi
k(s))− π−i

k (s))∥2
≤ ∥T i(vi)(s)∥2∥Ts(T −i(v−i)(s)πi

k(s))− π−i
k (s)∥2

≤
√
2ηA

1− γ
V 1/2
v,s (πi

k(s), π
−i
k (s)).
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Combining the upper bounds we obtained for the terms B1 and B2∑
s

∥T i(vi)(s)(Ts(q−i
k (s))− π−i

k (s))∥22

≤
∑
s

(B1 +B2)
2

≤ 2
∑
s

(B2
1 +B2

2)

≤ 2
∑
s

(
8A4η2

(1− γ)2
∥q−i

k (s))− q̄−i
k (s)∥22 +

2ηA2

(1− γ)2
Vv,s(π

i
k(s), π

−i
k (s))

)
=

16η2A4

(1− γ)2
∥q−i

k − q̄−i
k ∥22 +

4ηA2

(1− γ)2

∑
s

Vv,s(π
i
k(s), π

−i
k (s)).

Coming back to Equation 22 and using the previous inequality

⟨qik − q̄ik, q̄
i
k − q̄ik+1⟩

≤ βk

(
ĉ∥qik − q̄ik∥22

2
+

∑
s ∥T i(vi)(s)(Ts(q−i

k (s))− π−i
k (s))∥22

2ĉ

)

≤ βk

(
ĉ∥qik − q̄ik∥22

2
+

8η2A4

ĉ(1− γ)2
∥q−i

k − q̄−i
k ∥22 +

2ηA2

ĉ(1− γ)2

∑
s

Vv,s(π
i
k(s), π

−i
k (s))

)
.

Choosing ĉ = 32ηA2

(1−γ)2 in the previous inequality and then taking total expectation

E[⟨qik − q̄ik, q̄
i
k − q̄ik+1⟩] ≤

17ηA2βk

(1− γ)2
E[∥qik − q̄ik∥22] +

βk

16

∑
s

E[Vv,s(π
i
k(s), π

−i
k (s))].

Since we obtained upper bounds on all the terms on the r.h.s of Equation 20, we deduce the one-step Lyapunov drift
inequality for qik. The same analysis also entails a drift inequality for q−i

k . Both results are presented in the following lemma.

Lemma C.9 (Lyapunov drift for q–functions ( (Chen et al., 2023), Lemma A.12)). For all k ≥ zk and i ∈ {1, 2}:

E[∥qik+1 − q̄ik+1∥22] ≤
(
1− cηαk +

17ηA2βk

(1− γ)2

)
E[∥qik − q̄ik∥22]

+
352|S|3/2A3/2L̂η

(1− γ)2
zkαkαk−zk,k−1 +

βk

16

∑
s

E[Vv,s(π
i
k(s), π

−i
k (s))].

where zk = t(ℓη, βk) is a uniform upper bound on the uniform mixing time with accuracy βk, see Equation 8).

C.3. Bounding Coupled Drift Inequalities

We first restate the drift inequalities from previous sections. Recall the notations: Vq(t, k) =
∑

i=1,2 ∥qit,k − q̄it,k∥22,
Vπ(t, k) =

∑
s Vvt,s(π

i
t,k(s), π

−i
t,k(s)), and Ft as the history of the algorithm right before the t-th outer-loop iteration. Note

that vit and v−i
t are both measurable with respect to Ft. In what follows, we denote Et[ · ] for E[ · | Ft].

• Lemma C.2: It holds for all t ≥ 0 and i = 1, 2 that

∥vit+1 − vi∗∥∞ ≤ γ∥vit − vi∗∥∞ + 2max
s∈S

Vvt,s(π
i
t,K(s), π−i

t,K(s)) +
16

η

√
A

+max
s∈S

∥q̄it,K(s)− qit,K(s)∥∞ + 2γ∥vit + v−i
t ∥∞, (23)

where q̄it,K(s) := T i(vit)(s)π
−i
t,K(s) for all s ∈ S.
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• Lemma C.3: It holds for all t ≥ 0 that

∥vit+1 + v−i
t+1∥∞ ≤ γ∥vit + v−i

t ∥∞ +
∑
i=1,2

∥qit,K − q̄it,K∥2. (24)

• Lemma C.5: It holds for all t, k ≥ 0 that

Et[Vπ(t, k + 1)] ≤
(
1− 3βk

4

)
Et[Vπ(t, k)] +

2048A4βkη
3

ℓ3η(1− γ)2
Et[Vq(t, k)]

+ 16|S|Aβkη∥vit + v−i
t ∥2∞ +

4|S|A2β2
k

ℓη(1− γ)2
. (25)

• Lemma C.9: It holds for all t ≥ 0 and k ≥ zk that

Et[Vq(t, k + 1)] ≤
(
1− cηαk +

17ηA2βk

(1− γ)2

)
Et[Vq(t, k)]

+
βk

16
Et[Vπ(t, k)] +

352|S|3/2A3/2L̂η

(1− γ)2
zkαkαk−zk,k−1. (26)

Adding up equations (25) and (26) entails

Et[Vπ(t, k + 1) + Vq(t, k + 1)] ≤
(
1− βk

2

)
Et[Vπ(t, k)] +

4|S|A2β2
k

ℓη(1− γ)2

+

(
1− cηαk +

3136A4βkη
3

ℓ3η(1− γ)2

)
Et[Vq(t, k)] + 16|S|Aβkη∥vit + v−i

t ∥2∞

+
352|S|3/2A3/2L̂η

(1− γ)2
zkαkαk−zk,k−1

=
(
1− cα,βαk

2

)
Et[Vπ(t, k)] +

(
1− cηαk +

3136A4cα,βαkη
3

ℓ3η(1− γ)2

)
Et[Vq(t, k)]

+ 16|S|Aβkη∥vit + v−i
t ∥2∞ +

4|S|A2β2
k

ℓη(1− γ)2

+
352|S|3/2A3/2L̂η

(1− γ)2
zkαkαk−zk,k−1.

Note that Condition 1 implies that

3136A4cα,βη
3

ℓ3η(1− γ)2
≤ cη

2
.

Therefore, we have

Et[Vπ(t, k + 1) + Vq(t, k + 1)] ≤
4|S|A2c2α,βα

2
k

ℓη(1− γ)2
+

352|S|3/2A3/2L̂η

(1− γ)2
zkαkαk−zk,k−1

+
(
1− cα,βαk

2

)
Et[Vπ(t, k) + Vq(t, k)] (27)

+ 16|S|Acα,βαkη∥vit + v−i
t ∥2∞. (28)
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Linearly decaying rates We consider the following parameter choice: αk = α
k+h , βk = β

k+h , and β = cα,βα. Iteratively
applying Equation 27, we obtain for all k ≥ k0

Et[Vπ(t, k) + Vq(t, k)] ≲
4|S|A
(1− γ)2

k−1∏
m=k0

(
1− cα,βαm

2

)
︸ ︷︷ ︸

Ê1

+
|S|3/2A2L̂η

(1− γ)2

k−1∑
n=k0

z2nα
2
n

k−1∏
m=n+1

(
1− cα,βαm

2

)
︸ ︷︷ ︸

Ê2

+ |S|Acα,βη∥vit + v−i
t ∥2∞

k−1∑
n=k0

αn

k−1∏
m=n+1

(
1− cα,βαm

2

)
︸ ︷︷ ︸

Ê3

.

We next provide estimates for the terms {Êj}1≤j≤3. Bounds of terms like {Êj}1≤j≤3 are well-established in existing work
studying the convergence rate of iterative algorithms. Specifically, we have that

Ê1 ≤
(
k0 + h

k + h

)cα,βα/2

, Ê2 ≤ 4ez2kα
2

cα,βα/2− 1

1

k + h
, and Ê3 ≤ 2

cα,β
.

It follows that

Et[Vπ(t, k) + Vq(t, k)] ≲
|S|A

(1− γ)2

(
k0 + h

k + h

)cα,βα/2

+
|S|3/2A2L̂η

(1− γ)2
z2kα

2

cα,βα/2− 1

1

k + h

+ |S|Aη∥vit + v−i
t ∥2∞

≲
|S|A

(1− γ)2

(
αk

αk0

)cα,βα/2

+
|S|3/2A2L̂η

(1− γ)2
z2kα

2

cα,βα/2− 1

1

k + h

+ |S|Aη∥vit + v−i
t ∥2∞, (29)

which implies

Et[Vπ(t, k)] ≲
|S|A

(1− γ)2

(
αk

αk0

)cα,βα/2

+
|S|3/2A2L̂η

(1− γ)2
z2kα

2

cα,βα/2− 1

1

k + h

+ |S|Aη∥vit + v−i
t ∥2∞.

Using the previous bound on Et[Vπ(t, k)] in Equation 26

Et[Vq(t, k + 1)] ≤
(
1− cηαk +

17ηA2βk

(1− γ)2

)
Et[Vq(t, k)]

+
βk

16
Et[Vπ(t, k)] +

352|S|3/2A3/2L̂η

(1− γ)2
zkαkαk−zk,k−1

≲
(
1− cηαk

2

)
Et[Vq(t, k)] +

|S|3/2A2

αk0
(1− γ)2

z2kα
2
k

+ |S|Acα,βαkη∥vit + v−i
t ∥2∞.

Repeatedly using the previous inequality starting from k0

Et[Vq(t, k)] ≲
|S|A

(1− γ)2

(
αk

αk0

)cηα/2

+
|S|3/2A2

αk0
(1− γ)2

z2kαk +
|S|Acα,βη

cη
∥vit + v−i

t ∥2∞

≲
|S|3/2A2

αk0
(1− γ)2

z2kαk +
|S|Acα,βη

cη
∥vit + v−i

t ∥2∞
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Since
∑

i=1,2 Et

[
∥qit,K − q̄it,K∥2

]
≲ Et[Vq(t,K)]1/2, we have

∑
i=1,2

Et

[
∥qit,K − q̄it,K∥2

]
≤ c′1|S|3/4A

α
1/2
k0

(1− γ)
zkα

1/2
k +

c′2
√
|S|Ac

1/2
α,βη

1/2

c
1/2
η

∥vit + v−i
t ∥∞, (30)

where c′1 and c′2 are numerical constants. Applying the total expectation for both sides of the previous inequality and using
Equation 24, we obtain

E[∥vit+1 + v−i
t+1∥∞] ≤

(
γ +

c′2
√
|S|Ac

1/2
α,βη

1/2

c
1/2
η

)
E[∥vit + v−i

t ∥∞] +
c′1|S|3/4A
α
1/2
k0

(1− γ)
zkα

1/2
k

≤
(
γ + 1

2

)
E[∥vit + v−i

t ∥∞] +
c′1|S|3/4A
α
1/2
k0

(1− γ)
zkα

1/2
k ,

where the last line follows from Condition 1. Repeatedly using the previous inequality starting from 0

E[∥vit + v−i
t ∥∞] ≲

2

1− γ

(
γ + 1

2

)t

+
|S|3/4A

α
1/2
k0

(1− γ)2
zkα

1/2
k . (31)

The next step is to bound ∥vit − vi∗∥∞. Recall from Equation 23 that

E[∥vit+1 − vi∗∥∞] ≤ γE[∥vit − vi∗∥∞] + 2γE[∥vit + v−i
t ∥∞] +

16

η

√
A

+ 2E[Vπ(t,K)] + 2E[Vq(t,K)]1/2.

Since equations 29 and 30 imply that

E[∥vit + v−i
t ∥∞] + E[Vπ(t,K)] + E[Vq(t,K)]1/2

≲
|S|Aη

(1− γ)2

(
γ + 1

2

)t

+
|S|2A2L̂η

αk0
cα,β(1− γ)3

z2Kα
1/2
K ,

we have

E[∥vit+1 − vi∗∥∞] ≤ γE[∥vit − vi∗∥∞] + c′′

[
|S|ηA
(1− γ)2

(
γ + 1

2

)t

+

√
A
η

+
|S|2A2L̂η

αk0
cα,β(1− γ)3

z2Kα
1/2
K

]
for some numerical constant c′′. We use the previous inequality iteratively starting from 0 to time T − 1 to find

E[∥viT − vi∗∥∞] ≲
|S|ATη

(1− γ)2

(
γ + 1

2

)T−1

+

√
A

η(1− γ)
+

|S|2A2L̂η

αk0
cα,β(1− γ)4

z2Kα
1/2
K

Plugging the previous inequality with equations 29 and 31 in the Nash gap decomposition (lemma C.1), we obtain

E[∥vi∗,π−i
T,K

− vi
πi
T,K ,π−i

T,K

∥∞] ≲
|S|ATη

(1− γ)3

(
γ + 1

2

)T−1

+

√
A

η(1− γ)2

+
|S|2A2L̂η

αk0
cα,β(1− γ)5

z2Kα
1/2
K

Finally,

E[NG(πi
T,K , π−i

T,K)] ≲
|S|ATη

(1− γ)3

(
γ + 1

2

)T−1

+

√
A

η(1− γ)2

+
|S|2A2L̂η

αk0cα,β(1− γ)5
z2Kα

1/2
K .

This concludes the proof of theorem 3.2.
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D. Proof of corollaries
D.1. Proof of corollary 3.3

We have from theorem 3.2 that under self-play, if cα,β ≤ cηℓ
3
η(1−γ)2

6272η3|S|A4 , then algorithm 1 under Assumption 3.1 achieves for
all K ≥ k0:

E[NG(πi
T,K , π−i

T,K)] ≤ ĉ′1|S|ATη

(1− γ)3

(
γ + 1

2

)T−1

+
ĉ′2|S|2A2L̂η

αk0cα,β(1− γ)5
z2Kα1/2

(K + h)1/2
+

ĉ′3
√
A

η(1− γ)2
.

In the following, we will provide bounds on the terms that appear in the bound above and that depend on η. Namely, we
show that:

zK = O(log(K)/(ℓ2rbη µb,min)),

L̂η = O(ℓ−2rb
η )

inf
π∈Πη

inf
s∈S

µπ(s) = Ω(µb,minℓη),

First, we prove these inequalities, then we use them to deduce the sample complexity.

Proof of inequalities

1) We know that zK = t(ℓη, βk) ≤
tπb,βk

ℓ
2rb
η µb,min

and tπb,βK
= O(log(1/βK) thanks to the fast mixing of πb. Therefore, with

the choice βK ∝ 1/K we obtain that
zK = O(log(K)/(ℓ2rbη µb,min)).

2) We have that L̂η :=
2 log(8|S|/ρη)

log(1/ρη)
with ρη = ρ

(ℓ2η)
rbµb,min

b , therefore as ℓη → 0 we obtain L̂η = O(ℓ−2rb
η ).

3) We have cη = µηℓη , where µη := infπ∈Πℓη
mins∈S µπ(s). To bound µη , notice that for any π ∈ Πℓη , k ∈ N, we have:

∀s′ ∈ S :
∑
s

Pk
π(s

′|s)µπ(s) = µπ(s
′)

=⇒ ∀s′ ∈ S :
∑
s

(∑
a

(pk(s′|s, a)π(a)

)
µπ(s) = µπ(s

′)

=⇒ ∀s′ ∈ S : µπ(s
′) ≥ ℓη

∑
s

(∑
a

(pk(s′|s, a)πb(a)

)
µπ(s)

=⇒ ∀s′ ∈ S : µπ(s
′) ≥ ℓη

∑
s

Pk
πb
(s′|s)µπ(s),

=⇒ ∀s′ ∈ S : µπ(s
′) ≥ ℓη

∑
s

µπb
(s′)µπ(s)

where the third line follows because πb(s) ≤ 1 ≤ 1
ℓη
π(s). The fifth one holds because πb mixes at a geometric rate, and by

definition of the mixing time Pk
πb
(s′|s) → µπb

(s′). Therefore, since µπ(s
′) ≥ µb,min, we deduce that ∀s′ ∈ S : µπ(s

′) ≥
µb,minℓη .

Combination: Given lemma 4.1, we know that ℓη = O(η−2), therefore, the condition on cα,β becomes

cα,β ≤
cηℓ

3
η(1− γ)2

6272η3|S|A4
≤

µb,minℓ
2
ηℓ

3
η(1− γ2)

6272η3|S|A4
=

µb,min(1− γ2)

6272η13|S|A4

By injecting the obtained bounds in theorem 3.2 we find for all K ≥ k0:

E[NG(πi
T,K , π−i

T,K)] = O

(
η

(
γ + 1

2

)T−1

+ η12rb+13 log(K)2√
K

+
1

η

)
.
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The first term in the r.h.s above is exponentially decaying in T . We optimize the choice of η for the two other terms and
obtain the desired result for η = K1/(24rb+28).

D.2. Proof of Corollary 3.4

In this section, we show that if the opponent were to fix their policy, then the player converges to the best response of
the opponent. Our argument here is inspired by (Sayin et al., 2021), who used it to prove the rationality of decentralized
Q-learning.

First, we argue that the Nash gap bound in theorem 3.2 remains true for noisy rewards as long as the zero-sum structure is
preserved. Indeed, if we generalize the rewards for actions (ai, a−i) from Ri(ai, a−i) to ri(ai, a−i, ξ), where ξ ∈ Ξ is a
random variable with distribution µξ over Ξ (a finite set). If the noise is independent of the actions, ri + r−i = 0, and the
reward is still uniformly bounded, then the proof still holds.

Second, observe that if the opponent follows a stationary policy π−i, then it can be seen as additional randomness in the
rewards. Specifically, consider a fictitious opponent with one available action a∗, and define r̂i(ai, a∗, a−i) = Ri(ai, a−i),
p̂(s′ | s, ai, a∗) =

∑
π−i(a−i|s) p(s

′ | ai, a−i, s) for all (ai, a−i). In this new zero-sum game, applying corollary 3.3 entails
the same sample complexity for player i to find an approximate best response of its opponent.

E. Limitations of common assumptions: an illustrating example
Here we take a deeper look at the MDP of Figure 1, which we re-draw below for ease of readability.

0 1 2b : 1/2
b : 1/2

a : 1/2

a : 1/2

1/2

1/2

1/2

1/2

Figure 2. MDP with three states: state 0 has actions a and b, while states 2 and 3 don’t have any action. The arrows indicate the possible
transitions, which all have a probability of 1/2.

We also recall the policy π parameterized by ξ ∈ [0, 1] defined in Equation 2 as:

π(1, a) = ξ and π(1, b) = 1− ξ. (32)

Using this policy on the MDP above yields the following transition matrix:

Pξ :=


1−ξ
2

1
2

ξ
2

1
2

1
2 0

1
2

1
2 0


Therefore, to obtain the corresponding stationary distribution we solve the following for µπ = (x, y, z) ∈ [0, 1]3 and
x+ y + z = 1:

(x, y, z)Pξ = (x, y, z)

which is equivalent to 

(
1−ξ
2

)
x+ 1

2y +
1
2z = x

1
2 (x+ y + z) = y

ξ
2x = z

x+ y + z = 1
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then, 
z = ξ

2x

y = 2+ξ
2 x

x(2 + ξ) = 1

from which we deduce that the stationary distribution is given by:

µπ =

(
1

2 + ξ
,
1

2
,

ξ

4 + 2ξ

)
.

Strong reachability From the explicit formula of the stationary distribution µπ we can deduce that as ξ → 0 we have
µπ(3) → 0. Then, using Equation 1 we deduce that Tπ

s→s → ∞. This entails that the strong reachability assumption does
not hold in this simple setting. More generally, it is intuitive that stationary distributions of nearly deterministic policies
would not have a full support in any non-trivial MDP.

Mixing time Now we shift our focus to the mixing time assumption and we show that the mixing time for this simple
MDP and policy can grow arbitrarily if ξ → 1. Consider an initial distribution µ0 = (1/2, 1/4, 1/4), and denote by xk the
probability that the state at time k is the zero state. Our goal in the following is to show that the time it takes for xk to
converge to its stationary value can grow arbitrarily if ξ → 1.

First, using a one step transition we have that:

xk+1 =
1− ξ

2
xk +

1

4
+

1

2
∗ ξ

2
xk−1,

which can be equivalently written as:

xk+1 −
1− ξ

2
xk − ξ

4
xk−1 −

1

4
= 0

and (
xk+1 −

1

2 + ξ

)
− 1− ξ

2

(
xk − 1

2 + ξ

)
− ξ

4

(
xk−1 −

1

2 + ξ

)
= 0.

The above is a homogeneous linear recurrence relation with constant coefficients and can be solved by solving the second

degree equation in r: r2 − 1−ξ
2 r − ξ

4 = 0. The two solutions of this equation are r1 = 1−ξ
4 −

√(
1−ξ
4

)2
+ ξ and

r2 = 1−ξ
4 +

√(
1−ξ
4

)2
+ ξ which entails the existence of αξ, βξ ∈ R such that:

xk = αξr
k
1 + βξr

k
2 +

1

2 + ξ
.

Going back to the mixing time, we have that:

tπ,ϵ = min

{
k ≥ 0 : max

s∈S

∥∥P k
ξ (s)− µπ(s)

∥∥
TV

≤ ϵ

}
≥ min

k≥0

{∥∥∥∥P 2k
ξ (s)(0)− 1

2 + ξ

∥∥∥∥
TV

≤ ϵ

}
= min

k≥0

{
(αξr

2k
1 + βξr

2k
2 ) ≤ ϵ

}
≥ min

k≥0

{
βξr

2k
2 ≤ ϵ− αξr

2k
1

}
≥ log(βξ/(ϵ− αξr

2k
1 ))

log
(

1
(1−ξ)2/8+ξ

) − 1,
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Using the initial distribution µ0 = (1/2, 1/4, 1/4) and Pξ we can easily deduce that for ξ → 1 we obtain r1 → −1 and
r2 → 1 and αξ → 1/8 βξ → 1/24.

Consequently, we have for any ϵ ≥ 1/3, when ξ → 1:

tπ,ϵ ≈
log 1

24ϵ−3

log 1
ξ

− 1

which implies that:
tπ,ϵ → ∞ when ξ → 1.

Since limξ→0 µπ(0) = +∞, then the mixing time can grow arbitrarily if ξ → 1, thus invalidating Assumption 2.3 which
completes our proof.
Remark E.1. Note that this computations could also be done with other initial distributions µ0 as long as they entail non-zero
limits for βξ when ξ → 1. Indeed, the second root r2 → 1 when ξ → 1 independently from the initial conditions, and this is
the core insight behind this counterexample.
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